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ABSTRACT. – Let f be a signed function defined on some bounded domain�. We give
sufficient conditions ensuring the positivity ofu, solution of the following equation:

−�u= f in �, u|∂� = 0.

AMS classification:35J25; 35K20; 35B50

RÉSUMÉ. – Soit une fonctionf de signe non constant sur un domaine borné�. On donne des
conditions suffisantes assurant la stricte positivité de la solution de l’équation :

−�u= f dans�, u|∂� = 0.

1. Introduction

We are concerned with maximum principle for linear second order partial differential
equations. The maximum principle is a mathematical tool which is used frequently
in many fields of mathematics. For instance, its use is often essential in the study of
nonlinear partial differential equations: existence and qualitative result [9,5]. In this field,
the literature is well documented and our reference list is by no means exhaustive. For
instance, we refer to [5,11,10], for precise informations.
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For sake of clarity, let us recall the following definition: Let� be an open bounded
subset ofRN ; we say that the operator

A=−∑
i,j

aij

∂2

∂xi∂xj

+∑
i

bi

∂

∂xi

+ c

has the maximum principle property if, for any nonnegative functionf , the solutionu
of – (if it exists) {

Au= f in �,
u|∂� = 0

(*)

is positive.
In the present paper, we deal with the following natural question: letf be a function

defined on� such that

f +(x)= sup
(
f (x),0

) �≡ 0,

f −(x)= sup
(−f (x),0

) �≡ 0.

Is the solutionu of (*) positive? We are looking for assumptions onf which imply that
the answer to this question is positive. In a simple but significant setting the main result
of the present paper can be stated as follows: Let� be a ballB(0,R) of R

N , f a function
defined on� such that

f (x) � g
(|x|)= g+

(|x|)− g−
(|x|) (a)

whereg is a radial function. Assume that

R∫
0

dσ

σN−1

σN/N∫
0

[
(g+)∗ − (g−)∗

]
(s) ds > 0, (b)

where, for any functionh, h∗ (respectivelyh∗) stands for the nondecreasing (respectively
the nonincreasing) rearrangement ofh, with respect to the measureµ defined by

µ(E)=
∫
E

sN−1 ds

for any measurable subsetE of [0,R].
THEOREM 1. –Under hypothesis(a)and(b), the solutionu of{−�u= f in B(0,R),

u|∂� = 0,

is positive.

To be more clear and explicit, let us give the meaning of our result throughout the
following particular case [14]. Suppose that�⊂ R

N . Let B(0, r0) andB(0,R) be two
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open balls such that

B(0, r0)⊂ B(0,R)⊆�.

Assume that

f (x) ∈ {−α,β} and
{
x ∈� | f (x)=−α

}⊆ B(0, r0),

whereα andβ are two positive real numbers. Then the solutionu of{−�u= f in �,
u|∂� = 0,

is positive if we have the following inequalities

1+ α

β
�
(
R

r0

)N
N − 2

N(R
r0
)N−2− 2

if N > 2,

1+ α

β
�
(
R

r0

)2 1

1+ 2Log
(
R
r0

) if N = 2.

In this work the main difficulty occurs if the zero order coefficientc of operatorA is
not equal to zero; it is enough to state our results in the model case{−�u+ c.u= f in �,

u|∂� = 0.

In fact, up to some technical computations, we can obtain our results for general operator
A. We will apply our maximum principle result to many frameworks:

(i) We will state that the solution of{−�u− c|u| = f in B(0,R),
u|∂B = 0,

has a positive radial average if the radial average off verifies some natural hypothesis.
(ii) We will study the positivity of the solution of the following semi-linear problem,

without monotonicity or positivity hypothesis onf :{−�u= f (x,u) in �,
u|∂� = 0.

(iii) We will state the positivity of the solution of the fourth order problem{−�2u= f in �,

u|∂� =�u|∂� = 0.

For a first result about the positivity of the solution of this equation we can see [14]
where� is a ring.

