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ABSTRACT. – This paper deals with the spectrum of a linear, weighted eigenvalue problem
associated with a singular, second order, elliptic operator in a bounded domain, with Dirichlet
boundary data. In particular, we analyze the existence and uniqueness of principal eigenvalues.
As an application, we extend the usual concepts of linearization and Frechet derivability, and the
method of sub and supersolutions to some semilinear, singular elliptic problems.
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RÉSUMÉ. – On étudie le spectre d’un problème à valeurs propres avec poids associé avec
un opérateur elliptique singulier d’ordre deux sur un domaine borné avec condition au bord de
Dirichlet. En particulier, on considère l’existence et l’unicité des valeurs propres principales. On
donne comme application des extensions des notions de linéarisation et différentielle de Fréchet
et de la méthode de sous et sursolutions à quelques problèmes elliptiques semilinéaires singuliers.

1. Introduction

The standard implicit function theorem [21,15,12] and some extensions such as the
Lyapunov–Schmidt method [15,12] are powerful tools for the analysis of nonlinear
problems. When applicable they provide the complete solution set in a neighborhood of
a given solution. That information sometimes leads to global existence and uniqueness
results via continuation techniques. Degree theory [40,12,43], on the other hand, directly
provides global (but less precise) existence results that can be made more and more
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precise when particular solutions are known and their index is well defined. Sub
and supersolutions methods [41,3,43,37] yield more precise existence results if more
information is available. But both the application of the implicit function theorem
and the effective calculation of the index rely on the linearization of the nonlinear
problem around a particular solution, which is nontrivial when the coefficients are not
sufficiently smooth or the nonlinearities are singular. Linearization is also convenient to
systematically construct sequences of sub and supersolutions and is quite useful in the
analysis of stability properties. The main object of this paper is to provide the appropriate
ingredients todirectlyextend these tools to the analysis of the positive solutions of some
second-order, elliptic problems that exhibit a singularity near the boundary. Although our
results apply to more general problems (f depending also on a parameter,L replaced by
a more general nonlinear, elliptic operator), for the sake of clarity we shall derive them
for the semilinear problem

Lu≡ −
n∑

i,j=1

aij (x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
= f (x,u) in , (1.1)

u= 0 on∂. (1.2)

under the followingassumptions, which hold for someα such that−1< α < 1:
(H.1)  ⊂ R

n is a bounded domain, with aC3,γ boundary, for someγ > 0 if n > 1.
Note that the distance fromx ∈  to ∂, d(x), defines a functiond ∈ C2,γ (̄1),
with 1 = {x ∈ : d(x) < ρ1} for someρ1 > 0.

(H.2) The second order part of the operator−L is uniformly, strongly elliptic in
. Also, for all i, j, k = 1, . . . , n, aij = aji ∈ C3() ∩ C(̄), bi ∈ C2(),
and there is a constantK such that |∂aij /∂xk| + |bi | < K[1 + d(x)α] and
|∂2aij /∂xi∂xj | + |∂bi/∂xj | < Kd(x)α−1 for all x ∈ . As a consequence,
the functionsaij , x → d(x)∂aij (x)/∂x

k and x → d(x)bi(x) are in C0,δ(̄)

whenever 0< δ <min{α + 1, γ }.
(H.3) There is an integerm> 0 such thatf, ∂jf/∂uj, ∂jf/∂uj−1∂xk ∈ C(×]0,∞[)

for all k = 1, . . . , n and all j = 1, . . . ,m + 1. And if u : → R is such that
0< k1d(x) < u(x) < k2d(x) for all x ∈  and some constantsk1 and k2, then
|f (x,u(x))| < K0[1 + d(x)α] and |∂jf (x,u(x))/∂uj | + ∑n

k=1 |∂jf (x,u(x))/
∂uj−1∂xk| <Kjd(x)

α−j for all x ∈ , all k = 1, . . . , n and allj = 1, . . . ,m+ 1,
whereKj (can depend onk1 andk2 but) is independent ofu.

For convenience we are allowing (in (H.2)) the coefficientsbi to exhibit an appropriate
singularity at the boundary. Also, we are requiring the coefficients of the operatorL to
be such that theadjoint operatorL∗, defined as

L∗u≡ −∑ ∂

∂xi

(
aij

∂u

∂xj

)
− ∑ ∂

∂xi

[(
bi − ∑ ∂aij

∂xj

)
u

]
, (1.3)

is such that the equationL∗u = f (x,u) also satisfies (H.2)–(H.3);L∗ is the formal
adjoint ofL with respect to the inner product ofL2(). Also,since all sums apply to the
values1, . . . , n of the involved indexes, the limits1 and n are omitted hereafter in the
symbol�. Note that assumption (H.3) is satisfied by the usual power-law nonlinearities,
f (x,u) = g(x)uα1, wheneverα1 > −1 andg ∈ C1(̄); or, more generally, wheng ∈
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C1() and |g(x)| < Kd(x)α2 , for someK > 0 and someα2 such that|α1 + α2| < 1.
Singular elliptic problems of this type were considered, among many others, by Laetsch
[33], Cohen and Laetsch [14], Crandall, Rabinowitz and Tartar [18], Brezis and Oswald
[11] and Bandle, Pozio and Tesei [6] in bounded domains, and by Spruck [44],
Schatzman [42] and Brezis and Kamin [10] inR

n. As a by-product of the results in
the paper, in Section 4.1 we shall extend the existence (of strictly positive, classical
solutions, inC2() ∩ C1

0(̄)) result in [18] to nonlinearities of indefinite sign, which
are of interest in, e.g., population dynamics [25,26,36]. Note that if the nonlinearityf

is singular atu = 0 and is negative foru > 0 and x∈ ′ �= ∅, then the nonnegative
solutions of (1.1)–(1.2) can exhibitfree boundariesbetween a region̄′′ ⊂ ′ where
u= 0 (‘dead core’) and the support ofu [20]; these solutions will be excluded from the
analysis below, where only (strictly) positive solutions will be considered. In Section 4.1
we shall use the method of sub and supersolutions, as in [6], where quite weak, not
necessarily (strictly) positive solutions were obtained.

The linearization of (1.1)–(1.2) around a given positive solutionu leads us to consider
the linear eigenvalue problem

LU −M(x)U = λU in , U = 0 on∂, (1.4)

whereL is as in (1.1) andM(x) = fu(x,u(x)). Thus the natural assumption on the
coefficientM is
(H.3′) M ∈ C1() and, for allk = 1, . . . , n, d(x)2−α|∂M(x)/∂xk | is bounded in.

As a consequence, the functionx → d(x)2M(x) is in C0,δ(̄) whenever 0< δ <

min{α + 1, γ }, andd(x)1−αM(x) is bounded in.
Note that we are not requiringM to have a constant sign near∂. In fact, as we

shall see in Section 2 (see Lemma 2.1), that sign can be controlled upon a change of
variable that affects both the coefficientsbi and the coefficientM itself, with the new
coefficients still satisfying (H.2) and (H.3′). This result is of independent interest and
appears as surprising at first sight because the sign ofM near∂ plays an important role
when applying maximum principles. Similar singular eigenvalue problems in divergence
form were considered in [8], where generalized Hardy–Sobolev inequalities [13] (see
Remark 2.4 below) were used to prove that the eigenfunctions are inC2() ∩ H 1

0 ().
Here we shall prove that the eigenfunctions are also inC

1,δ
0 (̄) for all δ such that

0< δ <min{α+1, γ }. A strongerC1(̄)-regularity (also for the solutions of(1.1)–(1.2)
and of some related linear problems) is necessary in order to apply a straightforward
generalization(AppendixB) of the Hopf boundary lemma[38]. This and our assumption
thatα > −1 in (H.3)–(H.3′) will prevent us from usingLp theory [2], Hardy–Sobolev
inequalities and imbedding theorems [1], which provideC1(̄)-solutions only ifα >

−1/n (see Remark 2.3). Instead,we shall use the(integral) reformulation of the various
problems through the Green function of the linear problemLu = f in , u = 0 on
∂, and work inC1

0(̄) (or in C
1,δ
0 (̄) when convenient)but, for the sake of clarity,

these problems will be written in differential form in the statements of most results.Note
that the requirementα > −1 in assumptions (H.2)–(H.3), (H.3′) and (H.4) is somewhat
optimal when seekingC1(̄)-regularity, as the simplest counterexamples [8] readily
show.
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In fact, in Section 2 we shall consider a slightly more general linear eigenvalue
problem, namely

LU −M(x)U = λN(x)U in , U = 0 on∂, (1.5)

whereL andM are as above and
(H.4) N is strictly positive in, and satisfies assumption(H.3′).

That extension is made because it leads to no additional price in the analysis and is
of interest in the linear stability analysis of the strictly positive steady states of some
singular parabolic problems, such as

(β/|β|)∂uβ/∂t + Lu= f (x,u) in , u= 0 on∂, (1.6)

with L andf as above and 0< |β| < 1. That equation includes the so-called porous
media equation ([5] and references given there in) as a particular case if 0< β < 1, as
seen when rewriting it in terms of the new variablev = uβ . The extension is also useful
in the analysis of the more standard caseβ = 1, see Theorem 4.7 below. But in fact we
shall also get some results on the existence of principal eigenvalues of (1.5) whenN

vanishes in a part of, or changes sign in. That extension do involve an additional
price, but it is convenient in some applications (e.g., in the analysis of (1.1)–(1.2), with
f (x,u) ≡ N(x)uα andN of indefinite sign, asα ↗ 1).

For convenience we shall also consider the adjoint linearized problem

L∗V −M(x)V = λN(x)V in , V = 0 on∂, (1.7)

whereL∗ is as defined in (1.3), and prove that it has the same spectrum as (1.5).
The paper is organized as follows. Section 2 is devoted to the linear eigenvalue

problem (1.5), which is first analyzed in the simplest caseN > 0 (Theorem 2.6).
For convenience we also characterize the principal eigenvalue (1.5) in terms of a
min-maxproperty (Proposition 2.8), first introduced by Donsker and Varadhan [22]
to characterize the principal eigenvalue of second-order elliptic operators in general
form in bounded, smooth domains, and extended (essentially as a definition) by
Berestycki, Nirenberg and Varadhan [7] to general bounded domains. Also, we analyze
the existence and uniqueness of the principal eigenvalue of (1.5) whenN changes
sign in  (Theorem 2.12) and whenN � 0 vanishes in a part of (Theorem 2.10
and Remark 2.11), to extend a well-known result subsequently proven by Manes
and Micheletti [35] for self-adjoint operators and by Hess and Kato [29] for general
operators, and some recent results by López-Gómez [34] respectively. In Section 3 we
first re-write (1.1)–(1.2) in integral form, via a Green operator, and then consider the
Fréchet differentiability of the resulting problem with respect tou (Theorem 3.1) and
with respect to a parameter, under appropriate, additional regularity assumptions on
the dependence off on the parameter (Corollary 3.2). Finally, several applications are
given in Section 4 that deal with the construction of solutions of (1.1)–(1.2) as limits of
sequences of sub and/or supersolutions (Section 4.1), with the stability of the solutions
of (1.1)–(1.2) as steady states of the associated parabolic problem (Section 4.2), and with
bifurcation problems whenf is allowed to depend also on a parameter (Section 4.3).



J. HERNÁNDEZ ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 777–813 781

2. The spectrum of the linear eigenvalue problem

The object of this section is to analyze the spectrum of the linear eigenvalue problem
(1.5). But before proceeding with the main results we show that the sign of the coefficient
M near∂ can be controlled through a change of variable.

LEMMA 2.1. –Under the assumptions(H.1)–(H.2) and (H.3′), there are two func-
tionsϕ± ∈ C2,δ(̄) for all δ such that0< δ < δ0 = min{γ,α + 1}, such that

ϕ± > 0 in ̄, (2.1)

and if U ∈ X ≡ C2() ∩ C
1,δ
0 (̄), with 0 < δ < δ0, is a solution of(1.5), then the

functionsU± = ϕ±U are inX and

L±U± ≡ −∑
aij (x)

∂2U±

∂xi∂xj
+ ∑

b±
i (x)

∂U±

∂xi

= M±(x)U± + λN(x)U±, in  (2.2)

U± = 0, ∂U±/∂ν = ∂U/∂ν on∂, (2.3)

whereν is the outward unit normal, the coefficientsb±
i and M± satisfy assumptions

(H.2) and (H.3′), and

±M± > 0 in a neighborhood of∂. (2.4)

Proof. –Let d(x) = d(x1, . . . , xn) be the distance fromx to ∂ and let ψ ∈
C3(]0,∞[) ∩C0([0,∞[) be a real function such that

δψ(η)� 0 if η � 0, δψ(η) = ηδ+1 if 0 � η � ε < ρ1, ψ(η) = 0 if η > ρ1, (2.5)

whereδ �= 0 is such that−1< δ < α, with α andρ1 as in assumptions (H.1), (H.2) and
(H.3′). The strictly positive constantε will be selected below.

