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ABSTRACT. — We consider nonlinear elliptic differential equations of second order in two
variablesF (x, y, z(x, ), zx(x, ), ..., 2yy(x, ) =0, (x,y) € 2 C R2. Supposing analyticity
of F, we prove analyticity of the real solutian= z(x, y) in the open sef2. Furthermore, we
show thatz may be continued as a real analytic solution foe= 0 across the real analytic
boundary ar® cC 9%, if z satisfies one of the boundary conditians ¢ orzn = ¥ (x, y, z, zt) on
I with real analytic functiong andys, respectively £,, denotes the derivative afw.r.t. the outer
normaln onT" andz; its derivative w.r.t. the tangent). The proof is based on ideas of H. Lewy
combined with a uniformization method. Studying quasilinear equations, we get somewhat bette
results concerning the initial regularity of the given solution and a little more insight.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous considérons les équations différentielles non-linéaires elliptiques d’ordre
deuxieme dépendant de deux variables, y, z(x, ¥), 2x(x, ¥), ..., 2y (x, ¥)) = 0, (x,y) €
Q c R?. Supposent I'analyticité dé”, nous démontrons I'analyticité de la solution réelle
z = z(x, y) dans I'ensemble ouvest. En outre, nous démontrons qu’'on peut prolongesmme
solution analytique réelle d& = 0 a travers la courbE C 92, si z vérifie une des conditions
aux limitesz = ¢ or zn = ¥ (x, y, z, zt) Surl” avec des fonctions analytiques réelest v (zn
designe la dérivée de par rapport a la normale extérieunesur I' et z; la dérivée dez par
rapport a la tangente). La démonstration est fondée sur des idées de H. Lewy, combinées av
une méthode d’'uniformisation. En regardant des équations quasi-linéaires, nous réalisons d
résultats améliorés en ce qui concerne la regularité initiale de la solution donnée et un peu plt
de compréhension.
© 2002 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

Letz = z(x, y) be a solution of the fully nonlinear equation

Fx,y, 200, ), 26 (x, ¥), 2y (X, ¥), 2xx (X, 1), 2y (X, ), 24y (x, »)) =0 inQ,  (1.1)

which is supposed to be elliptic w.ri. Moreover, letl” C 92 be an open boundary arc
of the open sef2 c R?, and either the Dirichlet condition

z(x,y) =0x,y), (x,y)eTl, (1.2)

or the nontangential boundary condition of first order

Zn(x’)’):w(x»y’z(x»)’)’zt(x»)’))» (xvy)erv (13)

is satisfied £, denotes the derivative of w.r.t. the outer normah, z; its derivative
w.r.t. the tangent).

Then we show: IfF is a real analytic function ande C?(Q), thenz is real analytic
in Q (Theorem 3). Furthermore, supposing analyticity of all d&atg or ¢, andI", we
can continug e C?(Q UT) across™ as a real analytic solution of (1.1) (Theorem 4).

The first result is Bernstein’s analyticity theorem (compare e.g. [10]; for further
references cf. [12] 85.8). The second statement follows also from Morrey's far
reaching Theorem 6.8.2 in [12], but its proof is quite complex. (For similar results
cf. A. Friedman’s paper [3].) Therefore, it seems desirable to find a more elementary
and geometric proof for the equations considered here. Furthermore, our method |
constructive, and one may estimate the domain of existence for the extended solutiot
quantifying the fundamental Theorem 2 in [13].

In this theorem we have extended a given solution of an analytic system

Az(u,v) =h(z(u, v), 2,(u, v), Z,(u, v)), (1.4)

across a straight part of the boundary, where certain analytic mixed boundary condition
are satisfied. Now, introducing isothermal parameters, we transform the equation (1.1
to such a system for the vector-valued functiomith the componentst, y, the solution
z, and its first and second derivatives, all considered as functions of the isotherma
parametersu, v) (cf. Lemma 3). Additionally, we obtain a system of first order, which
we use in connection with (1.2) or (1.3) to derive suitable mixed boundary conditions
for z. Exploiting Theorems 2 and 3 of [13], we infer the analyticityzand construct a
continuation ofz across the boundary. Using E. Hopf’s maximum principle, we obtain
the analogous results far= z(x, y) (cf. Theorems 3 and 4).

In the case of quasilinear equations

a(x,y,z(x, y), ze(x, ¥), 2y (X, ¥)) zex + 2b(. . Jzyy +¢(.. )z +d(...) =0 InQ
(1.5)
the same method as above gives somewhat more insight and also better results, sin
the system (1.4) contains the first derivativeszainly (cf. Lemma 1). Therefore, we
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dedicate the first part of the paper to equation (1.5). We find an analytic continuation of
the solutionz, even if we only supposee C%(Q2) N C1(QUT) (Theorem 2).

In order to obtain the optimal results concerning the initial regularity:fave have
to combine our method with a lemma of Heinz [7] following the ideas of [8]. Regarding
the optimality we refer the reader to the Examples 2 and 3.

Our method rests on H. Lewy’s idea [10] of continuing a solution for (1.1) to complex-
valued variables, y by solving hyperbolic initial value problems. The transition to the
system (1.2) simplifies this method, since the corresponding hyperbolic problems hav
straight characteristic lines. In addition, we are able to continue a solution of (1.2) acros:
the boundary. This continuation process is described in [13].

We would like to mention P. Garabedian’s beautiful book [4], which was highly
inspiring for us.

This paper is part of my doctoral thesis which has been accepted by the Fakultat fi
Mathematik, Naturwissenschaften und Informatik at the Brandenburgische Technischi
Universitat Cottbus in November 2000.

Finally, I would like to thank Prof. Friedrich Sauvigny for his interest in my work and
for many stimulating lectures and discussions. | am also very grateful to Prof. Stefar
Hildebrandt for his generous support.

2. Reduction of quasilinear equationsto the normal form

Let the functions

a=a(x,y,z,p,q), b=b(x,y,z,p,q),
C=C(x7y’z7p7q)7 d=d(x7y,Z7P7Q)7 (21)
a,b,c,d:® —>ReC™®), ac(0,1),

be defined on an open gBtC R®. We consider a solution=z(x, y): Q — R € C?(Q)
of the quasilinear differential equation

a(x,y,z(x, ), 2 (x, ¥), 2y (x, ) 2ex +b( . )zay (. )2y +d(..) =0, (x,y) €Q,
(2.2)
which is supposed to be elliptic with respectta.e.

3,206,002 (6,3),2, (x,y)) = AC — b2|(x,y,z(x,y),z.x(x,y),zy(x,y)) >0 forall (x,y) €.
(2.3)
Obviously, we have to assunfex, y, z(x, ), 2x(x, y), zy(x, ) | (x,y) € R} C ©. We
use the abbreviations

P =Zx, q =2y, = Zxx> § = Zxy» I =2yy

for the derivatives of. Finally, for arbitrary(xo, yo) € R? andr > 0 we setB, (xq, yo) :=
{(x,y) € R? | (x — x0)% + (y— yo)2 < r?} and writeB := B4(0, 0).
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LEMMA 1.—Letz(x,y):Q — R e C?(Q) be a solution of the quasilinear equation
(2.2), which is supposed to be elliptic with respect;tin the sense 0{2.3). Then, for
any (xo, yo) € 2 and anyr > 0 with B, (xq, yo) CC 2 there exists a mapping

f(u,v) = (x(u, v), y(u, v)) : B — B, (xo, yo) € C*™(B),  £(0,0) = (x0, yo),

such that the relations

b NS>
Yu— =Xy +—Xy = 0,
a a
N > b
Yo = — Xy — — Xy :07
a a
(2.4)
b D> d
Pu + —qu + — 9y + —x, = 0»
a a a

NS b

d
pv_—QLt+_QU+_xv:0v (u,v) € B,
a a a
are fulfilled (write z(u, v) := z o f(u, v) etc). Furthermore, the vector-valued function
Z(u, v) := (x(u, v), y(u, v), z(u, v), p(u, v), q(u, v)) € C*(B,R®)
satisfies the semilinear system
Az(u,v) =h(z(u,v), z,(u, v),2,(u, v)), (u,v)€ B. (2.5)

The right hand sidédr = h(z, p, q) € C*(©¢ x R® x R R®) is defined on the open set
Op:={ze€ O | (2) > 0} ¢ R® and will be specified in the proof.

