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ABSTRACT. — This paper deals with the spectrum of a linear, weighted eigenvalue problem
associated with a singular, second order, elliptic operator in a bounded domain, with Dirichlet
boundary data. In particular, we analyze the existence and uniqueness of principal eigenvalue
As an application, we extend the usual concepts of linearization and Frechet derivability, and th
method of sub and supersolutions to some semilinear, singular elliptic problems.
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RESUME. — On étudie le spectre d’'un probléme a valeurs propres avec poids associé ave
un opérateur elliptique singulier d’ordre deux sur un domaine borné avec condition au bord de
Dirichlet. En particulier, on considére I'existence et I'unicité des valeurs propres principales. On
donne comme application des extensions des notions de linéarisation et différentielle de Fréch
et de la méthode de sous et sursolutions a quelques problémes elliptiques semilinéaires singulie
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

The standard implicit function theorem [21,15,12] and some extensions such as th
Lyapunov—Schmidt method [15,12] are powerful tools for the analysis of nonlinear
problems. When applicable they provide the complete solution set in a neighborhood o
a given solution. That information sometimes leads to global existence and uniquenes
results via continuation techniques. Degree theory [40,12,43], on the other hand, directl
provides global (but less precise) existence results that can be made more and mo
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precise when particular solutions are known and their index is well defined. Sub
and supersolutions methods [41,3,43,37] yield more precise existence results if mor
information is available. But both the application of the implicit function theorem
and the effective calculation of the index rely on the linearization of the nonlinear
problem around a particular solution, which is nontrivial when the coefficients are not
sufficiently smooth or the nonlinearities are singular. Linearization is also convenient to
systematically construct sequences of sub and supersolutions and is quite useful in tt
analysis of stability properties. The main object of this paper is to provide the appropriate
ingredients talirectly extend these tools to the analysis of the positive solutions of some
second-order, elliptic problems that exhibit a singularity near the boundary. Although our
results apply to more general problenfsdepending also on a parametéreplaced by

a more general nonlinear, elliptic operator), for the sake of clarity we shall derive them
for the semilinear problem

n 92y n ou
Lu=— () —— bi(x)— = , in 2, 1.1
u l.,jz_l‘”(”ax,-axj +; ()50 =/ (1.1)
u=0 onaJQ. (1.2)

under the followingassumptions, which hold for somesuch that—1 < o < 1:

(H.1) Q c R" is a bounded domain, with @ boundary, for somg > 0 if n > 1.
Note that the distance frome Q to 2, d(x), defines a functiod € C%" (Q,),
with Q; = {x € Q: d(x) < p1} for somep; > 0.

(H.2) The second order part of the operaterL is uniformly, strongly elliptic in
Q. Also, for alli, j,k =1,....n, a;j = a;; € C3(Q) N C(Q), b; € C3(Q),
and there is a constanK such that|da;;/dx.| + |b;] < K[1 + d(x)*] and
|0%a;;/0x;0x;| + |0b;/dx;| < Kd(x)*~* for all x € Q. As a consequence,
the functionsa;;, x — d(x)da;;(x)/dx* and x — d(x)b;(x) are in C®¥(Q)
whenever < § < minfa + 1, y}.

(H.3) There is an integem > 0 such thatf, 8/ f/du’, 8/ f/du’~19x; € C(2x]0, oo[)
forall k=1,...,nand all j =1,...,m + 1. And ifu:Q2 — R is such that
0 < k1d(x) < u(x) < kod(x) for all x € 2 and some constants and k,, then
|f (x, u(x)| < Koll+d(x)*] and 37 f(x, u(x))/ou’| + 374 _1 107 f (x, u(x))/
du/Yxy| < K;d(x)*Jforallx e Q,allk=1,...,nandallj=1,...,m+1,
whereK; (can depend ok; andk; but) is independent af.

For convenience we are allowing (in (H.2)) the coefficignt® exhibit an appropriate
singularity at the boundary. Also, we are requiring the coefficients of the opefator
be such that thadjoint operator*, defined as

0

ﬁ*u5_2%<aij%>_Za_&Kb,-—Zaai"j{)u}, (L3)

is such that the equatiof*u = f(x,u) also satisfies (H.2)—(H.3)C* is the formal
adjoint of £ with respect to the inner product 85($2). Also, since all sums apply to the
valuesl, ..., n of the involved indexes, the limitsand n are omitted hereafter in the
symbolX. Note that assumption (H.3) is satisfied by the usual power-law nonlinearities,
f(x,u) = g(x)u*r, wheneverr; > —1 andg € C1(Q); or, more generally, wheg e
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CY(Q) and|g(x)| < Kd(x)*2, for someK > 0 and somex, such thatjey + | < 1.
Singular elliptic problems of this type were considered, among many others, by Laetscl
[33], Cohen and Laetsch [14], Crandall, Rabinowitz and Tartar [18], Brezis and Oswald
[11] and Bandle, Pozio and Tesei [6] in bounded domains, and by Spruck [44],
Schatzman [42] and Brezis and Kamin [10]kf. As a by-product of the results in
the paper, in Section 4.1 we shall extend the existence (of strictly positive, classica
solutions, iNC2(Q) N C3(2)) result in [18] to nonlinearities of indefinite sign, which
are of interest in, e.g., population dynamics [25,26,36]. Note that if the nonline#rity
is singular atx = 0 and is negative for > 0 and xe Q' # ¢, then the nonnegative
solutions of (1.1)—(1.2) can exhibitee boundariebetween a regio®” c Q' where
u = 0 (‘dead core’) and the support 0f[20]; these solutions will be excluded from the
analysis below, where only (strictly) positive solutions will be considered. In Section 4.1
we shall use the method of sub and supersolutions, as in [6], where quite weak, nc
necessarily (strictly) positive solutions were obtained.

The linearization of (1.1)—(1.2) around a given positive solutideads us to consider
the linear eigenvalue problem

LU-—MXU=U inQ, U=0 ondg, (1.4)

where L is as in (1.1) and¥ (x) = f,(x, u(x)). Thus the natural assumption on the
coefficientM is
(H3) MeCYQ)and, forallk =1,...,n,d(x)>*|0M(x)/dx;| is bounded ire2.

As a consequence, the functian— d(x)?>M (x) is in C%*(Q) whenever 0< § <
minfe + 1, '}, andd (x)*~*M (x) is bounded ire2.

Note that we are not requiringf to have a constant sign neaf2. In fact, as we
shall see in Section 2 (see Lemma 2.1), that sign can be controlled upon a change «
variable that affects both the coefficierdtsand the coefficieniM itself, with the new
coefficients still satisfying (H.2) and (H)3 This result is of independent interest and
appears as surprising at first sight because the sighéara2 plays an important role
when applying maximum principles. Similar singular eigenvalue problems in divergence
form were considered in [8], where generalized Hardy—Sobolev inequalities [13] (see€
Remark 2.4 below) were used to prove that the eigenfunctions aré(i) N H3 ().

Here we shall prove that the eigenfunctions are alsafér‘? (Q) for all § such that
0 <8 <min{a+1, y}. A strongerC*(2)-regularity (also for the solutions dfL.1)—(1.2)
and of some related linear problejnis necessary in order to apply a straightforward
generalization(AppendixB) of the Hopf boundary lemni&8]. This and our assumption
thate > —1 in (H.3)—(H.3) will prevent us from using_, theory [2], Hardy—Sobolev
inequalities and imbedding theorems [1], which provid&Q)-solutions only ifo: >
—1/n (see Remark 2.3). Insteade shall use théintegral) reformulation of the various
problems through the Green function of the linear problm= f in Q, u =0 on
92, and work inC3(Q2) (or in C5°(2) when convenientput, for the sake of clarity,
these problems will be written in differential form in the statements of most reNolts.
that the requirement > —1 in assumptions (H.2)—(H.3), (H)3and (H.4) is somewhat
optimal when seeking’*(Q2)-regularity, as the simplest counterexamples [8] readily
show.
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In fact, in Section 2 we shall consider a slightly more general linear eigenvalue
problem, namely

LU-MxU=AN®U inQ, U=0 o0nde, (1.5)

whereL andM are as above and
(H.4) N is strictly positive inS2, and satisfies assumpti¢H.3).
That extension is made because it leads to no additional price in the analysis and |
of interest in the linear stability analysis of the strictly positive steady states of some
singular parabolic problems, such as

(B/IBduP Jot + Lu= f(x,u) INQ, u=0 onaQ, (1.6)

with £ and f as above and & |3| < 1. That equation includes the so-called porous
media equation ([5] and references given there in) as a particular case #f Q 1, as
seen when rewriting it in terms of the new variable- u?. The extension is also useful
in the analysis of the more standard c@se 1, see Theorem 4.7 below. But in fact we
shall also get some results on the existence of principal eigenvalues of (1.5)Nvhen
vanishes in a part o2, or changes sign if. That extension do involve an additional
price, but it is convenient in some applications (e.g., in the analysis of (1.1)—(1.2), with
f(x,u) = N(x)u® andN of indefinite sign, as 7 1).

For convenience we shall also consider the adjoint linearized problem

LV —Mx)V=ANKX)V inQ, V=0 ond<, @.7

whereL* is as defined in (1.3), and prove that it has the same spectrum as (1.5).

The paper is organized as follows. Section 2 is devoted to the linear eigenvalue
problem (1.5), which is first analyzed in the simplest caée- 0 (Theorem 2.6).
For convenience we also characterize the principal eigenvalue (1.5) in terms of &
min-maxproperty (Proposition 2.8), first introduced by Donsker and Varadhan [22]
to characterize the principal eigenvalue of second-order elliptic operators in genera
form in bounded, smooth domains, and extended (essentially as a definition) by
Berestycki, Nirenberg and Varadhan [7] to general bounded domains. Also, we analyz
the existence and uniqueness of the principal eigenvalue of (1.5) whehanges
sign in Q (Theorem 2.12) and whel¥V > 0 vanishes in a part of2 (Theorem 2.10
and Remark 2.11), to extend a well-known result subsequently proven by Mane:s
and Micheletti [35] for self-adjoint operators and by Hess and Kato [29] for general
operators, and some recent results by Lopez-Gomez [34] respectively. In Section 3 w
first re-write (1.1)—(1.2) in integral form, via a Green operator, and then consider the
Fréchet differentiability of the resulting problem with respecut¢Theorem 3.1) and
with respect to a parameter, under appropriate, additional regularity assumptions o
the dependence of on the parameter (Corollary 3.2). Finally, several applications are
given in Section 4 that deal with the construction of solutions of (1.1)—(1.2) as limits of
sequences of sub and/or supersolutions (Section 4.1), with the stability of the solution
of (1.1)—(1.2) as steady states of the associated parabolic problem (Section 4.2), and wi
bifurcation problems whetf is allowed to depend also on a parameter (Section 4.3).
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2. The spectrum of the linear eigenvalue problem

The object of this section is to analyze the spectrum of the linear eigenvalue problen
(1.5). But before proceeding with the main results we show that the sign of the coefficien
M neard2 can be controlled through a change of variable.