(iv) By a negative result we will prove that the main hypothesis used in this paper is
not related to the method.
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(v) Our method works in the case of parabolic equation.
(vi) Localization of critical point [16]: here we will explain how to use our main

result to study the star-shapedness property of the level sets of solutions to various p.d.e.
in the case� simply connected. Such results are already known in the case�=�1\�2,
�2⊂�1, where�i is, for instance, convex: [7,4,3]. And let us point out that the results
of the papers mentionned above do not apply in the case� simply connected.

2. Setting of the problem, notations and hypothesis

Let� be an open bounded and regular subset ofR
N . We suppose that� is connected.

Let us consider the solutionu of the following equation{−�u+ c.u= f in �,
u|∂� = 0.

(1)

We assume that the operator−�+ c.I satisfies the maximum principle on� (for more
details about maximum principle cf. [9,10]). Let us denote byEf the negative support
of f , i.e., the set

Ef = {x ∈� | f (x) < 0
}
.

We assume that

Ef ⊂�. (2)

Let ϕ andh be two functions defined on� and such that 0� ϕ(x) � T . For anyx in �,
set

g(x)= sup
{
k
(
ϕ(x)
) | k(.) continuous function

defined on[0, T ] s.t.koϕ(.) � h(.) on�
}
.

(3)

There exists a functionhϕ(.) defined on[0, T ] s.t.

hϕ

(
ϕ(x)
)= g(x) � h(x) ∀x ∈�. (4.1)

In the same way, we define, for anyx in �,

k(x)= inf
{
l
(
ϕ(x)
) | l(.)continuous function

defined on[0, T ] s.t. loϕ(.) � h(.) on�
}
.

We define, on[0, T ], a functionhϕ(.) such that

hϕ
(
ϕ(x)
)= k(x) � h(x) ∀x ∈�. (4.2)

DEFINITION 1. –
1. Functionhϕ(.) defined by(3) and (4.1) is called estimate from below ofh with

respect toϕ, on�.
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2. Functionhϕ defined by(4.2) is called estimate from above ofh with respect toϕ,
on�.

3. Functionϕ plays an important role in this study. We call it shape function.

Remarks1. –
(i) Let f be positive function. Then

∫
� fϕ dx <+∞ if

∫
� f dx <+∞.

(ii)
∫
�(|f |)ϕ dx <+∞ entails that

∫
� |fϕ|dx <+∞.

(iii) fϕ andf ϕ are bounded iff is bounded.
(iv) The hypothesis

∫
� |fϕ|dx < +∞ assumed in (6) Section 3, is necessary to

construct positive subsolution of (1) which is the main idea of our paper; this
is showed by the following example:

�= B(0,R)⊆R
2 ϕ(x)= |x|, x = (x1, x2),

f (x)=
{−1/|x1|α, if |x1|� r0, x ∈ B(0,R),

1/|x1|α, if |x1|> r0, x ∈ B(0,R),

with 0< α < 1
2. Functionf belongs toL2(�) andfϕ(|x|)≡−∞. In this case,

our method does not work.

DEFINITION 2. –Letr ands be two bounded and positive functions defined on[0, T ].
Let us set

λ(r, s,0, T )= inf

[ T∫
0

rψ
′2 dx.

( T∫
0

sψ2 dx

)−1 ∣∣∣ ψ ∈H 1(]0, T [),ψ(T )= 0

]
.

The goal of this study is to give some sufficient conditions onf to ensure the positivity
of the solutionu of Eq. (1). These conditions are nearly necessary. Roughly speaking,
our fundamental idea is to construct a positive subsolution of(1) which is of the form
v ◦ ϕ(.), wherev is defined on[0, T ]. For the sake of clarity, we present, in a first step,
our idea in a simple framework:ϕ(x)= |x| is a radial function and the operator in(1)
is such thatc≡ 0. We will see that the casec �≡ 0 is more complex.

