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ABSTRACT. — We consider the * d heat equation with rapidly oscillating periodic density
in a bounded interval with Dirichlet boundary conditions. When the period tends to zero and
the density weakly converges to its average we prove that the boundary controls converge to
control of the limit, constant coefficient heat equation when the density.is

The proof is based on a control strategy in three steps in which: we first control the low
frequencies of the system, we then let the system to evolve freeely and, finally, we control tc
zero the whole solution. We use the theory of real exponentials to analyze the low frequencie
and Carleman inequalities to control the whole solution.

The result is in constrast with the divergent behavior of the null controls for the wave equation
with rapidly oscillating coefficients.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On considére I'équation de la chaleur 4 avec densité périodique rapidement
oscillante de class€2 dans un intervalle borné avec des conditions aux limites de Dirichlet.
On démontre que, lorsque la période tend vers zéro et donc la densité converge faiblement ve
sa moyenne, les contréles convergent vers un contrble pour I'’équation de la chaleur limite,
coefficients constants.

Notre construction se fait en trois étapes. Dans la premiére nous contrélons uniformement le
bases fréquences. Dans une deuxiéme étape nous laissons les solutions décroitre sans contt
Finalement, nous appliquons un contréle qui ramene les solutions a zéro. La preuve combine
théorie des sommes d’exponentielles réeles pour analyser les basses fréquences et les inégal
de Carleman pour ramener les solutions a zéro.

Ce résultat est a comparer avec ceux établis dans le cadre de I'équation des ondes a coefficie
rapidement oscillants. Dans ce dernier cas on sait que les contrdles divergent lorsque la pério

tend vers zéro.
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1. Introduction and main results
Let p € W2 (R) be a periodic function satisfying
0 <pm < px) < pu <00, (1)

for all x € R. We recall thatW?>(R) is the Sobolev space @ (R) functions whose
derivatives up to the second order ard it (R).

Without lost of generality we may assume thats periodic of period 1We denote
by o its average

1
ﬁ:/p(x)dx. 2)
0

This paper is devoted to analyze the null-controllability of the following heat equation
with oscillating density

p(f)uf—ufmzo, O<x<1,0<t<T,
u?(0,1)=0, w1, t)=f*@®), O<t<T, 3)
ut(x,0) =ug(x), O<x<1.

The results in [8] and [9] show that for arfly > 0, ¢ € (0, 1) andug € L?(0, 1) there
exists a controlf¢ e L?(0, T) such that the solution of (3) verifies

u®(x,T)=0, forall0<x<1. 4
In fact there exists, for all’ > 0 ande € (0, 1), a positive constanf' (e, T') such that

17N 20.r) < C&s T lluoll 20,2, (5)
for all ug € L?(0, 1).

The main goal of this paper is to show tl@ts, T) remains bounded as— 0.
The formal limit ass — 0 of (3) is the averaged system

ou; — Uy, =0, O<x<1,0<t<T,
u@,0=0, u@,n)=f@), O0<t<T, (6)
u(x,0) =ug(x), O<x<1.

The limit system (6) is also null-controllable.

Therefore, it is natural to analyze whether the constaat 7') in (5) remains bounded
ase — 0 and if the controlf of system (6) is actually the limit of the control§ of
systems (3) as — 0.

These questions are indeed natural to be addressed from the point of view o
homogenization theory. Indeed, the goal in homogenization is to analyze the limit
behavior of a system in the presence of rapidly oscillating coefficients and to obtain
the effective limit system. This is relevant from a computational point of view since this
limit process may allow to replace the system with rapidly oscillating coefficients by the
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homogenized one when performing the computations. In the context of controllability
the same phylosophy applies and therefore it is natural to analyze whether the contrc
of (3) converge to the control of (6). When this is true, for practical purpouses, one car
compute the controff of the limit system (6). This is a much simpler task since the
system in (6) and corresponding adjoint system have constant coefficients.

When addressing this question we were also motivated by the negative results in [1
that show that, in the context of the wave equation, the observability constant blows-uy
exponentially ag — 0 (see also [2]-[4]).

As we shall see, in the context of the heat equation under consideration the constan
C(e,T) in (5) remain bounded as — 0. This shows that the dissipativity of the
heat equation compensates the spectral pathologies leading to the blow-up of th
observability constant in the context of the wave equation. Theorem 1.1 below show:
that the situation is completely different for the heat equation.

The main result of this paper is the following:

THEOREM 1.1. —Assume thatp € W2*°(R) is a periodic function of periodl
satisfying(1). LetT > 0. Then, for anyio € L?(0, 1) ande € (0, 1) there exists a control
f¢ e L?(0, T) such that the solutiom?® of (3) satisfies(4). Moreover, there exists a
constantC(T), independent of € (0, 1), such that

HfSHLZ(O’T) < C(T)”uOllLZ(O,l)' (7)

Finally, for anyuq e L?(0, 1) fixed, there exists a sequence of cont(glg} for system
(3) such that

{f°} — f strongly inL?(0, T) ase — 0, (8)
f being a control of the limit probler(6), so that the solution ) satifies

u(x,T)y=0, forall0<x <1l 9)

Moreover, the sequende®} of solutions of3) are bounded in.*°(0, T; H (0, 1)) and,
in fact,

{u®} — u weakly-*inL>*(0,T; H*(0,1)) ase— 0, (10)

forall s > 3.

The proof of Theorem 1.1 is based on a control strategy in three steps inspired fron
[14]. The same control strategy has been used before in [17] and [18]. Roughly, the
proof is as follows. We divide the time intervi, 7] in three subintervalsf; = [0, %],
L=1[% 21 and I; = [Z, T]. In the first time interval,/;, we control to zero the
projection of the solution over a suitable subspace containing only sufficiewly
frequenciesin the second time interval,, we let the system to evolve freely without
control. In this way the projection of the solution of (3) over kb frequenciesemains
at rest and, due to the strong dissipativity of system (3) ihigh frequencieghe size of
the solution at time = 27T /3 becomes exponentially small, i.e. of the orderof @ for
a suitable constant> 0, ase — 0. Finally, in the intervall; we apply a control driving
the whole solution to zero.
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Using Carleman estimates it can be proved that the control needed in the third interve
is at most of the order of@"°, for a suitable constant > 0, with respect to the
solution at timer = 27 /3. However, since, in view of the analysis made in the interval
I, the norm of the solution, in the absence of control, at time 27 /3 decays by
a multiplicative factor of the order of €/¢°, these two phenomena compensate and
the control needed in the third intervhd turns out to be uniformly bounded, and even
exponentially small as — 0.

As an immediate corollary, by duality, it can be shown that the following uniform
observability result holds for the adjoint system

p(§)¢f+¢jx:0, O<x<1,0<t<T,
{¢8(o, H=¢°(1,t)=0, O<t<T, (11)
¢°(x, T) = ¢°(x), O<x<1.

THEOREM 1.2. —Under the assumptions of Theorelril, there exists a constant
C > 0, independent dd < ¢ < 1, such that

T
16° . 0)|[201) < C / ¢ (1, 0)]dl, (12)
0

holds for everyp® solution of(11) with ¢° € L?(0, 1).

The rest of the paper is organized as follows. In Section 2 we describe in detail the
iterative method we use to prove the uniform boundedness of the coldtarif) in
(5). In Section 3 we obtain a partial uniform controllability result. Section 4 is devoted
to obtain a global but non-uniform controllability result on the solutions of system (3).
Both controllability results are needed in our iterative method. In Section 5 we complete
the proof of the first part of Theorem 1.1 and in Section 6 we develop the limit process.
Finally in Section 7 we comment on some possible extensions of the results of this pape

2. Description of the “three-steps’ controllability method

In this section we describe in detail the “three-steps” method outlined in the
introduction allowing to prove the null controllability of system (3) in such a way that,
with a further careful analysis, the controls may be shown to be uniformly bounded.

