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ABSTRACT. - We investigate whether the Ricci tensor uniquely deter-
mines the Riemannian structure, and we give conditions that a doubly
covariant tensor has to satisfy in order to be the Ricci tensor for some
Riemannian structure.

RESUME. - Nous cherchons si le tenseur de Ricci determine la structure

riemannienne, et nous donnons des conditions que doit satisfaire un tenseur
deux fois covariant pour etre le tenseur de Ricci d’une certaine structure
riemannienne.

INTRODUCTION

Ever since Gauss proved his T heorema Egregium, geometers have
tried to determine to what extent the geometry of a Riemannian manifold
is determined by its curvature. In particular, since the Ricci tensor of a
metric is the same size as the metric tensor, one expects reasonable exis-
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tence and uniqueness properties for the partial differential equation
Ric (g) = R, where Ric is the differential operator that associates to a
metric its (doubly covariant) Ricci tensor (see [D ] for some basic notions
and a satisfactory theory in two dimensions).

In this paper, we are concerned with the uniqueness aspect of the equation
Ric (g) = R. Our main result shows that certain positive definite tensors
on certain manifolds do indeed uniquely determine their metrics. Our
results are extensions of a result of Hamilton [H ], who showed that the
standard metric on the sphere Sn is uniquely determined by its Ricci tensor.
As a bonus, we find (on any manifold) conditions on R that guarantee
that there is no Riemannian metric g with Ric ( g) = R.
A few words about notation and conventions : We work on a compact

manifold M of dimension at least 3. We use standard tensor analysis
notation, and the summation convention usually applies.
The first author would like to thank Richard Hamilton, Eugenio Calabi

and Wolfgang Ziller for useful discussions. The second author thanks
Tadashi Nagano for informing him of Hamilton’s work. Finally, both
authors would like to thank Jerry Kazdan for bringing the work of each
to the other’s attention.

1. UNIQUENESS DEFINED

In order to discuss the extent to which the Ricci tensor can uniquely
determine its metric, we must first decide what we mean by « uniquely
determine ». Of course, it is well-known that Ric ( g) = Ric (cg) for any
constant c > 0, so the most one can hope for is uniqueness up to homothety.
It turns out, however, that even this is too much to ask, since one can
scale the factor metrics of a product metric and preserve the Ricci tensor, i. e.,

for any el, c~ > 0.
On the other hand, if two metrics g and g induce the same Levi-Civita

connection, i. e., if r k is identically zero, then the definition of the
Ricci tensor as

makes it manifestly clear that Ric (g) = Ric (g). The circumstances under
which two metrics induce the same Levi-Civita connection are well under-
stood. The decomposition theorem of deRham [KN 1 ] tells us that if (M, g) is
a complete, simply connected Riemannian manifold, then (M, g) is isometric
to the product
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where M o is a Euclidean space (possibly of dimension zero) and M 1, ..., Mk
are all simply connected, complete, irreducible Riemannian manifolds,
and that this decomposition is unique up to ordering. Since the splitting
is defined via holonomy, it is completely determined by the connection.
Thus, if g and g induce the same connection, then

and

where gi induces the same connection as gi on Mi for i = 0, ..., k. But
then gi is parallel with respect to gt, and irreducibility implies that gi = cjgi
for i = 1, ..., k (and go is isometric to go so we may and shall assume
that go = go). So for simply connected M, we are back in the situation of
product metrics described above.

If ~cl(M) ~ 0, then we simply pull g and g back to the universal cover
of M. This proves :

PROPOSITION 1.1. - Let M be a complete manifold with respect to the
metrics g and g, and M  M be the universal cover of M. If g and g
induce the same Levi-Civita connection on M, then and ~*(g) can
dffer only by homotheties on the irreducible factors of M.

The upshot of all this is that, without special assumptions on M, the
strongest statement we can make is that the Ricci curvature uniquely
determines the Levi-Civita connection of its metric - and it is precisely
this statement that we shall prove for the Ricci curvatures we consider.