3. The shape function is radial

To simplify the technical details of our work, we assume that

ϕ(x)= |x| ∀x ∈R
N,

c(x)= 0 ∀x ∈�.

And roughly speaking we look for positive subsolutionW of (1) radial inB(O,R):
W(x) :=w(ϕ(x))=w(|x|) in B(O,R)⊆�,

−�W � f in H−1(�),

W|∂� = 0, W � 0 ∀x ∈�,

(5)

whereR is the radius of the largest ballB = B(O,R) enclosed in�. For simplicity, we
assume thatO is the center of the ballB. We denote

f
R
(x)= f (x) ∀x ∈ B(O,R),
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and we assume the following hypothesis∫
B

∣∣(f̃R)ϕ
∣∣dx <+∞, (6)

{∃r0, 0< r0 < R s.t. Ef ⊆B(0, r0), and

G(R,f )= ∫ R0 1
rN−1

∫ r
0 sN−1(f̃R)ϕ(s) ds dr > 0

(7)

whereEf = {x ∈� | f (x) < 0} and where(f̃R)ϕ is given by Definition 1, and

f̃R(x)= f (x) ∀x ∈ B(O,R)\[B(O, r0)\Ef

]
,

f̃R(x)= 0 if x ∈ B(O, r0)\Ef .

Ef ⊂B(0, r0) is called the localization hypothesis of negative supportEf .

Remarks2. –
(1) Let us point out that hypothesis (6) is satisfied for anyf bounded from below.
(2) We can relax (7) byG(R,f ) = 0. In this case, the result of Theorem 1 could

be some what weaker. This situation will be studied in Theorem 2 for ellipsoïdal
coordinates.

LEMMA 1. –Let us consider the function

w(r)=
R∫

r

1

σN−1

[ σ∫
0

sN−1(f̃R)ϕ(s) ds

]
dσ.

w is positive and satisfies Eq.(8) written here after.

Proof. –From (7) we have:

(f̃R)ϕ(r) � 0, 0 � r � r0,

(f̃R)ϕ(r) � 0, r0 < r � R.

Then there exists somēr > r0 such thatw′(r̄)= 0, w′(r) � 0 ∀r , 0� r � r̄ , w′(r) � 0,
∀r , r̄ � r � R. Sincew(0) � 0 from (7) andw(R)= 0, we obtain that

w(r) � 0 ∀r, 0 � r � R.

To achieve the proof, it is easy to verify thatw is solution of (8) here after.
Indeed let us considerw the solution of

− 1

rN−1

d

dr

(
rN−1dw

dr

)
= g(r)= (f̃R)ϕ in B(0,R),

dw

dr
(0)= 0, w(R)= 0.

(8)



R. TAHRAOUI / Ann. I. H. Poincaré – AN 19 (2002) 815–870 821

It is easy to see that

w(r)=
R∫

r

1

σN−1

σ∫
0

sN−1g(s) ds dσ. ✷

From hypothesis (7), we havew(r) > 0 for anyr , 0< r < R. Let us denote

W(x)=w
(|x|) ∀x ∈ B(O,R).

We have {−�W = g � f in B(O,R),

W|∂B = 0.
(9)

We are going to extend inequality (9) to�, in some sense. Let̃g be a function defined
as follows

g̃(x)=
{
g(|x|) ∀x ∈ B(O,R),
0 ∀x ∈�\B(O,R),

and let us denote

W̃(x)=
{
W(x) if x ∈ B(O,R),
0 if x ∈�\B(O,R).

W̃ belongs toH 1
0 (�). From extension lemma (cf. Appendix C) we obtain:{

−�W̃ � g̃ in H−1(�),
W̃ ∈H 1

0 (�),
(10)

and {
−�(W̃ − u) � g̃ − f in H−1(�),
W̃ − u ∈H 1

0 (�).

