
Closed geodesics for the Jacobi metric
and periodic solutions of prescribed energy

of natural Hamiltonian systems

V. BENCI (*)

Ann. Inst. Henri Poincaré,

Vol. l,n°5, 1984, p. 401-412. Analyse non linéaire

ABSTRACT. - We prove that the Hamiltonian system

has at least one periodic solution of energy h, provided that the set

{ q ERn v(q)  h ~ is compact.

Key-words : Hamiltonian systems, periodic orbit, closed geodesics, Jacobi metric.

RESUME. Nous demontrons que le systeme hamiltonien

a au moins une solution periodique d’energie h, pourvu que l’ensemble
~ q ~ V(q)  h ~ soit compact.

AMS (MOS) Subject Classifications : 58 E 10, 58 F 22, 70 J 10, 34 C 25.
Work Unit Number 1 (Applied Analysis).
(*) Dipartimento di Matematica, Universita di Bari, Bari, Italy.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - Vol. 1, 0294-1449
84/05/401/12/S 3,20/(e) Gauthier-Villars

© 1984 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



402 V. BENCI

1. INTRODUCTION AND MAIN RESULTS

We consider a natural Hamiltonian function H E i. e. function
of the form

and the corresponding system of differential equations

where « . » denotes d/dt. 
’

It is well known that the function H itself is an integral of the system (1. 2).
In fact it represents the energy of the dynamical system described by (1.2).
It is a natural problem to ask if the equation (1.2) has periodic solutions
of a prescribed energy h. The main result of this paper is the following
theorem :

THEOREM 1.1. - Suppose that

is bounded and not empty. Then the Hamiltonian system (1.2) has at least
one periodic solution of energy h.

Remark I. The assumption (1. 3) is necessary. In fact the Hamiltonian
H(p, q) = 1/2 p ~ 2 -~- q has no periodic solution.
Remark II. - If there is qo E as2 such that = 0, then q = qo

and p - 0 is a periodic solution of (1.3) of energy h. If we want to have
nonconstant periodic solutions of energy h, we need to add the following
assumption

If (1.4) is violated, then it may be that (1.3) has no nonconstant periodic
solution as the following example shows :

Remark III. As it will be clear by the proof, Theorem 1.1 applies also
to Hamiltonians of the form

is a positive definite matrix for every q E D. However,
since our proof is based on the variational principle of Maupertuis-Jacobi,
it cannot be applied to Hamiltonians whose « kinetic energy » term is
not a positive definite quadratic form.
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The search of periodic solutions of prescribed energy is a problem which
has a long history. We refer to [R 1 ] and [Br ] for recent surveys and we
restrict ourselves to mention only some of the more recent results. Wein-
stein and Moser [W ] [M ] have studied the existence of periodic solutions
near an equilibrium. In this case, under suitable assumptions, the existence
of n periodic orbits can be proved. However, far from an equilibrium, the
existence of n-periodic orbits can be proved only under more restrictive
assumptions on the energy surface H(p, q) = h. Ekeland and Lasry [EL] ]
have proved this fact when such surface is convex and contained in the set

AR = {(p, q)| R  p|2 + for some R > 0 (see also Ambro-
setti and Marcini for another proof [AM ]). A result of Berestycki, Lasry,
Mancini and Ruf [BLMR] ] is the last result in this direction as far as
I know ; it includes both the theorem of Weinstein and the theorem of
Ekeland and Lasry.

If the existence of at least one periodic orbit is required more general
Hamiltonians are allowed. Seifert, in a pioneering work [S ], has proved
that the Hamiltonian (1-5) has at least one periodic solution provided
that Q is diffeomorphic to a ball. The theorem of Seifert has been generalized
in many ways (cf. [R1 ]). The last results in this direction is due to Rabi-
nowitz [R2 ]. He considers a Hamiltonian of the form

where ~K ~q . p > 0 for 0 and Q is diffeomorphic to a ball.

Under these assumptions he has proved the existence of at least one
periodic orbit. The result of Rabinowitz, compared with Theorem 1.1,
allows a more general « kinetic energy » term but still has to impose that
Q is diffeomorphic to a ball.