LEMMA 2.1. -Under the assumption@H.1)—(H.2) and (H.3), there are two func-
tionsp* € C%%(Q) for all § such that0 < § < 8o = min{y, « + 1}, such that

>0 inQ, (2.2)

and if U € X = C3(Q) N Cé’B(Q), with 0 < § < 8y, is a solution of(1.5), then the
functionsU* = ¢*U are in X and

LU == a (x) +> b

:Mi(x)UiJrAN(x)Ui, inQ (2.2)
U*=0, AUE/dv=0U/dv o0onaQ, (2.3)

wherev is the outward unit normal, the coefficien$ and M* satisfy assumptions
(H.2) and(H.3), and

%+ >0 inaneighborhood 08<2. (2.4)

Proof. —Let d(x) = d(x1,...,x,) be the distance fromx to Q2 and let ¢ ¢
C3(]0, oo[) N CO([0, oo]) be a real function such that

Sy =0ifn=0, sym=n"tif0<n<e<p, Y@ =0ifn>p;, (2.5

whereé #£ 0 is such that-1 < § < «, with @ and p; as in assumptions (H.1), (H.2) and
(H.3). The strictly positive constantwill be selected below.

Now we define the functiong® as¢®(x) = expFv (d(x))]. If U € X is a solution
of (1.5) thenU* = ¢*U is such that/* € X and satisfies (2.2) with

, ad
b,-i =b, T2y (d(x)) E aijg7
j

ad ad 9%d
+Z aij |:a a (d( )) i‘/’//(d(x))) + axiaxj w/(d(x)) .

But, according to (2.5),

+MEI)TP >0 if0<dix) <e

provided that
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EM (x)d(x) " d(x)* 0 —d(x) ) % 3;1
(- sy B0 P
+> ay ([1 (8 + Dd(x)* ] o x, +d(x) Tvan) 0,

which holds if 0< d(x) < ¢ and ¢ is sufficiently small, becausgM (x)|d(x)** is
bounded in®2 and the matrix(a;;) is positive definite inQ2, according to assumptions
(H.2) and (H.3). Note thate is chosen independently &f. Also b and M* satisfy
assumptions (H.2) and (H)3respectively and, according to (2.3)* satisfies (2.3).
Thus the proof is complete.

Remark2.2. — The result above implies that the point spectrum of (2.2), with Dirichlet
boundary data

Ut=0 onaQ, (2.6)

is the same as that of (1.5), provided that the eigenfunctions ar&(@) N C3(X2) (and
this is a natural assumption, as we shall see below). Still, (2.1) and (2.3) imply that

U=0 (resp.,U>0) ifandonlyif U*f=0 (resp..U*>0), in;
dU/dv=0 (resp.dU/dv <0) ifandonlyif aU*/av=0
(resp.,dU* /v < 0) on 3.

The first property implies that is a principal eigenvalue of (1.5) if and only if it is a
principal eigenvalue of (2.2), (2.6). The second property will be quite useful below to
apply a Hopf boundary lemma.

In order to analyze the eigenvalue problem (1.5), we first consider the Green operatc
of the problem

Lu=M(x)v ingQ, u=0 onoe, (2.7)

defined ast = G1(v), withv € Cg’l(fz). Since the analysis of this problem is somewhat
apart from the remaining part of the paper, it is relegated to Appendix A at the end of
the paper, and the result is just stated here; but see Remark 2.4 below.

PROPOSITION 2.3. —Let 2, £ and M satisfy assumption@i.1)—(H.2)and (H.3). If
v e C31(R) then(2.7) has a unique solutiom € C2(2) N C1¥($) for all § such that
0 < § < 8o =min{y, « + 1}. And there is a constarit, which (can depend o084 but) is
independent of, such that

lullcrs @) < Kllvllcoig- (2.8)

Proof. —See Appendix A. O

Remark2.4. -If « > —1/n then we can usd., estimates to show thatinder the
assumptions in Propositio.3, (2.7)possesses a unique solutiare WIE(Q), for all
p > nsuchthatl+ap > 0, and that||u||W5(Q) < K|[vllcorg, With K independent of.
This result is readily obtained by first replacing (2.7) by

u+ GO(Z b,-au/ax,-) — Go(M(x)v), (2.9)
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whereGo: L,(Q2) — Wj(sz) is the Green operator of the probleAd" a;;3%u/dx;dx; =
finQ,u=0o0nd and then taking into account that

> bidu/ox;

with K; and K, independent ofi andv respectively. The first estimate readily follows
from assumption (H.2). The second estimate follows from (H.2) and the inequality

L@ < Kallullcorgy, IMx)vllL,@ < Ka2llvllcorg — (2.10)
P

)| <d@)|vllcorg forallx e Q, (2.11)

which holds whenever Cg’l(s_Z), as readily obtained when applying the mean value
theorem betweerr and that point ofdQ2 where the distanceé/(x) is reached; the
second estimate (2.10) can also be obtained via Hardy—Sobolev inequalities [13], bt
this requires thatr > 0 if p > n. Now, when using (2.10), the continuity d@f,, the

fact thatW?($2) is compactly imbedded int6%1(Q), standard maximum principles and
standard Riesz theory on compact, linear operators, the result readily follows. Thus i
a > —1/n we can proceed witlh , theory and imbedding theorems to obtain the results
below in a simpler way, which unfortunately is not appropriate to obisregularity

up to the boundary i1 <o < —1/n.

The main ingredient to analyze the spectrum of (1.5) whes 0 in Q is in the
following

PROPOSITION 2.5. —Under the assumptior(#i.1)—(H.2), (H.3) and(H.4), there is a
constantkg such that ifc > ko andv € C3*(€2) then the problem

Lu—MxX)u+kNxu=Nx)v ingQ, u=0 ono (2.12)

has a unique solution € C?(Q) N C¥(Q) for all § €]0, 8o[, wheresy = min{y, « + 1},
and

||M||c1~5(s'2) < K||U||CO~1(§2)’ (2.13)

whereK (can depend ok and$ but) is independent aof. If, in addition,v > 0in © and
v is not identically zero, thefu/dv < 0 on 9.

Proof. —We first seleckg to ensure uniqueness. To this end we rewrite (2.12) as
LTu" —M (Xu” +kNx)u” =Nx)p v inQ, u =0 ond2, (2.14)

whereL~, M~ and¢~ > 0 are as is Lemma 2.1 and = ¢~ u. SinceM~ <0ina
neighborhood??! of 9Q andN > 0in , ko = SupgM~(x)/N(x): x € Q\ Q} is well
defined, ankN — M~ > 0 in Q wheneverk > kq. Then a standard maximum principle
applied to (2.14) ensures uniqueness for that problem, and hence uniqueness for (2.1:
if k> ko. Still, the strong maximum principle in Appendix B implies théat~ /dv < O

if v > 0 andv is not identically zero. And sincéu/dv = du~/dv on 3 (see (2.3))

the last statement in Proposition 2.5 also follows # ko. Thus only the existence part
remains to be proved.
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After selectingko, we takek > kg, & €10, 8o[ and rewrite (2.12) as
Hu)=u— Gi1(u) + kG2(u) = G(v) (2.15)

whereG1, Go: CoH(Q) — C5°(Q) are then the Green operatois=£ G1(v) andu =
G2(v)) of the problems (2.7) andCu = N(x)v in Q, u = 0 on 3 respectively;
note thatG, and G, are bounded, according to Proposition 2.3. Since the imbedding
i:C3° () — CIY() is compactH = H o i is a compact perturbation of the identity

in C;°(2), and sincek > ko, H is injective. Thus the standard Riesz theory [21] on
compact operators applies aftis readily seen to be a linear homeomorphism. Then if
ve CYHR), w=Gav) € C3* () and (2.15) has a unique solutiane C-?($2) such
that||ullc1sq) < K'|G2(0) [l c1s) < K||v||c8,1(Q) and the estimate (2.13) follows. Also,

as in Proposition 2.3; € C%(R2), and the proof is complete.O

Now we are in a position to analyze the linear eigenvalue problem (1.5). This problem
was considered by Bertsch and Rostamian [8] for operators in divergence form (see als
[28] for an extension to operators in general form) via Hardy—Sobolev inequalities, see
Remark 2.4 above. As for the regularity of the eigenfunctions, in [8] it was shown that
they are inC2(2) N HF(Q) if M and N satisfy assumption (H'Babove witha > —1,
and inC?(Q) N C}(Q) if « > 0. But the corresponding spectrum coincides with that
obtained when the eigenfunctions are required to b€3(2) N C1(Q), as shown in
the following theorem, which also provides a fairly complete characterization of the
spectrum for operators in general form.

THEOREM 2.6. —Under the assumption$i.1)—(H.2), (H.3) and(H.4), the spectrum
of the linear eigenvalue probled.5), with U e C2(€2) N C%1(Q), is such that

(i) It consists(at mos} of a countable set of eigenvalues which are isolated, and the
eigenfunctions are il€%(Q) for all § such thatd < § < 8o = min{y, o + 1}.

(i) It contains a unique principal eigenvaliee., a real eigenvalue with an associated
eigenfunction in the interior of the positive cone@¥(<2), namely, such thalt/ > 0 in
Q andoU/dv < 0ond2), which is simple.

(iii) The(not necessarily redleigenvalues ofl.5) are such that

Rer>xy ifA#X;, and Reir>=cy+ci|Imil, (2.16)

whereA; is the principal eigenvalue dfL.5) and the real constants; > 0 and ¢, are
independent of.

(iv) It does not change when the eigenfunctions are only required to B2 (f2) N
H} (), and coincides with the spectrum of the formal adjoint prob{&ri).

Proof. —~We subsequently prove the statements (i), (ii) and (iii). Since the opefator
is not necessarily selfadjoint, its spectrum is not necessarily real, and we must work witt
the complexifications of and the various function spaces; this trivial extension will be
automatically made below.

(i) If ko is as in Proposition 2.5 > ko and 0< § < §p, then the problem (2.12)
defines a Green operator= G (v), with G : CJH(Q2) — C5°(Q) bounded. And ifi is
the compact imbedding @f3* () into C31(R), thenG = G 0i : C3° () — C3°(Q) is
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compact. This completes the proof of the second statement in part (i). And the firsi
statement follows by the standard spectral theory for compact operators [21], wher
taking into account that the eigenvalues of (1.5) éhdk, are related by

w=1/0.+k). (2.17)

(i) Let G be the compact operator defined above. According to PropositiorG2.5,
maps the positive cone @’ () into its interior, and the Krein—Rutman theorem [3,
19] readily implies that; has a unique principal eigenvalue, which is simple, strictly
positive and such that any other eigenvalueGobatisfies|y| < 1. And taking into
account the relation (2.17) between the spectr& aid (2.4), the statement (ii) readily
follows, with 1, = 1/u; — k (for anyk > ko). Note that, in addition, any other eigenvalue
A of (1.5) satisfieg| Rer + k| + | ImA|21Y2 = |A + k| = 1/|u| > 1/pq = |A1 + k|, and
since that inequality holds for atl > ko, we readily obtain

ReA > Aq. (2.18)

(i) In order to obtain the first inequality in (2.16) we assume for contradiction that
there is an eigenvalue of (1.5)7# A1, such that R& < X, or, according to (2.18),

A#A, Rer=Aip.