As g̃(x)−f (x) � 0 ∀x ∈�, g̃(.)−f (.) �≡ 0, we obtain, from Stampacchia result’s [11],
that

W̃(x)− u(x) < 0 ∀x ∈�,

i.e.,u(x) > 0 ∀x ∈�, since from hypothesis (7) we have

W̃(x) � 0 ∀x ∈�.

So we have proved the following result.

THEOREM 1. –Under hypothesis(6) and(7), the solutionu of (1) is positive in�.

A simple and illustrative example(cf. [13,14]). – In order to give a precise idea of our
result, we propose a very simple but significant example. Letu be the solution of{−�u= f in �= B(O,R)⊂R

N ,
u|∂� = 0,
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wheref (x) ∈ {α,β} a.e.x ∈ �, α andβ being two real numbers,α < 0, β > 0. We
assume that

Ef = {x ∈� | f (x)= α
}⊆ B(O, r0)

whereα,β, r0 andR are such that:


1− α

β
�
(
R

r0

)N
N − 2

N
(
R
r0

)N−2− 2
if N > 2,

1− α

β
�
(
R

r0

)2

· 1

1+ 2Log
(
R
r0

) if N = 2.

(10.1)

Theorem 1 states thatu is positive. Relations (10.1) mean that if the setEf is “sufficently
far ” from the boundary of� and if |α| is not “too large” with respect toβ, thenu is
positive. IfEf =B(O, r0), (10.1) is necessary to obtainu positive.

4. The shape function is ellipsoïdal

In Section 3, we used radial coordinates. These coordinates are not always well
adapted to the geometry of�. So we use in the following ellipsoïdal coordinates
as in [17]. For this let us give a familly of parametrized ellipsoïdsB(ρ) centred at
O. We denote the boundary of such an ellipsoïd by∂B(ρ). This boundary∂B(ρ) is
characterised by the following equation:

∀x ∈ ∂B(ρ),
∑
j

x2
j /(ρ + qj )= 1, qj � 0, ∀j = 1,2, . . . ,N, (12)

where one of theqj is zero andρ is a positive parameter. In the sequel, we set

mj =mj(ρ)= (ρ + qj )
1/2, ∀j = 1,2, . . . ,N.

Let us notice that we have

ρ = inf
j

(
m2

j

)
. (13)

If the ellipsoïdB(ρ) is not degenerate, i.e., whenρ > 0,ρ is given by an implicit function
ϕ(.) of x: ρ = ϕ(x). The level sets ofϕ(.) represent boundaries ofB(ρ), i.e.,

∂B(ρ)= {x | ϕ(x)= ρ
}

for some levelρ.

From the computations of [17] we obtain the following relations:

�ϕ(x)= 2β̂(x)ψ(x,ρ), ρ = ϕ(x),
∣∣∇ϕ(x)

∣∣2= 2ψ(x,ρ),
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β̂(x)= 1

2

∑
j

1

ϕ(x)+ qj

= θ
(
ϕ(x)
)
,

β̂(x)= �ϕ(x)

|∇ϕ(x)|2 ,

θ(t)= 1

2

∑
j

1

t + qj

,

ψ(x,ρ)= 2
[∑

j

x2
j /(ρ + qj )

2
]−1

.

(13.1)

For more details, cf. [17]. Up to a translation, we can, to simplify, assume that the
origin O belongs to� and is the center of the ellipsoïds. Let us set

γ̃ (x)= c(x)

|∇ϕ(x)| , γ (x)= c+(x)
|∇ϕ(x)| ∀x ∈� s.t.

∣∣∇ϕ(x)
∣∣ �= 0 (14)

T = sup
{
ρ ∈R

+ | B(ρ)⊆�
}
.

Let us remark thatB(ρ) is an increasing family of subsets of� and T = ϕ|∂B(T ) =
sup{ϕ(x) | x ∈ B(T )}. We suppose that

∣∣γ̃ (x)
∣∣= |c(x)|
|∇ϕ(x)| � M ∀x ∈�, (15)

and

f | |∇ϕ|2 belongs toL1(�). (16)

Remarks about hypothesis(15). – The following example shows that (15) is somewhat
necessary.