Now we define the functionsϕ± asϕ±(x) = exp[∓ψ(d(x))]. If U ∈ X is a solution
of (1.5) thenU± = ϕ±U is such thatU± ∈ X and satisfies (2.2) with

b±
i = bi ∓ 2ψ ′(d(x))∑

aij
∂d

∂xj
,

M± = M ∓ψ ′(d(x)) ∑
bi
∂d

∂xi

+ ∑
aij

[
∂d

∂xi

∂d

∂xj

(
ψ ′(d(x))2 ±ψ ′′(d(x))) ± ∂2d

∂xi∂xj
ψ ′(d(x))].

But, according to (2.5),

±M±d(x)1−δ � 0 if 0< d(x) < ε

provided that
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±M(x)d(x)1−αd(x)α−δ − d(x)
∑ bi

δ

∂d

∂xi

+ ∑
aij

([
1− (δ + 1)d(x)δ+1] ∂d

∂xi

∂d

∂xj
+ d(x)

∂2d

∂xi∂xj

)
> 0,

which holds if 0< d(x) < ε and ε is sufficiently small, because|M(x)|d(x)1−α is
bounded in and the matrix(aij ) is positive definite in, according to assumptions
(H.2) and (H.3′). Note thatε is chosen independently ofU . Also b±

i andM± satisfy
assumptions (H.2) and (H.3′) respectively and, according to (2.5),U± satisfies (2.3).
Thus the proof is complete.✷

Remark2.2. – The result above implies that the point spectrum of (2.2), with Dirichlet
boundary data

U± = 0 on∂, (2.6)

is the same as that of (1.5), provided that the eigenfunctions are inC2()∩C1
0(̄) (and

this is a natural assumption, as we shall see below). Still, (2.1) and (2.3) imply that

U = 0 (resp.,U > 0) if and only if U± = 0 (resp.,U± > 0), in ;
∂U/∂ν = 0 (resp.,∂U/∂ν < 0) if and only if ∂U±/∂ν = 0

(resp.,∂U±/∂ν < 0) on∂.

The first property implies thatλ is a principal eigenvalue of (1.5) if and only if it is a
principal eigenvalue of (2.2), (2.6). The second property will be quite useful below to
apply a Hopf boundary lemma.

In order to analyze the eigenvalue problem (1.5), we first consider the Green operator
of the problem

Lu= M(x)v in , u= 0 on∂, (2.7)

defined asu= G1(v), with v ∈ C
0,1
0 (̄). Since the analysis of this problem is somewhat

apart from the remaining part of the paper, it is relegated to Appendix A at the end of
the paper, and the result is just stated here; but see Remark 2.4 below.

PROPOSITION 2.3. –Let, L andM satisfy assumptions(H.1)–(H.2)and (H.3′). If
v ∈ C

0,1
0 (̄) then (2.7) has a unique solutionu ∈ C2() ∩ C1,δ(̄) for all δ such that

0< δ < δ0 = min{γ,α + 1}. And there is a constantK , which(can depend onδ but) is
independent ofv, such that

‖u‖C1,δ (̄) �K‖v‖C0,1(̄). (2.8)

Proof. –See Appendix A. ✷
Remark2.4. –If α > −1/n then we can useLp estimates to show that,under the

assumptions in Proposition2.3, (2.7)possesses a unique solutionu ∈ W 2
p(), for all

p > n such that1+αp > 0, and that‖u‖W2
p()

�K‖v‖C0,1(̄), withK independent ofv.
This result is readily obtained by first replacing (2.7) by

u+G0

(∑
bi∂u/∂xi

)
= G0(M(x)v), (2.9)
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whereG0 :Lp()→ W 2
p() is the Green operator of the problem−∑

aij ∂
2u/∂xi∂xj =

f in , u = 0 on ∂, and then taking into account that

∥∥∥∑
bi∂u/∂xi

∥∥∥
Lp()

�K1 ‖u‖C0,1(̄), ‖M(x)v‖Lp() �K2‖v‖C0,1(̄) (2.10)

with K1 andK2 independent ofu andv respectively. The first estimate readily follows
from assumption (H.2). The second estimate follows from (H.2) and the inequality

|v(x)| � d(x)‖v‖C0,1(̄) for all x ∈ , (2.11)

which holds wheneverv ∈ C
0,1
0 (̄), as readily obtained when applying the mean value

theorem betweenx and that point of∂ where the distanced(x) is reached; the
second estimate (2.10) can also be obtained via Hardy–Sobolev inequalities [13], but
this requires thatα � 0 if p > n. Now, when using (2.10), the continuity ofG0, the
fact thatW 2

p() is compactly imbedded intoC0,1(̄), standard maximum principles and
standard Riesz theory on compact, linear operators, the result readily follows. Thus if
α > −1/n we can proceed withLp theory and imbedding theorems to obtain the results
below in a simpler way, which unfortunately is not appropriate to obtainC1-regularity
up to the boundary if−1< α � −1/n.

The main ingredient to analyze the spectrum of (1.5) whenN > 0 in  is in the
following

PROPOSITION 2.5. –Under the assumptions(H.1)–(H.2), (H.3′) and(H.4), there is a
constantk0 such that ifk > k0 andv ∈ C

0,1
0 (̄) then the problem

Lu−M(x)u+ kN(x)u =N(x)v in , u= 0 on∂ (2.12)

has a unique solutionu ∈ C2()∩C1,δ(̄) for all δ ∈]0, δ0[, whereδ0 = min{γ,α+ 1},
and

‖u‖C1,δ (̄) �K‖v‖C0,1(̄), (2.13)

whereK (can depend onk andδ but) is independent ofv. If, in addition,v � 0 in  and
v is not identically zero, then∂u/∂ν < 0 on ∂.

Proof. –We first selectk0 to ensure uniqueness. To this end we rewrite (2.12) as

L−u− −M−(x)u− + kN(x)u− = N(x)ϕ−v in , u− = 0 on∂, (2.14)

whereL−, M− andϕ− > 0 are as is Lemma 2.1 andu− = ϕ−u. SinceM− < 0 in a
neighborhood1 of ∂ andN > 0 in , k0 = sup{M−(x)/N(x): x ∈  \ 1} is well
defined, andkN −M− > 0 in  wheneverk > k0. Then a standard maximum principle
applied to (2.14) ensures uniqueness for that problem, and hence uniqueness for (2.12),
if k > k0. Still, the strong maximum principle in Appendix B implies that∂u−/∂ν < 0
if v � 0 andv is not identically zero. And since∂u/∂ν = ∂u−/∂ν on ∂ (see (2.3))
the last statement in Proposition 2.5 also follows ifk > k0. Thus only the existence part
remains to be proved.



784 J. HERNÁNDEZ ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 777–813

After selectingk0, we takek > k0, δ ∈ ]0, δ0[ and rewrite (2.12) as

H(u)≡ u−G1(u)+ kG2(u) = G2(v) (2.15)

whereG1,G2 :C0,1
0 (̄) → C

1,δ
0 (̄) are then the Green operators (u = G1(v) andu =

G2(v)) of the problems (2.7) andLu = N(x)v in , u = 0 on ∂, respectively;
note thatG1 andG2 are bounded, according to Proposition 2.3. Since the imbedding
i :C1,δ

0 (̄) → C
0,1
0 (̄) is compact,Ĥ = H ◦ i is a compact perturbation of the identity

in C
1,δ
0 (̄), and sincek > k0, Ĥ is injective. Thus the standard Riesz theory [21] on

compact operators applies and̂H is readily seen to be a linear homeomorphism. Then if
v ∈ C

0,1
0 (̄), w = G2(v) ∈ C

1,δ
0 (̄) and (2.15) has a unique solutionu ∈ C1,δ(̄) such

that‖u‖C1,δ (̄) �K ′‖G2(v)‖C1,δ(̄) �K‖v‖
C

0,1
0 (̄)

and the estimate (2.13) follows. Also,

as in Proposition 2.3,u ∈ C2(), and the proof is complete.✷
Now we are in a position to analyze the linear eigenvalue problem (1.5). This problem

was considered by Bertsch and Rostamian [8] for operators in divergence form (see also
[28] for an extension to operators in general form) via Hardy–Sobolev inequalities, see
Remark 2.4 above. As for the regularity of the eigenfunctions, in [8] it was shown that
they are inC2() ∩ H 1

0 () if M andN satisfy assumption (H.3′) above withα > −1,
and inC2() ∩ C1

0(̄) if α > 0. But the corresponding spectrum coincides with that
obtained when the eigenfunctions are required to be inC2() ∩ C1(̄), as shown in
the following theorem, which also provides a fairly complete characterization of the
spectrum for operators in general form.

THEOREM 2.6. –Under the assumptions(H.1)–(H.2), (H.3′) and(H.4), the spectrum
of the linear eigenvalue problem(1.5), withU ∈ C2()∩C0,1(̄), is such that

(i) It consists(at most) of a countable set of eigenvalues which are isolated, and the
eigenfunctions are inC1,δ(̄) for all δ such that0< δ < δ0 = min{γ,α + 1}.

(ii) It contains a unique principal eigenvalue(i.e., a real eigenvalue with an associated
eigenfunction in the interior of the positive cone ofC1

0(̄), namely, such thatU > 0 in
 and∂U/∂ν < 0 on ∂), which is simple.

(iii) The(not necessarily real) eigenvalues of(1.5)are such that

Reλ > λ1 if λ �= λ1, and Reλ� c2 + c1| Imλ|, (2.16)

whereλ1 is the principal eigenvalue of(1.5) and the real constantsc1 > 0 and c2 are
independent ofλ.

(iv) It does not change when the eigenfunctions are only required to be inC2() ∩
H 1

0 (), and coincides with the spectrum of the formal adjoint problem(1.7).

Proof. –We subsequently prove the statements (i), (ii) and (iii). Since the operatorL
is not necessarily selfadjoint, its spectrum is not necessarily real, and we must work with
the complexifications ofL and the various function spaces; this trivial extension will be
automatically made below.

(i) If k0 is as in Proposition 2.5,k > k0 and 0< δ < δ0, then the problem (2.12)
defines a Green operatoru = G(v), with G :C0,1

0 (̄) → C
1,δ
0 (̄) bounded. And ifi is

the compact imbedding ofC1,δ
0 (̄) intoC

0,1
0 (̄), thenĜ =G ◦ i :C1,δ

0 (̄) → C
1,δ
0 (̄) is
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compact. This completes the proof of the second statement in part (i). And the first
statement follows by the standard spectral theory for compact operators [21], when
taking into account that the eigenvalues of (1.5) andĜ, µ, are related by

µ= 1/(λ+ k). (2.17)

(ii) Let Ĝ be the compact operator defined above. According to Proposition 2.5,Ĝ

maps the positive cone ofC1,δ
0 (̄) into its interior, and the Krein–Rutman theorem [3,

19] readily implies thatĜ has a unique principal eigenvalueµ1, which is simple, strictly
positive and such that any other eigenvalue ofĜ satisfies|µ| < µ1. And taking into
account the relation (2.17) between the spectra ofĜ and (2.4), the statement (ii) readily
follows, withλ1 = 1/µ1 −k (for anyk > k0). Note that, in addition, any other eigenvalue
λ of (1.5) satisfies[| Reλ+ k|2 + | Imλ|2]1/2 = |λ+ k| = 1/|µ| > 1/µ1 = |λ1 + k|, and
since that inequality holds for allk > k0, we readily obtain

Reλ� λ1. (2.18)

(iii) In order to obtain the first inequality in (2.16) we assume for contradiction that
there is an eigenvalue of (1.5),λ �= λ1, such that Reλ� λ1 or, according to (2.18),

λ �= λ1, Reλ= λ1.

If, in addition, we rewrite the problem (1.5) as in Lemma 2.1, then the problems

L−U−
1 −M−(x)U−

1 = λ1N(x)U−
1 in , U−

1 = 0 on∂,

L−U− −M−(x)U− = λN(x)U− in , U− = 0 on∂,

possess nontrivial solutions, whereL− andM− are as in Lemma 2.1. Also,U−
1 can be

chosen to be real and such that

U−
1 > 0 in, ∂U−

1 /∂ν < 0 on∂, (2.19)

becauseλ1 is a principal eigenvalue. Now, for eachβ ∈ R, we define

uβ(x, t) = U− exp
[−(λ+ k)t

] + c.c.− βU−
1 exp

[−(λ1 + k)t
]
,

where c.c. stands for the complex conjugate. This function is readily seen to satisfy

N(x)∂uβ/∂t + L−uβ −M−(x)uβ + kN(x)uβ = 0 in, u= 0 on∂ (2.20)

for all t ∈ R. If we choose the real constantk such thatk > k0, wherek0 is as selected in
the proof of Proposition 2.5, right after (2.14), then

−M−(x)+ kN(x) > 0 for all x ∈ . (2.21)

In addition, the constant̃β, given by

β̃ = inf
{
β ∈ R: uβ(x, t) < 0 for all x ∈  and allt ∈ R

}
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is well-defined (see (2.19) and take into account thatU−
1 , ReU− and ImU− are in

C1
0(̄), and thatuβ̃ exp[(λ1 + k)t] is periodic int), and such that (a)uβ̃(x, t) � 0 for

all x ∈ ̄ and allt ∈ R, and (b) eitheruβ̃ = 0 at some (x0, t0) ∈  × R, or ∂uβ̃/∂ν = 0
at some(x0, t0) ∈ ∂× R. Then we only need to take into account thatuβ̃ also satisfies
(2.20) for all t ∈ R, with M− andkN satisfying (2.21), and apply the strong maximum
principle for parabolic problems with locally bounded coefficients in Appendix B, to get
the required contradiction. Thus the first inequality in (2.16) has been obtained.