Proof. —

(1) At first, aC2-solution for Eq. (2.2) belongs 16°(2, R) since we have, b, ¢, d €
C*(®,R) (cf. [9] Satz 5 and [14] Theorem 1). We consider the elliptic Riemannian
metric (w.l.0.g. we may assune> 0)

ds?:=a(x, y) dy2 —2b(x,y)dxdy +c(x,y) dx?, (x, y) € Q, (2.6)

with a(x, y) :==a(x, y, z(x, y), p(x, y), g(x, y)) € C**¥(2) and so on. The uniformiza-
tion theorem for nonanalytic metrics (compare, e.g., [15]) yields: For(agyo) € 2
and anyr > 0 with B, (xo, yo) CC 2 there exists aC%t-diffeomorphism f (u, v) =
(x(u,v), y(u,v)): B — B, (x0, yo) such thatf (0, 0) = (xo, yo) and such that the metric
ds? appears in the form

ds® = A(u,v)(du®+dv®) inB, A eC™(B,R). (2.7

The surface element satisfias> 0 in B, and we have/; := x,y, — x,y, > 0 in B for
the Jacobian of .

Now, writing w := £~ for the inverse mapping of, we setA (x, y) := A o w(x, y).
From (2.7) we conclude
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ds® = A{(uydx +u, dy)* + (vedx + v, dy)?}
= A{(u)zc + vi) dx® + 2(uuy +vevy)dxdy + (u§ + vi) dy2}.

Comparing this with (2.6), we obtain the conformality relations

2 2_ ¢
+vi=—,
u.X X
———b (2.8)
Uy + V0, = , .
y y A
u2—|—v2_——a (x,y) € B, (x )
y y ) k] r 07)70

Denoting byJ,, the Jacobian of the map and using/,,, A, £ > 0, we get

VEuy=Vac—b?u, = A\/(u?( + v2) (42 4 v2) — (uyuty 4 v vy)2uy

= A(uyvy — uyv)uy = A (usuy + v,0y) vy — (uf + v)z) vy |

= _bvy —av, in B,(xo, yo)
as well as

«/Evy = A(uyvy — uyv vy = A [(uf + v)z,)ux — (uytty 4+ VeV Uy
=auy, + buy in B, (xo, yO)

Now, applying the relation

-1
xu xv frd I/lx I/ly frd i vy _uy (29)
Yu Vo Ve Uy Jp \=vx  uy )’

we derive the Beltrami system for the uniformizing map

b b
yu - =Xy + £.xv =0,
“ ¢ 2.10
vE b (2.10)
yv_—xu__xuzo, (u,v) € B.
a a
For later application we note the equivalent system
b VT
Xu =" Yu—""W =0,
¢ ¢ (2.11)

NS> b
Xp+—y,— =0, (u,v)eB.
c c

(This derivation of Egs. (2.10) follows the book [16] Section 6.1 by F. Schulz; we include
it for the sake of completeness.)

(2) The first equations (2.10) and (2.11) together with the quasilinear equation (2.2
yield
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apy = AZxxXy + AZxyYu
= —2bZ, Xy — CZyyXy + AZxy Yy — dXy
= 2oy (—2bx, + ay,) — zyy(cx,) —dx,
=2, (—=bx, — VEx,) — 2,y (byu + VZTy,) — dx,
= —b(qXu + 4yY) — V(@ Xy + gy 30) — dx,
= —bg, —VEq, —dx,, (u,v)€ B,

and from the second equations in (2.10) and (2.11) we infer

apy = azyxXy +aZyy Yy
= —2bZ,yXy — CZyyXy + AZxy Yy — dX,
= Zyy(—=2bxy + ay,) — zyy(cxy) — dx,
= Zyx (=bxy + VEx,) — 25y (—VEyu + byu) —dx,
= VI (quxu + gy¥u) — b(qexy + qyy0) — dx,
=3¢, — bg, —dx,, (u,v)€B.
We obtain

b D> d
Put —qu+ qv+ —xy = 0,
a a a

Nb3 b

‘ 2.12)
pv_—CILt+_CIv+_xv:07 (u,v) € B,
a a a

and collecting Egs. (2.10), (2.12), we have established the system (2.4).
(3) It remains to show that= (x, y, z, p, q) solves the system (2.5): From (2.10) we
deduce

9 ( b NS ) 9 ( NS b )
0=— yu__xu+—xv T\ X — Xy
ov a ou a
JE b vz VT b
= —(xuu +xvv) —\ =)t {— v+t |{— ) xut+ |- X%
a a/, a /, a /, al,
and hence
JE

a

b p .
—Ax = —Vz<—> c(XpZy — XuZy) — VZ(£> - (xy2y +x,2,) InB, (2.13)
a a
writing V, := (%, 2, 2 2 .9y Moreover, we compute
- _-xu + —-xv P yU - —-xu - _-xv
a a av

a
= (Yuu + Yoo) — g(xuu + Xpp) — (g) Xy + (@> Xy — <@> Xy, — (é) Xy

a a a

et ) - b
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and consequently

b b N
—Ax — Ay = —VZ<—> - (xy 2y + xy2y) + Vz<—> - (xy2, — x,Z,) InB. (2.14)
a a a

If we treat Egs. (2.12) in the same way, we obtain
d b b NS
ot apt2ag=-Vi(7) @a+az) - V() @z - az)

_ v(g) a4+ 3020) (2.15)

and

p b p
gAq = _VZ<;> : (quu - QMZU) - vZ(%) : (QMZM + %Zv)

+ VZ <Ca_l> . (xvzu - xuzv) (216)

in B. From the integrability conditions, = px, + gy, andz, = px, + gy, we get
immediately

0 0
0= _(Zu — DXy — qyu) + _(Zv — PXy — qu)’
ou v
which we may write as
—PAx —qAy + Az = puxy + quyu + poXy + quyy,  (u,v) € B. (2.17)

Collecting Egs. (2.13)—(2.17), we have established a linear system for the unknown:
Ax, ..., Ag. Since we compute

S 0 00 O

b —a 0 0 O
1 ¥
—4d 00ab=——2<0
10 0 0 0 /% a

-p —q 1 0 O

for the determinant of the matrix of coefficients, we may solve this system. We considet
the right hand sides of Egs. (2.13)—(2.17) as functions, @f andz, and denote them
by m1, ..., ms, respectively. Then we find

a b
Ax = —mq, Ay = —mq — mo,
Nk VS
1
Az = —=(pa +gqb)my — gmz + ms,
2> (2.18)
A d n b
= ——=mq +m3z — —=my,
V4 ~ 1 3 > 4
Ag = Lm4 in B. O

N
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Remarks. —

(1) The coordinatesu, v) € B are called isothermal parameters for the Riemannian
metricds?.

(2) If the coefficientsa, b, c,d are real analytic in®, the right hand sideh =
h(z, p, q) of the system (2.5) is a real analytic function in the open®gtx
RS x RS,

3. Analyticity and continuation of solutions for quasilinear equations

First we show analyticity in the interior of the domain.

THEOREM 1. —Let Q@ ¢ R? and ® C R® be open sets. We consider a solution
z=2z(x,y) € C3(2,R) of the quasilinear equation

a(x,y,z(x, ), 2x (X, ¥), 2y(x, ¥)) 2xx +2b(.. )zay (.. Dzyy+d(.. ) =0, (x,y) €K,

(3.1)
with {(x, y, z(x, y), z: (x, ¥), 2y (x, ¥)) | (x, y) € 2} C ©. The functions:, b, ¢, d:© —
R are supposed to be real analytic functions, and the ellipticity cond{@aB)is fulfilled.
Thenz is real analytic in<2.