If, in addition, we rewrite the problem (1.5) as in Lemma 2.1, then the problems
LU —M (x)U] =rmNx)U; inQ, U; =0 onoQ,
LU —M (x)U =ANX)U™ ing, U™ =0 ond<,

possess nontrivial solutions, whefe and M~ are as in Lemma 2.1. Als@/; can be
chosen to be real and such that

U; >0 inQ, oU; /ov <0 o0nog2, (2.19)
because.; is a principal eigenvalue. Now, for eaghe R, we define
ug(x, 1) =U"exp[—(h + k)t] + c.c.— BU; exp[— (1 +k)t],
where c.c. stands for the complex conjugate. This function is readily seen to satisfy
N(x)oug/dt + L ug — M~ (x)ug +kN(x)ug =0 inQ, u=0 ondQ (2.20)

for all r € R. If we choose the real constainsuch that > kg, wherekg is as selected in
the proof of Proposition 2.5, right after (2.14), then

—M (x)+kN(x)>0 forallx eQ. (2.22)
In addition, the constarg, given by

p=inf{ eR: ug(x,t) <0forallx e Qandallf e R}
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is well-defined (see (2.19) and take into account ttigt, ReU~ and ImU ™~ are in
C3(€), and thatu ; 5 expl(A1 + k)z] is periodic int), and such that (a);(x,7) <0 for
all x e Q and aIIt € R, and (b) eitheu; = 0 at some (g, 7o) € 2 x R, or duz/dv =
at some(xo, 7o) € 9€2 x R. Then we only need to take into account thatalso satisfies
(2.20) for allr € R, with M~ andkN satisfying (2.21), and apply the strong maximum
principle for parabolic problems with locally bounded coefficients in Appendix B, to get
the required contradiction. Thus the first inequality in (2.16) has been obtained.

In order to get the second inequality in (2.16), we multiply (1.50bf= the complex
conjugate ofV), integrate in<, integrate by parts and take the real and imaginary parts
of the resulting equation, to obtain

2(ReA)/N|U| dx+2/M|U| dx

U U

da;; U U
_Zz/a’fa o, dx+2/<b +Z )( axi+U8xi>dx’ (2.22)

2(ImA)/N|U| dx _Z/<b +3 8“”) (U& - Uﬁ> dx. (2.23)

0X; 0x;

Now, since the operater L is uniformly, strongly elliptic in2, there is a constaiit > 0
(independent ot/) such that

aU 90
Z/ dx>k0/|VU| dx. (2.24)

al
" 9x; 8

Also, sinceU = 0 on 92, we can use the standard Hardy—Sobolev inequality [13] to
obtain

/|U(x)|2d(x)—2dx <co/|VU|2dx, (2.25)
Q Q

where the constarty is independent ot/ andd(x) is the distance fromx to 92, as
above. But, according to assumptions (H.1)-(H.2), (-thB8d (H.4), there is a subdomain
Q, C Q (092, C ) and two constants; andk,, such that

2
[M0)|d(0)? < Ko/ (eo), |3 (b + 3 by /0x;) | d(0)? < K2/ (16c),
if x € Q\ Qo,

2
IM(x)|/N(x) < ki, ‘Z(bi +3 aaij/axj)\ IN(x) <kp, if x € Q.
From these inequalities and (2.25) we subsequently obtain

‘/M|U|2dx
Q

< [ko/(4c0)]/|U|2d(x)—2dx+k1/N|U|2dx
Q Q

<(ko/4)/|VU|2dx+k1/N|U|2dx, (2.26)
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and, by a similar argument and Hoélder inequality,

da;;\ [ - 0U aU
b; YYWWo—+U—)d
‘Z!( +Zax,~)< 5 )x

8x,- Xi

< (k0/2)/|VU|2dx+(8/ko) {(ké/lB)/WUlzdx+k2/N|U|2dx]
Q Q Q

:ko/|VU|2dx+(8k2/ko)/N|U|2dx. (2.27)
Q Q

When using (2.24) and (2.26)—(2.27) in (2.22)—(2.23) we obtain

(ReA)/N|U|2dx > (3k0/4)/|VU|2dx—(k1+4k2/ko)/N|U|2dx, (2.28)
Q Q Q

(mA) | N|U|?dx < (ko/2) | |VU*dx + (dkz/ko) | N|U|?dx,
/ / /

and the second estimate in (2.16) readily follows.
(iv) Since Proposition 2.5 applies also to the adjoint eigenvalue problem (1.7), we car
choose a constant> 0 sufficiently large such that, for eadhe Cg’l(sz), the problems
LU —-Mx)U+kNx)U=Nx)V inQ, U=0 o0ndL, (2.29)
LU - Mx)U+kNx)U=Nx)V inQ, U=0 ondR, (2.30)
possess a unique solution. Since these two problems are formally adjoint of each othe

their Green operators, are readily seen to be adjoint of each other in the pre-Hilber
spaceX = (CX(Q), (-, -)), where the inner produgt, -) is defined as

(U1, Up) = /N(x)Ul(x)Uz(x) dx. (2.31)
Q

Now, let G and G* be the Green operators of (2.29) and (2.30). If we multiply (2.29)
by U, integrate inR2, apply integration by parts and proceed as in the proof of part (iii)
above, we obtain

(3ko/2)/|VU|2dx + (2k —1— 2k, — 8k2/k0)/N|U|2dx < /N|V|2dx, (2.32)
Q Q Q
where the constantgg, k; and k, are as in (2.28). If we choosk such thatk >
1/2 + k1 + 4k, / ko, then this inequality shows that
2
IGV) [y < KIVI
with the constantk independent ofV; and since, according to Hardy—Sobolev

inequalities [13] and (compact) imbedding theorems [1], the imbeddingjof2) into
the completion ofX is compact, the Green operat6ris compact inH3(2), and its
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continuous extension is compact in the completiotXoSimilarly, the adjoint operator

G* is compact inX. Then we only need to apply [21, §11.4.2, 811.5.5] and take into
account that ifx is in the spectrum o& then i is also in the spectrum (becau&eis

real) to obtain that the spectra 6fin H3(Q2) and inC3(Q) coincide with the spectrum

of the continuous extension @ to the completion ofX, and with that ofG*. And

we only need to take into account that the eigenvalues of (1.5) and (1.7) are obtaine
from the eigenvalueg of G andG*, respectively, by means of (2.17) to obtain the two
statements in property (iv). Thus the proof of the theorem is complete.

Note that, according to Theorem 2.6, the spectrum of the linear eigenvalue problen
(1.5) exhibits similar properties as the spectra of related regular (i.e., with smooth
coefficients ir2) second-order elliptic problems, except for the last estimate in statement
(i), which is asymptotically (agir| — oo) sharper in the regular case (when/Re
c1+ col Im A2, with ¢; > 0).

Now we prove that the min-max characterization of the principal eigenvalue intro-
duced in [22] also applies when the coefficientsCodnd the functionM satisfy (H.2),
(H.3) and (H.4) (Proposition 2.8 below). The idea of the proof follows that of [7]. The
following previous characterization is needed.

LEMMA 2.7.-Under the assumptionfH.1), (H.2), (H.3) and (H.4), the problem
(1.5) possesses a strictly positive principal eigenvalue if and only if the operator
L — M(x) satisfies the strong maximum principle, i.ex  C?(2) N C1(Q) is such that

v#0, Lv—Mxv=0 inQ, v>=>0 onog, (2.33)

thenv > 0 for all x €  and dv(x)/dv < O (wherev is the outward unit normal, as
above)for all x € 32 such thatv(x) =0.

Proof. —If £ — M(x) satisfies a strong maximum principle then the principal
eigenvalue of (1.5)4, exists (Theorem 2.6) and is readily seen to be strictly positive.
In order to prove the converse we assume without loss of generality (Lemma 2.1) tha
M(x) < 0 in a neighborhood?! of 9. For each functionw satisfying (2.33), we
consider the function

w=v+e¢e+¢eklU; (2.34)

wheree > 0, U; > 0 is an eigenfunction of (1.5) associated with the principal eigenvalue
A1 andk = sug2|M (x)|/[AN (x)U1(x)]: x € Q\ Q1}. Then

Lw — Mx)w > elkAN((x)Ui(x) — M(x)] >0 inQ. (2.35)

Moreover, sincev is continuous, for each > 0 there is a constant(e) > 0 such that
w>0in Q. ={xeQ: dix) <y(e)}; andw > 0 in Q\ 2., as readily seen upon
application of the generalized maximum principle to (2.35Xin, €, (note thatU;
satisfies (2.33), with strict inequalities §&\ €2,). Thusw > 0in Qfor all ¢ > 0, and by
letting ¢ — 0, we obtainv > 0 in Q. Thus, the generalized maximum principle and the
strong maximum principle in Appendix B yield> 0 in Q anddv(x)/dv < 0 if x € 92
andv(x) = 0; and the proof is complete.O
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PrRoPOSITION 2.8. —Under the assumption¢H.1), (H.2), (H.3) and (H.4), the
principal eigenvalue ofl1.5)is given by

r1=sup{inf{[Lv — M(x)v]/[N(x)v]: x € Q}: ve P}, (2.36)

whereP is the set of those functions 6f(22) N C}(Q) such thaty > 0in L.

Proof. —Let 1, be the principal eigenvalue of (1.5) and ¢ > 0 be an associated
eigenfunction. Them = U, € P and satisfiev — M (x)v = A1N (x)v = AN (x)v in
wheneven. < i;. This shows that the s@inf{[Lv — M (x)v]/[N (x)v]: x € Q}: ve P}
contains the interval — oo, x1]. Thus ((2.36) is well defined and) < 1 (< oo).

Now we prove that the inequality; < A, cannot be satisfied. Assume for contra-
diction that there is a real number> 0 and a functionv € P such thati; + ¢ <
inf{[Lv — M(x)v]/[N(x)v]: x € 2}, and letU; > 0 be an eigenfunction associated
with 1. Let the constanBs > 0 be defined ags = min{1, B2}, where, = supg
Rt v—BUL >0inQ}, Bo=sudB e R :3(v—BU1)/9v <00ndR} and letw be the
real functionw = v — 83U1. Thenw > 0 in  and eitherw = 0 at some point of2 (if
Bz = 1) orw =dw/dv =0 at some point 0§<2 (if B3 = B,). On the other hand,

Lw—Mx)w— (1 —e)N@x)w>eNx)(v+w)>0 ing,

and this is in contradiction with the result in Lemma 2.7. Thus the proof is complete.

The following result deals with the dependence of the principal eigenvalue of (1.5) on
the coefficient o/ in the left hand side of (1.5).

PROPOSITION 2.9. —Let2, £, M, andN satisfy assumption$.1)—(H.2), (H.3) and
(H-4), and letM; be a nonzero function that is non-negativeSinand satisfiegH.3').
For eachu € R, let A = A(u) be the principal eigenvalue of

(£ — M(x) + uMi(x)]u=AN(x)u in<, u=0 o0noQ, (2.37)

with u € C2(Q2) N C1(). Then the functiom :R — R is analytic, strictly increasing
and concave.