In order to get the second inequality in (2.16), we multiply (1.5) byŪ (= the complex
conjugate ofU ), integrate in, integrate by parts and take the real and imaginary parts
of the resulting equation, to obtain

2(Reλ)
∫


N |U |2dx + 2
∫


M|U |2dx

= 2
∑∫



aij
∂U

∂xi

∂Ū

∂xj
dx + ∑∫



(
bi + ∑ ∂aij

∂xj

)(
Ū
∂U

∂xi
+U

∂Ū

∂xi

)
dx, (2.22)

2(Imλ)

∫


N |U |2dx = ∑∫


(
bi + ∑ ∂aij

∂xj

)(
Ū
∂U

∂xi
−U

∂Ū

∂xj

)
dx. (2.23)

Now, since the operator−L is uniformly, strongly elliptic in, there is a constantk0 > 0
(independent ofU ) such that

∑∫


aij
∂U

∂xi

∂Ū

∂xj
dx � k0

∫


|∇U |2dx. (2.24)

Also, sinceU = 0 on ∂, we can use the standard Hardy–Sobolev inequality [13] to
obtain ∫



|U(x)|2d(x)−2 dx � c0

∫


|∇U |2dx, (2.25)

where the constantc0 is independent ofU andd(x) is the distance fromx to ∂, as
above. But, according to assumptions (H.1)–(H.2), (H.3′) and (H.4), there is a subdomain
2 ⊂  (∂2 ⊂ ) and two constants,k1 andk2, such that∣∣M(x)

∣∣d(x)2 < k0/(4c0),
∣∣∣∑(

bi + ∑
∂aij /∂xj

)∣∣∣2d(x)2 < k2
0/(16c0),

if x ∈  \2,

|M(x)|/N(x) < k1,
∣∣∣∑(

bi + ∑
∂aij /∂xj

)∣∣∣2/N(x) < k2, if x ∈ 2.

From these inequalities and (2.25) we subsequently obtain∣∣∣∣
∫


M|U |2dx
∣∣∣∣< [

k0/(4c0)
] ∫


|U |2d(x)−2 dx + k1

∫


N |U |2dx

� (k0/4)
∫


|∇U |2dx + k1

∫


N |U |2dx, (2.26)
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and, by a similar argument and Hölder inequality,∣∣∣∣∑
∫


(
bi + ∑ ∂aij

∂xj

)(
Ū
∂U

∂xi
±U

∂Ū

∂xi

)
dx

∣∣∣∣
� (k0/2)

∫


|∇U |2dx + (8/k0)

[
(k2

0/16)
∫


|∇U |2dx + k2

∫


N |U |2 dx
]

= k0

∫


|∇U |2dx + (8k2/k0)

∫


N |U |2dx. (2.27)

When using (2.24) and (2.26)–(2.27) in (2.22)–(2.23) we obtain

(Reλ)
∫


N |U |2dx > (3k0/4)
∫


|∇U |2dx − (k1 + 4k2/k0)

∫


N |U |2dx, (2.28)

(Imλ)

∫


N |U |2dx < (k0/2)
∫


|∇U |2dx + (4k2/k0)

∫


N |U |2dx,

and the second estimate in (2.16) readily follows.
(iv) Since Proposition 2.5 applies also to the adjoint eigenvalue problem (1.7), we can

choose a constantk > 0 sufficiently large such that, for eachV ∈ C
0,1
0 (̄), the problems

LU −M(x)U + kN(x)U = N(x)V in , U = 0 on∂, (2.29)

L∗U −M(x)U + kN(x)U = N(x)V in , U = 0 on∂, (2.30)

possess a unique solution. Since these two problems are formally adjoint of each other,
their Green operators, are readily seen to be adjoint of each other in the pre-Hilbert
space,X = (C1(̄), 〈·, ·〉), where the inner product〈·, ·〉 is defined as

〈U1,U2〉 ≡
∫


N(x)U1(x)U2(x) dx. (2.31)

Now, letG andG∗ be the Green operators of (2.29) and (2.30). If we multiply (2.29)
by U, integrate in, apply integration by parts and proceed as in the proof of part (iii)
above, we obtain

(3k0/2)
∫


|∇U |2dx + (2k − 1− 2k1 − 8k2/k0)

∫


N |U |2dx <
∫


N |V |2dx, (2.32)

where the constantsk0, k1 and k2 are as in (2.28). If we choosek such thatk �
1/2+ k1 + 4k2/k0, then this inequality shows that

∥∥G(V )∥∥2
H1()

�K‖V ‖2
X,

with the constantK independent ofV ; and since, according to Hardy–Sobolev
inequalities [13] and (compact) imbedding theorems [1], the imbedding ofH 1

0 () into
the completion ofX is compact, the Green operatorG is compact inH 1

0 (), and its
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continuous extension is compact in the completion ofX. Similarly, the adjoint operator
G∗ is compact inX. Then we only need to apply [21, §11.4.2, §11.5.5] and take into
account that ifµ is in the spectrum ofG thenµ̄ is also in the spectrum (becauseG is
real) to obtain that the spectra ofG in H 1

0 () and inC1
0(̄) coincide with the spectrum

of the continuous extension ofG to the completion ofX, and with that ofG∗. And
we only need to take into account that the eigenvalues of (1.5) and (1.7) are obtained
from the eigenvaluesµ of G andG∗, respectively, by means of (2.17) to obtain the two
statements in property (iv). Thus the proof of the theorem is complete.✷

Note that, according to Theorem 2.6, the spectrum of the linear eigenvalue problem
(1.5) exhibits similar properties as the spectra of related regular (i.e., with smooth
coefficients in̄) second-order elliptic problems, except for the last estimate in statement
(iii), which is asymptotically (as|λ| → ∞) sharper in the regular case (when Reλ �
c1 + c2| Imλ|2, with c2 > 0).

Now we prove that the min-max characterization of the principal eigenvalue intro-
duced in [22] also applies when the coefficients ofL and the functionM satisfy (H.2),
(H.3′) and (H.4) (Proposition 2.8 below). The idea of the proof follows that of [7]. The
following previous characterization is needed.

LEMMA 2.7. –Under the assumptions(H.1), (H.2), (H.3′) and (H.4), the problem
(1.5) possesses a strictly positive principal eigenvalue if and only if the operator
L−M(x) satisfies the strong maximum principle, i.e. ifv ∈ C2()∩C1(̄) is such that

v �= 0, Lv −M(x)v � 0 in , v � 0 on∂, (2.33)

then v > 0 for all x ∈  and ∂v(x)/∂ν < 0 (whereν is the outward unit normal, as
above)for all x ∈ ∂ such thatv(x) = 0.

Proof. –If L − M(x) satisfies a strong maximum principle then the principal
eigenvalue of (1.5),λ1, exists (Theorem 2.6) and is readily seen to be strictly positive.
In order to prove the converse we assume without loss of generality (Lemma 2.1) that
M(x) � 0 in a neighborhood1 of ∂. For each functionv satisfying (2.33), we
consider the function

w = v + ε + εkU1 (2.34)

whereε > 0,U1 > 0 is an eigenfunction of (1.5) associated with the principal eigenvalue
λ1 andk = sup{2|M(x)|/[λ1N(x)U1(x)]: x ∈  \1}. Then

Lw −M(x)w � ε
[
kλ1N(x)U1(x) −M(x)

]
> 0 in. (2.35)

Moreover, sincev is continuous, for eachε > 0 there is a constantγ (ε) > 0 such that
w > 0 in ε = {x ∈ : d(x) < γ (ε)}; andw > 0 in  \ ε, as readily seen upon
application of the generalized maximum principle to (2.35) in \ ε (note thatU1

satisfies (2.33), with strict inequalities in \ε). Thusw > 0 in  for all ε > 0, and by
letting ε → 0, we obtainv � 0 in . Thus, the generalized maximum principle and the
strong maximum principle in Appendix B yieldv > 0 in and∂v(x)/∂ν < 0 if x ∈ ∂

andv(x) = 0; and the proof is complete.✷
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PROPOSITION 2.8. –Under the assumptions(H.1), (H.2), (H.3′) and (H.4), the
principal eigenvalue of(1.5) is given by

λ1 = sup
{
inf

{[
Lv −M(x)v

]
/
[
N(x)v

]
: x ∈ 

}
: v ∈ P

}
, (2.36)

whereP is the set of those functions ofC2()∩C1
0(̄) such thatv > 0 in .

Proof. –Let λ̃1 be the principal eigenvalue of (1.5) and letU1 > 0 be an associated
eigenfunction. Thenv = U1 ∈ P and satisfiesLv −M(x)v = λ̃1N(x)v � λN(x)v in 

wheneverλ� λ̃1. This shows that the set{inf{[Lv −M(x)v]/[N(x)v]: x ∈ }: v ∈ P}
contains the interval] − ∞, λ̃1]. Thus ((2.36) is well defined and)λ̃1 � λ1 (� ∞).

Now we prove that the inequalitỹλ1 < λ1 cannot be satisfied. Assume for contra-
diction that there is a real numberε > 0 and a functionv ∈ P such thatλ̃1 + ε <

inf{[Lv − M(x)v]/[N(x)v]: x ∈ }, and letU1 > 0 be an eigenfunction associated
with λ̃1. Let the constantβ3 � 0 be defined asβ3 = min{β1, β2}, whereβ1 = sup{β ∈
R

+: v−βU1 � 0 in}, β2 = sup{β ∈ R
+ : ∂(v−βU1)/∂ν � 0 on∂} and letw be the

real functionw = v − β3U1. Thenw � 0 in  and eitherw = 0 at some point of (if
β3 = β1) orw = ∂w/∂ν = 0 at some point of∂ (if β3 = β2). On the other hand,

Lw −M(x)w − (λ̃1 − ε)N(x)w > εN(x)(v +w)> 0 in,

and this is in contradiction with the result in Lemma 2.7. Thus the proof is complete.✷
The following result deals with the dependence of the principal eigenvalue of (1.5) on

the coefficient ofU in the left hand side of (1.5).

PROPOSITION 2.9. –Let,L,M , andN satisfy assumptions(H.1)–(H.2), (H.3′) and
(H-4), and letM1 be a nonzero function that is non-negative in and satisfies(H.3′).
For eachµ ∈ R, let λ= 3(µ) be the principal eigenvalue of

[
L−M(x) +µM1(x)

]
u= λN(x)u in , u= 0 on ∂, (2.37)

with u ∈ C2() ∩ C1(̄). Then the function3 :R → R is analytic, strictly increasing
and concave.

Proof. –In order to prove that the function3 is analytic in a neighborhood of each
µ0 ∈ R, we only need (as in [17]) to apply the implicit function theorem to the system

G(u,λ,µ) ≡ u−G0(u)+µG1(u)− λG2(u) = 0,
∫


u0udx = 1, (2.38)

where u0 > 0 is an eigenfunction of (2.37) atµ = µ0, λ = λ0 ≡ 3(µ0), such that∫
 u

2
0dx = 1,G0 is the Green operator of (2.7) andG1 andG2 are the Green operators of

the problems obtained from (2.7) when replacingM byM1 andN respectively. Note that
the first equation in (2.38) is equivalent to (2.37), and thatG0,G1,G2 :C1

0(̄)→ C1
0(̄)

are linear and continuous (Proposition 2.3); thusG :C1
0(̄) × R

2 → C1
0(̄) is analytic.

Still, λ′
0 ≡ 3′(µ0) andu′

0 ≡ du(µ0)/dµ satisfyu′
0 −G0(u

′
0)+µ0G1(u

′
0)− λ0G2(u

′
0) =
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λ′
0G2(u0) − G1(u0) (as seen upon differentiation in (2.38)), and this equation is

equivalent to[
L−M(x) +µ0M1(x)− λ0N(x)

]
u′

0 = [
λ′

0N(x) −M1(x)
]
u0 in ,

u′
0 = 0 on∂. (2.39)

The solvability of this singular, linear problem requires that

λ′
0

∫


N(x)u0u
∗
0 dx =

∫


M1(x)u0u
∗
0 dx, (2.40)

whereu∗
0 > 0 is an eigenfunction of the adjoint, linearized problem

[
L∗ −M(x) +µ0M1(x)

]
u∗

0 = λ0N(x)u∗
0 in , u∗

0 = 0 on∂, (2.41)

with the operatorL∗ as defined in (1.3). Note thatλ0 is also the principal eigenvalue
of (2.41) (Theorem 2.6 (iii)–(iv)). Since, in addition,N > 0 in , M1 � 0 in  and
M1 is not identically zero, (2.40) implies thatλ′

0 ≡ d3(µ0)/dµ > 0. And sinceµ0 was
arbitrary, the function3 is strictly increasing, as stated. Finally, the proof that3 is
concave is identical to that in [7, Proposition 2.1], and the proof is complete.✷

Now we consider the existence of a principal eigenvalue of (1.5) whenN vanishes in
a subset of.