Proof. —-We choose(xg, yo) € 2 andr > 0 such that the inclusiom, (xq, yo) CC Q2
is satisfied. According to Lemma 1 we may introduce isothermal paramaterse B
such thatz(u, v) = (x(u, v), y(u, v), z(u, v), p(u, v), g(u, v)) € C3(B,R% solves the
system

Az(u,v) =h(z(u,v), z,(u, v), 2,(u, v)), (u,v)€ B,

with a real analytic right hand side: ©¢ x R® x R® — RS (cf. the second remark at the
end of Section 2). As shown in [13] Theorem 4, any solutzasf such a system must
be real analytic inB. In particular, the uniformizing mag (u, v) = (x(u, v), y(u, v)) :

B — B, (xo, yo) is real analytic inB, diffeomorphic, and we know/; > 0 in B.
Therefore, the inverse mapping= f~! and the function;(x, y) := z o w(x, y) are real
analytic in B, (xo, yo) (cf.[5] Section 1.7, where corresponding results are proven for
analytic functions in more then one variable). Since the pointyy) € 2 was chosen
arbitrarily, we conclude the analyticity efx, y) in Q. O

Now, we study the boundary behaviour of solutions for quasilinear elliptic equations.
LetT" C Q2 # @ be an open boundary arc ©f. For any point(xg, yo) € I' there have
to be a numbes > 0 and a functior = h(x, y) € C1(B, (xo, yo), R) such that

|Vh(XQ, yo)’ >0 (32)
and
QN By (x0, yo) = {(x, y) € By (x0, yo) | h(x, y) <O},

I' N B, (x0, yo) = {(x, y) € B, (x0, yo) | h(x, y) =0}.

I' is called aC**-arc k € N, a € [0,1)) if h € C**(B, (xq, y0), R) is true for any
(xo0, yo) € T'. If h is real analytic for anyxg, yo) € I', we sayl' is a (real) analytic arc.

(3.3)
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On such a boundary ait we prescribe boundary data of two kinds:
(1) Dirichlet data We investigate the case

2(x,y) =0x,y), x,y)erl, (3.4)

with a functiong = ¢(x, y): T — R.
(2) Nontangential data of first ordeA function v = v (x, y, z,¢) :U — R is given
on an open s&f C R*. We consider the boundary condition

n(x, y) =¥ (x, 5, 2(x,¥), 2e(x, y)),  (x,p) €T (3.5)

Herez, denotes the derivative afw.r.t. the outer normah andz; its derivative
in tangential direction. Obviously, we have to demdqd, v, z(x, y), zt(x, y)) |
x,yel}clU.

In the following, we replace the ellipticity condition (2.3) by

2, y,200,0), 2006000, 25 (,y)) > 0, (x,y)eQUT, (3.6)

i.e. we assume that the elliptic equation (3.1) does not degenerale Wfe always
consider solutionsy = z(x,y) € C*(Q,R) N CY(Q UT,R) of (3.1), and we sup-
pose

{()C, D) Z()C, y)7 Zx(-xa y), Zy(x, y)) | (X,y) € QUF} C .

To start our analysis, we show that we can restrict our considerations to the cas
Q=8:={(x,y)eB|y>0}andI' =1 :={(x,y) € B |y = 0}, following the ideas
of E. Heinz [8], who has applied this method to Monge—Ampere equations:

LetT be aC3“-arc. We may assumé, (xo, yo)| > 0 due to (3.2). Iy (xo, yo)| =0
is true, we haveh,(xg, yo)| > 0 and one may carry out the following calculations
exchangingx and y. Now, there existsR € (0,0] such that we can solve the
equationa(x, y) = 0 with respect toy in Bg(xo, yo). More precisely, we find a
function g = g(x) € C***([xg — R, xo + R],R) with g(xo) = 0 such that we have the
representations

Q N Bg(xo, yo) = {(x, y) € Bg(xo, o) | 9 (yo+ g(x) — y) <0},
I' N Bg(xo, yo) = {(x,y) € Bg(x0, y0) | y =yo+ g(x)}
wheret € {—1, +1}. We chooseR; € (0, R] with

R /
R, m:= max ]|g (x)].

< 9
1+m xe[xo—R,xo+R

Introducing new coordinate$, n) by the definition

-x(57 77)=x0+R157 )’(57 77)=yo+g(x0+Rl-§)+19Rl77a (57 77)€§7 (37)

we have the estimate
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2
(x —x0)”+ (y — yo)* = R{E% + (g (x0 + R1§) + ¥ Ran)
< R? 4+ 2mR3 + m?R? = RZ(14 m)? < R?

for any (&, n) € B. Therefore, we obtain the inclusions

{(-x(57 77)7 )’(57 77)) | (57 77) € F} C (ﬁ N BR(-x07 yO))7
{(X(S, O)v y(i‘-» 0)) | E € [_lv l]} C (F N BR(xov yO))

(3.8)

Let us now consider the function
=2, n) =z(x0+ Ri&, Yo+ g(xo+ R1€) + 9 Rin) € C3(S)NCY(S),  (3.9)

where z € C?(Q) N CY{(Q UT) denotes a given solution for (3.1). We abbreviate
p=12,...,1 =Z,, and calculate

Zexl ey = R 2(F — 208’5 + (8)°F) — g2y,
Zoyl ey = RIZ@5 — g'h),
Zyylwemyeann =Ri°L (E.n) €S,
Inserting this into (3.1), we infer
a2, p.F +2b(.. )§+é(..)i+d(..)=0, (&,n) €S, (3.10)
with
a,n,z,p,q):=a(x,y,2,p,q),
b€, .2, p.q) = H{b(..) =g xa(..)},

(3.11)
EE, %, p,g) i=c(...) —2b(..)g' (x) + g (x)?a(...),
dE, 0,2, p,q) :=R2{d(..)—a(..)g"(x)q}.
In (3.11) the quantities, y, z, p, g are defined by the relations
X =xo+ Ri&,
y=Yo+ g(xo+ R1&) + ¥ Ryn,
7=z, (3.12)
p=R{'p — VR (xo+ Ri£)G,
q=vRi'q.

A simple calculation yields

S(€, 0.2 0. pE. 1), 4, n) :=ac —b*=ac—b*>0 for(& neS. (3.13)
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Furthermore, we havé, b,¢,d € C1*¢(0,R) due to (3.11), (3.12) and because of
g € C¥([xo — Ry, xo + R1], R). Here® c R® denotes an open set with the property

{(6,n.2¢,m, P&, m, G M) (5,m €S} CO. (3.14)
Now, we examine the behaviour of the boundary conditions under the transforma-

tion (3.7).
(1) Dirichlet data Defining

¢):=¢(x(,0,y¢.0), &el[-11], (3.15)

we conclude

2(£,00=z(x(£,0),y(,0) =¢(&), &el-11], (3.16)
from (3.8) and the boundary condition (3.4).
(2) Nontangential data of first ordeiVe consider the function
Ry
V1+(g'(x(§.0)))?

x w(x(s,oxy(s,m,a

0g'(x(&,0) 5
1+ (g'(x(§,00))% 7
Since we know (we parametrizésuch that? lies on its left hand side)

V(EZ ) i=—

ORIt )
VIt @@ o2’

(3.17)

04
t =T 15 ' )
W= reor b
12
n(x) = (§'(x),—1), x€[xo— Ry, x0+ Ral,

V1+(g)

we may calculate

2t(x, Y (x(,0),v(.0)
U

T VIt (g0t RiE))

{220, 0) +8' M2 M} .0y 0

19 = ol ~ ~
= Vi e i+ Gt 2}
19 —iz - jod — ~
= W{Rl Ze —OR; g7, + O R ¢'Z,}
_ PRy
V1+(g'(xo+ Ri§))
Moreover, we obtain

225(570)7 %—e [_17 1]
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Zn (%, Y x(€.0).y(£,0)

B
= g0z, ) = 2, M},
Vi oy Yoo
0 1. 1 o 1.