In order to develop this method we need to decompose the spectrum of system (3) int
two parts that we will refer to dew and high frequenciesf system (3) from now.

2.1. Spectral analysis

Consider the eigenvalue problem associated to system (3):

{)\p(g)ﬁo + Oy = Ov O<x< 11 (13)

¢ (0) = (1) =0,
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For eacte € (0, 1) there exists a sequence of eigenvalues
O<Af<AS<-- <Ay <--+—> 400 (14)

and a sequence of associated eigenfuncti@fis,.y which can be chosen to constitute
an orthonormal basis ih?(0, 1) with the norm

1

X
1205 = [ £( )0 (15)
0
The eigenfunctions are also orthogonalHg(0, 1) and satisfy
1 1
X

[l =i o2 )leicof e =25, (16)
0 0

On the other hand, using the characterization of the eigenvaljiegven by the
Rayleigh quotient:

1 2dx
Ap= max m nlfotp;l, @an
dim E=k ¢€E fo ,O(E)|(p|2d.x
we deduce that
k2 2 k2 2
APV iy (18)
Pm Pm

Let us recall the following result from [4]:

PROPOSITION 2.1. — Assume thap € L*°(R) is a periodic function satisfyingl).
Givens > 0, there exists a constaid(s), independent of € (0, 1), such that

VAL —\/Ag > -3, (19)

forall k < C(8)/e.
Futhermore, there exist positive constagtg C, and Cs, independent of € (0, 1),
such that

1
C1l@p @I < [ 1@l dr < Caligp, (20)
0
forall k < Cy/s.
Remark2.1. — Note that (20) and (16) imply that
k e 2 _ M
<o D] < ok (21)
1

forall k < C3/e.
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On the other hand, taking= = /(2,/p) in Proposition 2.1, we have

T
VAL — A 22
for k < C(/(2yP))/e.
Then (21) and (22) are valid for all< [De~1] with

D:min{cg,c(z%ﬂ. (23)

Here and in the sequél] denotes the integer part.

In view of Proposition 2.1 and Remark 2.1 we introduce the space

Hkg[DS_l] = {M € L2(O, 1) u = Z ak(p,f(x)}, (24)
k<[De~1]

whereq, are real numbers anf) is as in (23).H,<p.-1; is simply the subspace of
L?(0, 1) generated by the firgiDs 1] eigenfunctions. We will call these eigenfunctions
thelow frequenciesand soH, < p.-1; Will be the space generated by tlogv frequencies.
Note that H,p.-1; is a finite-dimensional space but its dimension increases as
decreases. This fact will play a key role in our proof. Giwea L?(0, 1) we will denote
by I, < p.-1yu the orthogonal projection ovet, < p,1;.

2.2. Thecontrol strategy

We are now in conditions to decribe precisely our control strategy.
GivenT > 0 we divide the time interval in three subintervals

[0, T]=1LU LU I3, (25)
with I = [0, §1, I =[5, F1andls =%, T1.
Given an initial datumig € L?(0, 1) to be controlled we proceed as follows:
e First step.In the first time intervall; we drive to zero thdow frequenciesj.e.

the projection over the spadé, (.- of the solution. In other words, we introduce a
control £f c L%(0, T/3) such that the solution of

p(Du; —u, =0, 0<x<1,0<t<%,
{MS(O, n=0, u'(Lt)=fw), O0<t<i, (26)
uf(x,0) = up(x), O<x <],
satisfies
T
Hkg[Dafl] I/lg (E) = 0 (27)

As we will see, this can be done uniformly ere (0, 1). Here and in the sequel we use
the abridged notation® (1) to denote ther-dependent function®(x, t). More precisely,
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549
we will prove the existence of a positive constéht- 0, independent ot € (0, 1), such
that

1751l 20,2, < Clluoll 20,0, (28)

for all ug € L?(0, 1) ande € (0, 1). This result will be proved using classical results of
nonharmonic Fourier series and Proposition 2.1.

In view of the uniform bound (28) of the control we shall also show that

(3)
L
3

We denote by the solution obtained at the end of the first time interali.e.

v = uf (g) (30)

e Second stepn the second time intervdh we let the equation to evolve freely. In
other words, we solve

, < Clluoll 20,1y (29)
L2(0,1)

p(;—‘)uf—ufm=0, O<x<1,%<t<2§,
w0, =u*(1,1)=0, L<r<Z

T c
ut(x, 3) =g,

(31)
O<x<1.

Taking (24) into account it is easy to see that the solution of (31) verifies

T 2T
My <pe1yu®(t) =0, forall 3 <t < 3 (32)

Futhermore, we will see that there exists a positive congfaisuch that

=)
Hug("t)HLZ(O,l) < Cpe ey HUSHLZ(O,D’ (33)
forall T/3 <t < 2T /3. In particular, forr = 2T /3, taking (18) into account, we deduce
that
< Cre7?°

2T 2
(%5 ) e [,

where the positive constantg andC, do not depend on € (0, 1).

Therefore, at the end of the second step, i.e. at time27 /3, we obtain a state
u®(-, 2T /3) with an exponentially small (as— 0) norm. We denote by the solution
attimer =27/3, i.e.

. 8<2T>
wh = — .
o=1Uu 3

(34)

(39)
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e Third step.In the last step we control the whole solution to zero. According to [11]
there existsfs € L2(2T /3, T) such that the solution of

p(Du; —us, =0, 0<x<12T<t<T
ut(0,0)=0, w'dn)=fi@t), %F<t<T, (36)
ut(x, &) = wg, 0<x<1
satisfies
u®(T)=0. (37)

As we will prove in Section 4 using Carleman estimates, there exist positive constant:
C1 andC, such that

1751122z ) < €22 w20 (38)
for all ¢ € (0, 1). The constant€’; andC> in (38) depend ofT" but they are independent
ofe €(0,1).

Combining (29), (34) and (38) and taking (30) and (35) into account we get

43 _ 2
||f2HL2(ZT r S C1€ 2/ g3l luoll2(0,1), (39)

where the constants,, C, andCj; are all of them independent efe (0, 1).
Conclusion: Putting all these results together we conclude that the control

ff in[o, L,
ff=<0 in[%, F], (40)

f5oin[&F, T,
is such that

Hf HLZ(O r S Clluoll 20,1y, (41

for all ug € L?(0, 1), with a constantC > 0 independent of & ¢ < 1 and moreover the
solution of (3) satisfies (4), as we wanted to prove.

Note also that the contrgf® given by (40) is concentrated on the interv[z()sg] and
[2T T and that its restriction to the last inter\[§§, T1is exponentially small (see (39))
W|th respect te — 0.

The following two sections are devoted to rigorously prove the results stated in eact
of these three steps.

3. Uniform controllability of the “low frequencies’

The main result of this section is as follows:

THEOREM 3.1. —Assume thap € L*°(R) is a periodic function satisfyingl). Let
T > 0. Then, for anyuy € L?(0, 1) there exists a controlf® € L?(0, T) such that the
solution of(3) satisfies

Hkg[Dg—l]Mg(T) = 0 (42)
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Moreover, there exists a constafit> 0, depending orf" but independent of € (0, 1),
such that

HfSHLZ(O,T) < Clluollz20,1)» (43)
for all ug € L2(0, 1).

Proof. —By duality, the proof of the controllability result of this theorem may be
reduced to prove the following observability result:

ProPoOsSITION 3.1. —Given any T > 0, there exists a positive constari(7),
independent of € (0, 1), such that

T
[16:.0a > e 0z, ()
0

for any solution of systeifi1) with ¢° € Hi<p.-1.

