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ABSTRACT. - Let a, U e C~(Q) where Q is a bounded set in ~n and let

We suppose that a, U > 0 for x E Q and that

Under some smoothness assumptions, we prove that the Lagrangian
system associated with the above Lagrangian L has infinitely many periodic
solutions of any period T.
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RESUME. - Soit a, U E C2(Q) ou Q est un borne de on pose

Nous supposons que a, U > 0 pour x E Q et que

Moyennant quelques hypotheses de differentiabilite, nous demontrons
que le systeme Lagrangien associé a L a une infinite de solutions T-perio-
diques, quel que soit T.

AMS (MOS) Subject Classifications : 34 C 25, 70 K 99, 58 E 05.
Work Unit Number 1 (Applied Analysis).

(*) Dipartimento di Matematica, Universita di Bari, Bari, Italy.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - Vol. 1, 0294-1449
84/05/379/22/$ 4,20i ~~ Gauthier-Villars

© 1984 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



380 V. BENCI

1. INTRODUCTION AND MAIN RESULTS

Let a, U -~ R where Q is an open set in Rn. We make the following
assumption

(Lo) Q is bounded and its boundary is C2.
(L1) .

(L2) lim U(x) = + o0

(L3) lim = + 00 where v(x) = - V dist (x, a~2)
U(x)

(L4) a E 

(L5) a(x) > 0 for every x ~ 03A9
(L6) for every x E aS~ such that a(x) = 0, 0.

We consider the Lagrangian

denotes the norm in Rn ,

and we look for normal modes of the dynamical system associated to this
Lagrangian ; i. e. periodic solutions of the following systems of ordinary
differential equations :

r -

’ 

d
where « . » denotes - and « . » denoted the dot product in R". We restrict

dt
our attention to periodic solution of a given period T, and in order to
simplify the notation we suppose T = 1. Also it is not restrictive to suppose
that

The main result of this paper is the following theorem :

THEOREM 1.1. - If (Lo)-(L~) hold then the equation (1.2) has infinitely
many periodic distinct solutions of period 1. More exactly there exists a
positive integer No and two positive constants E + and E - such that for every
N > No there exists ~N E C2(R, Q) such that

i) yN is solution of (1.2)
1

ii) yN has period N
Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



381NORMAL MODES OF A LAGRANGIAN SYSTEM

where .

where J(yN) = (2 - U(yN)dt and a and 03B2 are constant which depend

only on Q (but not on U and N). Moreover if U(xM) = 0 (i. e. xM is a minimum
point) and

then we can choose No = 1.

Remarks I. Notice that ii does not say that - is the minimal period
of yN. It might happen that yN has a smaller period. Thus it may happen
that yN = yM for some M ~ N. However (iii) implies that if M » N then
’YM ~ ’YN.

II. As easy one-dimensional examples show it is possible that equa-
tion 1.2 has no periodic solution with minimal period 1.

III. 2014 Assumption (L3) which may appear as the less natural one,
describes the behaviour of U(x) as jc -~ a~. It says that U(x) cannot
« oscillate » too badly near the boundary.

7t 2014 We have decided to consider Lagrangian of the form (1.1) (i. e.

with a(x) not identically 1 and in particular with a(x) which may degenerate
on aQ) because in this way theorem 1.1 can be applied to the study of
closed geodesic for the Jacobi metric (which degenerates for x ~ 
cf. [B2 ].

K - By the proof of the theorem it will be clear that the same result
hold for a Lagrangian of the form

with ~~~~ > ~(x) ~ ~ ~2 and satisfies (L4-L6). More in general, the
same method apply also to the case in which Q is a Riemann manifold with a
C2-boundary. We have decided to consider a simpler case in order to not
make the notation and the uninteresting technicalities too heavy.