THEOREM 2.10. –Let, L andM be as in assumptions(H.1)–(H.2), (H.3′), and let
N satisfy(H.3′) and be such thatN = 0 in C andN > 0 in  \ C, where the closed set
C is such that∅ �= C ⊂ . Then(1.5)possesses a principal eigenvalue if and only if the
quantity

µ0 = sup
{
inf

{[
Lv −M(x)v

]
/v: x ∈ ′}: ′ ∈ S, v ∈ P

}
� ∞ (2.42)

is strictly positive, whereS is the set of those open subsets of such thatC ⊂ ′ and
∂ ⊂ ∂′ (that is,′ is an open neighborhood of bothC and ∂), andP is the set
of those functionsv ∈ C2() ∩ C1(̄) such thatv > 0 in . Also, ifµ0 > 0 then the
principal eigenvalue of(1.5) is unique and simple.

Proof. –LetN1 be a function satisfying (H.3′) and such that

N1(x) � 1+ [1 +N(x)]/d(x)ε in , for someε > 0, (2.43)

whered(x) is the distance fromx to ∂, as above, and for eachλ ∈ R letµ= M(λ) be
the (unique) principal eigenvalue of

LU −M(x)U − λN(x)U = µN1(x)U in , U = 0 on∂, (2.44)

which is simple (Theorem 2.6). Note that (1.5) has a principal eigenvalueλ if and only
if M(λ) = 0. Since, in addition, the functionµ = M(λ) is analytic, strictly decreasing
and concave (Proposition 2.9),M(λ) → −∞ asλ → ∞, and the stated result readily
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follows from the following property, which is proved below:the quantityµ0 � ∞
defined in(2.42) is strictly positive if and onlyM(λ) > 0 for someλ ∈ R.

If µ= M(λ) > 0 for someλ ∈ R andU > 0 is an associated eigenfunction of (2.44),
thenU ∈ P and

(
LU −M(x)U

)
/U � µN1(x) + λN(x) in . (2.45)

But, according to (2.43) the right hand side of (2.45) is larger thanµ/2 > 0 in ′ =
 ∩ (′

1 ∪ ′
2), where′

1 and′
2 are appropriate open neighborhoods ofC and ∂

respectively. Thenµ0 � µ/2> 0.
And conversely, ifµ0 > 0 then there is a functionv ∈ C2()∩C1(̄) such thatv > 0

in  and [Lv − M(x)v]/v > k > 0 in ′, for some′ ∈ S. And if, without loss of
generality we assume thatM < 0 in a neighborhood of∂ (Lemma 2.1) andε0 > 0 is
sufficiently small, thenv0 = v + ε0 still satisfies

Lv0 −M(x)v0 > 0 in′ andv0 > 0 in ̄. (2.46)

Let us rewrite (2.44) in terms ofV =U/v0 as

LV + ∑
b̃i (x)∂V/∂xi + [

M̃(x)− λN(x)
]
V = µN1(x)V in ,

V = 0 on∂, (2.47)

where

b̃i = (2/v0)
∑

aij ∂v0/∂xj , M̃(x) = [
Lv0 −M(x)v0

]
/v0.

Now M̃ > 0 in′ (see (2.46)) and̃M and 1/Nare bounded in \′; thenM̃ −λN > 0
in  for someλ ∈ R. Since, in addition,V = U/v0 > 0 in , standard maximum
principles applied to (2.47) readily imply thatµ = M(λ) > 0. Thus the proof is
complete. ✷

Remark2.11. – Under the assumptions of Theorem 2.10, the existence of a principal
eigenvalue is determined by the sign of the quantityµ0, defined in (2.42). That quantity
is now calculated in several cases that have been already considered in the literature [34]
for equations with bounded coefficients. Thus we generalize these results to our singular
case.

(A) [34, Theorem 6.2].If C = ̄0 ⊂ , where0 =  \ (⋃h
j=1 ̄j ), with ̄i ∩ ̄j = ∅

for i �= j and1, . . . ,h are subdomains of with C2,γ -boundaries, then the quantity
µ0 defined in(2.42)is the principal eigenvalue of

LU −M(x)U = µU in 0, U = 0 on ∂0. (2.48)

Since 0 ⊂ ′ for all ′ ∈ S, the result in Proposition 2.8 readily implies that
the principal eigenvalue of (2.48),̃µ, is such thatµ̃ � µ0. In order to see that,
conversely,µ̃ � µ0, we assume (without loss of generality, Lemma 2.1) thatM < 0
in a neighborhood of∂. Let U > 0 (in 0) be an eigenfunction of (2.48) associated
with µ̃, let k1 = 1+ |µ̃| + | max{M(x): x ∈ }|, letV ∈ C2(0)∩C1

0(̄0) be the unique
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solution ofLV = k1 in 0, V = 0 on∂0, and letk2 = sup{[k1V (x)−1]/U(x): x ∈ }.
Then the functionUε, defined asUε =U + ε(1+ V ) satisfies

(
LUε −M(x)Uε

)
/Uε > µ̃− k2ε in 0, Uε > 0 in ̄0, (2.49)

for all sufficiently smallε > 0. Also, sinceM and the coefficients ofL are smooth
in ∂0\∂, U (and thusUε) is of classC2 up to ∂0\∂, andUε can be extended
to  as aC2-function, still calledUε, which is strictly positive in̄. Since, in
addition,(LUε − M(x)Uε)/Uε is continuous in∂0\∂ and satisfies (2.49), we have
(LUε −M(x)Uε)/Uε > µ̃−2k2ε in ′ = ∩′

0, where′
0 is an open neighborhood of

0. Thusµ0 > µ̃ − 2k2ε (see (2.42)) and since that inequality holds for all sufficiently
smallε > 0, we haveµ0 � µ̃ as stated.

(B) [34, Theorem 6.7]. As a dual case of that in A,let us assume thatC = ⋃h
j=1 ̄j ⊂

, where1, . . . ,h are domains with a smooth boundary, and̄i ∩ ̄j = ∅ for i �= j .
Then the quantityµ0 defined in(2.42)is given byµ0 = µ̃ ≡ min{µ̃j : 1 � j � h} where
µ̃j is the principal eigenvalue of

LUj −M(x)Uj = µjUj in j, Uj = 0 on∂j . (2.50)

As in the proof of property A above, the definition (2.42) and Proposition 2.8 readily
imply that µ0 � µ̃j for j = 1, . . . , h and thusµ0 � µ̃. And, in order to prove that,
conversely,µ0 � µ̃, we again assume, without loss of generality, that

−M(x) � k/d(x)1−α in a neighborhood of∂, (2.51)

for somek > 0 (Lemma 2.1). Also, ifU ∈ C2(C) is defined asU(x) = Uj(x) in
j , whereUj > 0 is an eigenfunction associated with̃µj , then as above a function
Uε can be defined that satisfies (2.49) with0 = C for all sufficiently smallε. Also,
as above, there is a strictly positive,C2-extension ofUε to ̄, which is such that
(LUε − M(x)Uε)/Uε > µ̃ − 2k2ε in an open neighborhood′

1 ⊂  of C, for some
constantk2; and, according to (2.51), that inequality also holds in′

2 =  ∩′′
2, where

′′
2 is an open neighborhood of∂. Since′ = ′

1 ∪ ′
2 ∈ S, we haveµ0 > µ̃ − 2k2ε

for all sufficiently smallε > 0. Thusµ0 � µ̃ and the stated property follows.

(C) [34, Theorem 6.4].If C has measurezero,andµ0 is as defined in(2.42), then
µ0 = ∞. Thus, in this case (1.5) always has a principal eigenvalue.

In order to prove thatµ0 = ∞ we may assume (as above, without loss of generality)
that the functionM satisfies (2.51). Also, sinceC and∂ are of measure zero, for each
ε > 0 there are two subdomains′

ε,ε ⊂  that satisfy assumption (H.1) and

C ⊂ ′
ε ⊂ ̄′

ε ⊂ ε, ∂⊂ ∂′
ε and |ε| < ε (2.52)

where|ε| is the measure ofε. Letµε be the principal eigenvalue of

LU −M(x)U = µεU in ε, U = 0 on∂ε, (2.53)
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and letU > 0 be an associated eigenfunction, which is inC2(ε)∩C1
0(̄ε). ThenU > 0

and[LU −M(x)U ]/U = µε in ̄′
ε, andU is of classC2 in a neighborhood of∂′

ε \∂;
thenU can extended from̄′

ε to  as a strictly positive,C2()∩ C1
0(̄)-function, and

from the definition (2.42) we have

µ0 � µε. (2.54)

If we multiply the equation in (2.53) byU , integrate inε and integrate by parts then
we obtain

µε

∫
ε

U2dx �
∑∫

ε

[
k0(∂U/∂xi)

2 +
(
bi + ∑

∂aij /∂xj

)
U∂U/∂xi

]
dx

−
∫
ε

M(x)U2 dx

� (k0/2)
∑∫

ε

(∂U/∂xi)
2dx −

∫
ε

M̃(x)U2 dx,

wherek0 > 0 is the ellipticity constant ofL (i.e., such that
∑

aij (x)ξ
iξ j � k0|ξ |2 for all

x ∈  and allξ ∈ R
n) and

M̃ ≡ M(x) + (2k0)
−1

∑(
bi + ∑

∂aij /∂xj

)2
.

Now, according to assumptions (H.2), (H.3′) and (2.51),M̃ is bounded above by a
constantk1 and thus

µε � k0

[∑∫
ε

(
∂U/∂xi

)2
dx

]/[
2

∫
ε

U2dx

]
− k1 � k0λε/2− k1,

where −λε is the principal eigenvalue of the Laplacian operator7 in ε (with
Dirichlet boundary conditions). But, according to a well-known result by Faber [23]
and Krahn [31]λε � λ′

ε, whereλ′
ε is the first eigenvalue of−7 in the ball (ofRn) of

measure|ε|. A straightforward calculation readily shows thatλ′
ε → ∞ as |ε| → 0,

i.e., asε → 0 (see (2.52)). Thusµε → ∞ asε → 0 and (2.54) implies thatµ0 = ∞, as
stated.

Now we consider the principal eigenvalues of (1.5) when the functionN changes sign
in . For convenience, we consider the principal eigenvalueµ of the problem

LU −M(x)U − λN(x)U = µU in , U = 0 on∂, (2.55)

for varying values ofλ ∈ R. Note thatµ is also the principal eigenvalue of the adjoint
problem

L∗U −M(x)U − λN(x)U = µU in , U = 0 on∂, (2.56)

whereL∗ is given in (1.3) (Theorem 2.6).
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THEOREM 2.12. –Let, L andM be as in assumptions(H.1),(H.2)and(H.3′), and
letN satisfy assumption(H.3′) and be such thatN > 0 andN < 0 in two non void, open
subsets of. Then:

(i) If, for someλ = λ0, the principal eigenvalue of(2.55)is strictly positive, then(1.5)
has exactly two principal eigenvalues,λ1 andλ2, which are such thatλ1 < λ0 < λ2.

(ii) If, for someλ = λ0, the principal eigenvalue of(1.4) is zero then two possibilities
arise, depending on the quantity

k0 =
∫


N(x)U0(x)U
∗
0 (x) dx,

whereU0 > 0 andU ∗
0 > 0 are eigenfunctions of(2.55)and(2.56)respectively, forλ= λ0

andµ= 0 :
(iia) If k0 �= 0 then, in addition toλ0 (which is obviously a principal eigenvalue), (1.5)

has exactly one principal eigenvalueλ1 �= λ0, andk0(λ0 − λ1) > 0.
(iib) If k0 = 0 thenλ0 is the only principal eigenvalue of(1.5).

Proof. –Without loss of generality, as above, we assume that the functionM satisfies
(2.51). For eachλ ∈ R let µ= M(λ) be the (unique) principal eigenvalue of

LU −M(x)U − λN(x)U = µ
[
1+ ∣∣N(x)

∣∣]U in , U = 0 on∂. (2.57)

Note thatM is analytic (Proposition 2.9), and that the eigenfunctionU is uniquely
determined if an additional condition, such as

∫


U(x) dx = 1

is imposed; in this case, according to the argument in the proof of Proposition 2.9,U

also depends analytically onλ. Still, when using the characterization of the principal
eigenvalue in Proposition 2.8 and assumptions (H.3′) and (2.51), it is readily seen that
M(λ0) > 0 in case (i), and thatM(λ0) = 0 in case (ii). Then the stated result readily
follows from the following properties of the functionM, which are subsequently proved
below.