Before getting into the proof of Proposition 3.1 let us show why it implies the result
in Theorem 3.1.
For anys > 0 ands > O, following [6], we consider the funtional

T 1
1
Je.s(0°) = 5/!¢;§(1, 0[? dr +8||¢0H12L1(}(o,1) - /P(%)MO(XWS(X,O)dx-
0 0

This funtional is continous and convex H&(O, 1). We note in particular that it is
well defined inH3(0, 1) since the solutior® (x, ¢) of (11) belongs taL?(0, T; H? N
H$(0,1)) and thereforep?(1,t) € L*(0, T). Moreover, according to Proposition 3.1,
it is uniformly coercive in the subspac®,.<p.-1; of HE(0,1) generated by the
eigenfunctionsyf of 13 withk < [De™1].

Therefore,J, 5(¢°) admits a unique minimizer i, <p,-1;. It is easy to see that the
control % = ¢©9(1,1), where >’ (x, ) is the solution of (11) with the minimizer
$§’5(x) of J. 5 in Vi pe-1) @sinitial data, is such that the solutieh’ (x, 1) of (3) satisfies

| (T) < 8. (45)

HH*l(O,l)
Moreover, according to the uniform inequatily (44), it is easy to see that the controls
{ £&%} are uniformly bounded i.?(0, T') with respect te € (0, 1) ands € (0, 1).

Passing to the limit a& — 0, with ¢ > 0 fixed, we obtain a contrgf* for system (3)
such that, according to (45), the solutiehof (3) satisfies

u®(T)=0.

Moreover, the control$ f¢} remain also uniformly bounded ib?(0, T') with respect
toe € (0,1).
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Proof of Proposition 3.1. By (24),

P’ = > api(x). (46)

k<[De™1]

We develop the solution of (11) in Fourier series,

P =Y ae T g(x). (47)

k<[De~ 1]

In view of the orthogonality of the eigenfunctiofg;} in the spacd.?(0, 1) with weight
p(3) we have

1
1\° . ‘ 2
<_> > el il dr < / Y aegi()] dr
PM 7 <ipeny 0 'k<[De1]
1 2
g(—) > JalPe T d. (48)
pm kg[D&‘*l]
Thus inequatily (44) is equivalent to
2
> a0 (@h D] d=CT) D alPe T (49)
0 k<[DeY k<[De™1]

In view of (21), in order to prove (49) it is sufficient to show that

T

2 2
d>CcT) Y @e—”iﬁ (50)

&
k<[De—1] Tk

Y
> e

0 k<[De 1]

for every sequencéq;} € I°. Inequality (50) may be obtained as a consequence of
classical results on series of real exponentials that we describe now.

Given& > 0 and a decreasing functia¥i: (0, +00) — N, such thatv(§) — +o0 as
8 — 0, following [9], we introduce the clas§(&¢, N) of increasing sequences of positive
real numbers ;};>1 such that:

ny =€ >0, (51)
Mjp1—p;=>&>0, forall j>1, (52)
and
1
j=ne Hi
forall § > 0.

We have the following result:
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PrRoPOSITION 3.2. —Givené > 0, a function N as above and” > 0, there exists a
positive constan€, which depends of, N and T, such that

>

forall {;};>1 € £(&, N) and all sequencéqa;};>1 of real numbers.

¢ Elal s
‘ 54
v >; we - 4

—+00
Z ap€” it
k=

Before proving this proposition we complete the proof of (50). We introduce the
sequence$ }i>1 given by

— e i -1
={)‘k if k< De™ ™, (55)

k’m?/py if k> Det

Taking (18) and (22) into account it is easy to prove that there éxistO and
a function N as above such that conditions (51)—(53) are satisfied uniformly by the
sequence$X2}k>1 for all ¢ € (0, 1). Applying Proposition 3.2 to the sequenr)_ai}k>1
we obtain (50). O

Proof of Proposition 3.2. +et

A={u;}jx1 (56)

be a sequence of positive real numbers andFleh, T) denote the smallest closed
subspace of.?(0, T) containing the functions#i’, j =1,2,.... It is well-known,
see for instance [20], th@ (A, T) is a proper subspace af(0, 7) if and only if

i 1 < +o00. (57)

=1 M

The following result can be found in [9], Theorem 1.3, p. 47:

LEMMA 3.1.-LetO< T <oo and A € L(&, N). Then the restriction mapping
S:E(A,00) = E(A,T), (58)

has a bounded inverse, i.e.
Is?<c
where(C is a positive constant determined uniquelyshby and T

In other words, for evern € L(&, N) there exists a positive constatité, N, T) such
that
2

(59)

T\ oo 2
Kt
> aet
o /=1
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for all = laje it e E(A,T).
Let {gx}x>1 be a biorthogonal sequencei(0, o) for (e} >, i€,

T (1 ifk=j
nit __ ’
/“”e ’—{o if k£ . (60)
0
By (60),

= |a;|*. (61)

We have that

2

X /400 P+
/(Zake_ukt>%' dr < ”%‘”%2(0,00)/ (62)
o k=1 o k=1
By (61) and (62) we get
TR, ja 2
/ Zak pat . foralli=1,....+oo. (63)
0 k=1 ||ql||L2(o 0)
Multiplying (63) by -1 we get
+00 1 %0 | 400 ;
—/ Za g ! dt/z Ja: | (64)
i=1 i 0 — i=1 Mi ||ql ”LZ(O OO)
or equivalently
+2) 400 2 +00 2
_ 1 la
a,e ! = (65)
O/ ; Vs ) Z 1l gl Z2 oo
The following result can be found in [9], Theorem 1.1, p. 46:
LEMMA 3.2.-Givené > 0 and a decreasing function
N:(0,+00) = N, (66)

there exists a functioi : (0, co) — (0, o0), depending uniquely ofiand N, such that

|IQk||L2(o 00) K(8)e(sm

forallk=1,2,...,+00, 8> 0and{ui}i>1 € L(¢, N), where{gy };>1 is a biorthogonal
sequence for the sequen@*+'};~1 in L%(0, 00).
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Applying Lemma 3.2,

+00

400 2 +00 2 ~ ?
i 1 |ak| 1 |ak| —4
e | dr > e ~ 1 :
o/ 2 oo %)gukllwlli«om &5 i);l“km)
(67)
Takings = 2T,
oo . 2 +00 2
. 1 lak® o7
R _ e 2T (68)
; K@D 5L ;;1 Mk

0

This concludes the proof of Proposition 3.2

4. Global non-uniform controllability
This section is devoted to prove inequality (38).
We have the following result:

PROPOSITION 4.1. —Assume thap € W2 (R) is a periodic function satisfyin¢l).
LetT > 0. Then, for any € L?(0, 1) there exists a controf® € L?(0, T) such that the
solution of(3) satisfies

u®(T)=0. (69)
Moreover, there exist positive constaidtsand C,, independent of € (0, 1), such that

4/3
Hf£||L2(O,T) < C16%° luollz2(0,1), (70)

for all ug € L?(0, 1).

Remark4.1. — The fact that Eq. (3) is null-controllable wherbelongs tow? > (R)
is not new. The new contribution of Proposition 4.1 is estimate (70) which provides a
first rough estimate on how does the control depend ase — 0. Note that, according
to Theorem 1.1, estimate (70) is far from being sharp since one can actually prove the
the controls remain bounded as— 0. But, as an intermediate step in the proof of
Theorem 1.1, we need to first prove this weaker version.