Proof. —In order to prove that the function is analytic in a neighborhood of each
1o € R, we only need (as in [17]) to apply the implicit function theorem to the system

Gu,\,uw)y=u—Go(u) + uG1(u) — 2Go(u) =0, /uoudx =1, (2.38)
Q

whereug > 0 is an eigenfunction of (2.37) al = o, A = Ao = A(ug), such that
Jquddx =1, Gy is the Green operator of (2.7) agd andG, are the Green operators of
the problems obtained from (2.7) when replaciMdyy M, and N respectively. Note that
the first equation in (2.38) is equivalent to (2.37), and h@tG1, G : C3(Q) — C3(Q)
are linear and continuous (Proposition 2.3); tiusC3(Q) x R? — C(Q) is analytic.
Still, 15 = A’(o) andug = du (o) /dp satisfyuy — Go(ug) + noG1(ug) — AoGa(ug) =
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rG2(ug) — G1(ug) (as seen upon differentiation in (2.38)), and this equation is
equivalent to

(£ — M(x) + uoMi(x) — AoN (x)]ug = [AgN (x) — M1(x)]uo in €,

up=0 onoQ. (2.39)

The solvability of this singular, linear problem requires that

Aé/N(x)uou?)dx :/Ml(x)uou?)dx, (2.40)
Q Q

whereu(, > 0 is an eigenfunction of the adjoint, linearized problem
[L* — M (x) + poM1(x)|ul=AoN (x)ug in Q, uy=0 onae, (2.41)

with the operatorC* as defined in (1.3). Note thag is also the principal eigenvalue
of (2.41) (Theorem 2.6 (iii)—(iv)). Since, in additioN > 0 in @, M; > 0 in Q and
M, is not identically zero, (2.40) implies thaf = d A(uo)/dp > 0. And sinceu was
arbitrary, the functionA is strictly increasing, as stated. Finally, the proof th\ats
concave is identical to that in [7, Proposition 2.1], and the proof is complete.

Now we consider the existence of a principal eigenvalue of (1.5) wheanishes in
a subset of2.

THEOREM 2.10. —Let 2, £ and M be as in assumption$l.1)—(H.2), (H.3), and let
N satisfy(H.3) and be such thav =0in C andN > 0in Q\ C, where the closed set
C is such thatd # C C Q. Then(1.5) possesses a principal eigenvalue if and only if the
quantity

po =sup{inf{[Lv— Mx)v]/v: xeQ'}: Q' €S, veP} <o (2.42)

is strictly positive, where is the set of those open subsetso$uch thatC c Q" and
Q2 C a2’ (that is, 2’ is an open neighborhood of both and d<2), and P is the set
of those function® € C2(Q) N C1(Q) such thatv > 0 in Q. Also, if 4o > 0 then the
principal eigenvalue ofl1.5)is unique and simple.

Proof. —Let N; be a function satisfying (H’Band such that
Ni(x) =1+ [14+ N(x)]/d(x)® in<, for somee > 0, (2.43)

whered (x) is the distance from to 92, as above, and for ea¢he R let © = M (L) be
the (unique) principal eigenvalue of

LU - Mx)U —ANx)U = uN1(x)U in L, U=0 o0no<, (2.44)
which is simple (Theorem 2.6). Note that (1.5) has a principal eigenvaltiand only

if M(A) = 0. Since, in addition, the function = M (1) is analytic, strictly decreasing
and concave (Proposition 2.941(A) — —oo asi — oo, and the stated result readily
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follows from the following property, which is proved belowhe quantity o < oo
defined in(2.42)is strictly positive if and onlyM (1) > 0 for somex € R.

If w=M(1) > 0for somer € R andU > 0 is an associated eigenfunction of (2.44),
thenU € P and

(LU — M(x)U)/U > uNi(x) + AN (x) inQ. (2.45)

But, according to (2.43) the right hand side of (2.45) is larger tha2 > 0 in Q' =
QN (27U Q), whereQ] and Q) are appropriate open neighborhoodstoiind 92
respectively. Themo > u/2 > 0.

And conversely, ifug > 0 then there is a function e C%(Q2) N C(Q) such thaw > 0
in Q and[Lv — M(x)v]/v > k > 0 in &, for someQ’ € S. And if, without loss of
generality we assume thaf < 0 in a neighborhood o2 (Lemma 2.1) andg > 0 is
sufficiently small, thervg = v + & still satisfies

Lvg— M(x)vg>0 inQ' andvy >0 in. (2.46)

Let us rewrite (2.44) in terms &f = U /vy as
LV + bi(x)dV/dx; + [M(x) — AN(X)]V =uN1(x)V  inQ,
V=0 onoQ, (2.47)
where
bi = (2/v0) Y _ a;jdvo/dx;, M (x) = [Lvg — M (x)vo] /vo.

Now M > 0in Q' (see (2.46)) and/ and 1/Nare bounded i \ Q’; thenM —AN > 0
in Q for somei € R. Since, in addition,V = U/vg > 0 in ©, standard maximum
principles applied to (2.47) readily imply that = M(A) > 0. Thus the proof is
complete. O

Remark?2.11. — Under the assumptions of Theorem 2.10, the existence of a principal
eigenvalue is determined by the sign of the quantigydefined in (2.42). That quantity
is now calculated in several cases that have been already considered in the literature [3
for equations with bounded coefficients. Thus we generalize these results to our singulz
case.

(A) [34, Theorem 6.2]If C = Qo C @, whereQo=Q\ (UI_, Q) withQ,NQ; =9
fori # j andQq, ..., Q, are subdomains af with C>”-boundariesthen the quantity
o defined in(2.42)is the principal eigenvalue of

LU —-Mx)U =uU inQo, U=0 o0nodQp. (2.48)

Since Qg ¢ Q' for all Q' € S, the result in Proposition 2.8 readily implies that
the principal eigenvalue of (2.48), is such thatii > wo. In order to see that,
conversely,iit < po, We assume (without loss of generality, Lemma 2.1) thak O

in a neighborhood 06%2. Let U > 0 (in () be an eigenfunction of (2.48) associated
with i, letky = 1+ || + | maxM (x): x € Q}|, letV e C%(0) N C3(Q0) be the unique
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solution of LV = kq in g, V =0 0ndQp, and letky, = sup{[k1V (x) — 1]/ U (x): x € }.
Then the functior/,, defined ad/, = U + ¢(1+ V) satisfies

(LU, — M(x)U,)/Ue > i — koe N o, U,>0 inQo, (2.49)

for all sufficiently smalle > 0. Also, sinceM and the coefficients of. are smooth

in 3Q0\ 92, U (and thusl,) is of classC? up to 3\ a2, and U, can be extended
to Q as aC?-function, still called U,, which is strictly positive inQ. Since, in
addition, (LU, — M (x)U,)/ U, is continuous iMQg\ 92 and satisfies (2.49), we have
(LU, —M(x)U,)/ U, > 1 — 2koe In Q' = QN Q, Whereg is an open neighborhood of
Qo. Thusug > 1 — 2koe (See (2.42)) and since that inequality holds for all sufficiently
smalle > 0, we haveug > 1 as stated.

(B) [34, Theorem 6.7]. As a dual case of that inlét,us assume that = U’}zl S_zj C
Q, whereQy, ..., Q, are domains with a smooth boundary, aRgN Q; = ¢ for i # j.
Then the quantity. defined in(2.42)s given by =t =min{i;: 1< j < h} where
it is the principal eigenvalue of

EUj—M(X)Uj:/,LjUj ian, Uj=0 Onan. (250)

As in the proof of property A above, the definition (2.42) and Proposition 2.8 readily
imply that uo < fi; for j =1,...,h and thusue < fz. And, in order to prove that,
converselyug > &, we again assume, without loss of generality, that

—M(x) > k/d(x)¥"® in aneighborhood of$2, (2.51)

for somek > 0 (Lemma 2.1). Also, ifU € C%(C) is defined asU (x) = Uj(x) in
Q;, whereU; > 0 is an eigenfunction associated wiit}, then as above a function
U, can be defined that satisfies (2.49) witly = C for all sufficiently smalle. Also,
as above, there is a strictly positiv€?-extension ofU, to Q, which is such that
(LU, — M(x)U,)/ U, > 1 — 2koe in an open neighborhoo®; C © of C, for some
constantk,; and, according to (2.51), that inequality also holdSip= N 7, where
Q4 is an open neighborhood 0f2. SinceQ’ = Q] U Q) € S, we haveug > i — 2ka¢
for all sufficiently smalle > 0. Thusug > i1 and the stated property follows.

(C) [34, Theorem 6.4]If C has measureero,and ug is as defined if2.42),then
uo = 00. Thus, in this case (1.5) always has a principal eigenvalue.

In order to prove thatio = oo we may assume (as above, without loss of generality)
that the functionM satisfies (2.51). Also, sina€ anda<2 are of measure zero, for each
e > 0 there are two subdomaigg, 2, C 2 that satisfy assumption (H.1) and

CCQCQCQ, ICIQ, and [Q|<e (2.52)
where|€2,| is the measure d®,. Let i, be the principal eigenvalue of

LU-M@XU=pU inQ, U=0 ond,, (2.53)
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and letU > 0 be an associated eigenfunction, which i€{<2,) N C3(Q.). ThenU >0
and[LU — M (x)U]/U = u. in 2., andU is of classC? in a neighborhood o Q. \ 92;

thenU can extended fron, to Q2 as a strictly positiveC2(2) N C&(Q)—function, and
from the definition (2.42) we have

If we multiply the equation in (2.53) by/, integrate inQ2. and integrate by parts then
we obtain

,bLg/Uzdx 22/[ko(8U/8xi)2+ <b,~ +Zaaij/axj>UaU/axi] dx
Qe Qe
—/M(x)U2dx
Qe

> (ko/Z)Z/(aU/ax,-)zdx —/M(x)U2dx,
Qe Qe

whereko > 0 is the ellipticity constant of (i.e., such thal" a;; (x)&°&7 > ko|&|? for all
x € Q and all¢ € R") and

M=M) + @) (i + aa,-j/axj)z.

Now, according to assumptions (H.2), (H.&nd (2.51),M is bounded above by a
constantt; and thus

3 (8U/8xi)2dx] [2 Uzdx]—k1>ko)»g/2—kl,
Jeonred B

Ma>k0

where —1. is the principal eigenvalue of the Laplacian operatvrin . (with
Dirichlet boundary conditions). But, according to a well-known result by Faber [23]
and Krahn [31]x, > A, where) is the first eigenvalue of A in the ball (of R") of
measurg2|. A straightforward calculation readily shows thigt— oo as|Q.| — 0,

i.e., ase — 0 (see (2.52)). Thug, — oo ase — 0 and (2.54) implies thato = oo, as
stated.

Now we consider the principal eigenvalues of (1.5) when the functiaanges sign
in . For convenience, we consider the principal eigenvalwd the problem

LU —Mx)U —ANx)U =pU inQ, U=0 onoie, (2.55)

for varying values ofi € R. Note thatu is also the principal eigenvalue of the adjoint
problem

LU —-MxXU—-AN@U=pU inQ, U=0 ondQ, (2.56)

whereL* is given in (1.3) (Theorem 2.6).
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THEOREM 2.12. —Let2, £ and M be as in assumptiorn(l.1),(H.2)and (H.3), and
let N satisfy assumptio(H.3) and be such thay > 0and N < 0in two non void, open
subsets of2. Then

(i) If, for somex = Aq, the principal eigenvalue R.55)is strictly positive, therf1.5)
has exactly two principal eigenvalues, and A, which are such that; < Ag < A,.

(i) If, for somei = Ag, the principal eigenvalue dfl.4)is zero then two possibilities
arise, depending on the quantity

ko = / N (@) Uo(0)U; (x) dx,
Q

wherelUy > 0 andUg > 0 are eigenfunctions ¢P.55)and(2.56)respectively, foh = 1o
andu=0:

(i) If ko £ O then, in addition to\g (which is obviously a principal eigenvalyg1.5)
has exactly one principal eigenvalug # Ag, andkg(lo — A1) > 0.