DR _ -

for the normal derivative of. Together with the boundary condition we infer

- Rq vg’
Zr;(f,o) = mZn(x(f 0), y(&, 0)) 1+ (g /)215(5 0
R, ( 5 Rt )
e — ,0), ¥(£,0), (€, 0), ——— 0
l+(g,)2w x(§,0),y(6,0),2(5,0) Wzs(é )
g/
+ 1+ (g /)2Zg(§ 0)

= W(57 Z(570)7 Zs(-‘;:,o)), g € [_17 1]
- - (3.18)
The functiony is defined on a sét c R3 with the property

{(£,2¢6,m), 2: &) | (E,m e S} U, (3.19)

choosingR > 0 sufficiently small to ensure that the inclusion

{(-x’y7z(-x’y)7ZT(x7 y)) | (-x7 y) eﬁnBR(-x()’ yO)} cu

is satisfied. Heré/ is the domain of definition foty, and we have set

19‘ i
zr(x, y) = m{zx(x’ y) + & (0)zy(x, )}

Sincezr(x, y) andzi(x, y) coincide for(x, y) € I' N Bg(xo, yo), SUCh a number
R > 0 exists.
Let us summarize our results:

LEMMA 2. —We consider a solution = z(x, y) € C2(Q,R) N CY(Q UT, R) for the
guasilinear equatior§3.1), which is supposed to be elliptic with respect tio the sense
of (3.6). On theC3+*-arc T" we prescribe either Dirichlet daté8.4)with ¢ € C3*(T", R)
or nontangential data of first ordg(3.5) with v € C>** (U, R).

Then, defining = z(¢, n) € C*(S, R)NC*(S, R) asin(3.9), this function is a solution
of (3.10) with coefficientsz, b, ¢,d € C**(®,R), where® c R> has the property
(3.14) The equation is elliptic with respect t© in the sense 0f(3.13) Moreover,
z fulfils one of the boundary condition8.16) or (3.18) with right hand sidesp €
C3([—1,1],R) and ¢y € CZ**(l{, R) respectively. The open sktc R? satisfies the
inclusion(3.19)
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Finally, if the coefficients:, b, c,d and the boundary dat®, ¢ are real analytic
functions and ifl" is a real analytic arc, then also the transformed quantitie$, ¢, d
and@, ¥ are real analytic functions.

LEMMA 3.—Letz =z(x,y) € C3(Q,R)NCHQUT, R) be a solution of3.1)and let
the ellipticity condition(3.6) be valid. We assume b, ¢, d € C***(®,R), andT" C 9Q
is an openC3t“-arc. Furthermore satisfies one of the boundary conditiq@s4) with
¢ € C*(I", R) or (3.5)with ¢y € C*** U/, R). Then we have € C***(QUT, R).

Proof. —
(1) We mentionz € C3%(Q) and choose an arbitrary poitty, yo) € I'. Because of

Lemma 2, we may restrict our considerations to the €aseS, I' = /. First we examine
the case of the Dirichlet boundary condition

Z(x7 0)=(p(x)a -xe[_la 1]5

with ¢ € C3+“([ 1, 1], R). There exists a functio® (x, y) € C3*(S, R) with ®(x, 0) =

@(x) on 1. Now, 2(x, y) :=z(x,y) — ®(x, y) solves a quasilinear equation wigh+<-
coefficients, and this equation is elliptic with respect tap to the boundary of. Ap-
parently, the advantage of this transformation is

Z(x,00=0, xe[-1,1]. (3.20)

In the sequel, we omit the hat and assume thétlfils the homogeneous Dirichlet
condition (3.20). .

Let us now introduce isothermal parametérsv) € S with respect to the metric

ds?> =ady? —2bdx dy + cdx?® € C*(S) N CO(S).

The uniformizing map

fu,v) = (x(u,v), y@, v)) 1S — S € C*>**(5) N C(S)

satisfies/; = x,y, — x,y, > 01in S, and we have

b by
Yu — =Xy + £xu =0,
a a
N b
Yo — ——X, — —x, =0,
ba J% d (3:21)
Put+—qu+—qy,+—x,=0,
a a a
NS b

d
Pv — QLt+_CIv+_xv:0a (u,v) €S,
a a a
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due to Lemma 1 f(u,v) := z,.(x(u,v), y(u,v)), qu,v) := z,(x(u,v), y(u, v))).
Solving these equations fay,, x,, ¢, andg,, one gets the equivalent system

b N4>
Xy = —Yu— —— Y= 0,
C C
z b
Xo + \/—C_yu - Eyv - 0»
(3.22)
b N d
Qu+ —Pu— ——DPvt+ —u =0,
C C C
NH) b d
Gt —>p it —pot+—y=0, (u,v)€S.
C C C
The uniformizing mapf may be chosen such that
f(_17 0)=(_17 0)7 f(07 O)=(O7 0)7 f(17 O)=(17 0)7
(3.23)

yu,00=0, ue(-11),

is valid. The functionz = (x, y, z, p, g¢) solves the system (2.18), where the quantities
my, ..., my denote the right hand sides of Eqgs. (2.13)—(2.17). Therefore, we may derive
the estimates

|Ax], |AY], |Az], |Ap], |[Aq] < C(IVX2+ |VyP+ [Vpl2+|Vql?) inS, (3.24)

applying the ellipticity property and using the integrability conditiaps= px, + gy.,
Zy = pxy + qy,- In (3.24) C denotes a non-negative constant. We will not distinguish
between such constants.

The first two equations in each of the systems (3.21) and (3.22) yield

V= vz

7|Vx|2=Jf=7|Vy|2 in s, (3.25)

and we learn
Vgl < C(IVyl+1IVpl) inS (3.26)
from the last two equations in (3.22). Inserting this into (3.24), we get
|Ax[, |Ayl, |Az], |Apl, |Aq] < C(IVyPP+|Vp[?) ins. (3.27)

Let us now consider the function:= (y(u, v), p(u, v)) € C3(S, R?) N C°(S, R?). With
the aid of (3.20), (3.23) and (3.27) we get

[AX(u, v)| < C|VX(u,v)|?>, (u,v)€S,
(3.28)
X(u,0=0, wue(-11).
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According to the Hilfssatz in [7] there existse (0, 1] such thak € C1*#(S,) holds true
with an arbitraryu € (0, 1), settingS, := S N B,(0, 0). Therefore, we obtain

fu,v),z(u, v), p(u, v), q(u, v) € C*H(S,)

from (3.22) and the integrability conditions. Since the functoa (x, y,z, p,q) is a
solution of the system (2.5), we know that (y, p) is a solution for

AX(u,v) =K(u,v), (u,v)eS,,
(3.29)
X(M,O)=O, MG(—Q,Q),

with
K(u, v) := (ha(z(u, v), Z,(u, v), Z,(u, v)), ha(Z(u, v), Z,(u, v), Z,(u, v))) € C**(S,),
where we have writteh = (hy, ho, hz, ha, hs).

Now, some potential theory showse C#*/(S, ;) (compare e.g. [6], Section 4.4).
This again leads ta € C2"*(S,2), and consequently we hake= C*(S,,2). Therefore,
we even infex € C?*%(S,,4) from (3.29), and we finally conclude

f.2. .9 € C*(Sya). (3.30)

(2) Let us now consider the second kind of boundary conditions

Zy(x, 00 =¥ (x,2(x,0), 2, (x,0)), xe[-1,1], (3.31)

with a functiony € CZ* U, R), assumind(x, z(x, ), z:(x, ¥)) | (x, y) € S} CU. We
introduce the auxiliary function

m(u,v) = qu,v) — ¥ (xu,v), z(u, v), pu,v)) € C*(S,R)NC°(S,R)  (3.32)
and definey = (x, z, p) as well asVyyr = (Y, ¥, ¥,). Then, we calculate
Vm=Vq—Vyy(y)-Vy inS (3.33)
and
Am=Ag =Yy - ViU -Yu—Yo - ViU (y) Yo — Yy (y) - Ay inS,  (3.34)

wherevyzw denotes the Hessian gf. If we insert the third equation in (3.22) into the
first equation of the system (3.33), we obtain

b N d
mu=_<z+1ﬂp>pu+Tpv_Eyu_wxxu_wzzu. (335)
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Furthermore, the fourth equation of (3.22) and the second of (3.33) yield

NS b d
Mo = g Pu (z + wp)pv — Sy =¥ = Y. (3.36)

These equations form a linear system for the unknopnand p,, which we may solve

on account of
b VOSSR > o
(Law) +(Z) 2200 s
C C

c

Since we know V¥ (y(x, y))| < C in S, we infer
IVpl < C(IVx|+|Vyl+ |Vz|+ |Vm|) inS.
Combining this with the integrability conditions and (3.25), we obtain
IVpI <C(IVyl+|Vm]) inS (3.37)
and therefore
|Ax], |AYI, 1Az, 1AL, [Aq] S C(IVyP+|Vm[?) inS (3.38)
utilizing (3.27). In addition, formula (3.34) yields
|Am| < C(IVyP +|Vmf?) inS (3.39)

because OInyzl/f(y(x, y))| < Cin S. Consequently, the vector-valued functiam, v) :=
(y(u, v), m(u, v)) € C3(S,R? N C°(S, R?) solves the system
2

| Ax(u, v)| < C|VX(u, v) (u,v) €S,

(3.40)
X(u,00=0 wue(-1171).