Proof. —Arguing as in the begining of the proof of Proposition 3.1, the proof of
Proposition 4.1 can be easily reduced to prove the following observability inequality:

PrROPOSITION 4.2. —For any T > 0O there exist positive constant§; and C,
independent 0D < ¢ < 1, such that

T
. 0320 < 2 [lgcn [, (71)
0

for everyg® solution of(11) and for alle € (0, 1).
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Proof of Proposition 4.2. et us consider the variable coefficient adjoint heat
equation

$0,1)=¢1,1)=0, 0<r<T, (72)
¢(x,T)=¢°(x), O<x <1,

with a € W2°°(R) such that

{a(x)¢t—|—¢xx:0, O<x<1,0<t<T,

O<a, <akx) <ay < +oo, (73)

for all x € (0, 1). The following holds:

LEMMA 4.1.—For any timeT > 0 there exist positive constants,(T), C, and
C3(T) such that

4/3 2
/ +C3(Mlall

T
Cllally3 W 2ooun) / 6.(L, t)|2 dr (74)
0

|6, 02204, < Cu(T)e

for every solutionp of (72) and for everyu € W2 (R) verifying (73).
Applying Lemma 4.1 to the solutions of (72) witl{x) = p(3) we obtain (71). O

This completes the proof of Propositions 4.2 and 4.1. It only remains to prove
Lemma 4.1.

The proof of Lemma 4.1 can be done reproducing carefully the developments in
[10] and [11] on Global Carleman Inequalities. In order to obtain (74) one has first
to reduce the problem to the heat operator with a lower order potential an to prove the
Carleman inequalities paying special attention to how the various constants entering i
the inequalities depend on the potential.

In order to make the article easier to read this proof is given in an appendix at the enc
of this paper.

5. Proof of the main controllability result

This section is devoted to complete the proof of the uniform controllability result of
Theorem 1.1. Note that the proof of the convergence of the control stated in Theorem 1.
is left to Section 6.

We follow the control strategy presented in Section 2.

We fix a control timeT’ > 0 and we divide it into three subintervalg= [0, %], I, =
[Z.&andls =3, T].

By the first part of Theorem 3.1, for any € L?(0, 1) there exists a controf% €

L?(0, Ly such that the solution of (3) verifies that

T
Migipe-1yt° (g) =0.
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Moreover, according to Theorem 3.1, we deduce the existence of a positive canstant
which depends off’ but is independent of € (0, 1) such that

Hf%HLZ(O,%) < C”“O”LZ(O,l)v (75)

for all ug € L?(0, 1) ande € (0, 1).
Let us consider in the first time interval the control

¢ 0<r<iL,
ffz{f% p

X
T T

We deduce that the solution of (26) verifies (27). On the other hand, we have, by classice
energy estimates,

16

At this point it is important to observe that (76) holds becafisganish on[%, g]. In
fact it would sufficeff to vanish on any intervdly — 8, 1, for anys > 0.
In order to prove (76) we proceed as follows: Without lost of generality we may

assume that® = 0 since in the case wherg = 0, (76) holds obviously. Multiplying

< C(T) (luoll 200 + 1 £1]] 1200.2))- (76)
2(0,) 3

P(f)uf—uix=0, O<x<1,0<r<Z,
u'(0,)=0, wu'(Lt)=fi@), O<t<Zi (77)
u®(x,0) =0, O<x<1

by ¢* solution of the adjoint system

()¢ + 5, =0, 0<x<1,0<t<%,
¢°(0,1)=¢*(1,1)=0, O<r1<g, (78)
P (x, §) = ¢°(x), O<x <1,

and integrating by parts we have that

t %
T
O/ O/ p(g)ua(€>¢o(x)dxdt:_ 0/ Fei L. (79)

We have the following lemma:
LEMMA 5.1. —Let us consider the following system

¢°0,1)=¢*(1,1)=0, O<t<T, (80)

px/e)g; +¢:. =0, O<x<1,0<t<T,
{¢8(x,T)=¢°(X), O<x<1,

with ¢° € H2N H}(0, 1). Then,
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¢ — ¢ weakly inL?(0, T; H>N Hy(0,1)), ase — 0, (81)
¢° — ¢ strongly inC ([0, T]; H®) forall s <2, ase — 0,
¢i(1, 1) — ¢, (1, 1) strongly inC([0, T]), ase— 0,
whereg is the solution of the limit system

ﬁ¢t+¢xx:Oy 0<x<1,0<t<T,
{4)(0, HN=¢l1,1)=0, O0<r<T, (82)
¢(x, T) = ¢%x), O<x <1

Proof. —The functiony® = ¢? verifies

px/e)yf +yi. =0, O<x<1,0<t<T,
¥ve(0,1)=v*(1,t) =0, O<t<T, (83)
Y@ T) = -2 /p(x/e), O<x <1,

wherey ¢ (x, T) = —¢° /p(x/¢) is bounded inL?(0, 1). Then,
¢¢ is bounded irC ([0, T]; L%(0, 1)), (84)

and consequently,

{¢8 is bounded irC ([0, T']; H? N H§(0, 1)), (85)

¢*° is bounded irC([0, T1; L3(0, 1)).
By the Aubin—Lions theorem we deduce thitis relatively compact i€ ([0, T']; H*(0, 1)),
forall 0 < s < 2. By extracting subsequences we have that
¢° — ¢ weakly inL?(0, T; H>N H(0,1)), ase — 0,
¢° — ¢ strongly inC([0, T]; H*) forall s <2, ase — 0, (86)
#:(1,1) — ¢,(1, 1) strongly inC([0, T']), ase — O.

Passing to the limit in the variational formulation of (80) it is easy to see that the limit
¢ is the solution of system (82).0

Let us go back to the proof of (76). In the right hand side of (79) we have that, by
Lemmab5.1,

/ff¢§(1, 1) dr
0

< HffHLZ(O,%)Hd)i(l’ I)HLZ(O,%) < C(T)Hff”LZ(O,%)Hd)gHHZOH(}(O,l)'

Thus, by duality,
Tl < CON A g o

Remark5.1. — The arguments we have used in the proof of Lemma 5.1 allow to show
that, whenp, € H°(0, 1) N H3(0, 1), with s > 3/2, then

{¢2(1, 1)} — ¢.(1,1) stongly inC([O, T).
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This is because, under this assumptiongdh it can be shown tha® is relatively
compact inC ([0, T']; H*(0,1)) forall 0 < s’ <s.

In what concerns (87), this allows to get a uniform boundud¢r /6) in all the
Sobolev space® —*(0, 1), for all s > 3/2.

Now, taking the regularizing effect of the solutions of (77) into account, we have that

1
a ZA T 28T
/ ( )yu (/3% dx = dMlalPe 5 =) ';'2 (16)%e %
0 k>1 k>l( 9
|ay |2
<CM)y. ~200.1)°
i1 (M )2 b
consequently,
HME(T/S)HLZ(O,l) < C(T)|‘”8(T/6)HH*2(0,1)’ (83)
with C(T) > 0 independent of € (0, 1).
Therefore, by (87) and (88),
(T /312002 < CD| £ [l 20,7 (89)

whereC(T) is a positive constant independentsaf (0, 1).

This completes the proof of (76).

In the second time intervah = [%, %T] we let the system to evolve freely. In other
words, we solve the uncontrolled system (31) with initial datma- u(%), u being the
solution of (8) obtained in the first time intervAl.

We have the following result:

LEMMA 5.2. —Let u® be the solution of3) with f = 0 and with an initial ug €
L?(0, 1) such that

Hkg[DS—l]uo = 0 (90)
Then
& < Pu _){Dr—ljt 91
Hu (I)HLZ(O,l) X ,O_e . ”u0”L2(O,l)v ( )
m
forall t > 0.