(iib) If kg = 0thenig is the only principal eigenvalue ¢1.5).

Proof. —Without loss of generality, as above, we assume that the funsfi@atisfies
(2.51). For each. € R let u = M (1) be the (unique) principal eigenvalue of

LU-M@U = AN@U =p[l+|NW|JU inQ, ~ U=0 ondQ. (257)

Note that M is analytic (Proposition 2.9), and that the eigenfunctidnis uniquely
determined if an additional condition, such as

!U(x)dx:l

is imposed,; in this case, according to the argument in the proof of Propositiof/ 2.9,
also depends analytically on Still, when using the characterization of the principal
eigenvalue in Proposition 2.8 and assumptions ‘fHaBd (2.51), it is readily seen that
M(Ao) > 0 in case (i), and thatM (o) = 0 in case (ii). Then the stated result readily
follows from the following properties of the functioi, which are subsequently proved
below.

A. If M(Ao) =0 then the derivative oM at A = Aq is given by

{/[1+ |N(x)y]Uo(x)Ug(x)dx}M(/\o) = —/N(x)Uo(x)Ug(x)dx. (2.58)
Q Q

B. The functionM is concave.

C.M— —c0asi — to0.

In order to prove property Ave just take into account thatt’ (1) is given by
LUy — M(x)U) — N (x)U) = [N(x) + M' (k) (L4 |[N(x)|)]Uo in R,
Uy=0 o0naQ, (2.59)
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as readily obtained by differentiating in (2.57), and setfing 1o and M (1¢) = 0; here
Uy=0U/or at L = Ao and Up = U (-, Ag). And (2.58) is obtained when taken into
account that, since the singular, non-homogeneous problem (2.59) has a solution, i
right hand side must be orthogonal to the kernel of its adjoint problem.

In order to prove property Bve just take into account that

o+ M) =T (r = M®)) (2.60)

for all A, where the functiol’ is defined as follows. For eaghe R, I" (1) is the (unique)
principal eigenvalue of

LU—-M&U+puN_()U =T(WN+(x)U inQ, U=0 ondQ, (2.61)

where N = N* 4+ 1/2 and N* are the positive/negative parts of (i.e., N* >0
and N = N* — N7). And since I is analytic, (strictly) increasing and concave
(Proposition 2.9), the statement in propeByeadily follows becaus€l + I')M"” =
(1—- M")?T”, as readily obtained by differentiating twice in (2.60).

Finally, in order to prove property Qwe consider two non-void, open balls;, such
that B, c Q@ and N* > 0 in B, and define the strictly positive constartts and k*
as the minimum and the maximum &f* in B., respectively. IfA7 are the principal
eigenvalues of

LU —-Mx)U=23U inByg, U=0 ondBs, (2.62)
and=+x > A3/ k., then(1+k+) ML) &+ 1ks < A3, as readily obtained upon application
of the generalized maximum principle to (2.62) (recall the definition of the functin
through (2.57)). These two inequalities yield the result, and the proof is complete.

3. Differentiability of some singular nonlinear problems

Let us now consider the linearization (in fact, the differentiability) of the semilinear
problem (1.1) around a solutiane C2(2) N C*() such that

u>0 inQ, du/dv <0 o0nag. (3.1)
If « > —1/n then we can treat the problem (1.1) in differential form and work in the
spaceW2(2) N W1 o(R2), with p > n, which is compactly imbedded int6(<2); but
this is not convenient for the general case treated in this paper-1 (see Remark 2.4
above). Instead we shall re-write (1.1) in integral form, as
Fu)y=u—-G(f(,u))=0 (3.2)

whereG : C3(Q) — C3(Q) is the Green operator of

LU=V ing, U=0 onoae, (3.3)
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(defined asG (V) = U). Note that, according to Proposition 2.3, @)is bounded and
can be extended, as a bounded operato(:été(fl) for all § such that 0< § < 85 =
min{y,« + 1}; and (b)u € C3(Q) N CX(Q) satisfies (1.1) if and only ift € C3(Q)
satisfies (3.2).

THEOREM 3.1. —Under the assumptionéH.1)—(H.3) the operator F: C3(Q) —
C3(Q) defined in(3.2) is of classC™ in the positive cone o€}(2) (that is, the set
of those functions of 3(Q2) that satisfy(3.1)), wherem > 1is as defined in assumption
(H.3) and the linear operatorF' (u) : C3(Q) — C(Q) is given by

Fwyv=v—G(fu(,u)v). (3.4)

If m > 1and1< j <m then thej-linear operator,d/ F(u)/ou’ = F (u): [CHQ)V
— C3(Q), is given by

FOW (1, ..., v) ==G((3/ f(,u)/du!)vy---v;). (3.5)
Proof. —The operatotF can be written as
F=1-Fy, with[=identityandF, =G (f(-,u)). (3.6)

Since ! is linear and bounded, it is of clags>, with its first derivative equal td
and its higher order derivatives equal to zero. Thus we only need to proveajHat (
Jj=1,...,m, the jth derivative ofF; exists and is given by

FO s, ..., v)) =G (87 fCou)/oul vy v)), (3.7)

and (b) thenth derivative ofF; is continuous.

Let us first prove (a) by an induction argument. In order to prove (aj ferl we first
consider a functioV € C2(2) such thatV > 1 in QandN (x) =d(x)* *forallx € 2,
(with d(x) and2; as defined in assumption (H.1)). Note that

d(x)*"Y/N and |dN/dx|d(x)*>* are uniformly bounded ig2, (3.8)

fork=1,...,n. Now, take any functiom of the positive cone o€3(Q). If v € C}(Q)
is such tha1|v||cé(§—2) is sufficiently small then
O<kidx) <u+06v <kyd(x),
forallx € Q and allo € [0, 1], (3.9
where the constants andk, are independent af. Thus, according to assumption (H.3)
and property (3.8), the function

W= [f(,u+v)— fu)— ful,u)v]/N, (3.10)

is such that
W1 = fuu (. 1+ 0C)0) [0/ N < Kal[v]iEa g, (3.11)
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IWeo| < | fure (X, +000)0) = frn, (6, 0) + [ fuu (X, u +6(x)0)
— fuuCe, W) [0I/N + | fuu(x, u + 0()) |[vvy, |/N + [WN,, |/N?
< K2”v||Cé(§2)8(||v||cé(§2))a (312)
forall k=1,...,n and allv € C3(Q) such that||v||C3(Q) < ||u||Cé(Q). Here 6 and

¢ stand for functions of the typé:Q — [0,1] and¢:R — R, with ¢(z) — 0 as
z — 0, and the constant&; and K, are independent af. Thus||W||Cé(g—2)/||v||cé(g—2) <

(K1 + Kz)s(llvllcé@)) and we only need to take into account the definitions (3.6) and
(3.10), and the result in Proposition 2.3 to subsequently obtain

[ Fi(u 4 v) — Fi(u) — G (fu (-, u)v) Hc&(s‘z) = HG(NW)HC(}(Q)
< K||v||cé(g'2)3(||v||cé(§z)) (3.13)

forall v e C3(2) such thalllvllcé(g) < ||u||C3(Q) and some constaik that is independent
of v. This estimate implies thak;(u) exists and is given by (3.7). Thus property (a)
above holds forj = 1 and the first step of the induction argument is complete.

Let us now assume that property (a) holds for ftie derivative of#; and prove that
it also holds for its(j + 1)th derivative. To this end, we take, ..., v;;1 € C&(Q) such
that||vj+1||cé(g—2) < ||u||cé(g—2). Then (3.9) holds withv = v;,1 and, as above, according to
assumption (H.3), the function

Wi= {0/ f(u+vj40)/0u — 07 f(-,u)/ou’
— [0/ uyfau v v -0 /N (3.14)

is seen to be such that
”Wl”cé(fz) < K3||U1”cé(§2) <l ”cé({?)”Uj-i—l||cé(§z)8(||vj+l||cé(§z))»

with K3 independent oby, ..., v;41 ande as above. Thus, as above, we only need to

take into account our assumption tt??q(t”(u) is given by (3.7), the definition (3.14) and
the result in Proposition 2.3 to subsequently obtain

[P @+ v = F @] 1, o0p) = G377 f (L w) /8w Yvr---v)) [ caga
= ||G(NW1)||C(}(§2)
< K”Ul”cé(fz) el ||cé(§z) ||vj+l||cé(§z)3(||vj+1||cé(@)), (3.15)

with K independent ofs, ..., ;1. This estimate shows tha\'*" () exists and is
given by (3.7). Thus the induction argument is complete and property (a) above holds.
Finally, the same argument that led above to (3.15) readily shows that

) )
H [f{m (u+ vj+1) — f{m (M)] (v, ...,y vj)HCé(Q) < K”Ul”cé(fz) ce ||vj ||cé(§z) ||vj+l||cé(§z),

with K independent ofoy, ..., v;41. According to this estimatez-'{m) is continuous.

Thus property (b) above also holds, and the proof is complete.
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If the function f depends also on a parameter, then the same argument in the proof o
Theorem 3.1 readily yields the following

COROLLARY 3.2. —In addition to the assumptions of Theor&r, let us assume that
the functionf depends on a parametgre R and that, forallx e Rand alll =1, ..., r,
the functiond’ f/01! satisfies assumptiofH.3). If the Green operatoG is defined as
above, right afte(3.2), then the operatofF : @ x C3(Q) x R, defined as

Fu, M )=u—G(f(,u, 1)),

is such that, foralli =0, ...,mand alll =1, ..., r, the derivatived/*' 7 /du’ 91" exists
and is continuous wheneveris in the positive cone af(Q2) and A € R. Also, thej-
linear operatord’/* F(u, »)/du/ A" : [ C3(2) 1V — C3(S) is given by

[0/ Fu, ) /ou/ A (v1, ..., v)) = =G (371 f (-, u, 1) /3u! 3 )vy - v;).

Note that this corollary provides the ingredient to apply implicit-function-like
theorems to the problem (1.1)—(1.2) when the nonlinegfiig allowed to depend also
on a parameter.

4. Applications

The results obtained in Sections 2 and 3 and the strong maximum principle in
Appendix B provide the basic ingredients to systematically apply the standard tools
mentioned at the beginning of the paper to the analysis of singular equations of the
form (1.1)—(1.2), under the assumptions (H.1)—(H.3).