A. If M(λ0) = 0 then the derivative ofM atλ = λ0 is given by

{∫


[
1+ ∣∣N(x)

∣∣]U0(x)U
∗
0 (x) dx

}
M′(λ0) = −

∫


N(x)U0(x)U
∗
0 (x) dx. (2.58)

B. The functionM is concave.
C.M → −∞ asλ → ±∞.
In order to prove property Awe just take into account thatM′(λ0) is given by

LU ′
0 −M(x)U ′

0 − λ0N(x)U ′
0 = [

N(x) + M′(λ0)
(
1 + ∣∣N(x)

∣∣)]U0 in ,

U ′
0 = 0 on∂, (2.59)
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as readily obtained by differentiating in (2.57), and settingλ = λ0 andM(λ0) = 0; here
U ′

0 = ∂U/∂λ at λ = λ0 and U0 = U(·, λ0). And (2.58) is obtained when taken into
account that, since the singular, non-homogeneous problem (2.59) has a solution, its
right hand side must be orthogonal to the kernel of its adjoint problem.

In order to prove property Bwe just take into account that

λ+M(λ) = 8
(
λ− M(λ)

)
(2.60)

for all λ, where the function8 is defined as follows. For eachµ ∈ R,8(µ) is the (unique)
principal eigenvalue of

LU −M(x)U +µN−(x)U = 8(µ)N+(x)U in , U = 0 on∂, (2.61)

whereN± = N± + 1/2 andN± are the positive/negative parts ofN (i.e., N± � 0
and N = N+ − N−). And since 8 is analytic, (strictly) increasing and concave
(Proposition 2.9), the statement in propertyB readily follows because(1 + 8′)M′′ =
(1−M′)28′′, as readily obtained by differentiating twice in (2.60).

Finally, in order to prove property C, we consider two non-void, open balls,B±, such
that B̄± ⊂  andN± > 0 in B̄±, and define the strictly positive constantsk± andk±
as the minimum and the maximum ofN± in B±, respectively. Ifλ±

0 are the principal
eigenvalues of

LU −M(x)U = λ±
0 U in B±, U = 0 on∂B±, (2.62)

and±λ > λ±
0 /k±, then(1+ k±)M(λ)±λk± � λ±

0 , as readily obtained upon application
of the generalized maximum principle to (2.62) (recall the definition of the functionM,
through (2.57)). These two inequalities yield the result, and the proof is complete.✷

3. Differentiability of some singular nonlinear problems

Let us now consider the linearization (in fact, the differentiability) of the semilinear
problem (1.1) around a solutionu ∈ C2()∩C1(̄) such that

u > 0 in, ∂u/∂ν < 0 on∂. (3.1)

If α > −1/n then we can treat the problem (1.1) in differential form and work in the
spaceW 2

p() ∩ W
p
1,0(), with p > n, which is compactly imbedded intoC1

0(̄); but
this is not convenient for the general case treated in this paper,α > −1 (see Remark 2.4
above). Instead we shall re-write (1.1) in integral form, as

F(u) ≡ u−G
(
f (·, u)) = 0 (3.2)

whereG :C1
0(̄)→ C1

0(̄) is the Green operator of

LU = V in , U = 0 on∂, (3.3)
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(defined asG(V ) = U ). Note that, according to Proposition 2.3, (a)G is bounded and
can be extended, as a bounded operator, toC

1,δ
0 (̄) for all δ such that 0< δ < δ0 =

min{γ,α + 1}; and (b)u ∈ C2() ∩ C1(̄) satisfies (1.1) if and only ifu ∈ C1
0(̄)

satisfies (3.2).

THEOREM 3.1. –Under the assumptions(H.1)–(H.3), the operatorF :C1
0(̄) →

C1
0(̄) defined in(3.2) is of classCm in the positive cone ofC1

0(̄) (that is, the set
of those functions ofC1

0(̄) that satisfy(3.1)), wherem� 1 is as defined in assumption
(H.3) and the linear operatorF ′(u) :C1

0(̄)→ C1
0(̄) is given by

F ′(u)v = v −G
(
fu(·, u)v)

. (3.4)

If m> 1 and 1< j � m then thej -linear operator,∂jF(u)/∂uj ≡ F (j)(u) : [C1
0(̄) ]j

→C1
0(̄), is given by

F (j)(u)(v1, . . . , vj )= −G
((
∂jf (·, u)/∂uj)v1 · · ·vj ). (3.5)

Proof. –The operatorF can be written as

F = I − F1, with I = identity andF1 = G
(
f (·, u)). (3.6)

Since I is linear and bounded, it is of classC∞, with its first derivative equal toI
and its higher order derivatives equal to zero. Thus we only need to prove that (a) for
j = 1, . . . ,m, thej th derivative ofF1 exists and is given by

F (j)
1 (u)(v1, . . . , vj )= G

((
∂jf (·, u)/∂uj)v1 · · ·vj ), (3.7)

and (b) themth derivative ofF1 is continuous.
Let us first prove (a) by an induction argument. In order to prove (a) forj = 1 we first

consider a functionN ∈ C2() such thatN � 1 in  andN(x) = d(x)α−1 for all x ∈ 1

(with d(x) and1 as defined in assumption (H.1)). Note that

d(x)α−1/N and |∂N/∂xk|d(x)2−α are uniformly bounded in, (3.8)

for k = 1, . . . , n. Now, take any functionu of the positive cone ofC1
0(̄). If v ∈ C1

0(̄)

is such that‖v‖C1
0(̄)

is sufficiently small then

0< k1d(x) < u+ θv < k2d(x),

for all x ∈ ̄ and allθ ∈ [0,1], (3.9)

where the constantsk1 andk2 are independent ofv. Thus, according to assumption (H.3)
and property (3.8), the function

W ≡ [
f (·, u+ v)− f (·, u)− fu(·, u)v]

/N, (3.10)

is such that

|W | = ∣∣fuu(x,u+ θ(x)v
)∣∣v2/N �K1‖v‖2

C1
0(̄)

(3.11)
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|Wxk | �
∣∣fuxk(x,u+ θ(x)v

) − fuxk (x, u)+ [
fuu

(
x,u+ θ(x)v

)
− fuu(x, u)

]
uxk ||v|/N + ∣∣fuu(x,u+ θ(x)v

)∣∣|vvxk |/N + |WNxk |/N2

�K2‖v‖C1
0(̄)

ε
(‖v‖C1

0(̄)

)
, (3.12)

for all k = 1, . . . , n and all v ∈ C1
0(̄) such that‖v‖C1

0(̄)
� ‖u‖C1

0(̄)
. Here θ and

ε stand for functions of the typeθ : → [0,1] and ε :R → R, with ε(z) → 0 as
z → 0, and the constantsK1 andK2 are independent ofv. Thus‖W‖C1

0(̄)
/‖v‖C1

0(̄)
�

(K1 + K2)ε(‖v‖C1
0(̄)

) and we only need to take into account the definitions (3.6) and
(3.10), and the result in Proposition 2.3 to subsequently obtain∥∥F1(u+ v)−F1(u)−G

(
fu(·, u)v)∥∥

C1
0(̄)

= ∥∥G(NW)
∥∥
C1

0(̄)

�K‖v‖C1
0(̄)

ε
(‖v‖C1

0(̄)

)
(3.13)

for all v ∈ C1
0(̄) such that‖v‖C1

0(̄)
� ‖u‖C1

0(̄)
and some constantK that is independent

of v. This estimate implies thatF ′
1(u) exists and is given by (3.7). Thus property (a)

above holds forj = 1 and the first step of the induction argument is complete.
Let us now assume that property (a) holds for thej th derivative ofF1 and prove that

it also holds for its(j + 1)th derivative. To this end, we takev1, . . . , vj+1 ∈ C1
0(̄) such

that‖vj+1‖C1
0(̄)

� ‖u‖C1
0(̄)

. Then (3.9) holds withv = vj+1 and, as above, according to
assumption (H.3), the function

W1 ≡ {
∂jf (·, u+ vj+1)/∂u

j − ∂jf (·, u)/∂uj
− [

∂j+1f (·, u)/∂uj+1]vj+1
}
v1 · · ·vj/N (3.14)

is seen to be such that

‖W1‖C1
0(̄)

�K3‖v1‖C1
0(̄)

· · · ‖vj‖C1
0(̄)

‖vj+1‖C1
0(̄)

ε(‖vj+1‖C1
0(̄)

),

with K3 independent ofv1, . . . , vj+1 andε as above. Thus, as above, we only need to
take into account our assumption thatF (j)

1 (u) is given by (3.7), the definition (3.14) and
the result in Proposition 2.3 to subsequently obtain∥∥[

F (j)
1 (u+ vj+1)− F (j)

1 (u)
]
(v1, . . . , vj )−G

((
∂j+1f (·, u)/∂uj)v1 · · ·vj )∥∥C1

0(̄)

= ∥∥G(NW1)
∥∥
C1

0(̄)

�K‖v1‖C1
0(̄)

· · · ‖vj‖C1
0(̄)

‖vj+1‖C1
0(̄)

ε(‖vj+1‖C1
0(̄)

), (3.15)

with K independent ofv1, . . . , vj+1. This estimate shows thatF (j+1)
1 (u) exists and is

given by (3.7). Thus the induction argument is complete and property (a) above holds.
Finally, the same argument that led above to (3.15) readily shows that

∥∥[
F (m)

1 (u+ vj+1)−F (m)
1 (u)

]
(v1, . . . , vj )

∥∥
C1

0(̄)
�K‖v1‖C1

0(̄)
· · · ‖vj‖C1

0(̄)
‖vj+1‖C1

0(̄)
,

with K independent ofv1, . . . , vj+1. According to this estimate,F (m)
1 is continuous.

Thus property (b) above also holds, and the proof is complete.✷
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If the functionf depends also on a parameter, then the same argument in the proof of
Theorem 3.1 readily yields the following

COROLLARY 3.2. –In addition to the assumptions of Theorem3.1, let us assume that
the functionf depends on a parameterλ ∈ R and that, for allλ ∈ R and all l = 1, . . . , r ,
the function∂lf/∂λl satisfies assumption(H.3). If the Green operatorG is defined as
above, right after(3.2), then the operatorF :×C1

0(̄)× R, defined as

F(u, λ) ≡ u−G
(
f (·, u, λ)),

is such that, for allj = 0, . . . ,m and all l = 1, . . . , r , the derivative∂j+lF/∂uj∂λl exists
and is continuous wheneveru is in the positive cone ofC1

0(̄) andλ ∈ R. Also, thej -
linear operator∂j+lF(u,λ)/∂ujλl : [C1

0(̄) ]j → C1
0(̄) is given by

[
∂j+lF(u,λ)/∂ujλl

]
(v1, . . . , vj ) = −G

((
∂j+lf (·, u, λ)/∂uj∂λl)v1 · · ·vj ).

Note that this corollary provides the ingredient to apply implicit-function-like
theorems to the problem (1.1)–(1.2) when the nonlinearityf is allowed to depend also
on a parameter.

4. Applications

The results obtained in Sections 2 and 3 and the strong maximum principle in
Appendix B provide the basic ingredients to systematically apply the standard tools
mentioned at the beginning of the paper to the analysis of singular equations of the
form (1.1)–(1.2), under the assumptions (H.1)–(H.3).

4.1. Construction of solutions of (1.1)–(1.2) via sub and supersolutions

Monotone methods can be applied, in quite the same manner as is the regular case, to
construct minimal and maximal solutions of (1.1)–(1.2) in the positive cone ofC1

0(̄),
as seen in the proof of the following

THEOREM 4.1. –Under the assumptions(H.1)–(H.3), let us assume that(1.1)–(1.2)
has a sub-solutionu0 and a super-solutionu0 such thatu0, u

0 ∈ C2() ∩ C
1,δ
0 (̄) for

someδ > 0 and

0< kd(x) < u0(x) � u0(x) for all x ∈ . (4.1)

Then(1.1)–(1.2)possesses a minimal and a maximal solution in the interval[u0, u
0],

u∗ and u∗, which are such thatu∗, u∗ ∈ C2() ∩ C
1,δ
0 (̄) whenever0 < δ < δ0 =

min{γ,α + 1} and u0 � u∗ � u∗ � u0 in . Also,u∗ (resp.,u∗) is theC1,δ
0 (̄)-limit

from below(resp., from above)of a monotone sequence of sub-solutions(resp., super-
solutions) of (1.1)–(1.2).