Here we have additionally used the boundary condition (3.31) and the property (3.23
of the uniformizing map. With the aid of the Hilfssatz in [7] we see that there exists a
o € (0, 1] such thax € C*™#(S,) is valid for anyu € (0, 1). Now, we infer from (3.37),
(3.22) and the integrability conditions

[, 0), 2(u, v), plu, v), g(u, v) € CHH(S,).
Combining potential theoretic results with (3.34), we may derive
f.2. .9 € C*(Sya) (3.41)

as in the first part of the proof.
(3) Now, we have to go back to the original coordinatesy). We calculate
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1
Zex (X, Y) = —(PuYv — PuY) | f-1(x,y)»
Jr
1
ny(xv y) = J_(_puxv + vau)lffl(x,y),
f

1
Zyy(xv y) = J_f(_%txv+QUxu)|f—1(x,y)v (x,y) €S.

Consequently, we have to shaly(0, 0) > 0. Then we obtain(x, y) € C3te(S,) with a
sufficiently smallr > 0, using either (3.30) or (3.41).

At first, differentiating the first equation in (3.22) with respectvt@and the second
equation with respect t@, a subsequent subtraction of the resulting equations yield

Ay = %{VZ<§> : (vau - yuzv) - vZ(@) : (yuzu + vav)} inS. (342)

Taking either (3.30) or (3.41) into account, we get the estimate
Ay(u,v)<C|VY(u,v)|, (M,U)GSQ/4.

Combining this with (3.23), E. Hopf's maximum principle (compare e.g. [1], Sec-
tion 4.6.4) yields

¥»,(0,0) >0

and we inferJ;(0, 0) > 0 because of (3.25).

Now, we know that the solution of the transformed problem satisfiesy) €
C3t(S,). Reversing this transformation, we obtain that the solution of the original
problem belongs to the clags®*(Q N B, (xo, yo), R) with a sufficiently smalls > 0.
Since the choice ofxo, yo) € I' was arbitrarily, we finally conclude(x, y) € C3*(QU
I''R). O

THEOREM 2. —Let z = z(x,y) € C3(2,R) N CY(Q UT,R) be a solution for the
quasilinear equation(3.1), and one of the boundary conditiof3.4), (3.5) is satisfied
on the open, real analytic ar€ c 9Q2. The functionsa, b,c,d:® — R as well as
¢:T' > R or ¥:U — R are real analytic in their domains of definition, and the
ellipticity condition(3.6)is valid.

Then there exists a real analytic continuationzadcrossI', which solves Eq.3.1) in
the extended domain.

Proof. —

(1) In the first part, we study the Dirichlet boundary condition (3.4). Due to
Lemma 3 we know; € C3(Q UT, R). We only consider the case = §, I' = I, and
the homogeneous boundary condition (3.20). Inserting isothermal paranieteds
we infer (3.21) or equivalently (3.22). Furthermore, the vector-valued fundien
(x,y,z, p,q) € C3(S) solves the system

Az(u,v) =h(z(u,v), z,(u, v),z,(u,v)), (u,v)€ES, (3.43)
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with a real analytic right hand side: ®g x R® x R® - R® ©y={ze ® | (2) > 0).
Now, we separate = (x, y) as follows,

X:= (y(u,v), z(u, v), p(u, v)), y:= (x(u,v), q(u,v)).

From the boundary condition (3.20) and the property (3.23) of the uniformizing map
f=(x@,v), yu,v)):5 — S we deduce

Xm,0 =0, ue(-11). (3.44)
The second equation in (3.22) yields
b
xv(%O):_yv(uaO), MG(—l, 1)7
C

on account of (3.44), and from the fourth equation we derive

d b
CIU(qu):_;)’v(u’o)_;pv(uvo)» ue(_lv l)
Defining the real analytic matrix-valued function

< b©,y) O 0

A= 0 0 —noy) Yelk

c(0.y)

wherelf, C R? is the projection 0fdg onto thex, g-plane, we may rewrite the last two
equations as

Yo, 0 =A(yu,0) - X,(u,0), ue(-11). (3.45)

With (3.43)—(3.45) we have found a boundary problem of the form considered in [13]
Theorem 3. All the assumptions are fulfilled (86t:= ©¢ x R® x R®). Thus, for any
o € (0, 1) we findr > 0 such that can be continued as a real analytic solution of (3.43)
onto the seS U ((—g, 0) x (—r,7)).

As in part (3) of the proof of Lemma 3 we seg(0,0) > 0. Therefore, the
mappingw = (u(x, y), v(x, y)) = f~1:Bs(0,0) — B exists and is real analytic. Here
f denotes the just now constructed continuation of the uniformizing mapBaad
(—0,0) x (—r,r) is an open neighbourhood of the poimt, v) = (0, 0). The function
z(x,y) =z ow(x, y) exists and is real analytic isiU Bs;(0, 0), andz(x, y) coincides in
S with the originial solution of (3.1). Finally, the function

h(x, y) ::a(x, Y, z(x, )’)» Zx (x, )’)» Zy(xv y))zxx(xv y) +2b(-~~)zxy +C(~~~)Zyy +d()

is real analytic inS U Bs(0, 0) and vanishes in the open sgtConsequently, we have
h(x,y)=0in SU B;(0, 0) according to the identity theorem in several variables, and we
conclude that solves Eq. (3.1) ir§ U Bs(0, 0). If we reverse the transformation outlined

at the beginning of this paragraph, we may transfer this result to the general case of a
arbitrary analytic boundary aic.
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(2) Let us now consider the (already transformed) boundary condition (3.31). We
know z € C3(S) due to Lemma 3, and we introduce isothermal parameiers). As
in part 2 of the proof of Lemma 3 we consider the auxiliary functior= m(u, v) €
C?(S,R), which is defined in (3.32). The vector-valued functios: (x, y) with

X(u, v) := (y(u, v), m(u, v)), y(u, v) := (x(u, v), z(u, v), p(u, v))

solves a system of the form (3.43) with a real analytic right handlsi@ete thaty: is
also real analytic). Furthermore, we learn

X(u,00=0, wue(-11), (3.46)
from (3.23) and (3.31). The second equation in (3.22) yields
Xy (u, 0) = éyv(u, 0, ue(-11), (3.47)
C

and with the aid of the relatiopy, = px, + ¢y, we obtain

201, 0) = <p<u,0>§+w)yv<u,0>, we(-1,1), (3.48)

on account of (3.46). Solving the linear system of Egs. (3.35), (3.36) with respggt to
andp,, we infer

VEWx A+ Yz) = b+ cp) my + Ly Yxy +9:20)
N a+2byr, + cy?

onl, (3.49)

v

where we have also exploited (3.46). Now, from the first equation in (3.22) and from
(3.46) we deduce

b))
YuXy + V.2 = (Ux + p¥)x, = 4(% +pyY)y, onl.

Putting this and the relations (3.47), (3.48) into the formula (3.49), we obtain

XY+ pY) — (b+ pr){d + by, + (pb+ c¥) Y}

v ao =
py(u, 0) c@a+2by, +cv?)

yo(u, 0)
_ b+cy,

a+2byr, +cy?

=:ka(y(u, 0)) y, (u, 0) + ka(y(u, 0))m,(u,0), wue(=11).