4.1. Construction of solutions of (1.1)—(1.2) via sub and supersolutions

Monotone methods can be applied, in quite the same manner as is the regular case,
construct minimal and maximal solutions of (1.1)—(1.2) in the positive cor&le®),
as seen in the proof of the following

THEOREM 4.1. —Under the assumption@l.1)—(H.3) let us assume thdf..1)—(1.2)
has a sub-solution, and a super-solutiom® such thatuo, u® € C2(2) N C3*(Q) for
somes > 0 and

0 < kd(x) < ug(x) <u(x) forall x € Q. (4.1)

Then(1.1)—(1.2)possesses a minimal and a maximal solution in the intefmglu°],
u, and u*, which are such that,, u* € C3(Q) N Cé"s(s_?) whenever0 < § < §g =
min{y, « + 1} and up < u, < u* < u®in Q. Also, u, (resp.,u*) is the Cy (Q2)-limit
from below(resp., from abovedf a monotone sequence of sub-soluti¢resp., super-
solutions of (1.1)—(1.2)

Proof. —According to assumption (H.3)f,(x, u(x))|d(x)*® is bounded inQ if
u:Q — Rissuch thatig < u < uin Q. Thus a functiom; € C1(Q) exists that satisfies
(H.3) and is such that , for some constakts 0 andg €11 — «, 2],
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Mi>1 inQ\Q, Mq(x) =kd(x)™ forall x € Qi, 4.2)
and  f(,u)/u+|fuC,u) <My inQif ug<u<ulinQ, (4.3)

where Q; is as defined in assumption (H.1). Then the mean value theorem and
assumption (H.3) imply that the functiogs v : @ — R, defined as

p(x,u) =Mi(x)u + f(x,u) = Mi(x)¥ (x, u), (4.4)

are such that
0<oCu) <e(v) InQ, Y, u) e ),
1wl g < Killullerg and
¥ v) =¥, M)HCI(Q) <Kolv—ullcig Ing,
wheneven <u <v<u® inQ, (4.5)

for some constant&; and K, that are independent afandv.
Now we consider the sequences, }, {#™}, defined inductively by

Lty + M1(X)t, = @ (x, up—1(x)) in L, u,=0 onog, (4.6)

Lu™ 4+ Mi(x)u™ =¢(x,u™ (x)) inQ, u"=0 ondeQ, 4.7)
for m > 0, with up andu® as above. Since andyr = ¢/M, satisfy (4.5), we only need
to apply the maximum principle in Appendix B and Proposition 2.3 to obtain inductively
that {u,,}, {u"} C C*(2) N C+*(Q) whenevern > 1 and 0< § < 8o = min{y, « + 1},
and, as in the regular caseifis a solution of (1.1)—(1.2) such thag < u < u°in Q,
then

o <1 <ty <u<u"<u"t<u® inQforalm> 1. (4.8)

Hence the stated result follows if we prove that

{u,,} and{u™} converge inC*(Q) whenever 0< § < §o=min{y,a +1}  (4.9)

(then, according to standard, local, elliptic estimates, the limits must 6&(i)).

Now, in order to obtain (4.9) for the monotone, bounded sequémgg (the other
sequence is treated similarly) we first observe that, by the dominated convergenc
theorem, it converges in,(2) for all ¢ > 1. Also, according to Proposition 2.3 and
properties (4.5), iip > m > 1 and$ is as above, then

”up - um”CL‘S(Q) < K”up—l - um—l”Cl(fZ)’ (410)

with the constantk independent ofz and p. In addition we have the interpolation
inequality [lullciq) < ellullcrsg) + CegllullL, @, Which holds for alle > 0 and all
g >n+ 2 (see [2] and [32, p. 80]). Thus, if > n + 2 is kept fixed, this inequality
(with ¢ > 0 appropriate) and (4.10) readily yield

lup — umllcr@y < A/ Bllup-1 — um-llcrgy + Killup — umllz @

< (||Mp - Mm||c1(s‘2) + ||Mp - Mp—1||c1(§z) + lup — Mm—1||c1(§z))/4
+ Ki(llup —umllL, @), (4.11)
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where K is independent ofz and p. Since{u,,} converges in_,, the first inequality
in (4.11) (withp = m + 1) implies that|ju,, 11 — tnllc1q) — 0 asm — oo. And, since
{u,} is a Cauchy sequence i, (4.11) and (4.10) subsequently imply tHat,} is a
Cauchy sequence i@*(Q) and inC*%(Q). Thus{u,,} satisfies (4.9) and the proof is
complete. O

The requirement thatg > kd(x) > 0 in  in Theorem 4.1 is often too strong in
applications. For instance, if the unique solution of

LU=M(x) ing, U=0 ono<, (4.12)

is strictly positive inS2 then according to Lemma 4.3 belaw = [(1 — a) U]V~ is
a strict sub-solution of

Lu=Mx)u* inQ, u=0 onaQ. (4.13)

But this sub-solution does not satisfy the above-mentioned requirem&nt i€3(<2).

In order to extend the applicability of Theorem 4.1 to situations like this one, in the
following lemma we prove that the above-mentioned requirement in Theorem 4.1 car
be weakened.

LEMMA 4.2.-Under the assumptions of Theorefl, let the functionf (satisfy
(H.3) and) be such thatf(x,u) > —Kid(x)*u®t and |f(x,u)| + |fu.(x,u)|lu <
Kod(x)*u*s for all (x,u) € 2x]0, oo[, with K; >0, K, >0, |a1 + a2 <1 and
los + aa| < 1, and letiig € C%(2) N Cé’B(Q), for somes > 0, be a sub-solution dfL.1)—
(1.2) such thatiig > kd(x)? a.e. in2, withk > 0 and p > 1. In addition, let us assume
that either(@) a; > 1, 0r (b) O0< (1 — 1)/ (24 a2) < @1 < landag + az/a; > —1, or
(©) a1 < (A —a1)/(2+ az) <1/p and paz + a4 > —1. Then there is a sub-solution of
(L.1)—(1.2)ug € C2(Q)N Cé’B(Q) (6 > 0), such tha(i) up > kd(x) in Q for somek > 0,
and (i) up < u in Q whenevewu € C(Q) N Céﬁ(fz) (6 > 0) is a solution of(1.1)—(1.2)
such thatiig < u and0 < k1d(x) < u in  for somek, > 0.

Proof. —Under the assumptions above, we can choose a constamtl a function
010, oo[— R such that
l<r<p, raz+as>r—2 and p(e) =Pl (4.14)

in case (a) above, and
1<r, [2+a2+r(a1—1)]/(1—a1)>max{0,p—r}, rag+og>r—2
and p(e) = g1/ [24az+r(e1—1)] (4.15)

in cases (b) and (c). Also we consider the subdonsairand the function:, : 2, — R
defined as

Q.={xeQdx) <p(e)} and u.(x)=ed(x), (4.16)

which are seen to be such that, in the three cases considered abayes Gr(Q,) N
CA(Q.), (i) u. < up in 322\ 9, and (jii) u. is a sub-solution of (1.1)—(1.2) if,,
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whenevere > 0 is sufficiently small. The first property is obvious, and the second and
third ones follow from (4.14)—(4.16) and the stated assumptiong@md f; the proof

of the third property is somewhat tedious but straightforward. As a consequence of thes
three properties, the functian, defined as

fio(x) =iig(x) if x € Q\Q, @i, =maXu,,iio(x)} if x €, (4.17)

is such thati, < g in 2 andii, is a sub-solution of (1.1)—-(1.2) whenever- 0O is
sufficiently small. Alsog > 0 can be chosen such that< « if u is as in the statement
of the lemma. For that value afwe choose a functio; e C1(Q2) that satisfies (4.2)
and

fCw|/fu+|fuCow)| <My inQif ue <u<u®inQ,
with r — (raz + a4) < B < 2 and calculateg as the unique solution of

Lug + Mi(x)uo = Mi(x)u, + f(x,u.(x)) ing, ug=0 o0naQ. (4.18)

Finally, by the argument in the proof of Theorem 4.1 (write the right hand side of
(4.18) asM; (x) ¥ (x, u. (x)) and check that the function— ¥ (x, u, (x)) is in Co()),

ug € C3(Q) N Cé’B(Q) (with 8§ > 0) is a sub-solution of (1.1)—(1.2) that satisfies the
properties (i) and (i) in the statement of the lemma. Thus the proof is complete.

The following result is of independent interest to obtain sub-solutions of semilinear
equations with a monotone nonlinearity. It is based on the generalization to elliptic
operators in general form of an argument already used by Spruck [44] to treat the
operatorL = —A; see also [10] where this argument was credited to Nirenberg. In the
present context, this argument is based on the fact that if the funatianslU (e C?(R2))
are related by

U(x)

u(x) = / dt/f (1), (4.19)
0
where f € C(]0, oo|) is strictly positive and such that the integral above is convergent,
then we have

f'(u) du Ju
f(u) f(u)ZZ a;; (x )8 o, in Q. (4.20)

Note that both (4.19) and (4.20) make sense Whenever the integral above is converge
andu > 0 in €2, irrespectively on how fast(x) decays as approache$ .

LEMMA 4.3.—-Let f € C(]0, oo[) be a strictly increasing, positive function such
that fg dt/f(t) < oo for somes > 0 and letM € C(Q) andU e C?(RQ) be such that

LUSM, U>0 ingQ, (4.21)

where the domai® and the operatoi are as in assumption$l.1) and(H.2). Then the
functionu e C?(Q) defined by4.19)satisfies

Lu<Mx)f) inQ. (4.22)



802 J. HERNANDEZ ET AL./ Ann. |. H. Poincaré — AN 19 (2002) 777-813

Proof. —We only need to use (4.20) and take into account thiatpositive and strictly
increasing and thaf is strongly elliptic to obtain

f'(u) ou ou
10 Zaij(x)a—xia—xj — M) f(u)

O=(LU - M)f(u)=Lu+
> Lu — M(x) f(u).

Now we have the ingredients to obtain existence and uniqueness of positive solution
to (4.13).

THEOREM 4.4. —Let Q and £ satisfy assumptionfH.1)—(H.2) let o3 be such that
0<a1 <1and letM e CY) be such thali) |[M(x)| < K1d(x)*2 for someK; > 0
and someyx, such that—1 < a» < 1 — a1, and(ii) the unique solution of4.12)satisfies
U >0inQandolU/dv < 0onadf2. Thenthe problertd.13)has a unique strictly positive
solution.

Proof. —Note that (4.12) has a unique soluti@he C2(Q) N C¥¥(Q) (5 > 0), as
obtained from, e.g., Proposition 2.3 above, after re-writing the right hand side of (4.12) ac
[M(x)/v(x)]v(x) for some functiorw € C}(2). Now we may apply Lemma 4.3 above,
with f(u) = u®, to obtain thatip = [(1— 1) U 1Y is a strict sub-solution of (4.13).
This sub-solution satisfies the assumptions in Lemma 4.2 and thus (4.13) possesses
positive sub-solution satisfying the requirements of Theorem 4.1. Algo&fC2(Q) N
CH%(Q) (8 > 0) is the unique solution of Y = |M (x)| in Q, ¥ =0 0nd<, theny > 0
in Q andady /v < 0 on a2 (Theorem B.2 in Appendix B), and for sufficiently large
C > 0 the functionu® = C is a strict super-solution of (4.13) that satisfies (4.1). Thus
the existence of a positive solution to (4.13) follows from Theorem 4.1.

Unigueness of positive solutions is proved by the argument in the proof of Lemma 4.3
above. Assume for contradiction that (4.13) has two different positive solutigresyd
up. Then the functionw defined asv = v, — vy, wherev; = é” dt/f(t)for j=1,2and
f () =t*1,is non-zero. But using (4.20) and applying the mean value theorem we obtain

0(uy +up) ow
Lw— f'(u1) ) a;;(x)————
! Z / Bxi ij

— [ (ur + 01(x) (w2 — u1)) f (w1 + O2(x) (uz — uz))
X Zaij(x)avz%w =0, (4.23)

8)Ci a)Cj

where we have taken into account thatandu, satisfy (4.13). Sincef (u) = u** > 0,

f"(u) = ai(a; — Du*r~? < 0 and the operatof is elliptic, the coefficient ofv is pos-
itive in © and Theorem B.1 in Appendix B implies that= 0 in €2, which is in contra-
diction with the assumption above. Thus the proof is complete.