VI. - The results of theorem 1.1 holds also if a and U are of class C1
(cf. remark II after theorem 2.3). However, in order to not get involved
in technicalities which will obscure the main ideas we have preferred to
treat the C2-case.
The study of normal modes of nonlinear Hamiltonian or Lagrangian
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382 V. BENCI

systems is an old problem which in the last years has attracted new interest.
We refer to [R 1 ] for recent references on this subject. However, as far
as I know there are no results of the nature of theorem 1.1, i. e. periodic
solutions in a potential well. The more similar situations to the one consi-
dered in this paper are the following ones.

a) Q is a compact manifold without boundary
b) Q = Rn but U grows more than quadratically for x ~ [ or,

more precisely

(notice that the above condition is the analogous of (L3) when Q = Rn).
In both cases (a) and (b) we have a result similar to theorem 1.1 (cf. [B~] ]

for (a) ; [R4 ], [BF ] or [G] for (b) ; also the case (b) has been considered
in [R2 ], [BR] ] and [BCF ] in the context of Hamiltonian systems).
What we want to remark here is the similarity of these three situations.

In case (a), the existence of infinitely many periodic orbits can be proved
by virtue of the compactness of Q (provided that Q satisfy some suitable
geometric assumption as having the fundamental group finite). In (b)
and in theorem 1.1, the lack compactness is replaced by the growth of U.
A last remark about the technique used to prove theorem 1.1. We have

used variational arguments reducing our problem to the proof of existence
of critical points of a functional defined on an open set in a Hilbert space.
In proving the existence of critical points for functional in infinite dimen-
sional manifold the well known condition (c) of Palais and Smale (P. S.)
has been used. However in our situation (since we deal with a non-closed
manifold) (P.S.) is not sufficient. For this reason we have used a variant
of (P.S.), which fit our case, obtaining an abstract theorem (theorem 2.3)
which might havesome interest in itself as a further step in understanding
the critical point theory in infinite dimensional manifolds.

2. AN ABSTRACT THEOREM

Let X be a Hilbert space with norm [[ . [[ and scalar product ( . , . ) and
let A be an open set in X (or more in general a Riemannian manifold
embedded in X). C~‘(A, R) will denote the set of n-times Frechet differentiable
functions from X to R.

If f E C~‘(A, R), f ’ will denote its Frechet derivative which can be iden-
tified, by virtue of ( . , . ) , with a function from A to X.

DEFINITION 2.1. - A function p : l~ ~ X is called a weight function for A
if it satisfies the following assumptions:

i) p E C1(A, R)

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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DEFINITION 2 . 2. - We say that a functional J E C 1 (A, R) satisfies the
weighted Palais-Smale condition (abbreviated W. P. S.) if there exists a

weight function p such that given any sequence xn E A the following happens :
(WPS 1) if p(xn) and J(xn) are bounded and -~ 0 then xn has

a subsequence converging to x ~ 
(WPS 2) if J(xn) is convergent and p(xn) -~ +00, then there exists

v > 0 such that

Remarks I. We say that a functional satisfy the Palais-Smale assump-
tion on a Hilbert (or Banach) manifold A if every sequence xn such that
J(xn) is bounded and J’(xn) --~ 0 has a converging subsequence. Most
results in critical point theory have been obtained using the (P. S.) assump-
tion. However, as easy examples show (P. S.) is not sufficient to obtain exis-
tence results when A is an open set in a Hilbert space, or to be more precise,
when A is not complete with respect to the Riemannian structure which
we want to use.

II. If A is a closed Hilbert (or Banach) manifold then (P. S.) implies
(W. P. S.) (it is enough to take p = 1). Moreover if A = X, choosing
p(x) = log (I -~ ~ ~ x ~ ~ 2), then (W. P. S.) reduces to a generalization of (P. S.)
introduced by G. Cerami [C] (cf. also [B. B. F. ] and [B. C.’F. ]).

III. If a functional J satisfy (P. S.) then the set

is compact. If J satisfies (W. P. S.) we can only conclude that

is compact for every M > 0. Thus (W. P. S.) might be an useful tool for
analyzing situations in which we do not expect to find a compact set of
critical points at a given value c. (However if p’(~) 7~ 0 when p(x) is large,
then K~ is compact).