We remark thak; undk, are real analytic functions on some openigetc R3, which
includes the sefy(u, v) | (u, v) € S}. Defining the real analytic function

my(u, 0) (3.50)

b(0,y) 0
A(y) = 0 (pb(O,y)Jrc(O,y)x/f(y) 0 ) y €U, (3.51)
c©.y) c(0, y)ks(y) c(0, y)ka(y)
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we may write Egs. (3.47), (3.48) and (3.50) as
Yo(u,0) =A(yu,0) -x,(u,0), ue(=11). (3.52)

The problem (3.43), (3.46), (3.52) has the form considered in [13] Theorem 3.
Consequently, we can contina@s a real analytic solution of (3.43) onfa ((—og, 0) x

(—r, r)) with an arbitraryp € (0, 1) and a suitable € (0, 1). We define the continuation

of the quantityg («, v) by formula (3.32). Now, as in the first part of the proof, we find a
continuationz(x, y) of the given solution for (3.1) ontS8 U B;(0, 0) with an appropriate
numbers > 0, and the case of a general real analytic boundary actreated in the
usual way. O

Example 1. — The surfac& of a fluid in equilibrium, which is spanned into a vertical
tube with a cross sectiaR ¢ R? and which is under the influence of capillarity, is called
equilibrium capillary surface. One may descriSeby a functionz = z(x, y), which
satisfies the quasilinear, elliptic differential equation

(14 22)2ar — 2022y20y + (14 20)zyy =z(1+ vz)¥? inq. (3.53)

In (3.53)« is a physical constant. If we denote pye [0, /2] the angle betwee& and
the tube at a poing(x, y), (x, y) € 9L, thenz fulfils (after certain simplifications) the
following boundary condition

\Y%
n- 2. y) =cosy, (x,y)€o. (3.54)

V14+|Vz(x, y)I?

In the case/ € (;r/2, ] one has to consider the functier; (x, y). The boundary angle

y is constant. For a detailed discussion of this and similar problems, including existence

and uniqueness of a solution for (3.53), (3.54), we refer the reader to the monograph [2
Relation (3.54) may be written in the form

2, y) = cosy /14 (210, )2+ (e )2 (x.y) €092

This equation is solvable with respect#gif cosy < 1 is true, i.e. the surfacg does
not cross the tube in a tangential direction. In that case, we obtain

zn(x, y) =coty\/1+ (zi(x, y))2, (x,y) € 0L2. (3.55)

Formula (3.55) is a nontangential boundary condition of first order in the sense of
(3.5). Sincey (¢) := coty/1+¢2 is real analytic for allz € R, we learn from
Theorem 2 the following: A capillary surfacg which can be represented by a function
7€ C3Q)NCYRQ), is a real analytic surface. Furthermot® may be continued as a
capillary surface across the tube,dif2 is a real analytic Jordan arc andyf> 0 is
satisfied.

This result is a generalization of H. Lewy'’s result [11]. He showed that a parametrized
minimal surfacez: SU I — R3, which mapd into a real analytic support surface, can be
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continued across as a minimal surface. #is a graph over the, y-plane, this question
corresponds to the problem (3.53), (3.54) with- 0 andy = /2.

Example2. — LetQ = S andI’ = I. The function
2(x, y) = /ye V2 e cx(5) N COUSUT)

solves Eq. (3.1) irf, where the coefficients are defined as follows
a = a(x, q) = qu(”‘/z)x,
b=b(x,y,q9) = 4yqe(1+‘/§)x,
c=c(x,y,q) =8y’qe™V2" 4 1,
d=d(x,q) = 2q3e2(l+«/§)x‘

Moreover, we have the boundary condition
z(x,00=0, xe(-11).
The functions, b, ¢, d are real analytic and we calculate
ac —b? = 2qe(1+‘/§)x =y 1251 ins.
Obviously, there does not exist a real analytic continuationaafross/ as a solution for
(3.1). This means, if we assume C°(Q UT), Theorem 2 is not true.
4. Thefully nonlinear equation

Now we investigate the more general equation

F(x, 9,206, ), 20 (6, ), 2y (8, ) Zax (6, 1), 2y (6, ), 2y (%, 3)) =0, (x,y) € Q,
(4.1)
with a functionF = F(x, y,z, p.q.r,s,t) € C7%(©,R) for o € (0, 1). Here® C R®
denotes an open set. The ellipticity condition appears in the form

1
. 2
Zlya@o )y oy = Fr Fr — 255 |y z@oy)mzw@yn >0 (1, y) €Q,  (4.2)

and the inclusior{(x, y, z(x, y), ..., zyy(x, ¥)) | (x, ¥) € 2} C © has to be satisfied for
the given solution; = z(x, y) € C3(2, R).

LEMMA 4. —Letz =z(x,y) € C*(22,R) be a solution of(4.1) and let (xq, Yo) € Q,
r > 0 with B, (xq, yo) CC Q2. We may introduce isothermal parametéis v) € B with
respect to the Riemannian metric

ds® = F,dy? — Fydxdy + F, dx* € C***( B, (xo, y0)) (4.3)
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With F. = F.(x, y,2(x,y), ..., 2y,(x, y)) etc. Writingz(u, v) := z(x(u, v), y(u, v)) and

P =1y, ...,1 =2y, the following relations are fulfilled
1 F, vz
Yu — éfrxu + Trxv =0,
VE 1R

Yo — —Fr Xu — éfrxu
1F, VX D
ry + Efsu + Tsv + leu :Ov
r r r (4.4)

NS> 1F, D,
xv = 05

rv_Trsu+§Frsv+Fr

1F, N D,
Iy _;u_— e t:o,
TR T g TR

NS 1F, D, .
ty+ —s, +=-— —y,=0 inB.
vt Fts +2Ftsv+FtyU

Here we have abbreviated

Di(x,....t) :=F.+ pF,+rF,+sF,,
(4.5)

Dy(x,....t) :=F,+qF, +sF,+tF,, (x,...,1)e€0.
Moreover, the vector-valued function
Z(u, v) := (x(u, v), y(u, v), z(u, v), p(u, v), g(u, v), r(u, v), s, v), r(u, v))
€ C?(B,RY) (4.6)
is a solution of the system
Az(u,v) =h(z(u, v), z,(u, v), Z,(u,v)), (u,v)€ B, 4.7)

with a right hand sidé1: ©¢ x R® x R® — R8 € C*(0¢ x R® x R& R8), which is defined
onB®g:={ze€ ®| X(2) > 0} and whose exact form is given in the proof. FinallyFiis
a real analytic function ir®, thenh is real analytic in® x R8 x R8.

Proof. —
(1) First we haveds? € C1**(B,(xo, yo)), Since we obtainz € C*(Q) from F ¢

C%(®) due to [9] and [14]. The uniformizing may = (x(u,v), y(u,v)): B —
B, (x0, yo) € C?***(B, R?) is homeomorphic and solves the Beltrami system

1F; VX
Yu— 55X+ Xy :0a
2F, F,
5 LF (4.8)

yv—Trxu—EFrxvzo in B
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or equivalently

1F, N
xu___yu_—yv:()a

2E k (4.9)
+ > L5 =0 inB
Xy F, Yu 2Ftyv—

(cf. proof of Lemma 1). In order to derive the remaining four Equations in (4.4), we
differentiate the equatiof” = 0 with respect toc andy. Then, we have

Fyry + Fysy + Fity + D1 =0,
(4.10)

Frry+Fssy+Ftty+D2:0a (-xay)EBr(an yo),

using the abbreviations (4.5). From the first relations in (4.8), (4.9) and (4.10) we deduce
Frru = Frrxxu + Frryyu
= (—Fysy — Fit, — D)x, + Frs,y,
= sx(_stu + Fryu) - tx(thu) - Dlxu

1 1
= S8x <_§stu - ﬁxv) — Sy (EFqu + ‘/Eyv) — D1x,

1
= _EFvsu - \/Esv - Dlxu

and consequently

1F; by D
+ £s,, +2x. =0, (u,v)eB. (4.11)

Tt o ST F.