Remarks4.5. — Two remarks about the result above are now in order.

A. From the proof it is clear that the result in Theorem 4.4 stands when the right
hand side of (4.13) is replaced 3 (x) f (u), with M as above andf € C([0, oco[) N
C*(]0, oo[ such thatf(0) =0, f >0, f'>0and f <0in ]0,00[, f(u) < Ku® in
a neighborhood ofi = 0, with K > 0 anda; as in the statement of Theorem 4.4 and
J&du/f (u) < oo for somes > 0.
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B. The problem (4.13) has received a considerable attention in the literature. For th
particular case& = —A and M (x) = 1, existence of solutions has been analyzed using
sub and supersolutions [4,37,43], variational arguments [11] and both [20]; see also [44
11,10] for uniqueness. Some results for the caseM < oo in  and£ in general form
had already been given by Amann [3]. The c&se —A with M smooth and bounded
but exhibiting both signs if2 was treated in [42] fo&2 = R" and in [6] for bounded
Q. In the latter work existence of non-negative solutions (possibly with dead cores) was
proved by using sub and supersolutions; some interesting uniqueness properties we
also obtained. However they did not find strictly positive subsolutions and thus they
were unable to prove that the obtained solutions were strictly positive (see also [9]). The
existence of strictly positive solutions in bounded domains for operators in general formr
andM changing sign has not been considered in the literature to our knowledge.

4.2. A parabolic problem associated with (1.1)—(1.2)

Standard linearized stability results for regular parabolic problems are readily
extended to analyze the stability of the solutions of (1.1)—(1.2) that are in the positive
cone ofC3(S2) as steady states of the problem

du/ot + Lu= f(x,u) inQ, u=0 o0onos, (4.24)
u(-,0) =ug IinQ. (4.25)

In fact, if « > —1/n then the operatoL is sectorial inL,(S2) for all g > n and we
can apply standard results in the literature [27] to obtain a global existence result on th
parabolic problem (4.24)—(4.25).

THEOREM 4.6. —In addition to the assumptionéH.1)—(H.3) let us assume that
a > —1/n, letu, € C3(Q) N C (= the positive cone of (2)) be a solution of1.1)—
(1.2), and letM = f,(-,uy). If the principal eigenvalue ofl1.4) is strictly positive
(resp., strictly negativethenu, is an exponentially stabl@esp., unstable¥teady state
of (4.24) in the Lyapunov sense, with the norm @#(Q). Also, if ug € C then the
problem(4.24)—(4.25)has a unique solutiory, — u(-, ) € C, in a maximal existence
interval, 0 <r < T < o0, and if T < oo then there is a sequendg,} such that
tn /' T and eithermaxu(x,t,): x € Q} — oo, or u(x, t,,) \y 0 for somex € 2, or
min{du(x, t,)/ov: x € 9Q} - 0asm — oo.

Proof. —Let ¢ be such thay; > n and 1+ ag > 0, decompose the operatdr as
L=/L1+ L>, where

B(a,-jau/ax,-)

a)Cj

ﬁluzz

and consider the operat6 in X = L, (), with domainD(£1) = W2(Q)NC C C§(<).

The self-adjoint operato£; is sectorial inX (use the argument in [27, p. 32]) and if

(g +n)/(2q9) < B < 1 then its fractional poweﬁ’f is such thatlju||c1q) < Kl L1ullx

for all u € D(£,) and somekK that is independent of [27, Theorem 1.6.1]. Also,
when using assumption (H.3) and estimates (2.10), and proceeding as in Remark 2..
the following estimates are obtained

’
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[fCouw) = fCoug)ly < Kalle — usllcagy < Kol|£5 @ — uy)| 4,
0

I Mullx + I Loullx < Ksllullcag, < Kal £u]

(4.26)

b &

[ G = fCou) = M= u0)|y < Ksllu =126, < Kol £5 0 = )5,

(4.27)

for all u € D(£41) and for allu in a C*(Q)-neighborhood ofi, in D(L1) respectively,

with the constant,, ..., K¢ independent ofi; note that (4.26)—(4.27) imply that the
operaton — Lyu — f(-,u), of X# = D(LF) c C (with the norm|ju| xs = | L2 u| x) into

X, maps bounded sets into bounded sets and is locally Lipschitzian. Then we only nee
to apply [27, Theorem 5.1.1] and straightforwardly modify the proofs of [27, Theorems
3.3.3 and 3.3.4] to obtain the stated results and thus to complete the proof.

Unfortunately the argument above does not apply (and, seemingly, is not straightfor-
wardly extended) i1/n > o > —1. But still, in this general case we can use the results
above, in Sections 2, 3, to directly derive the following result, which should also yield
the linearized stability result in Theorem 4.6 by a well-known argument [41,43], pro-
vided that one has a good existence theory for the parabolic problem (4.24)—(4.25); th
latter has been subsequently analyzed in [24].

THEOREM 4.7. —In addition to the assumption@H.1)—(H.3) let u, € C2(Q) N C
(= the positive cone of 3(Q2)) be a solution 0f1.1)—(1.2) and letM = f,(-, uy). If
the principal eigenvalue dfL.4)is strictly positive(resp., strictly negativethen there is
a constant > 0 and a functionU € C?(2) N C such thatu, = u, + U € C if |¢| < &g,
andu, is a strict sub-solutiorfresp., super-solutignof (1.1)—(1.2)if —eg < & < 0, while
u, is a strict super-solutiorfresp., sub-solutionof (1.1)—(1.2)if 0 < ¢ < &q.

Proof. —Take two functions:o, u® € C such thait, — ug andu® —u, are inC. As in the
proof of Theorem 4.1, there is a functione C?(R2) that satisfies (H/3and is such that

1+1dx) fuuC,w)| <N inQif ug<u<uin Q. (4.28)

Also, according to Proposition 2.8, if the principal eigenvalgef (1.4) is non-zero then

the principal eigenvalug; of (1.5) is such that;1¢ > 0. In addition, we take an eigen-
function of (1.5) associated witky such thatU € C, and the constanty, > O such that

goU < [h|d(x), ug < u_g, andu,, < u®in Q, whereu, = u, + ¢U as above. Then we
only need to apply the mean value theorem and take into account (4.28) to subsequent
obtain

[Lue — f(x,u:) — M(x)eU]/(A1€U)
= {N(x) — [f(x, uy,+elU) — f(x,ug) — M(x)sU]/(AlsU)}
=Nx) — fuu(x,us +0(x)U)eU/ry>1 forallx €

and alle such thatie| < g9, wheref : @ — R stands for a function such that<06 <1
in . Sinceii)o > 0, the stated result follows, and the proof is complete.

As an application of Theorem 4.6 we have the following result.
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THEOREM 4.8. —Let M and a1 be as in Theorend.4 and let Q2 and £ be as in
Theoremd.6. The parabolic problem

du/ot + Lu=M(x)u®t inQ, u=0 ond, u(-,0)=uy INQ, (4.29)

possesses a uniqut_e solutiondnr: t < co whenevelg > u, in 2, whereu,, € C (= the
positive cone of3(R2)) is a sub-solution of4.13)

Proof. —As in the proof of Theorem 4.4, we can obtain a super-solution of (4ut3),
such that

u, <ug=u(-,0) <u* IinQ. (4.30)

And according to Theorem 4.6, (4.29) possesses a unique solution in a maxima
existence interval & ¢ < T. And if the inequalities

u, <u(,t)<u* iNQ (4.31)

hold in O< ¢ < 1y then they also hold at= 7y, as readily obtained using the maximum
principle in Theorem B.1 in Appendix B to the equation obtained from (4.29) when
using the new variable = [ r~**dr and proceeding as we did to obtain (4.23). Since in
addition these inequalities hold a= 0 we conclude that they must hold in0r < T'.

This means thal' = co and completes the proof.0

4.3. Bifurcation problems

If the function f in the right hand side of (1.1) depends on a paramgtand (as
in Corollary 3.2) assumptions (H.1)—(H.3) hold adigf/91' satisfies assumption (H.3)
foralll=1,...,r, withr > 1, then the results above provide the ingredients to readily
analyze, quite as in the regular case, several bifurcation questions such as:

(a) The regularity of the solution branches, except at bifurcation points, via the implicit
function theorem [15,12].

(b) The solution branches near bifurcation points via the Crandall-Rabinowitz
theorem [16] or, more generally, via the Lyapunov—Schmidt method [15,12].

(c) The global existence of solution branches via, e.g., classical results by Rabinowit:
[40], based on degree theory.

For the sake of brevity we do not consider here any specific example on these
applications of the results above, which actually motivated the present paper and wil
be considered elsewhere.

Appendix A. Proof of Proposition 2.3

The uniqueness part readily follows by a standard maximum principle. The existence
part and the estimate (2.8) are obtained by regularizing the coefficients as follows. Fo
eache €10, p1[ (with p; as defined in assumption (H.1)) we consider the problem

= @ (x)0%u/0x 9x7 + @ (x) D> bi(x)0u/0x" = . (x)M(x)v in Q,
u=0 onoL, (A1)
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whereg, € C3(Q) is defined ag. (x) = ¥, (d(x)), with

Yve() = @2e —mn/e* if0<n<e, Y(n=1 ifn>e (A.2)

Note that, according to assumptions (H.2), (H.8nd the estimate (2.11y.b; and
@-Mv are inC%%(Q) if v e C3(Q) ande > 0. Then (A.1) possesses a unique solution
u € C>%(Q). The proof proceeds in three steps.

Stepl. For eachs €]0, §¢[ there are two constant& > Oandu €]0, p1[, independent
of v ande, such that the solution ¢f\.1) satisfies

lullcrs g,y < K [||U||c1(§2u) + llullcog,) + lullcrs@ng,) (A.3)

where
Q,={xeQ: dkx) < u}. (A.4)
SincedQ is of classC37, as in [32, pp. 95-96], it can be seen that, for each p;,
there are two finite families of domaini,,} and{$25,} such that for each,
() Qh, c b, cU 94, C Q. Uy 2%, = Q, with mo independent of. andk.
(b) There is aC?7-regular curvilinear, coordinate system in a neighborhoo@gf,
& = &(x), such that: (i1(x) =d(x), (ii) the domainsﬂ’iu andQ’;M are given by

k n. k
Qm:{xeR DE(x) €wy, )
with a)f-‘ﬂ ={6eR" 0<& <upu, 1612+ + |E,)% < i}, (A.5)

for i =1 and 2; and (i) thaC>” -norms of the functiong = £(x) andx = x(£), in Q’;M
andc'o’gu respectively, are bounded by a common constant, which is independeandf

n.
Now, in the new variables, the function

n
U6 = [u(r & E1dy (A6)
51
is readily seen to satisfy
LoU = LU + Lou+ Lau+ L4v  in aneighborhood o@’z‘u, (A.7)
AU/3&, =0 at& =0, U=0 at&=p, (A.8)

where

LoU == a;;(£)3°U /00,
(A.9)

m
LU = / |0 /950U [08:95)] _ dy.
&1

n
Lou=— / S LBFE) + Y EHBEE)] (9u /98], _, dy, (A.10)
51
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Lu = {_&11%/351 + ZZdlia“/aS"]slzu’
(A.11)

m
£4v:/1/fa()’) [M(S)U(S)]Slw dy

Herea;; andb; = 15}(5) + Y, (51)151.2(5) denote the coefficients of the operator obtained
when using the new variables in the left hand side of (A.1). Now, according to
assumptions (H.2), (H'’Band property (b) above, if & § < §o = minfw + 1, y} then

the functionsd,;, & — &1(dd;;/3%1), b}, € — £16? and& — (£1)>M have CO%(d5,)-
norms that are uniformly bounded by a common constant, which is mdependknt of
and p. Since, in addition, & ¥, (') < 1in 0< £ < i (see (A.2)), we have, for all