DEFINITION 2.2’. - Let X be an Hilbert (or Banach) space. Let S be a
closed set in X, and let Q be an Hilbert manifold with boundary aQ. We
say that S and aQ link if

a) 
b) if h : Q -~ A is a continuous map such that h(u) = u for every

u E aQ, then h(Q) n S ~ ~.

Vol. 1, n° 5-1984.



384 V. BENCI

THEOREM 2. 3. Let A be a Riemannian manifold embedded in a Hilbert
space X and let J E C2(A, R). We suppose that

(J~) J satisfy (W. P. S.) 
_

(J2) there exists a closed subset S c A and an Hilbert manifold Q -c A
with boundary and two constants 0  a  ~3 such that 

.

a) 03B2 for y E Q and max lim J(03B3)  0

b) a for every y E S
c) Sand aQ link.

Then c E [ex, 03B2 ] and it is either a critical value of J or an accumulation point
of critical values of J.

Remarks I. Theorem 2 . 3 is a variant of similar results (see [BBF] ]
theorem 2. 3, [BR ] or [R3 ]). The novelty lies in the fact that A might be
an open set, therefore (P. S.) is not sufficient to guarantee that c is a critical
value of J. Therefore we have to require (W. P. S.). A consequence of this
fact is that we do not know that c is a critical value of J ; it might be an
accumulation point of critical values of J (unless (P. S.) is also satisfied).

II. - The assumption J E C~(A, R) is not necessary. It would be enough
to assume J E C1(A, R). With the latter assumption the proof of lemma 2 . 4
would be more technical. However if the reader is interested to prove
theorem 2. 3 under the less restrictive assumption, he has to « interpolate »
between the proof of lemma 2 . 4 and theorem 1. 3 in [BBF ]. Since in our
application, it is sufficient to assume J E C2(A, R), we did not bother to
be as general as possible.
To prove theorem 2.3, we need the following lemma

LEMMA 2. 4. - Let J E C2(A, R) satisfy (W. P. S.). Suppose that c is not
a critical value of J nor an accumulation point of critical values of J. Then
there exist constants ~ > ~ > 0 and a function ~ : . [o, 1 ] x 1~ ~ A such that

a) ~(o, x) = x for every x E A
b) x) = x for every x such that J(x) ~ [c - E, c + E ] and every

tER

c) A~-E
w°here Ab = ~ x E A J(x)  b ~ . Moreover E can be chosen arbitrarily small.

Proof. We set

Annales de l’Institut Henri Poincaré - Analyse non linéaire



385NORMAL MODES OF A LAGRANGIAN SYSTEM

We claim that there exists e, M and b such that

In order to prove (2.1) we argue indirectly. Suppose that (2. lj does not
hold. Then there exists a sequence xn such that’

Then we have

This is a contradiction which proves (2.1). It is not restrictive to suppose
that E is so small that [c - E, c + e] does not contain critical values of J ;
this is possible because we have supposed that c is not an accumulation
point of critical values.
We claim that for every M, there exists bM > 0 such that

In fact if (2.3) does not hold there exists a sequence xn such that

Then, by (WPS 1), it follows that xn has a subsequence converging to some
limit x. So we have

Thus ce [c - E, c + E ] is a critical value of J contradicting our choice
of E. A -~ R be a Lipschitz continuous function such that

and we set

By (2.1) and the definition of ~, V is well defined and locally Lipschitz
continuous. We now consider the following initial value problem

Vol. 1, n° 5-1984.
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By basic existence theorems for such equations, for each x E A there exists
a unique solution 17(t, x) of (2.6) defined for t E (t - (x), t + (x)), a maximal
interval depending on x. We claim that t ± (x) _ + 00. Let us prove that

We argue indirectly and suppose that t + (x)  + 00.