After I finished writing the preprint of this paper, two papers [GZ] ]
and [H] ] appeared in which Theorem 1.1 has been proved. Our proof
of Theorem 1.1 is quite different from the proofs given in [GZ ] and [H ].
We do not use much of algebraic topology or differential geometry but
rather functional analysis. Also our approximation scheme is not

geometrical (shortening of geodesics) but rather dynamical (we use a
singular potential well). Moreover, given another result of the author [B ],
our proof is very short.
Our method of proving Theorem 1.1 is based on the least action principle

of Maupertuis-Jacobi (cf. e. g. [A ] page 245 or [G] ] for Hamiltonians of
the form (1-5)) which leads our problem to a problem of differential geo-
metry which will be explained below.

Let Q be an open set in Rn with smooth (say C2) boundary and let
a E C2{S~, Rn) be a nonnegative function. We consider the metric
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where ds = is the Euclidean metric. If a(x) = l~ - V(x), R)
the metric (1. 6) is the « Jacobi metric » associated to the Hamiltonian (1.1).
The Maupertius-Jacobi principle states that the closed geodesics of the
« Jacobi metric » are the periodic orbits of (1.1) of energy h.
To be more precise we give the following definition.

DEFINITION 1. 2. - A continuous function y : S 1 ~ Q {S 1- [0, 1 ]/ { 0, 1 ~ )
is a closed geodesic with respect to the metric (1. 6) if it satisfies the following
assumptions :

i) y(t) E Q except may be for t = 0 and t = 1/2
ii) y E C2(I, Q) where I = 

iii ) - [a(03B3)03B3] - 1 / 2 I y for every t E I.

Remark IV. The closed geodesic as defined by the above definition
are of two different type :

( 1. 7) interior geodesics : y(Sl) n 
(1.8) brake geodesics : y(Sl) n aS2 = ~ 0, 1/2 ~ .
The interior geodesics are just smooth curves contained in Q, while the
brake geodesics satisfy the relation

(1.9) is an easy consequence of the Maupertuis-Jacobi principle
(cf. Remark V). The precise statement of the Maupertuis-Jacobi principle
is the following

THEOREM 1.3. - Suppose that

and that (1.4) is satisfied. Then to every closed geodesic, by a suitable repara-
metrization of the independent variable (time), corresponds a periodic solution
of (1.1) of energy h.

Proof For the convenience of the reader we shall give the proof of
the Maupertuis-Jacobi principle. Let y be a closed geodesic and let 10

. denote S 1 if y is an interior geodesic or (0, 1/2) if y is a brake geodesic.
As we can check easily 1/2 a(y) y 2 is an integral of equation (iii). Then

where )B, > 0 is the integration constant. By (1.10) and (1.11) and equa-
tion (iii) we get 

-
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Now we define the following function

1
If y(t) is an interior geodesic is a bounded function. If y(t) is a brake

geodesic we have to prove that the integral ( 1.13) converges.
By ( 1.11 ) we get the following inequality

Since we have supposed V E C2(S~), ~ is bounded for x E Q, so we have

where M 1 is a suitable constant.
The above inequality and standard estimates for ordinary differential

equations give the following inequality near t = 0 and t = 1/2

Thus in every case the function (1.13) is well defined for t E Io. Since it is
a continuous increasing’function it is invertible ; t(s) will denote its inverse.
We now set

By ( 1.12) we have

Then

Replacing the above inequality in (1.12) we get

The above inequality holds for every s E t(Io). If 10 = (0, 1/2) arguing in
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the same way we can prove (1.16) for (1/2, 1). Thus (1.16) holds for every
s e Moreover by (1.11), (1.15) and (1.10) we get

Finally settingp(s) = dq(s) , we obtain a periodic solution (R( s )~ p( s )) of(1.1) )
of energy h. 

ds

Remark V. By the proof of theorem we see that a brake geodesic
generates a solution of (1.16) such that q(s(O)) = y(0) and q(s(lj2)) = y(lj2).
Moreover, by the uniqueness of the solution of equation (1.16) it follows
that q(s(1/2) - sQ) = + so) for s(1/2)). Therefore the brake
geodesic satisfy (1.9). Also we have the following formula for the period
of q(s) : -

The problem with the metric (1. 6) is that it degenerates for x E aS2 so that
the standard techniques of the Riemannian geometry cannot be applied
without many troubles.
The main purpose of the next section is to prove the following theorem.

THEOREM 1.4. Let_S~ be an open bounded set in Rn with boundary of
class C2 and let a E C2(~) be a nonnegative function. Then if

there exists at least one closed geodesic for the metric (1. 6).
Clearly Theorem 1.1 is an immediate consequence of Theorems 1.3

and 1. 4.