Proof. –According to assumption (H.3),|fu(x,u(x))|d(x)1−α is bounded in if
u :→ R is such thatu0 � u� u0 in . Thus a functionM1 ∈ C1() exists that satisfies
(H.3′) and is such that , for some constantsk > 0 andβ ∈ ]1− α,2[,



J. HERNÁNDEZ ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 777–813 799

M1 > 1 in \1, M1(x) = kd(x)−β for all x ∈ 1, (4.2)

and f (·, u)/u+ |fu(·, u)| <M1 in  if u0 � u� u0 in , (4.3)

where 1 is as defined in assumption (H.1). Then the mean value theorem and
assumption (H.3) imply that the functionsϕ,ψ : → R, defined as

ϕ(x,u) ≡M1(x)u+ f (x,u) ≡ M1(x)ψ(x,u), (4.4)

are such that

0< ϕ(·, u) < ϕ(·, v) in , ψ(·, u) ∈ C1
0(̄),

‖ψ(·, u)‖C1(̄) �K1‖u‖C1(̄) and∥∥ψ(·, v)−ψ(·, u)∥∥
C1(̄)

< K2‖v − u‖C1(̄) in ,

wheneveru0 � u < v � u0 in , (4.5)

for some constantsK1 andK2 that are independent ofu andv.
Now we consider the sequences{um}, {um}, defined inductively by

Lum +M1(x)um = ϕ
(
x,um−1(x)

)
in , um = 0 on∂, (4.6)

Lum +M1(x)u
m = ϕ

(
x,um−1(x)

)
in , um = 0 on∂, (4.7)

for m> 0, with u0 andu0 as above. Sinceϕ andψ = ϕ/M1 satisfy (4.5), we only need
to apply the maximum principle in Appendix B and Proposition 2.3 to obtain inductively
that {um}, {um} ⊂ C2() ∩ C1,δ(̄) wheneverm � 1 and 0< δ < δ0 = min{γ,α + 1},
and, as in the regular case, ifu is a solution of (1.1)–(1.2) such thatu0 � u � u0 in ,
then

u0 � um−1 � um � u� um � um−1 � u0 in  for all m> 1. (4.8)

Hence the stated result follows if we prove that

{um} and{um} converge inC1,δ(̄) whenever 0< δ < δ0 = min{γ,α + 1} (4.9)

(then, according to standard, local, elliptic estimates, the limits must be inC2()).
Now, in order to obtain (4.9) for the monotone, bounded sequence{um} (the other

sequence is treated similarly) we first observe that, by the dominated convergence
theorem, it converges inLq() for all q > 1. Also, according to Proposition 2.3 and
properties (4.5), ifp >m> 1 andδ is as above, then

‖up − um‖C1,δ (̄) < K‖up−1 − um−1‖C1(̄), (4.10)

with the constantK independent ofm and p. In addition we have the interpolation
inequality ‖u‖C1(̄) < ε‖u‖C1,δ (̄) + Cε,q‖u‖Lq(), which holds for allε > 0 and all
q > n + 2 (see [2] and [32, p. 80]). Thus, ifq > n + 2 is kept fixed, this inequality
(with ε > 0 appropriate) and (4.10) readily yield

‖up − um‖C1(̄) < (1/4)‖up−1 − um−1‖C1(̄) +K1‖up − um‖Lq()

<
(‖up − um‖C1(̄) + ‖up − up−1‖C1(̄) + ‖um − um−1‖C1(̄)

)
/4

+K1(‖up − um‖Lq()), (4.11)



800 J. HERNÁNDEZ ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 777–813

whereK1 is independent ofm andp. Since{um} converges inLq , the first inequality
in (4.11) (withp = m + 1) implies that‖um+1 − um‖C1(̄) → 0 asm → ∞. And, since
{um} is a Cauchy sequence inLq , (4.11) and (4.10) subsequently imply that{um} is a
Cauchy sequence inC1(̄) and inC1,δ(̄). Thus{um} satisfies (4.9) and the proof is
complete. ✷

The requirement thatu0 > kd(x) > 0 in  in Theorem 4.1 is often too strong in
applications. For instance, if the unique solution of

LU = M(x) in , U = 0 on∂, (4.12)

is strictly positive in then according to Lemma 4.3 belowu0 = [(1 − α1)U ]1/(1−α1) is
a strict sub-solution of

Lu= M(x)uα1 in , u = 0 on∂. (4.13)

But this sub-solution does not satisfy the above-mentioned requirement ifU ∈ C1
0(̄).

In order to extend the applicability of Theorem 4.1 to situations like this one, in the
following lemma we prove that the above-mentioned requirement in Theorem 4.1 can
be weakened.

LEMMA 4.2. –Under the assumptions of Theorem4.1, let the functionf (satisfy
(H.3) and) be such thatf (x,u) > −K1d(x)

α2uα1 and |f (x,u)| + |fu(x,u)|u <

K2d(x)
α4uα3 for all (x, u) ∈ ×]0,∞[, with K1 > 0, K2 > 0, |α1 + α2| < 1 and

|α3 +α4| < 1, and letũ0 ∈ C2()∩C
1,δ
0 (̄), for someδ > 0, be a sub-solution of(1.1)–

(1.2) such thatũ0 > k̃d(x)p a.e. in, with k̃ > 0 andp > 1. In addition, let us assume
that either(a) α1 � 1, or (b) 0< (1 − α1)/(2 + α2) < α1 < 1 andα4 + α3/α1 > −1, or
(c) α1 < (1 − α1)/(2 + α2) < 1/p andpα3 + α4 > −1. Then there is a sub-solution of
(1.1)–(1.2), u0 ∈ C2()∩C

1,δ
0 (̄) (δ > 0), such that(i) u0 > kd(x) in  for somek > 0,

and (ii) u0 < u in  wheneveru ∈ C2()∩ C
1,δ
0 (̄) (δ > 0) is a solution of(1.1)–(1.2)

such thatũ0 <u and0< k1d(x) < u in  for somek1 > 0.

Proof. –Under the assumptions above, we can choose a constantr and a function
ρ : [0,∞[→ R such that

1< r < p, rα3 + α4 > r − 2 and ρ(ε) = ε1/[2(p−r)] (4.14)

in case (a) above, and

1< r,
[
2+ α2 + r(α1 − 1)

]
/(1− α1) > max{0,p − r}, rα3 + α4 > r − 2

and ρ(ε) = ε(1−α1)/[2+α2+r(α1−1)] (4.15)

in cases (b) and (c). Also we consider the subdomainε and the functionuε :ε → R

defined as

ε = {
x ∈ : d(x) < ρ(ε)

}
and uε(x) = εd(x)r , (4.16)

which are seen to be such that, in the three cases considered above, (i)uε ∈ C2(ε) ∩
C1

0(̄ε), (ii) uε < u0 in ∂ \ ∂ε and (iii) uε is a sub-solution of (1.1)–(1.2) inε,
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wheneverε > 0 is sufficiently small. The first property is obvious, and the second and
third ones follow from (4.14)–(4.16) and the stated assumptions onu0 andf ; the proof
of the third property is somewhat tedious but straightforward. As a consequence of these
three properties, the functioñuε, defined as

ũε(x) = ũ0(x) if x ∈  \ε, ũε = max{uε, ũ0(x)} if x ∈ ε, (4.17)

is such thatũε � ũ0 in  and ũε is a sub-solution of (1.1)–(1.2) wheneverε > 0 is
sufficiently small. Also,ε > 0 can be chosen such thatuε < u if u is as in the statement
of the lemma. For that value ofε we choose a functionM1 ∈ C1() that satisfies (4.2)
and ∣∣f (·, u)∣∣/u+ ∣∣fu(·, u)∣∣ <M1 in  if uε � u� u0 in ,

with r − (rα3 + α4) < β < 2 and calculateu0 as the unique solution of

Lu0 +M1(x)u0 = M1(x)uε + f
(
x,uε(x)

)
in , u0 = 0 on∂. (4.18)

Finally, by the argument in the proof of Theorem 4.1 (write the right hand side of
(4.18) asM1(x)ψ(x,uε(x)) and check that the functionx → ψ(x,uε(x)) is inC0,1

0 (̄)),
u0 ∈ C2() ∩ C

1,δ
0 (̄) (with δ > 0) is a sub-solution of (1.1)–(1.2) that satisfies the

properties (i) and (ii) in the statement of the lemma. Thus the proof is complete.✷
The following result is of independent interest to obtain sub-solutions of semilinear

equations with a monotone nonlinearity. It is based on the generalization to elliptic
operators in general form of an argument already used by Spruck [44] to treat the
operatorL = −7; see also [10] where this argument was credited to Nirenberg. In the
present context, this argument is based on the fact that if the functionsu andU (∈ C2())
are related by

u(x) =
U(x)∫
0

dt/f (t), (4.19)

wheref ∈ C(]0,∞[) is strictly positive and such that the integral above is convergent,
then we have

LU = Lu
f (u)

+ f ′(u)
f (u)2

∑
aij (x)

∂u

∂xi

∂u

∂xj
in . (4.20)

Note that both (4.19) and (4.20) make sense whenever the integral above is convergent
andu > 0 in , irrespectively on how fastu(x) decays asx approaches∂.

LEMMA 4.3. –Let f ∈ C1(]0,∞[) be a strictly increasing, positive function such
that

∫ δ

0 dt/f (t) < ∞ for someδ > 0 and letM ∈ C() andU ∈ C2() be such that

LU �M, U > 0 in , (4.21)

where the domain and the operatorL are as in assumptions(H.1)and(H.2). Then the
functionu ∈ C2() defined by(4.19)satisfies

Lu <M(x)f (u) in . (4.22)
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Proof. –We only need to use (4.20) and take into account thatf is positive and strictly
increasing and thatL is strongly elliptic to obtain

0= (LU −M)f (u) = Lu+ f ′(u)
f (u)

∑
aij (x)

∂u

∂xi

∂u

∂xj
−M(x)f (u)

>Lu−M(x)f (u).

Now we have the ingredients to obtain existence and uniqueness of positive solutions
to (4.13).

THEOREM 4.4. –Let  andL satisfy assumptions(H.1)–(H.2), let α1 be such that
0< α1 < 1 and letM ∈ C1() be such that(i) |M(x)| < K1d(x)

α2 for someK1 > 0
and someα2 such that−1< α2 < 1− α1, and(ii) the unique solution of(4.12)satisfies
U > 0 in and∂U/∂ν < 0 on∂. Then the problem(4.13)has a unique strictly positive
solution.

Proof. –Note that (4.12) has a unique solutionU ∈ C2() ∩ C1,δ(̄) (δ > 0), as
obtained from, e.g., Proposition 2.3 above, after re-writing the right hand side of (4.12) as
[M(x)/v(x)]v(x) for some functionv ∈ C1

0(). Now we may apply Lemma 4.3 above,
with f (u) = uα1, to obtain that̃u0 = [(1−α1)U ]1/(1−α1) is a strict sub-solution of (4.13).
This sub-solution satisfies the assumptions in Lemma 4.2 and thus (4.13) possesses a
positive sub-solution satisfying the requirements of Theorem 4.1. Also, ifψ ∈ C2()∩
C1,δ(̄) (δ > 0) is the unique solution ofLψ = |M(x)| in , ψ = 0 on∂, thenψ > 0
in  and∂ψ/∂ν < 0 on ∂ (Theorem B.2 in Appendix B), and for sufficiently large
C > 0 the functionu0 = Cψ is a strict super-solution of (4.13) that satisfies (4.1). Thus
the existence of a positive solution to (4.13) follows from Theorem 4.1.

Uniqueness of positive solutions is proved by the argument in the proof of Lemma 4.3
above. Assume for contradiction that (4.13) has two different positive solutions,u1 and
u2. Then the functionw defined asw = v2 −v1, wherevj = ∫ uj

0 dt/f (t) for j = 1,2 and
f (t) = tα1, is non-zero. But using (4.20) and applying the mean value theorem we obtain

Lw − f ′(u1)
∑

aij (x)
∂(u1 + u2)

∂xi

∂w

∂xj

− f ′′(u1 + θ1(x)(u2 − u1)
)
f

(
u1 + θ2(x)(u2 − u1)

)
× ∑

aij (x)
∂v2

∂xi

∂v2

∂xj
w = 0, (4.23)

where we have taken into account thatu1 andu2 satisfy (4.13). Sincef (u) = uα1 > 0,
f ′′(u) = α1(α1 − 1)uα1−2 < 0 and the operatorL is elliptic, the coefficient ofw is pos-
itive in  and Theorem B.1 in Appendix B implies thatw = 0 in , which is in contra-
diction with the assumption above. Thus the proof is complete.✷

Remarks4.5. – Two remarks about the result above are now in order.
A. From the proof it is clear that the result in Theorem 4.4 stands when the right

hand side of (4.13) is replaced byM(x)f (u), with M as above andf ∈ C([0,∞[) ∩
C1(]0,∞[ such thatf (0) = 0, f > 0, f ′ > 0 and f′′ < 0 in ]0,∞[, f (u) < Kuα1 in
a neighborhood ofu = 0, with K > 0 andα1 as in the statement of Theorem 4.4 and∫ δ

0 du/f (u) < ∞ for someδ > 0.
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B. The problem (4.13) has received a considerable attention in the literature. For the
particular caseL = −7 andM(x) ≡ 1, existence of solutions has been analyzed using
sub and supersolutions [4,37,43], variational arguments [11] and both [20]; see also [44,
11,10] for uniqueness. Some results for the case 0<M <∞ in ̄ andL in general form
had already been given by Amann [3]. The caseL = −7 with M smooth and bounded
but exhibiting both signs in was treated in [42] for = R

n and in [6] for bounded
. In the latter work existence of non-negative solutions (possibly with dead cores) was
proved by using sub and supersolutions; some interesting uniqueness properties were
also obtained. However they did not find strictly positive subsolutions and thus they
were unable to prove that the obtained solutions were strictly positive (see also [9]). The
existence of strictly positive solutions in bounded domains for operators in general form
andM changing sign has not been considered in the literature to our knowledge.