Considerb(x)= 1/(x − x0)
2 ∀x �= x0, x ∈]0,1[, wherex0 ∈]0,1[ is fixed. Letuε be

the solution of {−u′′ε + bε.uε = g, g � 0 on]0,1[,
uε(0)= uε(1)= 0, g bounded,

(17)

with

bε(x)=
{

1/ε2 if x ∈ [x0− ε, x0+ ε] = Iε,

b(x) if x ∈]0,1[−Iε.

Thenuε(x0)→ 0 asε→ 0. Indeed, arguing by contradiction, i.e., suppose that there
existsα > 0 such that for anyε, 0< ε < ε0

inf
{
uε(x) | x ∈ [x0− ε0, x0+ ε0]}� α.
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We have:
1∫

0

|u′ε|2dx +
1∫

0

bε(uε)
2 dx � ‖g‖∞.‖uε‖L2,

from which we deduce
1∫

0

bε(uε)
2dx � c.

Thus

0<
α2

ε2

x0+ε∫
x0−ε

dx �
x0+ε∫

x0−ε

bε(uε)
2 � c ∀ε > 0,

or again

2α2 � ε.c

which is not possible forε small enough. Recall thatγ (x)= c+(x)/|∇ϕ(x)| allows us
to defineγ ϕ which helps to obtain positive solutiona(.) of−

1

β
(βa′)′ + γ ϕa = 0 on[0, T ],

a′(0)= 0, a(T )= 1,

where

β2(s)=
N∏

j=1

(s + qj )

and qj � 0 are some constants. From example (17), we see easily that ifγ ϕ is not
bounded, the solutiona(.) of the above equation can vanish in[0, T ]. We will also
see later in Proposition 1, thata(.) > 0 on [0, T ] is essential to construct a positive
subsolution of (1). So taking into account the above example, hypothesis (15) is quite
natural; indeed ifc(.) � 0, (15) is some what necessary to our construction because our
method requires to havea(.) > 0 on [0, T ]. And if Ec = {x ∈� | c(x) < 0} is such that
|Ec|> 0,Ec ⊂�, we choose suitably the originO in Ec. Thusγ (x) is bounded ifc(x) is
bounded, sinceO is the center ofB(ρ). In a first step we study positivity of the solution
v of {−�v + c+.v = f in �,

v|∂� = 0.
(16.1)

In a second step, it sufficies to remark that, ifv is nonnegative, we have

u � v in �,

which gives the expected result. Finally, let us point out that ifv is nonpositive we also
haveu � v in �. These remarks show that, instead of (1), the significant problem that
we have to consider is problem (16.1). So we will study it subsequently.
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Remark. – Let us point out that if∣∣{x ∈� | c(x) < 0
}∣∣> 0

it is necessary to suppose

‖c−‖L∞(�) < λ1(�,�)

to have existence and classical maximum principle for (1).λ1(�,�) is the first
eigenvalue of�, in �, with Dirichlet boundary condition.

Remarks about hypothesis(16). – First of all, let us recall thatO is the center of the
ellipsoïdsB(ρ). If f/|∇ϕ|2 does not belong toL1(�), we can proceed by approximation
procedure. That is to say, since from (2)Ef ⊂�, we choose the originO in �\Ef and
study the positivity of the solutionvε of{−�vε + c+.vε = fε in �,

vε|∂� = 0,

where

fε(x)=
{

0 if x ∈ B(0, ε),
f (x) if x ∈�\B(0, ε),

for ε > 0 small enough. Next we pass to the limit asε goes to zero and the expected
result follows for (16.1), if the necessary hypothesis are satisfied.

The following lemma is necessary to understand the hypothesis that we will assume
and which establishes the quantitative link between functionsf + = sup(f,0), f − =
− inf(f,0) and their respective supports.