Combining the first equation in (4.10) with the second relations in (4.8) and (4.9), we
may calculate

Frrv:Frrxxv+FrerU
= (—Fsy — Fit, — D)xy + Frseyy
:sx(_stv + Fryv) - tx(thv) - Dlxv

1 1
=Sx <_§vav + ﬁxu) — Sy <_\/Eyu + éFvyv> — D1x,

1
= \/fsu - EFSSU — Daxy,

which we write as

\/E 1Fv Dl
o ”+§Frs”+7rxvzo’ (u,v) € B. (4.12)
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Finally, if we start with the second equation in (4.10) and proceed as above, we obtain

1F; N D-
ooy M= P20 00 (u.v)eB, 4.13
+2Fz F,S+F,y (u,v) € ( )
and
N 1F; D-
ty t —s, +=—s, + —y, =0, , B. 4.14
+Fts+2Fts+Fty (u,v) € ( )

(2) Now, we derive the system (4.7). Differentiating the first equation in (4.8) with
respect tar and the second one with respecbtand summing up the resulting equations,
we get

1F

1 F; b))
EF,AX_A)) = _EV2<F,> (X424 +xvzv)+Vz<£> -(xy2, —x,Z,) In B. (4.15)

Here we have writterv, := (% e, dt) Next, if we differentiate the first equation in
(4.8) with respect tw and the second one with respectit@nd subtract the resulting
equations from each other, we conclude

VE 1_ (F VE
Fr Ax = _EVZ<E> . (xvzu _xuzv) - VZ( Fr

)-(xuzu+xvzv) in B. (4.16)

In the same way we obtain the relations

Dl 1FY 1 Fv \/E
FrAx + Ar + EEAS = _EVZ Fr c(8uZu +50Zy) — Vg F, < ($vZy — SuZy)

D
- Vz<71> - (XuZ4 +x,2,) iNB (4.17)
and
NS 1_ (F NG}
Fr AS — évz(Fr> (sv suzv) - VZ( Fr ) . (suzu +svzv)
D, .
+ Vz< 7 ) - (xy2, — x,2,) INB (4.18)

from (4.11) and (4.12). Furthermore, Egs. (4.13) and (4.14) yield

D, 1F; 1 F; D>
_Ay+__As+At___VZ F (suztt+5v v)+vz F
t

s (SvZy — Sudy
F 2F, 2 ,) (5020 = 5u2,)

-V, <ll): ) (YuZy + ¥v2Zy) In B, (4.19)
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and the integrability conditions
Zu— P —qyu =0, 2y —pxy —qy, =0,

pu_rxu_syuzoa pu—”xu—s)’u:O,

gy — sx, —ty, =0, gy —sx, —ty, =0 IinB

give the relations

—PpAx —qAy + Az =X, py + Xy Pv + YuGu + Yoqus (4.20)
—rAx —sAy + Ap = x,r, + xoFy + VuSu + YuSu, (4.22)
—sAx —tAy + Ag = x,8, + xu8y + Vot + yot, N B. (4.22)

We interpret the eight Egs. (4.15)—(4.22) as a linear system for the eight unknown:
Ax, ..., At. Calculating

. . ) .
detimatrix of coefficienty = 2 <0 inB,

r

we solve this system. If we writer,, ..., mg for the right hand sides of (4.15)—(4.22),
we obtain the following semilinear system

A b

X = —=m>,
M2

Ay——m1+

Zf

1
Az=—qm1+ pE + - >4 >m2+m6,

1
Ap=—smi+ —= ( 2 )mz-i-m?,
(4.23)

1
Ag=—tm+ — (sF +2 )m2+mg,
A=—— il ,
r ﬁmz-l-ms 2ﬁ mg
A fr
s = ma,
Jz
At DZ( 1FY ) lFr Fv + |nB O
=— ———my | —=————=mg+m .
FE\"T 22 ) T 2R T

Now, using Lemma 4 and following the proof of Theorem 1, we infer

THEOREM 3 (Bernstein’s analyticity theorem). Any solutionz = z(x, y) € C3(2,
R) of (4.1)—(4.2)is real analytic inQ2, if F is a real analytic function ir®.

Next we investigate the boundary behaviour for solutipesz(x, y) € C2(QUT, R)
of (4.1), wherel’ C 992 # @ denotes an open Jordan arc as described at the beginning
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of paragraph 3. Again we study either Dirichlet data (3.4) or nontangential data of first
order (3.5). Supposing(x, y, z(x,y), ..., zy,(x, ¥)) | (x,y) € QUT}, we replace the
ellipticity condition (4.2) by

1
. 2
2:|(X,y,z(x,y),...,zyy(x,y)) =FF - Zl s |(x,y,z(x,y),...,zyy(x,y)) >0, (x,y)eQUT. (4.24)

As in the case of quasilinear equations, it suffices to consider theSzasd, I' =1,
applying a local transformation. Moreover, we study homogeneous Dirichlet data

2(x,00=0, xe(-11), (4.25)

subtracting a continuation of the boundary functiorfrom the given solution. The
boundary condition (3.5) appears in the form

2y(x,0) =¥ (x,z2(x,0),z,(x,0)), xe(-11), (4.26)

wherey : U/ — R is defined on an open sktcC R3 with {(x, z(x, ), z« (x, ¥)) | (x, y) €
Stcu.

LEMMA 5.-Let z = z(x,y) € C3(Q UT,R) be a solution of(4.1) with F e
C?*(®,R), a € (0, 1), and the ellipticity property4.24)is satisfied. On th€*+*-arc
I' we assume eithéB.4) or (3.5)and we supposg € C+(I", R) andy € C3* (U, R),
respectively. Then we hayes C**(QUT, R).

Proof. —

(1) Due to the results of Hopf [9] and Nirenberg [14] we knave C4(Q, R).
We suppose2 = §, I = I and consider the homogeneous Dirichlet condition (4.25).
Introducing isothermal parameters, v) € S, we deduce the system (4.7) far=
(x@u,v), ..., tw,v)) € C*(S) N C°(S). The uniformizing mapf:S — S may be
chosen such that (3.23) is satisfied. From the proof of Lemma 4 we take the exact shay
of the right hand side in (4.7), and we obtain estimates of the form

|AX], ..., |At| < C(IVx]2P+---+|Vt]?) inS (4.27)

exploiting condition (4.24) (or more precisely, its transformed version). Furthermore, we
know the system (4.4) to be fulfilled. The first two equations in (4.4) yield

F, _
|Vx|? = F|Vy|2 ins, (4.28)

t

and together with the integrability conditions we conclude

Vx|, IVz], [Vpl, Vg < C|Vy| inS. (4.29)
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The third and the fourth equation in (4.4) are solvable with respegtaods, . Utilizing
the first two equations in (4.4), we get

1F, Vv D,

u A ~Tu T — Yu = 0»
WA SE TR TR
(4.30)
L Y2 LB D G ins
— 1yt z—=r — W = .
SU Ft u 2 Ft v Ft yv
These and the last two equations in (4.4) yield the following estimates
[Vs|, |Vt < C(|Vy| 4+ |Vr]) inS. (4.32)

Let us now consider the function= (y, r) € C%t%(S, R?) N C°(S, R?). Usingy(u, 0) =
0 and the boundary condition (4.25), we conclude

[AX(u, v)| < C|VXu, v)|?, (u,v) €S,
(4.32)
X(u,00=0, ue(-11),

from (4.27), (4.29) and (4.31). The Hilfssatz in [7] showse C1*#(S,) with a
sufficiently smallp € (0, 1] and an arbitrary. € (0, 1). We obtainz € C1*#(S,) and
some potential theory shows

ze C*™(S,2). (4.33)

As in the proof of Lemma 3 one seég(0, 0) > 0, such that we infez(x, y) € CH(S))
for a sufficiently smalk € (0, 1). In order to derive this last regularity property, one has
to use relations as.., = J;  (ruyy — royu)-

(2) Let us now study the boundary condition (4.26). We define

XOY) = X062, p, 1) 1= (x, 2, p) + Y2 (x, 2, p)p + ¥ (x, 2, p)r € CZ*U X R, R)
and introduce the auxiliary function
n(u,v) =5, v) — x(y(u,v)) € C**(S) N CO(S). (4.34)
From (4.26) and(u, 0) = 0 we infer
nw,0=0, ue(—11). (4.35)