First of all we can suppose that

otherwise the conclusion follows directly from (2.5). Now we claim that

where M = M 1 + t + ~x~ and M 1 = max { p(0), M } . If the above inequalityb

does not hold then there exists tl, t2 with 0  tl  t2  t+(x) such that

and

then, for

Then we have

This is a contradiction. Therefore (2.6") is proved.
Then by (2.3), there exists bM > 0 such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Now let tn be a sequence such that tn -~ t+~~~). So we have

This implies that x) is a Cauchy sequence converging some x0 E A
as tn --~ t+(x). Moreover p(x) = lim tn))  M, therefore, by Defi-

nition (2.1) (iii), x E A. But the solution of (2 . f ) with initial condition x fur-
nishes a continuation of x) contradicting the maximality of t + (x).
Analogously we can prove that t - (x) _ - oo. Therefore x) is defined

for every t E R. Since - x - - )) 1 if x ) E by an easy standard

argument the conclusion follows. D

Proof of Theorem 2 . 3. By virtue of lemma 2 . 4, the proof of theorem 2 . 3
is almost a repetition of analogous proofs (cf. e. g. [BR ], [R~] ] or [BF ]).
We sketch it for completeness. By the first part of (J2) (a) and since the
identity belong H, c ~ f3. By the second part of (J2) (a) and (J 2) (c), 
then by (J2) (b), c ~ a. Then c is well defined and is in [x, ~ ]. It remains
to prove that c is a critical value of J or it is an accumulation point of
critical values of J. Suppose that neither possibility holds. Then the assump-
tions of lemma 2 . 4 are satisfied. Choose e E (0, x ], e and 1’/ as in lemma 2 . 4.
By the definition of c, there exists h E H such that

By lemma (2.4) (c) and the above inequality we have

By lemma (2.4) (b) and the choice of o h E H ; then by the definition of c

The above inequality contradicts (2.8). Thus the theorem is proved.
0

3. PROOF OF THEOREM 1. 1

We set

Vol. 1, n° 5-1984.
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where H1(Sl, Rn) denotes the Sobolev space obtained by the closure of C~-
functions (periodic of period 1) with respect to the norm

Since R") c Rn), then the set 103A9 is an open set in H1(03A9, Rn).
The periodic solutions of (1.2) are, at least formally, the critical value of
the functional

However the functional (3 . 2) does not satisfy W. P. S. (nor the condition (J 2)
of theorem 2.3) on the set (3.1). Therefore it is necessary to modify the
functional (3.2) in a suitable way. Then we shall apply theorem 2.3 to
the modified functional and finally we shall prove that the solutions of
the modified functional are the solutions of our problem. 

_

In order to carry out this program we start defining a function h E 
with the following properties

where do is a constant sufficiently small. Such a function h exists since Q
is assumed to have a C2-boundary. Also we set

where d2h denotes the second differential of h. Moreover we set

(3 . 5) v(x) = - Vh(x) so that v(x) E C1(S~, Rn) and  1 .

Now let x E be two functions such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and set

where M03BB == |x~h-1([1 03BB, 2 03BB])}. Clearly a03BB and U03BB,N are C2-
functions and 

Our modified functional will be

It is easy to check that R) and that

Now we want to apply theorem 2.3 to the functional J~,N. In order to do
this some lemmas are necessary. 

’

LEMMA 3.1. - a) there exists a constant b = N) such that

b) there are positive constants (~ and K1 (which may depend on ~, and N)
such that

c) for every M > 0 there are constants a(M) and 03BB(M) such that

U03BB,N(x)  1 M ~U03BB,N(x) . v(x) + a(M) - for every x E 03A9 and every 03BB  03BB(M)

d) there exists a function ~, ~ o(~,) such that
i) lim 8{~,) _ + o0

~-~+~ 1 1
ii ) for such that U~,,N(x)  ~2 0{~.), 

vve have = N~ and = a(x) 
N

e) there exists a constant K such that

for every x E ~ and every ~, > 0 .

Proo, f: a and b follows by the fact that for x sufficiently close to aS~,

Vol. l, n° 5-1984. 15
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M 1
U, = M03BB N2 . 1 h(x)2 (remember that for x sufficiently close to |~h(x)| = 1).