LEMMA 2. –There exists a uniqueτ , 0< τ , such that

1

t2
.

(
π

2

)2

= λ(1,1,0, t) >
(∥∥γ ϕ
∥∥∞)2. t2

2
∀t ∈]0, τ [,

λ(1,1,0, τ )= (∥∥γ ϕ
∥∥∞)2. τ 2

2
.

Proof. –The functiont→ λ(1,1,0, t) is decreasing andλ(1,1,0, t)→+∞ ast goes
to 0+. Therefore, there existsτ > 0 such that

λ(1,1,0, τ )= (∥∥γ ϕ
∥∥∞)2. τ 2

2
,

and

λ(1,1,0, t) >
(∥∥γ ϕ
∥∥∞)2. t2

2
∀t ∈]0, τ [.

The equalityλ(1,1,0, t)= (π
2 )

2 1
t2 follows from a classical computation.✷

In some sense, Lemma 3 will show that the use of ellipsoïdal coordinates is somewhat
“miraculous” since ellipsoïdal computations are nearly similar to radial ones.
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LEMMA 3. –We have

β̂ϕ(t)= β̂ϕ(t)= θ(t)= α

t
+ δ(t), ∀t ∈ [0, T ], (19.1)

whereα is a real constant,� 1
2 and δ(.) is a positive and bounded function defined on

[0, T ].
Proof. –Let i1, i2, . . . , ik, k � 1, be indexes belonging to{1,2, . . . ,N} such that

ρ = inf
j

m2
j =m2

i1
=m2

i2
= · · · =m2

ik
.

Therefore

qi1 = qi2 = · · · = qik = 0, qj > 0 ∀j �= i1, . . . , ik.

So

θ(t)= 1

2

k

t
+ 1

2

∑
j /∈{i1,...,ik}

1

t + qj

,

i.e.,

θ(t)= k

2
.
1

t
+ δ(t). ✷

In the sequel we need to use the following ordinary differential equation and its
solutiona(.)= at (.):

−
1

β(s)

(
β(s)a′(s)

)′ + γ ϕ(s)a(s)= 0 in ]0, t[,
a′(0)= 0, a(t)= 1,

(20)

where

β2(s)=
N∏

j=1

(s + qj ). (21)

If there is no ambiguity, we denote the solutionat(.) of (20) bya(.). In Appendix B, we
prove that (20) has a unique solutionat (.) belonging toC0([0, t]) such thata(s) > 0,
∀s 0 � s � t . Let us recall that the positivity ofa(.) requires (15) (cf. remarks about
(15)). In Appendix B the reader can find some regularity results about (20). Now let us
assume the following hypothesis:

(H0) Localization hypothesis of the negative supportEf . There existst0 such that
0< t0 < T andEf ⊆ B(t0)⊂�.

(H1) There exists̄t , 0< t0 < t̄ � T such that

;(t̄)=
t̄∫

0

[ σ∫
0

a(s)f̃∇,ϕ(s)β(s) ds

]
dσ

a2(σ )β(σ )
� 0
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where

f̃∇,ϕ =
(

f̃

|∇ϕ|2
)

ϕ

(cf. Definition 1), (21.1)

f̃ (x)= f (x) if x /∈ B(t0)\Ef , f̃ (x)= 0 if x ∈ B(t0)\Ef ,

β is given by (21) anda(.) is the unique solution of (20) in]0, T [.
(H2) The operator−�+ c+(x).I and the function shapeϕ verify(

π

2

)2 1

t̄ 2
= λ(1,1,0, t̄ ) >

(∥∥γ ϕ
∥∥∞)2. t̄ 2

2
.

Remark3 (Comments about hypothesisH1 and H2). – If (H1) is satisfied for̄t > τ ,
given by Lemma 2, then (H1) and (H2) are not satisfied simultaneously. This means that
f + is not sufficiently preponderant with respect tof − in a neighbourhood ofEf . And
the method does not work.