Proof. —We decompose the initial datum in Fourier series:

ug= Z a;jg;(x). (92)

jzDe1

The solution of (3) withf = 0 may be written as:

()= > a;epl(x). (93)

j=[De™1
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Then, due to the orthogonality of the eigenfunctigrigx),

1
1 1 .
H“E(I)HEZ(O,D < ,0_ /P(%) |u®(x, t)]zdx = ,0_ E |aj|ze_2)“kt
m
0

" jzIDe1]
e_Z)”fD;—ljt e—2AfD Lyt 1 X
e 2 & 2
<— ) lajl 27/P<g>|uo(x)| dx
N Py
1

PM —2x¢ ¢ 2 PM _—20° it 2
< —e Tl / uo(x)|“dr = =—=e "1 Jluoll72qq)  (94)

pm 0 m ’

According to (91), the solution of system (31) verifies

M 3y =5 T
u®(t) < [==e Tt T3 yf (—) , (95)
J ©llz < /5" )0
2 .
forall <t < 2. In particular
u® (2—T> < PM e Moy e <Z> . (96)
3 L2(0,1) Pm 3 L2(0,1)
Taking (89), (96) and (18) into account we conclude that
2T T
us(—> < C(T)e ™ DT/ Goue? uf(—> : (97)
3 /llz20,1) 3/ L2,

whereC(T) is a positive constant independentsaf (0, 1).

In the last time intervall; we control to zero the datunwg = us(%T) obtained in
the two previous steps. In other words, we solve (36) with the conffogiven by
Theorem 4.1. Then we have

u®(T) =0, (98)
as we wanted to prove. On the other hand,

Hfzg HLZ(%T,T) < C(T)eC(T)/84/3 HwSHLZ(O,l)

< C(T)eC(T)/64/3e—JTZDZT/(3pM52)

“(3)
3/ 1120,

4/3 _ 212 2
< C(T)eC(T)/é‘ e D“T/(3pme )”uO”LZ(O,l)- (99)
In particular
2
1550 2 ) < C2&7* ase -0, (100)

for suitableC4, C, > 0.
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This argument shows that the control

fE0<1<T/3,
0 T/3<t<2T/3, (101)
fEo2T/3<t<T,

fo=

is such that the null controllability condition (98) holds and, according to (75) and (99),

Hf&HLZ(O,T) < C”“OHLZ(O,l)v

whereC is a positive constant independent oG < 1.
This completes the proof of the uniform null controllabililty result of Theo-
reml.l. O

6. Thelimit process

This section is devoted to prove the convergence of the controls stated in Theorem 1..
We fix T > 0 andug € L?(0, 1). We then consider the contrgf e L?(0, T) such that
the solution of (3) verifies (4). Note that, by Theorem 1.1,

17N 207 < Cliall 20,2, (102)

with C > 0 independent of € (0, 1).
By duality, it can be proved that the contrét may be chosen to be of the form

fr0)=9¢r(L1), (103)
forall ¢ € (0, T), whereg*® is the solution of
p()¢; + o5, =0, O<x<1,0<t<T,
¢°(0,1)=¢°(1,t)=0, O<r<T, (104)
¢ (x, T) = ¢°(x), O<x <1,
which minimizes the functional
T 1
& & 1 & 2 X &
s =3 [ls:aof e - /P(;)Mo(xﬂi) (x,0)dx, (105)
0 0

in the space

2 . Y H
Fo— { g€ L°(0,T): g=¢;(1,1) for some solutiorp of (104)} (106)

with ¢ € L2 (0, T; H* N H(0, 1))

loc

endowed with the norm

1/2

T
gl pe = </|¢§(1, r>|2dz> : (107)
0
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Note that when we choose the contisl(r) = ¢2 (1, ¢) the bound (102) is kept, i.e. the
sequence of minimizers of the funtional$ are such that

T
/|</>§(1, n|°dr <c, (108)
0

where C is a positive constant independent ©f (0, 1). This is so since, actually,
the control f°(¢) = ¢£(1,¢) one obtains minimizing/® on F¢ is the one of minimal
L?(0, T)-norm.

By extracting subsequences (that we still denote by the ingl@re deduce that

¢°(1,1) — ¢(r) weakly inL?(0, T), ase— O, (109)
First of all we are going to prove that the functianz) is a control of the limit
system (6).

The Euler equation satisfied by the sequence of minimigeisof the functionalsF*
may be written as

0 iDL N — f5 p(Duo(x)9 (x,0)dx =0, (110)
for all ¢¢ solution of (104).

Let us fixp® € H2N H(0, 1) as the initial datum of (104). By Lemma 5.1,
¢: (1, 1) — ¢.(1,1) strongly inL?(0, T), (111)

and
¢°(x,0) — ¢ (x, 0) strongly inL?(0, 1), (112)

whereg is the solution of the adjoint limit system

ﬁ¢t+¢xx:Oy 0<x<1,0<t<T,
{¢>(O,t):¢>(1,t):0, O<t<T, (113)
¢(x, T) =¢%x), O<x<1.

Using (111) and (112) and passing to the limit> 0 in (110) we obtain that
T 1
[swe@nd - [pug.0dr =0, (114)
0 0

for all ¢ solution of (113) withp® € H? N H(0, 1).
But then the solutiom of the controlled heat equation (6) with contrbl= ¢ is such
that

u(x,T)=0, forallxe(0,1). (115)
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Indeed, multiplying in (6) by solution of (113) and integrating by parts we deduce that

T

T 1
/ cbe(L 1) + / puCx, NG, dr| =0, (116)
0 0

0

which combined with (114) implies that
1
/ u(x, T)¢de =0, forall ¢° € H? N HA(0, 1), (117)
0

and this implies (115).

Consequently the weak limét(z) is a null control for the limit equation (6).

We are now going to prove the following two facts to complete the proof of
Theorem 1.1:

(a) The limit ¢ is uniquely determined, i.e. it is independent of the subsequence;

(b) The convergence (109) holds in the strong topologg D, T).

We proceed as follows. According to the first statement of Theorem 1.1 and by
Theorem 1.2, the uniform observability

T
1670|2201 < C(T) / 951, 1) dbr, (118)
0

holds for everyp® solution of system (11) and for anfy > 0. Consequently (118) holds
also in any interval of the fornir, T'), with 0 < t < T and provides an estimate ¢f
at: = t. Applying this estimate t@*®, the minimizer of the functional® in F¢, we
deduce that

T
le°C. 0|72 < C(T 1) /y¢§<1, 0 dr, (119)

with0<t <T.
Taking (108) and (119) into account we deduce that

H(pg(-, T)HiZ(o,l) <C(T—-1), forallOLTt<T, (120)

with another positive constaidt(7 — ) independent of € (0, 1).
By the regularizing effect of Eq. (11) the bound (120) implies that

|o® (., T)HiIZHHol(O,l) SCT =7, forall0<z<T, (121)

with a different constan€ (T — 7).
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By extracting subsequences once again (that we still denote by thesindexdeduce
that

¢°(x, 1) = @(x, 1) strongly inL2((0, 1) x (0, 7)),
( ) (122)
¢’ (x, 1) — @(x, 7) strongly inL?(0, 1),
forall0<t <T.
Multiplying (104) by an arbitrary functio € C*°((0, 1) x (0, 7)) such that (0, r) =
0(1,t) =0(x,0) =0 and integrating by parts,

T 1 1
//gog <p<f>9,—9xx>dxdt—/p<£><p89(x,r)dx:0. (123)
00 ¢ 0 ¢

Passing to the limit — 0 in the above expression we obtain that

T 1 1
//(p(ﬁ@, — 60, )dxdr — /ﬁ(p@(x, 7)dx =0. (124)
00 0

We deduce thap verifies the equation

20 + @ =0, O<x<1,0<t<r,
{go(O, H=¢l,t)=0, O<t<r, (125)
forall0<t <T.
By (122) and (125) we deduce that
¢t (1, 1) — ¢, (1, 1) strongly inL?(0, 7), ase — O, (126)
forall0<t <T.
Taking (122) and (126) into account we deduce that
o.(L,t)=¢@) forall0<t<T. 227)

In order to identify the functiom (x, ¢) let us consider the adjoint limit system:

ﬁ¢t+¢xx:0a O<x<1,0<t<T,
{¢>(0,t)=</>(1,z):0, O0<t<T, (128)
¢(x,T)=¢%x), O<x<l.