2. PROOF OF THEOREM 1.4

The geodesics are the critical points of the « length » functional

However, since a(x) degenerates for x ~ ~03A9, it is difficult to study directly
the functional (2.1~ and an approximation scheme seems to make life
easier.
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Let x E be a function such that

and for every £ > 0 we set

Clearly for every y E Q), J(y) for E --~ 0. The critical points
of J satisfy the equation dJE(y) [~y = 0 i. e.

which gives the Euler-Lagrange equation for the functional (2.3)

Of course equation (2. 5) is an approximation of the geodesic equation (iii)
of Definition 1.2. However equation (2.5) is easier to deal with. In fact
we have the following result.

THEOREM 2 .1. - For every E E (o, Eo) (where Eo is small enough) there
exists a function yE E C2(S~, R n) solution of (2. 5). Moreover y£ can be chosen
in such a way that the following estimate holds

where a and ~3 are constants which depend only on Q (and not on E).
The proof of the above theorem is contained in [B], Theorem 1.1.
Our aim is to prove that { y£ ~E> o has a subsequence converging to a

closed geodesic for our Jacobi metric. To carry out this program some
estimates are necessary. We set
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The interpretation of S~ and L~ are obvious : L~ is the square of the length
of the curve y~ in the Jacobi metric ; S~ can be regarded as the action func-
tional of the trajectory y ¿; with respect to the Lagrangian function

Notice that ~) is not the Lagrangian function associated with the
Hamiltonian (1.1).

LEMMA 2 . 2. - There exists a sequence Ek -~ 0 and a constant Lo > 0
such that

Proof By theorem 2.1 we have

Then (a) follows straightforward.
By (1.18) and (1.19), for every M > 0 there exists E > 0 such that

By the above inequality we get

So we can select sequences Ek -~ 0 and Mk  + 00 such that

By the equation (2.4) with ~y(t) = Da(yE(t)) we get

, 

where d2a(x) [~2 ~ denotes the second differential of a( ~ ). Since the second’ 

and the fourth term in the above integral are nonnegative, we get the
following inequality
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where we have set

So we have

Thus by the above formula and the definition of S£ and LE we get

Thus, since Mk  + oo and SEk ~ Lo for k - + oo, the second asser-
tion of the lemma follows. ’

COROLLARY 2.3. If we set -

we have

Proof 2014 ~) by direct computation, it is easy to see that the left hand
side of equation (a) is an integral of equation (2.5). More exactly if J~
is interpreted as the Hamilton functional for the Lagrangian Lix, ~),
then EE can be interpreted as the energy.

b) follows by the fact that we have the identity

and by lemma 2.2. /
Now let H1(Sl) denote the Sobolev space obtained as the closure of

R’~) with respect to the norm

LEMMA 2 . 4. - There exists a sequence Ek --~ 0 and such
that yEk -~ y weakly in ,

Vol. 1, n° 5-1984.
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Proof - Consider the equality (2.8). Since the third and the fourth
terms are nonnegative we get

By (1.18), (1.19) and the compactness of Q, there exists constants v, M > 0
such that

By Corollary 2.3 (b), we have that

So by the above formula and (2.10) we get

Adding the above formula with M times (2.12) we get

Now, using (2.11) and the above formula we get

The above inequality, and the fact that Q is bounded imply that ~03B3k~~H1
is bounded. Then the conclusion follows, may be taking a new subsequence
of 

Finally we can prove Theorem 1.4.

Proof of Theorem 1. 4. By lemma 2 . 4 we have that

(2.13) y£~ ~ y weakly in and uniformly.

We want to prove that there exists to E S 1 and d > 0

We argue indirectly and suppose that for every t E S ~ there exists a sequence
dk -~ 0 such that

Then we have
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Thus by lemma 2 . 4 and (1.18), Lek  0. But this fact contradicts lemma 2.2.
So (2.14) holds. Therefore the set { t E ~ ~ is not empty. Let A be one
of its connected components.
Now let 03C6 E Rn) (i. e. a smooth function with support contained

in A). By equation (2.4) with by == cp we get

Since yEk -~ y uniformly then

Moreover by (2.2)

(2.17) for k large enough and t E supp 03C6.

Now (2.13), (2.16) and (2.17) allow us to take the limit in (2.15) and we get

Therefore y satisfy equation (iii) of Definition 1. 2 for every t E. Thus
if A = S~ we have obtained an interior geodesic and we are finished. If
A 7~ S 1, we consider the affine transformation

Since equation (iii) is invariant for affine transformation, the function

provides a brake geodesic according to Definition 1.2. )))
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