Let us prove (c). Since v(x) = - Vh(x) we have:

If ~’(03BBh(x)) ~ 0, then x E h-1([ 1 2 . Thus for such values of x, by 3 . 3 (iv)
and the definition of M ~ we have

Thus, since x’(t) > 0 for every’ t E R,

By (L3) and easy computations, for every M > 0 there exists ao such that

Moreover, for x sufficiently close to aSZ

Then there exists 2(M) such that, 2(M)

So by (3 . 6 a), (3. 6 b), (3 . 6 c) and the above inequality we get

From the above inequality (c) follows. Now let us prove (d). We set

and

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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by (3.3), (L~) and (L2), 8(~.) ~ + oo for £ - + 00. Moreover, if

U x  03B8(03BB) by the definition of 03B8(03BB), x~03A903BB. Then and I .

Therefore 1 and - a(x). This proves (d). In order
to prove (e), we set ~ 

~( ( )) ( ) p ( ) 
.

Since a(x) > 0 for x E Q it follows that v(x)  0 for every x ~ I-’.

By virtue of (L6) and the compactness of r, there exists a constant 6 > 0
such that

Let

By (3. 6 d), B is an open neighbourhood of r relative to Q. Then, since
Q - B is compact, by (L~), there exists a constant cl such that

Using again the compactness of Q - B, there exists a constant c~ such that

So, choosing K = c2/cl, it follows that

Then we have

In order to apply theorem 2.3 to the functional it is necessary to
choose an appropriate weight function ; we make the following choice

LEMMA 3 . 2. - The function p defined by (3 . 7) satisfies the assumptions
of definition 2 .1.

Proof: (i) and (ii) are trivial. Let us prove (iii). Let yk E be a sequence
approaching and let tk be such that dist aS~)  dist a~)
for every t E (0, 1). We want to prove that p(yj ~ +00. Since p is invariant
for « time translations », we can suppose that tk = 0 for every k.

Vol. 1, n° 5-1984.
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By the Schwartz inequality we have

Then, by (3 . 3) (iii),

If we set

by (3 . 8) we get

We can assume that [ yk , ~ > a > 0 for k large and some positive constant a.
Then we have .

From the above inequality and since a > 0 and m(yk) -~ 0 for

k -~ + oo the conclusion follows. ,

LEMMA 3.3. - For every N > 1 and 2 > 0, the functional satisfy
W. P. S. 

’

Proof To simplify the notation, in this proof we shall write J, U
and a instead of J~ ~ U~ ~ and ~~. Let us start to prove WPS 1. In the fol-
lowing a2, ... will denote suitable positive constants. Since p(Yn) is

bounded, then by lemma 3.1

Since J(yn) is bounded it follows that

is bounded, therefore (may be taking a subsequence) we
have that

(3.10) yn ~ 03B3’ weakly in R") and uniformly .
We have to prove that yn -~ y strongly in H1(Sl, Rn). Since we suppose
that J’(y~) ~ 0, we have that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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for every 5y E H ~ (we have identified H 1 with its dual), where E~ is a sequence
conveying to 0. By (3.9) and (3.10) it follows that

Also, using (3.10), we have

By (3.11), (3.12) and (3.13) it follows that

for every by E H 1 {S2, Rn). In particular, taking ~y = yn - y we get

since ) --~ 0 for n -~ + oo. So by (3 . 6) and (3 .14) we have

from which the conclusion follows. Now we shall prove W. P. S. (ii). In
the following b 1, b2, ... will denote suitable positive constants. Now
let y~ be a sequence such that

Then we have

Vol. 1, n° 5-1984.
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We now set

Thus R") and

Then by the above formula we have

We have

Next we shall compute [[ We have

then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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By the Holder inequality we have

then

By the above inequality and (3.19) we get

Now, since ~ + oo, for n large enough we have

Since 1 (by (3 . 3) (iii)), the above inequality and (3 . 20) imply that

and this proves W. P. S. (ii). D
To simplify the notation we shall suppose that

Now let

and let V 1 its orthogonal complement in H1(Sl, Rn). We set

Let R be a constant small enough in order that the ball of center 0 and
radius R is contained in Q. Then there exists an integer number No such that