2. THE BASIC ESTIMATE

All of the results in this paper are based on the following lemma, which
appears in [H ]. Since the proof is so short, we include it for completeness,
and in order to fix some notation.
To begin, we assume that the manifold M is equipped with two Rieman-

nian metrics g and g, and we continue to indicate to which metric various
curvature tensors, Christoffel symbols, Laplacians, etc. belong by the pre-
sence or absence of a bar.

REMARK 2.2. - The condition = 0 is geometrically natural in
the sense that this equation expresses the fact that the identity mapping
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from (M, g) to (M, g) is a harmonic mapping, and is precisely the
harmonic mapping energy density [EL].

Proof of Lemma 2.1. First, recall that if V is the covariant derivative
of g’s Levi-Civita connection, then 

-

We claim that the formula of the lemma is the contraction of (2.5) with
Upon this contraction, the left side of (2.5) is

as claimed, while on the right, the second and fourth terms cancel because
is zero. The first term on the right side of (2 . 5) becomes (using (2.3))

Now we use (2 . 4) and add in the third term ; the right side of the con-
traction of (2 . 5) is :

All of the terms in the equality of the lemma have now been accounted for.
q. e. d.

We can use the lemma in connection with Ricci curvature in the following
way : If g is a metric, and Ric (g) = g is positive definite, then we can consider
Ric (g) to be a Riemannian metric in its own right. From (2 . 3), one imme-
diately recognizes that the condition gjkTJk = 0 is precisely the Bianchi
identity for Ricci curvature (multiplied by the inverse of the Ricci tensor).
In fact,
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Thus, if Ric (g) is positive definite, then the identity mapping

is a harmonic mapping. We can restate Lemma 2 .1 as follows :

COROLLARY 2. 6. - If Ric (g) = g is positive definite, then

In particular, since the last term on the right is clearly nonnegative,

with equality holding only if TJk = 0.
Here, Scal is the scalar curvature operator, and the last term on the right is
simply a hybrid norm squared of T.

3. THE MAIN RESULTS

To state our main results on uniqueness and nonexistence, we need a
geometric notion that will reflect the sign of the right-hand side of the
inequality in Corollary 2.6. The appropriate notion turns out to be the

0

eigenvalues of the curvature operator R (see [BK]).

DEFINITION 3.1. - Given a metric g, its sectional curvature tensor Rijkl
acts on the space S2T* of symmetric tensors as follows : If E S2T*, then
define

o

For each point x E M, R is a symmetric linear map of to itself, and
as such has eigenvalues. Note also that the identity map of S2T* is derived

0

from the tensor in the same way as R is from We can now state

the main theorem and its proof, after which we give some corollaries and
examples that should clarify the situation.

THEOREM 3.2. Let M be a compact Riemannian manifold, let g be u
metric (positive definite tensor) on M, and let A(x) be the largest eigenvalue
of the operator R at each point x EM. Suppose 1 for all x in M.

a) If there is a Riemannian metric g on M such that Ric (g) = g, then g
is Einstein (so Ric (g) = g), and g and g have the same Levi-Civita connection.

b) If in addition to the above hypotheses, A(x)  1 at some point x E M,
then there is no Riemannian metric g such that Ric (g) = g on all of M.
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Proof - Both conclusions follow from the inequality of Corollary 2.6
and the fact that on a compact manifold, the inequality 0 implies
that u is a constant (and so = 0). In particular we have

Thus, if g exists, we must have A(x) = 1, so A Scal (g) = 0. But then the
equality of Corollary 2.6 shows that TJk = 0 so g and g have the same
Levi-Civita connection. q. e. d.
Our first corollary shows that the conclusion (a) of the theorem is not

vacuous.

’ 

COROLLARY 3 . 3 ( Uniqueness). Let (M, g) be a compact Einstein mani-
fold with Ric (g) = g and with non-negative sectional curvature. If g is another
Riemannian metric on M with Ric (g) = g, then g has the same Levi-Civita
connection as g (Here, n = dim M).

COROLLARY 3.4 (Non-existence). - Let (M, g) be a compact Einstein
manifold with Ric (g) = Eg for some E  1 and with all sectional curvature.s

strictly greater than (~ - 1)/n. Then there is no Riemannian metric g such
that Ric (g) = g.