We define the space

P { g€ L?0,T): g=¢.(1,1) for some solutiorp of (128)}
with ¢ € L2 (0, T; H? N HE(0, 1))
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endowed with the norm

T 3
lglr = ( / ¢ (1, z>|2dz> : (129)
0

We also define the following quadratic functional Bn

T 1
1
J@)=7 / 6o (L )i — B / (1) (x, 0) dr. (130)
0 0

The solutiong of (128) satisfies the following observability inequality:

T
19, OliZ2y, < C [ Ion(L) P, (131)
0

with C > 0 independent of the solutigh This inequatily is well-known to hold, see for
instance [14]. It can also be derived as limit wher>- 0 of the uniform inequatily (12).

In view of (131) it is easy to see that the functiorfahchieves its unique minimum at
a single point/ € F, which is characterized by the Euler equation:

T 1
/ e (L D (L 1) dlf — / Buuo(x)$ (x, 0) dx =0, (132)
0 0

for all ¢ solution of (128).
Comparing (114) and (132), taking into account that) = ¢, (1, r), we deduce that

Y(x,0) =g¢x,1), (133)

and consequently
@ (L, 1) — ¥, (1, 1) weakly in L2(0, T). (134)
By lower semicontinuity we have that

J () < liminf(J*(¢")). (135)
On the other hand, for any® € H? N H}(0, 1), by Lemma 5.1, the solutions of (104)
verify that
J(@) = lim(J°¢"). (136)
and consequently,
J () > lim sup(J* (¢")). (137)
By (135), (137) and taking into account that

¢°(x,0) — ¥ (x, 0) strongly inL?(0, 1), (138)
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we deduce that
T T
/!wﬁ(l, 0| dr — /lwx(l, n2de, ase— 0. (139)
0 0

By (134) and (139) we conclude that
{51, 1)} — ¥, (1, 1) strongly inL%(0, T). (140)

In what concerns the convergence of solutiarfs proceeding by transposition
and with the aid of Lemma 5.1 and Remark 5.1, it can be easily shownuthat
is uniformly bounded inL>(0, T; H~*(0,1)) for all s > 3/2. The weak-* limit in
L0, T; H*(0, 1)) of u® can be easily seen to be the unique solution of (6) with the
limit control f that is defined by transposition as well.

7. Futher comments and results

In this section we discuss some variants and extensions of the results of this paper ar
also some open problems.

7.1. Thecase p € WH*(R)

In the casgp e W (R) the above control strategy in three steps can also be applied.
The existence of a uniformly bounded sequence of con{ils can be proved provided
T > Ty, whereTy is a large enough constant.

The casep € L>*(R) is by now an open problem.

7.2. Dimension N > 1

Using the partial controllability result proved in [13] for the wave equation with
rapidly oscillating coefficients and the methods in [19] the partial null controllability
result stated in Theorem 3.1 can be extended to dimengionl when the control acts
on a part of the boundary satisfying the geometric control condition for the limit wave
equation. However in the case of several space dimensions Lemma 4.1 can not be appli
directly since we may not use the change of variables (150)—(160).

One may expect that a convenient Global Carleman Estimate for the adjoint systen
will provide a result similar to Lemma 4.1 in several space dimensions. This would
allow to apply the above control strategy in three steps and to conclude the uniforrr
null-controllability of the heat equation with rapidly oscillating coefficients in several
space dimensions and when the control acts on a subset of the boundary that satisfi
the geometric control condition for the limit wave equation. But this is by now an open
problem.
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7.3. System u, — (a(ﬁ)ux)x =0

Let us consider the following system:

u; — (a(3)uy) =0, O<x<1,0<t<T,
ut(0,t) =0, u®*L,t)=f°¢), O<t<T, (141)
ut(x,0) =ugx), O<x <1,

where O< ¢ < 1 anda(x) € W2*(R) is a periodic function satisfying
O<a, <akx) <ay < +o0o, (142)

for all x € R. Without loss of generality we may assume thas of period 1
The homogenized limit as— 0 of (141) is the averaged system

Mt—((aT))_luxxzo, O0<x<1,0<t<T,
u©,0)=0, u(l,n)=f@), O<t<T, (143)
u(x,0) =ug(x), O<x <1,

where
1

@: O/ ;:—i) (144)

(see [5] as a reference on homogenization theory).
We have the following result:

THEOREM 7.1. —Under the above assumptions an for any T > 0, and ug €
L?(0, 1) there exists a sequence of contrpfs} of (141)such that

{f¢} — f strongly inL?(0,T) ase — 0, (145)

f being a control of the limit syste(@43)
The proof of Theorem 7.1 is based on the following change of variables:

x/e ds
0 a(s X
2= Trrar =s@h(%), (146)

0 a(s)
where
t
ds 1 1
h(t)zo/ﬁ and §(¢) = 7 :h(l/e)'

0 a(s)

(247)

Then system (141) is equivalent to

u®(0,1) =0, u®l1t)= f(r), O<t<T, (148)

{ (e/8(e)%a(h ™ (z/8(e))uf —uf, =0, 0<z<1,0<t<T,
u®(z,0) = uo(eh=X(z/8(¢))), 0<z<l,
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wherea(h~1(1)) is periodic, with period,

T:/%ds.

0
The proof of Theorem 1.1 can be generalized to system (148).

8. Appendix
8.1. Proof of Lemma 4.1

Let us consider the following change of variables in (72):
y=Hx)= / Va(s)ds.
0

Note thatH is a monotone increasing function. We have that

x=H(y).
Then
da__1 d
dy  Ja()dx’

2 I
1 d 1d<md> a(x)d+

a(x) dx2 - a(x) dx @
wherea’(x) denotes the first derivative afwith respect to.
System (72) is equivalent to

/ -1
G+ by + s W, =0, O<y<y,0<t<T,

2a(H=1(y)¥?2
¢(0,1) =¢(y1.1) =0, O<t<T,
(. T)=¢° O<y<y,

wherey, is given by

1
y1= / Va(s)ds.
0

Note that

Vam < Y1 < A/aum-
The functiond(y, ¢) given by

Y orig-1 —1,y3/2
0(y, 1) = elo HHENAat X205y )

T 2u(x)idy | dy?’

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)
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verifies
O +6y, —b(y)0 =0, O0<y<y,0<t<T,
{9(0,:):9@1,:):0, O<t<T, (158)
0(y,T)=06° O<y<y,
where
a(H()) \' a(H(y) \?
b= (<4a(H‘1(y))3/2) * <4a(H‘l(y))3/2) ) (159)
and

90 = g Jo «'(H 6N /datHs)¥2ds yo (160)
We have the following observability result for the solutions of (158).

LEMMA 8.1. —There exist positive constant§ and C»,, independent of the function

b(y), such that
T
s} [16,01 0P,
0

(161)

o3 a'(H(s))
10C, 0120, < CleXp{C2llb||L/°°(O,y1)+ / ‘Za(H 1(5))372

for all 6 solution of(158)

Applying Lemma 8.1 withb(y) given by (159) and taking (150), (152) and (157) into
account we obtain (74).
It only remains to prove Lemma 8.1.