8 €10, 8o,

80—3 é)
||£1U||C05(w ) < /"l’ ||U||C2'5((;)I§M)’
s s (A.12)
&) 80—8 &)
||£2u”C03( k ) Klu’ ||u”Cl’8(5)§M)’
L3155 s, < K llull ILavll s s | < Ko 0l (A.13)
3 CO‘S(CL) ) Cl"s(Q\QM)’ 4 COS( k ) 1< Cl(&)léﬂ)’ .

where the constark is independent of, k, u andv, and the superscrigt) indicates
that the new coordinates are used in the definition of the norm. The first two estimate:
follow straightforwardly when taking into account thadg & min{y, « + 1} < ¢+ 1 and)

if0<d<fpand O< y; < yo < u < 1,
then O< y§™ — y¢ ™ < (@ + Dp ™70y, — vy ). (A.14)

The third estimate is a consequence of the facts that the hypersétface is in 2\ Q,,,

and that, according to property (b) above, the Hélder norms in the varialzled¢ are
equivalent, uniformly ot andu. The last estimate is obtained when taking into account
(A.14) and the inequality

lv(£r, €2,... %) —v (£, £5, ... ED)]
S a2 e H N L

which holds whenevety, £2, ..., &) and (£1,£2,...,&2) are in b, and in turn is
obtained when taking into account that its left hand side is bounded above by both

2ol gy, and (167 =837+ 62— 81 IS
as readily seen when applying the mean value theorem and taking into accowntt@at
at£! = 0. Now, if we re-scal& as& = un, then in the new variables the domamg
anda)u are fixed, and th€%%-norms ofa;; ; are bounded above by a common constant,
which is independent df and u. If we now apply a local Schauder estimate to (A.7)—
(A.8) in these new variables, and rewrite this estimate in tern§s wi obtain
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NUNS, o < Kall£1U + Lou + Lav]| Sy

C2o@f) CO2@f,)

+u KU, (A.15)

-8
+ 19 K2||£3M” CO(w/éﬂ)a

COS( k )

where the constant&;, K, and K3 are independent af, k£, 4« andv, and we have taken
into account that,U + Lou + L4v vanishes at! = u. And, when using (A.12)—(A.13)
and the fact that (according to property (b) above) the Hélder-norms in the vafiable
andx are equivalent, uniformly ik andu, we have

”U”CZ“S(Q,AL) <Ky [M50_6(||U||c2,5(§2’§ﬂ) + ”v”Cl(Qg,)>
_ 11—
+u? lullcrs@q,) + K ’ ||M||c0(§z§#)]’ (A.16)

for some constank, that is independent of, k, u and v. Here we have taken into
account thaty is independent of the curvilinear coordinate system us@i;jp(U is the
integral ofu along the normals t6<2, see (A.6)), and that

IIMIICH(Qk < ||U||C25(Qk y forj=1and2 and
IIUllco(gk < M”u”co(gk )- (A.17)

Now we chooseu such thatK,umq < 1/2, wheremy is as defined in property (a)
above. Then, ik, is that value ok for which the left hand side of (A.16) is greatest, we
have

101l casgtay S AUl cas g, + Kalllvl gt
-4 —(1+6
+u ullcrs@\,) + 1 a4+ )||M||Co(§2k1)]7 (A.18)
where we have used the inequalltgﬂnczamkl) m0||U||Cza(le) which follows from

property(a) above. Thus we only need to use (A.17)—(A.18) and the definition &
obtain (A.3) and complete the step.

Step2. For eachs €10, §g[ there is a constantk , independent ofv and ¢, such that
the solution of A.1) satisfies

||U||c18(9) [”UHcl(Q) + ||u||c0(§z)] (A.19)

The estimate (A.19) readily follows by first selectingas in step 2, and then using (A.3)
and the new estimate

lullc2s@\q,) < Ks[llvllcosa + llullcogn],

whereQ! = {x € Q: d(x) > 1/2} andKs is independent of ande. This latter estimate
is just a standard interior Schauder estimate on (A.1) (whose coefficientsheRé)-
norms that are uniformly bounded ine < pq).

Step3. If v € C3(Q) then(2.7) has a solution: € C2(Q2) N C+¥(Q) for all § €10, 8,
and(2.8) holds withK independent ob.

For eachm =1, 2,..., let u,, be the solution of (A.1) for = p;/m. Let us first
see that|ju,, [lcoq, is bounded. To this end, we assume for contradiction that there
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is a sub-sequence, also call¢d,}, such that|u,|lcoq — oo asm — oo. Then
Un =t /lttm |l co 1S such that, for alin,

= a;j0%U,/0x10x; + @6, (X) > ;09U /9% = @, ()M )/ ||t | oy 1N L2,
Up,=0 ondoQ, and |Uulcogq =1, (A.20)

wheree,, — 0 asm — oco. But the estimate (A.19) applied to (A.20) implies that
[ Un ll 1.6y Is bounded i € 10, 8o[ and, since the imbedding 6f- into C* is compact,
there is a subsequence, still callgg,}, which converges irC*(Q) to somelU. Now,

U # 0 at somex € Q2 because|U ||coq, = 1. AlsoU € C?(2) and satisfies

LU=0 inQ, U=0 onoQ, (A.21)

as readily obtained when applying interior Schauder estimates to (A.20). But, according
to standard maximum principles, (A.21) cannot have nontrivial solutions. Then a
contradiction is obtained and the result follows.

Now, sincelu,, || o, IS bounded, the estimate (A.19) readily implies thaf, || c1s,
is also bounded for each €10, 5o[. And, since the imbedding of %% into C? is
compact whenever @ § < §' < &g (< 1), for eaché €]0, §¢[ there is a subsequence,
also called{u,,}, which converges iC**(Q) to someu (e C4(Q)). Also u € C?(Q)
and satisfies (2.7) (thus the existence part of the statement follows) as readily seen whe
noticing thatu,, satisfies (A.1) foe = ¢,,, with¢,, — 0 asm — oo, and applying interior
Schauder estimates to this latter equation. And when applying the estimate (A.19) to thi
latter equation, we obtain

lullcrs @y < K[lIvllerg) + lullcog] (A.22)

whereK is independent ob.
Finally,  andv satisfy (2.8), which follows from (A.22) and the estimate

lullcoy < Kllvllcrgys (A.23)

with K independent ob. And this latter estimate is readily obtained from (A.22) by

a standard contradiction argument, alike to the one already used above (if (A.23) doe
not hold, then there is a sequenieg,} C C3(2) such that|v,, [|c1q, = 1 for all m, and

the corresponding solutions of (2.7) are such thatl|cos) — oo asm — oo; but then

Up =ty /ln |l coq) POSSESSES @ SUbsequence that converged 1) N C1(Q) to a non-
trivial solution of (A.21), which cannot exist). This completes the step, and the proof of
Proposition 2.2.

Appendix B. A strong maximum principle for second order equations with locally
bounded coefficients

Here we derive a strong maximum principle for some elliptic and parabolic
inequalities with locally bounded coefficients, such as those appearing in this paper. Th
elliptic case was already considered in [39,30], under essentially the same assumptior
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made below, but we have been unable to find a proof for the parabolic case in the
literature. For the sake of brevity we first consider the parabolic case, which contains
the elliptic one as a particular case. Of course, the elliptic case could have been directl
treated in a similar way.

THEOREM B.1. —Letu € CY(Q x [1o, 1]) be such thak(-, 1) € C2(Q2) N CL(Q) for
all 7 € [tg, 11] and

N(x)ou/ot + Lu+ Mx)u <0 in Qx]t, 1], (B.1)

where0 < § < 1, 2, £, M and N satisfy assumption®.1)—(H.2), (H.3) and(H.4), and
M > 0in Q. Let us assume also that< 0 in Qx]r, 11[, and thatu(xg, 1) = 0. Then
the following properties hotd

(i) If xpe Qthenu=0in Q x [1o, 11].

(i) If xoe 02 andu < 0in Qx]to, 1] thendu/dv > 0 at (xg, t1) .

Proof. —Since the coefficients of the linear operator in the left hand side of (B.1) are
locally bounded in2 and N > 0 in 2, property (i) readily follows when applying the
standard strong maximum principle [38].

In order to prove property (ii) assume for contradiction that

u<0 INQxJ, [ and u=0u/dv=0 at(xg,11). (B.2)
Since, in additionu(-, t;) € C1%( there is a constart, > 0 such that
lu(x, t1)| = |u(x, 1) — u(xo, t1)| < kalx — xo/***  forall x € Q. (B.3)

On the other hand satisfies the interior sphere condition (because of assumption
(H.1)), i.e., there is a hyperspherg, with center atyy € 2 and radiuso; > 0 such that
Hc QU andH N a2 = {xg}. Let us consider the function

1+8/2
]

v, )= [t —t1+p1—p(x) ;- with p(x) =[x — yol, (B.4)

which (when proceeding as in the proof of Lemma 2.1) is seen to satisfy

Nov/ot+ Lv+ Mv <0 in

A={(x,1) € Qxto, 11]: p(x) > p2, p1— p(x) > 11 —1 >0}, (B.5)
provided thatp, is appropriately close tp;. In that case the functiomw, = u + v is
such that (see (B.1)¥ (x)ow, /0t + Lw, + M (x)w, < 0 in A, wheneveg > 0; thus the
standard maximum principle [38] implies that the maximumuwpfin A can be attained
neither at an interior point of nor atz = ¢;. Thus this maximum must be attained either
atpp—px)=t—toratp(x) = po;but@w, =u+ecv=u<0if p1—px)=t1—1t >
Oande >0,and D)w, =u+ev<0if p(x) =p2, p1—p2=>t1—t >0ande >0is
appropriately small (see (B.2) and (B.4)). Thus for that valug, af < 0 (i.e.,u < —¢v)
in A. This property holds, in particular, on the rectilinear segnfeat 2 x {z,} joining
(yo, t1) and(xg, t1), wherep; — p(x) = d(x). Then we have

u(x, 1) < —ed®)*? inxeSNAcCQ (ie., ifd(x) > 0is sufficiently small)
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Sincee > 0 and § >0, this inequality is in contradiction with (B.3), and the proof is
complete. O

The elliptic case is reduced to the parabolic one as usual, just by noticing that if &
functionu = u(x) satisfies the elliptic inequality (B.6) below then it also satisfies (B.1),
and if that function attains a maximum & € , then it also attains the maximum at
(x0, 1) € 2 x R for all r. Thus the following result follows.

THEOREM B.2. —Letu € C%(Q) N C1%(Q) be such that
Lu+Mx)u<0 a.e.inQ, (B.6)

wheres, Q, £ and M are as in TheorerB.1. Let us assume that< 0in € andu(xg) =0
for somex, € Q. Then the following properties hald

(i) If xo e Qthenu=0in Q.

(i) If xoe 0 andu <0in Qthendu/dv > 0 at xo.
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