Differentiating (4.34) and inserting the relations (4.30), we obtain

1F, vE Dy
ny =_<§_t +Wp>ru + Ttrv - ?tyu — XxXu — Xz%u — XpDPu>

N 1F,
== (g7 ¥

(4.36)

1 .
— Vv — XxXv — XzZv — XpPv INS.
F,
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Since we may solve (4.36) with respectrfoandr,, we deduce

IVr| < C(Vy|l+|Vnl) inS (4.37)
with the aid of (4.29). Putting this into (4.30), we also get

|Vs| < C(IVy|+ |Vna]) inS, (4.38)
and the last two equations in (4.4) yield

|Vi| <C(|Vy|+|Vn|) insS. (4.39)
Finally, from

An=As—Vyx - AY =Y VX Yu—=Yo VX Yo
and the estimates (4.27), (4.29) as well as (4.37)—(4.39) we infer
|AY, |AR| < C(IVy|?+|Vn[?) inS. (4.40)

Here we have abbreviated, x := (xx, Xz, Xp» Xr)» andvyzx denotes the Hessian matrix
of x.

Because of (3.23), (4.35) and (4.40), the functiog (y, n) € C**(S) N C°(S) is a
solution of the problem

[AX(u, v)| < C|VXu, v)|?, (u,v) €S,
(4.41)
X(u,00=0, wue(-11),

and therefore we have e C1+“(S_Q) for © € (0,1) and an apprioratey € (0, 1].
Consequently, we infez € C1+#(S,) with the aid of (4.4) and (4.36). Using pontential
theory, we getz € C2+"(@) and because 0f;(0,0) > 0 we obtainz = z(x, y) €
Cc4e(S,) for sufficiently smallr € (0,1). O

THEOREM 4. —A solutionz = z(x, y) € C?>(QUT, R) of the fully nonlinear equation
(4.1)is given. The ellipticity conditiof4.24)is valid, andF is a real analytic function.
On the real analytic Jordan ar€ C 92 one of the boundary conditior(8.4), (3.5)is
satisfied, wherey and ¢ respectively are real analytic functions on their domains of
definition. Then we can contingeas a real analytic solution fof4.1) acrossrI".

Proof. —

(1) From Lemma 5 we learp € C4(Q U T'). We consider the Dirichlet condition
in the caseQ = §, I' = I, that is (4.25). The isothermally parametrized function
2(u,v) = (x(u, v), ..., t(u,v)) € C%(S, R® solves the system

Az(u,v) =h(z(u,v), z,(u, v),z,(u,v)), (u,v)€ES, (4.42)
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according to Lemma 4, and the right hand shilés real analytic in®y x R® x R8.
Moreover, we know that the system of first order (4.4) is satisfied. We seatatr, y)
as follows,

X:=(,z,p,r), y:=(x,q,s,1).

The boundary condition (4.25) and the property (3.23) of the uniformizing yhap
(x,y) yield

Xu,0)=0, ue(-11). (4.43)

From the second equation in (4.4) we get

1F,
xv(”ho):éfyv(uao)a uc (_17 1)7 (444)
t

and together witly, = sx, + ty, we obtain

qv(u,0) = (%%s—i—t)yv(u,O), ue(—117). (4.45)

Solving the third and the fourth equation in (4.4) with respect,t@nds,, we infer
(4.30) and in particular

D,

sy (u, 0) = 7
t

1F;
)’u(u,o)_ ——I’U(M,O), ME(—l, 1)7 (446)

taking (4.43) into account. Finally, the last equation in (4.4) yields

1/1 1 1
t,(u,0) = T2 (—FSDl — FtD2> yo(u,0) — T2 (E — —Fsz)rv(u, 0, ue(-11).

t 2 t 4
(4.47)
Here we have used (4.46) and the first equation in (4.30), whicli, bas the form

s, (u,0) = ?rv(u, 0, ue(-11).

Equations (4.44)—(4.47) may be written as
Yo, 0) =A(yu,0) - x,(u,0), ue(-11), (4.48)

whereA : U/, — R**4 denotes a real analytic, matrix-valued function on the opet/set
which is the projection 08 onto thex, ¢, s, -subspace.

In (4.42), (4.43) and (4.48) we have found a system of the form considered in [13]
Theorem 3. Now, proceeding as in the proof of Theorem 2, we disd0 such that
z(x,y) =z o f1(x, y) exists and is a real analytic function $nJ B;(0, 0). Since

h(x,y) = F(x,y,2(2,9), ..., 2y (x, )
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is real analytic inS U Bs (0, 0) and vanishes if, the identity theorem in several variables
shows that (x, y) solves the equation (4.1) iU B;(0, 0).
(2) Let us now consider the boundary condition (4.26). With the real analytic function

x(x,z,p.r) =Y, (x,z, p) +¥.(x, 2, p)p+ ¥, (x,z, p)r,  (x,z,p,r) €U XR,

we consider the quantity = n(x, v) € C%(S) defined in (4.34). Setting

X:=(y,n), y:=(x,z,p,q,r1,1),

we obtain
X(u,00=0, wue(-11). (4.49)
Using this and (4.44), the integrability conditions yield

1F;
Zy(u,0) = (5 7P + 61>yu(u, 0),
t

1F;
po(it, 0) = (EF” bz, p,r>)yu(u,0>, (4.50)
t

1F;
q,(u,0) = (EFX(X’Z’ p.7) —i—t)yv(u, 0, ue(-11).
t

Moreover, the first equation in (4.4) and the integrability conditions give

JE

F,

x,(u,0) = yo(u, 0),

VZ
Zu(u7 O) = prv(ua O)a
t

(4.51)
>
pu(u,0) = fryv(u, 0,
>
qu(u,0) = 7 x(x,z,p, Ny, ,0), wue(=11.

t

The functionn (u, v) satisfies (4.36). Since we may solve this system with respegt to
andr,, we find real analytic function =f;(y) :U, — R?, i =1, 2, such that

ru(u, 0) =f1(y(u, 0)) - X, (u, 0), (4.52)
ry(u, 0) =fa(y(u,0)) - X, (u,0), wue(-11), (4.53)

holds true. In order to deduce this system, one has to utilize the relations (4.44), (4.50
and (4.51). The sét, has the propertyy(u, v) | (u, v) € S} C Us.
Now, inserting (4.30) and (4.52)—(4.53) into the last equation of (4.4), we infer

t,(u, 0) =fa(y(u, 0)) - X, (u, 0), ue(—1,1), (4.54)
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with a further real analytic functiofy = f3(y) : >, — R2. Eqs. (4.44), (4.50), (4.53) and
(4.54) may be written as

Yo, 0 =A(yu,0) - x,(u,0), ue(-11), (4.55)

whereA = A(y) :U, — R®*? denotes a real analytic, matrix-valued function. Finally,
because of

AH=AS—VyX 'Ay_yu'v)%x 'yu_yv'vjx ‘Yo,
the functionz = (x, y) solves a system of the form (4.42).

Due to [13] Theorem 3, the solutianof the problem (4.42), (4.49), (4.55) can be
continued as a real analytic solution for (4.42) acrbsand we define the continuation
of s(u, v) by (4.34). Using/;(0, 0) > 0, we find a continuation(x, y) =z o f~1(x, y)
of the original solution for (4.1) onto the s&tJ B;(0, 0) (6 > O sufficiently small). This
z is real analytic and solves (4.1) in its domain of definitiorn

Example 3. — The functionz(x, y) = y¥?e* € C%(S) N CY(S U I) is a solution of the
equation (4.1) with

3
F=F(x,q,r1t) =rt? — éqezx
z satisfies the boundary condition
z(x,00=0, xe(-11),

as well as
zy(x,00=0, xe(-11).

The functionF is real analytic and we have

1, s 27, .
FrFt—ZFYZZVI :3—26x>0 inS.
But it is not possible to continugacrossl as a real analytic solution of (4.1). Therefore,
Theorem 4 is not true for solutionse C%(Q) N CYQUT).
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