Proof of Lemma 8.1. £et us consider the space
Zo={q € C*(0, 1] x [0, T]): ¢ =01in {0, y1} x (0, T}, (162)
wherey; is given by (155). In the appendix we prove the following result, see also [10]
and [11]:

LEMMA 8.2. —There exist a positive functicdhe C*([0, y1] x (0, T)) and positive
constantsyg, s; and C,which depend ol and y;, such that

1 5 —2s

—25 2 2 2
- (T —1)(1d 3 ST
[ R -n(agP +10,aP) +s s L]
©.y0%(©.7) ©.y)%(©.1)
—2s
3 § 2
i / AT -l
(0,y1)x(0,T)
5 r —2s
<C*< / E7%10,q + 0yyq — b(y. 1)q| +S/t(T )qu(yl,t)|2>, (163)
0,y1)x(0,T)

holds for allb € L>=((0, y1) x (0, T)), s = so + s1]|b[|1?2 and g € Z.



570 A.LOPEZ, E. ZUAZUA / Ann. |. H. Poincaré — AN 19 (2002) 543-580

Remark8.1. — Taking into account that

0< Va, < y1<Jay <400, (164)

the constantC, in (163) can be chosen to be independentyqf See the proof of
Lemma 8.2.

Inequality (163) is known a&lobal Carleman Inequality associated to the system

q(0,1)=q(y1,1)=0, 0<1<T, (165)

{%Jrqyy—b(y,t)q:O, O<y<y,0<t<T,
q(y, T) = qo, O0<y<y1.

The functioné for which (163) holds is not unique. One possible choicetfis the
following:

& _Mo
E(y,) =€ 1T, (166)

wherex is a large enough constant, independent,df is a constant such that

£ > &),

for all y € (0, y;) and &(y) is an special function. In our case, i.e. in one space
dimension, anyC* strictly increasing function is a suitable choice (we refer to [10] and
[11] for the construction of this function in several space dimensions).

Applying (163) to the solutions of (158) and by a density argument we have that

—2s5
2 S 2
01° < Cs 0,(y1, D)|*, 167
2 sl /(T 16,33, 1) (167)
0,yDx(0,T)

for all s > so + 51|b]|%3. The function

_2 ZseAf(T—e};fo
s _¢ (168)
t(T —1) t(T—1)
is uniformly bounded (note that> £y(y)) and then
T
/ £ 0,0 <C/89( (169)
)t N
[T )I 1. O 19,6 (y1, 7,
whereC is a positive constant which depends onlyfn
On the other hand,
20 2
—2s ST ke
§ © © (170)

= > ,
t3(T —1)3 3(T—1)3" t3(T —1)3
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and then,

1 T o 1
y 5 2s 2Yt(T ) y

T
2 e 2
o/o/ts(T 3100y, )] dydt>0/t3(T_t)3o/|0(y,t)| dy dr. (171)

We have the following estimate for the solutions of (158):

LEMMA 8.3. —There exist€ > 0 independent o such that

(Y (HY(s)) /2a(H - 1(s))2/3) d
16,1122, > CeJo 1 HTONRHTO B g o)z, o (172)

for all + > 0 andé solution of(158).

Proof. —Assume thaf > 0 is fixed. Multiplying (72) by¢ and integrating in space
we get

1 1
1d 2 2
2a ) a()]pl dx —O/|¢x| dr = 0. (173)
We deduce that
1
d
a/a(x)k/»ﬁdx >0, (174)
0
Consequently,
1 1
[awlo*Fdx > [awlp. 0 dr. (175)
0 0

By (150) and (157) we obtain that

y1
/ fa(H1(y)) |elo @ a0 dsgoi2 g
0
y1
> / /a(H—l(y)> ]e‘fd a’(H’l(s))/4a(H’l(s))z/?’dse(y’ 0)]2dy. (176)
0

From (176) we obtain (172). O
Going back to (171) we have that

T y1

I o 2
e
> SHLfS @ (HY(s)) /4a(H(s) 32 ds / / 7> 177
ce Jo 1o 16(y, 0)[*dy BT )dt» a77)
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and then, by (169),

y1 T e_zst((;ﬂ—fo
6(y,0)%d /7dt
0/| 00kt [
. . T
<Cefo,llfo“ a/(H—l(s))/4a(H—l(s))2/3|ds/|ay9(yl’t)|2dt’ (178)
0

for all s > so + s1|b[|%3. Let us take in (178)

s =50+ s1]|b)|%3. (179)
We have that
LT 3ar N
25 T 20y ;
/ e " dz>/ € U 2l g > oy(Tye DI (180)
) t3(T —1)3 J t3(T —1)3

N

From (178) and (180) we obtain (161)0

8.2. Proof of Lemma 8.2

The main ideas for this proof are presented in [11] and [10]. In this section we give a
sketch of the proof of the inequality we need.

We are going to prove inequality (163) with = 1. In fact, after carefully analyzing
the proof below it can be seen that the constgntiepends continously oy . From this
result and taking into account that

0< a, <y < Jay < +oo, (181)

it can be proved that inequality (163) holds with a positive constardepending only
ona,,, ay andT.

In this section| - || and (-,-) will stand for the norm and the scalar product
in L2((0,1) x (0, T)), respectively. Futhermore, all integrals below are extended to
(0,1) x (0, T) unless otherwise specified.

Let us start with the case= 0. We define the following functions:

E1(x) =€ —@90W oy 1) = t(if(f)t) and &(x,r) =™, (182)

wherex is a positive constant that we will fix latef (x) is a positive function irC4[0, 1]
with (£g), # 0 for all x € [0, 1] and(%p), |,—o > 0. Moreover is a positive constant such
that& > £y(x) for all x € [0, 1].

Let us considey € Z,. We denote

v =£"qg=€"", (183)
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wheres is a parameter which will be chosen later. We have that

wt + wxx = —Sllffpz + e_W)CIt
- SWX(px - SW%X - SWX(px - SZW(%)Z + e_S(pQXx-
We introduce the notation

Mi(Y) = ¥ + 25Y, 0y,
M) = Yex + %Y (00)% + s,

Wy = e (QI + QXx)y
so that

Ml(W) + MZ(W) =Ws — S‘Wﬂxx-
We deduce the following identity,

M1 12 + | Ma(P) 12+ 2(M1 (W), Ma(§)) = [|ws — s ||

Now, let us analyze the scalar product in (189):

(My(¥). Mo () = / Vithes + 25 / Ve trs +5° / Y ()’

+28° [ oo +s [wiow +25° [veoane

=11+ 25, + S213 + 2.5‘314 +sls + 25216-

We have that
1

= [ == [@omn == [(w.), =0

L= [ Vot = %/(wmz)x%

T T
_ l 2 1 2 1 2
- —é/saxxw + éo/gox(l, DL (L) - éo/gox(o, 1Y (0.1)[2,

_ 21 2 2 1 2 2
13—/z/u/f,(<px> —5/(|z/f| ), ()% = 2/wf| (¢:12)..
1 3
14=/wx¢xw|¢x|2=E/ﬂwz)x(%ﬁ:—§/|w|2|<ox|2¢“,

Is= [ Vitv = %/(wfﬁ),w, = —% [,

and finally,

1 1
Is= /wx«/fxgo, =3 /(|x/f|2>xwx<o, =3 / U120 r + 0 @2),)-

573

(184)

(185)
(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)
(194)

(195)

(196)
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Consequently,

I M1(y) )17 + ||Mz(w>||2—6s3/|vf|2|<ox|2<oxx
T T
+2s/<ax<1, Ol (L )2 —2s/go“|wx|2 —2s/¢x(0, DY (0.1
0 0

= llwy — s @ral2 + s / 0 2 + 2s2/ W 2(0es + 200(00),). (197)

First note that
T
~25 [ .01 0.0 >0 (198)
0

and then

I M1(¥) 12 + | Ma(y) ||? — 65° / AR NR-
T
+2s/<ox(1, O (L r>|2—2s/<oxx|wx|2
0

R / ¥ P + 252 / U (0 + 200 (00)1). (199)

Using the particular form op we see that fok large enough
—lox 2o = Arlp.® + Alg, [, (200)

whereA is a constant independent 6f On the other hand, we can see that

90| + 102 (@) + l@ergr ] < Cloy 2, (201)

whereC is a positive constant.
Consequently,

s/hngan +2s2/ W12 (¢2x0r + 20 (02);) < Csz/ P2 (202)

Then,
T
IM1(yY) 17 + | Ma(y) |12 +6s3/|w|2(Ax|<ox|3+ Alpl?) +2s/¢x(1, DIV (L, 1)]?
0

—2s/<axx|wx|2< llwy —swxx||2+Cs2/|<ax|3|w|2, (203)

and
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IMa(W)II? + | M2 ()| + 65° /Il/fl (AAlgc|® + Alg:l®) = Cs /I(pxl v I?