By the above inequality we get that

where 20 is big enough in order that U~ ~) = for every 2 :;,: 20
and every x E Observe that ~,,N( ) N 

y ~ o

provided that R is small enough.
Now we set

Vol. 1, n° 5-1984.
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We have the following lemma

LEMMA 3 . 4. For every ~~ ~ ~,o and N > No, J;~,N satisfy the assump-
tions (J2) of theorem 2 . 3 where Sand Q are de_ fined by (3 . 22) and (3 . 24)
respectively and a and 03B2 are constants which depend only on Q (but not on U, 03BB
and N).

Proof a) If 03B3~Q then sin (203C0t) with and 
Since Q c then

Therefore

Thus, by (3.21)

Also f3 depend only on d i. e. on the geometry of Q. Now let us prove that

We have

If yeV n A 1Q we have

I f 03B3 ~ Q ~ 03A9 we have

Then (3.26) follows by the fact that lim p(y) = + oo (cf. lemma 3.2).’

Now let us prove that assumption (J2) (b) of theorem 2. 3 holds. If 03B3 ~ S
= R and R for every t E [0, 1 ]. Then, for and

N ~ No, by (3.23) we have

Annales de l’Institut Henri Poincare - Analyse non linéaire
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Moreover for y E S, by the Poincaré inequality ~| 03B3|2  |03B3|2; then

Thus by the above inequality and (3.27) we get

for every YES.

This proves assumption (b) of theorem 2.3 with a depending only on R,
i. e. on the geometry of Q. The fact that S and aQ link, is proved in propo-
sition 2 . 2 of [BBF]. Actually there Q is defined in a slightly different
way, but this fact does not affect the proof. D

Finally we are able to find solutions of the modified problem.

LEMMA 3 . 5. - For every N > No and ~, ~ ~,* > ~.o (where ~,* is a suitable
constant) there exists C C2(S2, Q) such that

where a is independent of £ and N.

Proof By lemma 3. 3 and lemma 3.4 the functional satisfies the

assumptions of theorem 2. 3. Then there exists y = such that

and

The above equation proves (a). Moreover by (3.28) it follows that y~ 
satisfies the equation (b) in a weak sense. By standard regularity arguments
it follows that y is of class C2. Now let us prove (c). It is easy to check that

is an integral of the equation (b) (in fact it is just the energy). Therefore
it is independent of t ; we shall call E~ ~ its value. Integrating (3.30) between 0
and 1 we get

Vol. 1, n° 5-1984.
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Writing (3.29) explicitely we have

By (3.31) and (3.32) we get

The above formula gives the first of the inequalities (b). In order to get
the second one more work is necessary (and it will be necessary, for the
first time, to use the assumption (L3) which has been used to prove
lemma 3.1 (c)). Writing (3.28) explicitely with by = v(y) = - Vh(y) we get

Now take M = 4ho + 2K. Then, for ~, > 2(M), we have

Then we get

By the above inequality and (3.33) the last inequality (c) holds with
6 = 3f3 + 2a(M) and 2* = max (~.(M), ~,o). D

Finally we can prove theorem 1.1.

Proof of Theorem 1.1. - For any N ~ No choose ~.* large
enough such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where 8(~,) is defined in lemma 3.1 (d). Then setting y N~t) _ 
by lemma 3 . 5 (c) we have 

Thus by lemma (3.1) (d), we have that

By the above identity we have that

Moreover, using again (3.36), by lemma 3.5 (c), YN satisfy the following
equation

Therefore, setting = yN(Nt), it follows that satisfy the equation

Then (i) and (ii) of Theorem 1.1 are proved. By (3 . 37) and lemma 3 . 5 (a)
we have that

The above inequalities prove (iv) of theorem 1.1. Moreover, using again
lemma 3.5 (c) and (3.36) we get

Therefore

Thus (iii) of theorem 1.1 is obtained with E - - a and E + - 6. The last
remark of theorem 1.1 follows by (3.13’). 0
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