4.2. A parabolic problem associated with (1.1)–(1.2)

Standard linearized stability results for regular parabolic problems are readily
extended to analyze the stability of the solutions of (1.1)–(1.2) that are in the positive
cone ofC1

0(̄) as steady states of the problem

∂u/∂t +Lu= f (x,u) in , u = 0 on∂, (4.24)

u(·,0) = u0 in . (4.25)

In fact, if α > −1/n then the operatorL is sectorial inLq() for all q > n and we
can apply standard results in the literature [27] to obtain a global existence result on the
parabolic problem (4.24)–(4.25).

THEOREM 4.6. –In addition to the assumptions(H.1)–(H.3), let us assume that
α > −1/n, let us ∈ C2() ∩ C (= the positive cone ofC1

0(̄)) be a solution of(1.1)–
(1.2), and let M ≡ fu(·, us). If the principal eigenvalue of(1.4) is strictly positive
(resp., strictly negative) thenus is an exponentially stable(resp., unstable)steady state
of (4.24) in the Lyapunov sense, with the norm ofC1(̄). Also, if u0 ∈ C then the
problem(4.24)–(4.25)has a unique solution,t → u(·, t) ∈ C, in a maximal existence
interval, 0 � t < T � ∞, and if T < ∞ then there is a sequence{tm} such that
tm ↗ T and eithermax{u(x, tm): x ∈ } → ∞, or u(x, tm) ↘ 0 for somex ∈ , or
min{∂u(x, tm)/∂ν: x ∈ ∂} → 0 asm → ∞.

Proof. –Let q be such thatq > n and 1+ αq > 0, decompose the operatorL as
L = L1 + L2, where

L1u≡ ∑ ∂(aij ∂u/∂xi)

∂xj
,

and consider the operatorL1 in X =Lq(), with domainD(L1) = W 2
q ()∩C ⊂ C1

0(̄).
The self-adjoint operatorL1 is sectorial inX (use the argument in [27, p. 32]) and if
(q + n)/(2q) < β < 1 then its fractional powerLβ

1 is such that‖u‖C1(̄) < K‖Lβ
1u‖X

for all u ∈ D(L1) and someK that is independent ofu [27, Theorem 1.6.1]. Also,
when using assumption (H.3) and estimates (2.10), and proceeding as in Remark 2.4,
the following estimates are obtained
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∥∥f (·, u)− f (·, us)
∥∥
X
<K1‖u− us‖C1

0(̄)
< K2

∥∥Lβ
1(u− us)

∥∥
X
,

‖Mu‖X + ‖L2u‖X <K3‖u‖C1
0(̄)

< K4
∥∥Lβ

1u
∥∥
X
, (4.26)∥∥f (·, u)− f (·, us)−M(u− us)

∥∥
X
<K5‖u− us‖2

C1
0(̄)

< K6
∥∥Lβ

1(u− us)
∥∥2
X
,

(4.27)

for all u ∈ D(L1) and for allu in a C1(̄)-neighborhood ofus in D(L1) respectively,
with the constantsK1, . . . ,K6 independent ofu; note that (4.26)–(4.27) imply that the
operatoru→ L1u−f (·, u), ofXβ ≡D(Lβ

1)⊂ C (with the norm‖u‖Xβ ≡ ‖Lβ
1u‖X) into

X, maps bounded sets into bounded sets and is locally Lipschitzian. Then we only need
to apply [27, Theorem 5.1.1] and straightforwardly modify the proofs of [27, Theorems
3.3.3 and 3.3.4] to obtain the stated results and thus to complete the proof.✷

Unfortunately the argument above does not apply (and, seemingly, is not straightfor-
wardly extended) if−1/n� α > −1. But still, in this general case we can use the results
above, in Sections 2, 3, to directly derive the following result, which should also yield
the linearized stability result in Theorem 4.6 by a well-known argument [41,43], pro-
vided that one has a good existence theory for the parabolic problem (4.24)–(4.25); the
latter has been subsequently analyzed in [24].

THEOREM 4.7. –In addition to the assumptions(H.1)–(H.3), let us ∈ C2() ∩ C
(= the positive cone ofC1

0(̄)) be a solution of(1.1)–(1.2), and letM ≡ fu(·, us). If
the principal eigenvalue of(1.4) is strictly positive(resp., strictly negative) then there is
a constantε0 > 0 and a functionU ∈ C2()∩ C such thatuε = us + εU ∈ C if |ε|< ε0,
anduε is a strict sub-solution(resp., super-solution) of (1.1)–(1.2)if −ε0 < ε < 0, while
uε is a strict super-solution(resp., sub-solution) of (1.1)–(1.2)if 0< ε < ε0.

Proof. –Take two functionsu0, u
0 ∈ C such thatus −u0 andu0 −us are inC. As in the

proof of Theorem 4.1, there is a functionN ∈ C2() that satisfies (H.3′) and is such that

1+ ∣∣d(x)fuu(·, u)∣∣ <N in  if u0 � u� u0 in . (4.28)

Also, according to Proposition 2.8, if the principal eigenvalueλ0 of (1.4) is non-zero then
the principal eigenvalueλ1 of (1.5) is such thatλ1λ0 > 0. In addition, we take an eigen-
function of (1.5) associated withλ1 such thatU ∈ C, and the constantε0 > 0 such that
ε0U < |λ1|d(x), u0 < u−ε0 anduε0 < u0 in , whereuε ≡ us + εU as above. Then we
only need to apply the mean value theorem and take into account (4.28) to subsequently
obtain [

Luε − f (x,uε)−M(x)εU
]
/(λ1εU)

= {
N(x) − [

f (x,us + εU)− f (x,us)−M(x)εU
]
/(λ1εU)

}
=N(x) − fuu

(
x,us + εθ(x)U

)
εU/λ1 > 1 for all x ∈ 

and allε such that|ε| < ε0, whereθ : → R stands for a function such that 0� θ � 1
in . Sinceλ1λ0 > 0, the stated result follows, and the proof is complete.✷

As an application of Theorem 4.6 we have the following result.
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THEOREM 4.8. –Let M and α1 be as in Theorem4.4 and let and L be as in
Theorem4.6. The parabolic problem

∂u/∂t +Lu= M(x)uα1 in , u= 0 on∂, u(·,0) = u0 in , (4.29)

possesses a unique solution in0< t < ∞ wheneveru0 > u∗ in , whereu∗ ∈ C (= the
positive cone ofC1

0(̄)) is a sub-solution of(4.13).

Proof. –As in the proof of Theorem 4.4, we can obtain a super-solution of (4.13),u∗,
such that

u∗ < u0 = u(·,0) < u∗ in . (4.30)

And according to Theorem 4.6, (4.29) possesses a unique solution in a maximal
existence interval 0< t < T . And if the inequalities

u∗ < u(·, t) < u∗ in  (4.31)

hold in 0< t < t0 then they also hold att = t0, as readily obtained using the maximum
principle in Theorem B.1 in Appendix B to the equation obtained from (4.29) when
using the new variablev = ∫ u

0 t−α1dt and proceeding as we did to obtain (4.23). Since in
addition these inequalities hold att = 0 we conclude that they must hold in 0< t < T .
This means thatT = ∞ and completes the proof.✷
4.3. Bifurcation problems

If the function f in the right hand side of (1.1) depends on a parameterλ and (as
in Corollary 3.2) assumptions (H.1)–(H.3) hold and∂lf/∂λl satisfies assumption (H.3)
for all l = 1, . . . , r , with r � 1, then the results above provide the ingredients to readily
analyze, quite as in the regular case, several bifurcation questions such as:

(a) The regularity of the solution branches, except at bifurcation points, via the implicit
function theorem [15,12].

(b) The solution branches near bifurcation points via the Crandall–Rabinowitz
theorem [16] or, more generally, via the Lyapunov–Schmidt method [15,12].

(c) The global existence of solution branches via, e.g., classical results by Rabinowitz
[40], based on degree theory.

For the sake of brevity we do not consider here any specific example on these
applications of the results above, which actually motivated the present paper and will
be considered elsewhere.

Appendix A. Proof of Proposition 2.3

The uniqueness part readily follows by a standard maximum principle. The existence
part and the estimate (2.8) are obtained by regularizing the coefficients as follows. For
eachε ∈ ]0, ρ1[ (with ρ1 as defined in assumption (H.1)) we consider the problem

−∑
aij (x)∂

2u/∂xi∂xj + ϕε(x)
∑

bi(x)∂u/∂x
i = ϕε(x)M(x)v in ,

u= 0 on∂, (A.1)
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whereϕε ∈ C1
0(̄) is defined asϕε(x) = ψε(d(x)), with

ψε(η)= (2ε − η)η/ε2 if 0 < η < ε, ψε(η) = 1 if η � ε. (A.2)

Note that, according to assumptions (H.2), (H.3′) and the estimate (2.11),ϕεbi and
ϕεMv are inC0,δ0(̄) if v ∈ C1

0(̄) andε > 0. Then (A.1) possesses a unique solution
u ∈ C2,δ0(̄). The proof proceeds in three steps.

Step1. For eachδ ∈]0, δ0[ there are two constants, K > 0 andµ ∈]0, ρ1[, independent
of v andε, such that the solution of(A.1) satisfies

‖u‖C1,δ (̄µ)
�K

[‖v‖C1(̄µ)
+ ‖u‖C0(̄µ)

+ ‖u‖C1,δ (\µ)

]
, (A.3)

where

µ = {x ∈ : d(x) < µ}. (A.4)

Since∂ is of classC3,γ , as in [32, pp. 95–96], it can be seen that, for eachµ < ρ1,
there are two finite families of domains,{k

1µ} and{k
2µ} such that for eachk,

(a) ̄k
1µ ⊂k

2µ ⊂ ⋃m0
j=1

k
1µ ⊂ µ,

⋃
k 

k
1µ = µ, with m0 independent ofµ andk.

(b) There is aC2,γ -regular curvilinear, coordinate system in a neighborhood of̄k
2µ,

ξ = ξ(x), such that: (i)ξ1(x) = d(x), (ii) the domainsk
1µ andk

2µ are given by

k
iµ = {

x ∈ R
n: ξ(x) ∈ ωk

iµ

}
,

with ωk
iµ = {

ξ ∈ R
n: 0< ξ1 <µ, |ξ2|2 + · · · + |ξn|2 < iµ

}
, (A.5)

for i = 1 and 2; and (iii) theC2,γ -norms of the functionsξ = ξ(x) andx = x(ξ), in ̄k
2µ

andω̄k
2µ respectively, are bounded by a common constant, which is independent ofk and

µ.
Now, in the new variables, the function

U(ξ1, . . . , ξn)=
µ∫

ξ1

u(y, ξ2, . . . , ξn)]dy (A.6)

is readily seen to satisfy

L0U = L1U +L2u+L3u+ L4v in a neighborhood of̄ωk
2µ, (A.7)

∂U/∂ξ1 = 0 atξ1 = 0, U = 0 atξ1 = µ, (A.8)

where

L0U = −∑
ãij (ξ )∂

2U/∂ξi∂ξj ,

(A.9)

L1U =
µ∫

ξ1

[∑
(∂ãij /∂ξ1)(∂

2U/∂ξi∂ξj )
]
ξ1=y

dy,

L2u= −
µ∫

ξ1

∑[[
b̃1
i (ξ )+ψε(ξ

1)b̃2
i (ξ )

]
(∂u/∂ξi)

]
ξ1=y

dy, (A.10)
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L3u=
[
−ã11∂u/∂ξ1 + 2

∑
ã1i∂u/∂ξi

]
ξ1=µ

,

(A.11)

L4v =
µ∫

ξ1

ψε(y)
[
M̃(ξ)v(ξ)

]
ξ1=y

dy.