Proof We prove these corollaries simultaneously by showing that
all the eigenvalues of R are  1 (and strictly less for Corollary 3.4). So,
let g be Einstein with Ric (g) = 8g (s = 1 for Corollary 3 . 3). We see imme-

diately that g is an eigenvector of R with eigenvalue e. To find other eigen-
vectors h of R, we can assume that they are g-traceless. Choose coordinates
around the point x so that at x, gij = and so that h is diagonal at x,

i. e., = 03BBi03B4ij ( with = 0, so that the maximum 03BBi is positive

Assume R(h) = ah, and that 03BBM ~ 03BBi for all i. Then

where min R is the minimum of the sectional curvatures at x. Note that
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since is itself the sectional curvature of the two-plane spanned by
a a

the orthonormal vectors 
~xM 

and 
~xj. 

Thus

o _

So all of the eigenvalues of R are bounded above by max { £, £ - n (min R) }.
For Corollary 3.3, ~ = 1 and min R >_ 0, so the eigenvalues are all 1,

and for Corollary 3.4, £  1 and min R > , so the eigenvalues
n

are  1. Now apply the theorem. q. e. d.

REMARK 3.5. - It is clear that the hypotheses of Corollary 3.3 are
satisfied by the Ricci tensors of the canonical metrics on the Riemannian
symmetric spaces of compact type (see [KN2, p. 258 ]). In particular, the
corollary is true for the compact rank-one symmetric spaces. Thus Corol-
lary 3.3 is a generalization of the corresponding result of Hamilton for
the spheres S".

Two more corollaries will clarify the situation for non-existence.

COROLLARY 3 . 6. Let (M, g) be a compact Riemannian manifold with

all sectional curvatures less Then there is no Riemannian metric g
such that Ric ( g) = g. 

Proof 2014 As before, work at a point x where gij == and suppose

that R(h) = ah, where h is a diagonal matrix = at x. We compute

the inner product of h with R(h) - Id (h) and show that it is negative (the
inner product is taken with respect to g). This will show that a  1.

’ ° 

q. e. d.

COROLLARY 3.7. - For any metric g on the compact Riemannian mani-
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fold M, is a costant co( g) such that for any real number c > c o( g).
there is no Riemannian metric g for which Ric (g) = cg. In particular, 
an Einstein metric g with Ric (g) = g and nonnegative sectional curvature

have = 1.

Proof The first assertion follows from the fact that the eigenvalues
of R (and the sectional curvatures) are multiplied by C-1 when the metric g
is multiplied by c. Then we invoke Theorem 3.2(b) (or Corollary 3.6).
The assertion about Einstein metrics follows immediately from Corol-
lary 3. 4. q. e. d.

4. CONCLUDING REMARKS

We have shown that certain Einstein metrics are determined « uniquely »
(in the sense of section 1) by their Ricci tensors. It is natural to ask which
metrics are so determined, although the answer is not all metrics. Standing
as counterexamples are the 19-dimensional family of non-cohomologous
Ricci-flat metrics on the K3-surface guaranteed by Yau’s solution of the
Calabi conjecture (see [Be]) and some other explicit examples of non-
cohomologous Kahler metrics with the same Ricci tensor constructed by
Calabi (see [Cl] ] [C2 ]). We note here that, if one is willing to look at Lorentz
metrics, then counterexamples can be constructed on much less exotic
manifolds.

EXAMPLE 4.1. - Let g be the standard « round » metric on S3 with
Ric (g) = g. Then there is a one-parameter family { of non-isometric
Lorentz metrics on S3 with Ric (gt) = 4g for all t.

Proof. - We follow Milnor [M] ] or Hamilton [H] ] and consider S3
as the Lie group SU(2), and look for left-invariant metrics on it. A metric
is thus determined by its value at one point, so we let at our point,
and look for g = Then Ric (gt) is also diagonal and, if we determine Pi
by

then Ric = where

We seek solutions for which 03C31 = 03C32 = 63, and we fix 03BB1 1 = 1 to avoid
the scaling redundancy. There are two cases : ~.1 - %~2 = !~3 = 1 (of course).
and

For the latter case, at least one of i~~2 or ~,3 is always negative, and one easily
computes that Ric ( gt) = 4b ij’ q. e. d.
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