+2s/sox<1, Ol (L t>|2—2s/<oxx|wx|2 < flws — s¥en2.
0

Fors large enough,

1ML + M2 |+ s /|z/f| Adlpe® + Alg, ) 2s/<oxx|x/fx

< llws — Y2 —2s/gox(1, D (L D2,
0

Using that

lw, —sw“||2<2||ws||2+2s2/|go”|2|w|2,

we obtain that

ML) 2 + | M) + s /hm (Arlo:P + Alg. P) 2s/<oxx|wx

< 2wy |12 + 2s2/ PG 2s/<px(1, DL 1)
0

Using once again thatis sufficiently large,
25219 ? < As®lou Pl .

The term 22 [ |o..|2|¥|? in (207) is dominated by® [ |¥|?Ax|@, |°. Then

I M1(y) )17 + ||Mz(w>||2+s3/|¢|2(AA|¢X|3+A|¢X|3)

T
<2l +2s [gulinl? =25 [ L0y nP,
0
On the other hand, integrating by parts,
Zg/wxxlwxlzzzs/(pxxwxw}c:_Zg/wwxxxwx _Zg/wwxxWxx
=_s/(pxxx |W| Zg/w(pxxWxx

=5 [l P —2s/wxxw”.
By (188),

25 / Y n ey = / 25(My(¥) + 520 (9)% + 5901 — Wy + 5P ) ¥ an.
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(204)

(205)

(206)

(207)

(208)

(209)

(210)

(211)
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Taking A large enough we have that, <0, and
=25 [t < [ 25(Mi0) + 599, = 0+ 5900 Vo
< %an(x/f)nZ + wg |2+ Cs? / (xx@: + o P) W12 (212)
By (209),

I M1(y) |17 + ||Mz(w>||2+s3/|xv|2(Ax|gox|3+A|<ox|3)

T
<2||ws||2+2s/go“|wx|2—2s/gox(1, D (L )2
0

T
— 2w, |2+ s /<pxxxx|z/f|2 - 2s/x/f<pxxx/fxx _ 2 /gox(l, Dl (L 1)
0
2 2 1 2
< 3w +s/<pxxxx|x/f| AL

T
+Cs? / (0oxtr + o D) W [2 — 25 / (L DY (L D)2, (213)
0

It can be proved that

s/goxxxthz < Cs2/|<ox|3|z/f|2. (214)

By (201), (208) and (214) the termsf ¢, . [¥|* and Cs? [ (g ¢; + l@x:l®) v |? are
dominated by

s3/|w|2(Ax|¢x|3+A|¢x|3). (215)
Then

I M1(y) )17 + ||Mz<w>||2+s3/|w|2(Ax|<ax|3+A|gox|3)

T
< Cllw, |2 — 25 / oo (L DY (L, D2, (216)
0

On the other hand,
1 1
;/koxrlh/fmz: ;/koxrl(Mz(x/f)—szx/f(wx)z—swt)z

2 2
< ;/|<px|—1|Mz(x/f>|2+ ;/|<ox|—1(s2vf(<ox>2—s«/f<pt>2

2
<= / |<px|—1|Mz(x/f>|2+4s3/ |<px|3|x/f|2+4s/|<ox|—1(<pt>2|«/f|2. (217)
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We have that
2
Sl T L
A

and
4s|p, | @2 < Cs3lp, 3,

for s large enough. Consequently,
2 -1 2 2
;/w M) < M)
and by (217),
1
;/|<ox|—1|wxx|2< ||M2<w>||2+Cs3/|<ax|3|w|2.
We have that

C
||M1(x/f)||2+Axs3/|z/f|2|<ox|3+ ;/|<px|—1|z/fxx|2

T
<C||ws||2—2s/<px(1, DL 1)
0

Taking into account that

1,
Asxl/2/|<px||w/fx|2< ;/w 1|z/fxx|2+s3x/|<ox|3wf|2,

and

|§0x| = —@x,
we get

(l(oxDxx = —@xxx-
It can be seen that

_(pxxx g Cl(px|35
and
§3A sal/2
7/|<px|2|z/f|2+T/(|<px|>xx|z/f|2<s3x/|<px|3|«/f|2.
Then

cro
||Ml<w>||2+sxl/2/|¢x||wx|2+ ;/w 1|wxx|2+s3x/|<ax|3|w|2

T
<C||ws||2—2s/<ox(1, DL 1)
0
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(218)

(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)

(228)
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Finally,

1 1,22 -1 2 2

;/|<ox| 1| <;/|<px| (M) +8s/|<ox||x/fx|. (229)
By (218) and, see (223),

1
A2

Cs/|<ax||wx|2< /|<ax|—l|wxx|2+s3xl/2/|<ox|3|w|2.

We obtain that

1
Al2g

1
;/|<ox|—1|w,|2< 1ML + /|¢x|—1|wxx|2+s3ﬂ/2/|¢x|3|w2. (230)

Coming back to (228),

1 _ (C - 1) _
;/|<px| 1|w,|2+sxl/2/|<ox||wx|2+ 7“/2/% 1|wxx|2+s3x/|<px|3|«/f|2

. S
< Cllwy |2 — 2 / oL DY (L D)2, (231)
and then i
%/mrl(wm%|x/fxx|2>+s/|<px||x/fx|2+s3/|<ox|3wf|2
T
< C<||ws||2—s/¢x(1, Dl (1, r>|2>. (232)
0

Replacingyr by £ ~*¢ it is not difficult to deduce that there exists a positive constant
such that forn. ands sufficiently large,

1 —4Z5
- / E 21T — (1% + 1gu?)
(0,1)x(0,T)
S—Zs ) 3 / E_Zs )
+s — g P+ S S
/ e sl
0,1)x(0,7) (0,1)x(0,7)

r —2s
< C, 19 x| /7 (L2 233
( | e rantes [l (233)
(0,1)x(0,7T) 0
Let us consider now the casgy, ¢) # 0. By (233),

1 B g—Zv g—Zv
s —ola P aa?) b5 [ oSl [ oo —lal

r —2s
<2c, (/s—zﬂqt + o — by + 2/5—2*|q|2|b|2+s/t(§—_t)|qx(l, z>|2>, (234)
0
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or equivalently,

1
;/s—’-‘Sz(T — (167 + g0 )

g 2? 3 )
T /t(T a2 +5° [ €214l (m—)—m*w)

<2C, (/S | + G@xx — by |? +s/ P Iqx(l t)l) (235)

We take,
s> CY3r? ||b||m(O D O.I)> (236)
to garantee that
Y 4 b2 > 0
13(T —1)8 * '

Redefining the constaidi,, we have that

%— 25 %‘ 2
—25 2
e —ntar et + /t(T s+ [ e

(/s 9+ s — ba? +s/ ek t>|> (237)

for all s > sl(T)||b||LOO((O,1)X(O,T)), wheres,(T') is a positive constant depending @n
butnotonb. O
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