Hereãij and b̃i ≡ b̃1
i (ξ ) + ψε(ξ

1)b̃2
i (ξ ) denote the coefficients of the operator obtained

when using the new variables in the left hand side of (A.1). Now, according to
assumptions (H.2), (H.3′) and property (b) above, if 0< δ < δ0 = min{α + 1, γ } then
the functionsãij , ξ → ξ1(∂ãij /∂ξ1), b̃1

i , ξ → ξ1b̃
2
i and ξ → (ξ1)

2M̃ haveC0,δ(ω̄k
2µ)-

norms that are uniformly bounded by a common constant, which is independent ofk

andµ. Since, in addition, 0� ψε(ξ
1) � 1 in 0� ξ1 � µ (see (A.2)), we have, for all

δ ∈]0, δ0[,
‖L1U‖(ξ)

C0,δ(ω̄k2µ)
�Kµδ0−δ‖U‖(ξ)

C2,δ(ω̄k2µ)
,

(A.12)
‖L2u‖(ξ)

C0,δ (ω̄k2µ)
�Kµδ0−δ‖u‖(ξ)

C1,δ (ω̄k2µ)
,

‖L3u‖(ξ)
C0,δ (ω̄k2µ)

�K‖u‖C1,δ (\µ), ‖L4v‖(ξ)
C0,δ(ω̄k2µ)

�Kµδ0−δ‖v‖(ξ)
C1(ω̄k2µ)

, (A.13)

where the constantK is independent ofε, k, µ andv, and the superscript(ξ) indicates
that the new coordinates are used in the definition of the norm. The first two estimates
follow straightforwardly when taking into account that (δ0 ≡ min{γ,α+1} � α+1 and)

if 0 < δ < δ0 and 0< y1 < y2 <µ� 1,

then 0< yα+1
2 − yα+1

1 � (α + 1)µα+1−δ|y2 − y1|δ. (A.14)

The third estimate is a consequence of the facts that the hypersurfaceξ1 = µ is in\µ,
and that, according to property (b) above, the Hölder norms in the variablesx andξ are
equivalent, uniformly onk andµ. The last estimate is obtained when taking into account
(A.14) and the inequality∣∣v(

ξ1, ξ
2
2 , . . . , ξ

2
n

) − v
(
ξ1, ξ

1
2 , . . . , ξ

1
n

)∣∣
� |2ξ1|1−δ

[∣∣ξ2
2 − ξ1

2

∣∣2 + · · · + ∣∣ξ2
n − ξ1

n

∣∣2]δ/2‖v‖(ξ)
C1(ω̄k2µ)

which holds whenever(ξ1, ξ
1
2 , . . . , ξ

1
n ) and (ξ1, ξ

2
2 , . . . , ξ

2
n ) are inωk

2µ, and in turn is
obtained when taking into account that its left hand side is bounded above by both

2ξ1‖v‖(ξ)
C1(ω̄k2µ)

and
[∣∣ξ2

2 − ξ1
2

∣∣2 + · · · + ∣∣ξ2
n − ξ1

n

∣∣2]1/2‖v‖(ξ)
C1(ω̄k2µ)

,

as readily seen when applying the mean value theorem and taking into account thatv = 0
at ξ1 = 0. Now, if we re-scaleξ asξ = µη, then in the new variables the domainsωk

2µ

andωk
µ are fixed, and theC0,δ-norms ofãij are bounded above by a common constant,

which is independent ofk andµ. If we now apply a local Schauder estimate to (A.7)–
(A.8) in these new variables, and rewrite this estimate in terms ofξ , we obtain
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‖U‖(ξ)
C2,δ(ω̄kµ)

�K1‖L1U +L2u+L4v‖(ξ)
C0,δ(ω̄k2µ)

+µ−δK2‖L3u‖(ξ)
C0,δ (ω̄k2µ)

+µ−(2+δ)K3‖U‖(ξ)
C0(ω̄k2µ)

, (A.15)

where the constantsK1, K2 andK3 are independent ofε, k, µ andv, and we have taken
into account thatL1U +L2u+L4v vanishes atξ1 = µ. And, when using (A.12)–(A.13)
and the fact that (according to property (b) above) the Hölder-norms in the variableξ

andx are equivalent, uniformly ink andµ, we have

‖U‖C2,δ (̄k
µ)

�K4
[
µδ0−δ

(‖U‖C2,δ (̄k
2µ)

+ ‖v‖C1(̄k
2µ)

)
+µ−δ‖u‖C1,δ (\µ) +µ−1−δ‖u‖C0(̄k

2µ)

]
, (A.16)

for some constantK4 that is independent ofε, k, µ and v. Here we have taken into
account thatU is independent of the curvilinear coordinate system used ink

2µ (U is the
integral ofu along the normals to∂, see (A.6)), and that

‖u‖C1,δ (̄k
jµ
) � ‖U‖C2,δ (̄k

jµ
) for j = 1 and 2, and

‖U‖C0(̄k
2µ)

� µ‖u‖C0(̄k
2µ)
. (A.17)

Now we chooseµ such thatK4µ
δ0−δm0 < 1/2, wherem0 is as defined in property (a)

above. Then, ifk1 is that value ofk for which the left hand side of (A.16) is greatest, we
have

‖U‖
C2,δ (̄

k1
µ )

� (1/2)‖U‖
C2,δ (̄

k1
µ )

+K4
[‖v‖

C1(̄
k1
2µ)

+µ−δ‖u‖C1,δ (\µ) +µ−(1+δ)‖u‖
C0(̄

k1
2µ)

]
, (A.18)

where we have used the inequality‖U‖
C2,δ(̄

k1
2µ)

� m0‖U‖
C2,δ(̄

k1
µ )

, which follows from

property(a) above. Thus we only need to use (A.17)–(A.18) and the definition ofk1 to
obtain (A.3) and complete the step.

Step2. For eachδ ∈ ]0, δ0[ there is a constantK , independent ofv and ε, such that
the solution of(A.1) satisfies

‖u‖C1,δ (̄) �K
[‖v‖C1(̄) + ‖u‖C0(̄)

]
. (A.19)

The estimate (A.19) readily follows by first selectingµ as in step 2, and then using (A.3)
and the new estimate

‖u‖C2,δ (\µ) �K5
[‖v‖C0,δ(̄1) + ‖u‖C0(̄1)

]
,

where1 = {x ∈ : d(x) > µ/2} andK5 is independent ofv andε. This latter estimate
is just a standard interior Schauder estimate on (A.1) (whose coefficients haveC1(̄1)-
norms that are uniformly bounded in 0< ε < ρ1).

Step3. If v ∈ C1
0(̄) then(2.7)has a solutionu ∈ C2()∩C1,δ(̄) for all δ ∈ ]0, δ0[,

and(2.8)holds withK independent ofv.
For eachm = 1,2, . . . , let um be the solution of (A.1) forε = ρ1/m. Let us first

see that‖um‖C0(̄) is bounded. To this end, we assume for contradiction that there
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is a sub-sequence, also called{um}, such that‖um‖C0(̄) → ∞ as m → ∞. Then
Um ≡ um/‖um‖C0(̄) is such that, for allm,

−∑
aij ∂

2Um/∂xi∂xj + ϕεm(x)
∑

bi∂Um/∂xi = ϕεm(x)M(x)v/‖um‖C0(̄) in ,

Um = 0 on∂, and ‖Um‖C0(̄) = 1, (A.20)

where εm → 0 asm → ∞. But the estimate (A.19) applied to (A.20) implies that
‖Um‖C1,δ(̄) is bounded ifδ ∈ ]0, δ0[ and, since the imbedding ofC1,δ intoC1 is compact,
there is a subsequence, still called{um}, which converges inC1(̄) to someU . Now,
U �= 0 at somex ∈  because‖U‖C0(̄) = 1. AlsoU ∈ C2() and satisfies

LU = 0 in, U = 0 on∂, (A.21)

as readily obtained when applying interior Schauder estimates to (A.20). But, according
to standard maximum principles, (A.21) cannot have nontrivial solutions. Then a
contradiction is obtained and the result follows.

Now, since‖um‖C0(̄) is bounded, the estimate (A.19) readily implies that‖um‖C1,δ(̄)

is also bounded for eachδ ∈]0, δ0[. And, since the imbedding ofC1,δ′
into C1,δ is

compact whenever 0< δ < δ′ < δ0 (� 1), for eachδ ∈]0, δ0[ there is a subsequence,
also called{um}, which converges inC1,δ(̄) to someu (∈ C1,δ(̄)). Also u ∈ C2()

and satisfies (2.7) (thus the existence part of the statement follows) as readily seen when
noticing thatum satisfies (A.1) forε = εm, with εm → 0 asm → ∞, and applying interior
Schauder estimates to this latter equation. And when applying the estimate (A.19) to this
latter equation, we obtain

‖u‖C1,δ (̄) �K
[‖v‖C1(̄) + ‖u‖C0(̄)

]
(A.22)

whereK is independent ofv.
Finally, u andv satisfy (2.8), which follows from (A.22) and the estimate

‖u‖C0(̄) �K‖v‖C1(̄), (A.23)

with K independent ofv. And this latter estimate is readily obtained from (A.22) by
a standard contradiction argument, alike to the one already used above (if (A.23) does
not hold, then there is a sequence{vm} ⊂ C1

0(̄) such that‖vm‖C1(̄) = 1 for all m, and
the corresponding solutions of (2.7) are such that‖um‖C0(̄) → ∞ asm → ∞; but then
Um = um/‖um‖C0(̄) possesses a subsequence that converges inC2()∩C1(̄) to a non-
trivial solution of (A.21), which cannot exist). This completes the step, and the proof of
Proposition 2.2.

Appendix B. A strong maximum principle for second order equations with locally
bounded coefficients

Here we derive a strong maximum principle for some elliptic and parabolic
inequalities with locally bounded coefficients, such as those appearing in this paper. The
elliptic case was already considered in [39,30], under essentially the same assumptions
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made below, but we have been unable to find a proof for the parabolic case in the
literature. For the sake of brevity we first consider the parabolic case, which contains
the elliptic one as a particular case. Of course, the elliptic case could have been directly
treated in a similar way.

THEOREM B.1. –Letu ∈ C1(̄× [t0, t1]) be such thatu(·, t) ∈ C2()∩C1,δ(̄) for
all t ∈ [t0, t1] and

N(x)∂u/∂t +Lu+M(x)u � 0 in ×]t0, t1[, (B.1)

where0< δ < 1,, L,M andN satisfy assumptions(H.1)–(H.2), (H.3′) and(H.4), and
M � 0 in . Let us assume also thatu � 0 in ×]t0, t1[, and thatu(x0, t1) = 0. Then
the following properties hold:

(i) If x0 ∈  thenu= 0 in ̄× [t0, t1].
(ii) If x0 ∈ ∂ andu < 0 in ×]t0, t1[ then∂u/∂ν > 0 at (x0, t1) .

Proof. –Since the coefficients of the linear operator in the left hand side of (B.1) are
locally bounded in andN > 0 in , property (i) readily follows when applying the
standard strong maximum principle [38].

In order to prove property (ii) assume for contradiction that

u < 0 in × ]t0, t1[ and u= ∂u/∂ν = 0 at(x0, t1). (B.2)

Since, in addition,u(·, t1) ∈ C1,δ(̄ there is a constantk2 > 0 such that

|u(x, t1)| = ∣∣u(x, t1)− u(x0, t1)
∣∣ � k2|x − x0|1+δ for all x ∈ . (B.3)

On the other hand, satisfies the interior sphere condition (because of assumption
(H.1)), i.e., there is a hypersphereH , with center aty0 ∈  and radiusρ1 > 0 such that
H ⊂ ∪ ∂ andH ∩ ∂ = {x0}. Let us consider the function

v(x, t) = [
t − t1 + ρ1 − ρ(x)

]1+δ/2
, with ρ(x) = |x − y0|, (B.4)

which (when proceeding as in the proof of Lemma 2.1) is seen to satisfy

N∂v/∂t + Lv +Mv < 0 in

A= {
(x, t) ∈ × ]t0, t1]: ρ(x) > ρ2, ρ1 − ρ(x) > t1 − t � 0

}
, (B.5)

provided thatρ2 is appropriately close toρ1. In that case the functionwε ≡ u + εv is
such that (see (B.1))N(x)∂wε/∂t +Lwε +M(x)wε < 0 in A, wheneverε > 0; thus the
standard maximum principle [38] implies that the maximum ofwε in A can be attained
neither at an interior point ofA nor att = t1. Thus this maximum must be attained either
atρ1−ρ(x) = t1 − t or atρ(x) = ρ2; but (a)wε ≡ u+εv = u� 0 if ρ1−ρ(x) = t1 − t �
0 andε > 0, and (b)wε ≡ u + εv < 0 if ρ(x) = ρ2, ρ1 − ρ2 � t1 − t � 0 andε > 0 is
appropriately small (see (B.2) and (B.4)). Thus for that value ofε,w � 0 (i.e.,u� −εv)
in A. This property holds, in particular, on the rectilinear segmentS of × {t1} joining
(y0, t1) and(x0, t1), whereρ1 − ρ(x) = d(x). Then we have

u(x, t1)� −εd(x)1+δ/2 in x ∈ S ∩A⊂  (i.e., if d(x) > 0 is sufficiently small).
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Sinceε > 0 and δ >0, this inequality is in contradiction with (B.3), and the proof is
complete. ✷

The elliptic case is reduced to the parabolic one as usual, just by noticing that if a
functionu= u(x) satisfies the elliptic inequality (B.6) below then it also satisfies (B.1),
and if that function attains a maximum atx0 ∈ ̄, then it also attains the maximum at
(x0, t) ∈ ̄× R for all t . Thus the following result follows.

THEOREM B.2. –Letu ∈ C2()∩C1,δ(̄) be such that

Lu+M(x)u� 0 a.e. in, (B.6)

whereδ,,L andM are as in TheoremB.1. Let us assume thatu� 0 in ̄ andu(x0) = 0
for somex0 ∈ ̄. Then the following properties hold:

(i) If x0 ∈  thenu= 0 in ̄.
(ii) If x0 ∈ ∂ andu < 0 in  then∂u/∂ν > 0 at x0.
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