THEOREM 2. –We assume(15), (16), (H0), (H1)and(H2). Then the solutionu of (1)
satisfies the following:

(i) u(x) > 0 if ;(t̄) > 0,
(ii) u(x) > 0 if ;(t̄)= 0, B(t̄)⊂� andf �≡ 0 on�\B(t̄),
(iii) u(x) � 0 if ;(t̄) = 0 and B(t̄) = � or ;(t̄) = 0 andB(t̄) ⊂ � with f ≡ 0 on

�\B(t̄).

Proof of Theorem 2. –For the proof of this result, we proceed in several steps. The
main idea is to construct a positive subsolution of (1) which has the same level sets asϕ.

Step1. (A differential equation, its link with (1) and its representation formula.) Let
us consider the following equation{−<′′(t)− θ(t)<′(t)+ γ ϕ.<(t)= f̃∇,ϕ(t)= g(t), ∀t ∈]0, t̄[,

<′(0)= <(t̄)= 0, t̄ is given by (H1),
(22)

where f̃∇,ϕ is defined by (21.1),θ(.) is given by Lemma 2 and (13.1).γ is defined
by (14).

PROPOSITION 1. –Suppose thatγ ϕ belongs toL∞(]0, t̄[). Then there exists a
solution of(22), denoted by<(.), and which has the following representation formula:

<(t)= a(t)

t̄∫
t

dσ

a2β(σ )

σ∫
0

aβf̃∇,ϕ(s) ds

with β(t)= [∏N
j=1(t + qj )]1/2, and wherea(.) is the solution of Eq.(20) on ]0, T [; t̄ is

given by hypothesis(H1).

Proof of Proposition 1. –From Appendix B, Eq. (20) has a continuous positive
solution, denoteda(.). Therefore, we can set

<(t)= a(t).v(t) ∀t ∈ [0, t̄]
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wherev(.) is the solution of the following equation:−
1

βa

(
a2βv′
)′ = f̃∇,ϕ in ]0, t̄[,

v′(0)= 0, v(t̄)= 0.
(23)

By a direct integration it is easy to show that

v(t)=
t̄∫

t

dσ

βa2(σ )

σ∫
0

βaf̃∇,ϕ(s) ds.

Using hypothesis (H1) and proceeding as in Lemma 1, we can show thatv(.) is
nonnegative. Thus<(.) is nonnegative. ✷

Now let us set

W(x)=
{
<(ϕ(x)) if x ∈ B(t̄),
0 if x ∈�\B(t̄).

As already seen in part 3 (radial coordinates),W is a good candidate to verify:

0 �W(x) < u(x) in �. (24)

But to obtain (24) we have to use<′ ◦ ϕ and<′′ ◦ ϕ which are not necessarly defined.
So we have to regularize Eqs. (20), (22) and (23). For this we need some approximation
results.

Step2. (A troncature result.)

LEMMA 3 (Troncature). –Letf be a function defined on�, bounded from below. For
anym ∈R, we set

fm(x)= inf
(
f (x),m

)= [f (x)+m− |f (x)−m|], ∀x ∈�.

Then we have:
(i) (fϕ)m(t) � (fm)ϕ(t) � fϕ(t) ∀t ;
(ii) (fϕ)m(ϕ(x)) � (fm)ϕ(ϕ(x)) � fm(x) � f (x) ∀x ∈�, where we have set

gm(t)= inf
(
g(t),m

) ∀t, for any functiong(.).

Proof of Lemma 3. –First let us remark that for any functionk(.) defined on[0, T ] we
have

g̃ϕ(t)= k(t) ∀t ∈ [0, T ], (25)

if

g̃(x)= k ◦ ϕ(x), x ∈�.

For anym ∈R, we have

(fm)ϕ(t) � fϕ(t) ∀t ∈ [0, T ]. (26)
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Let us prove

(fϕ)m(t) � (fm)ϕ(t) ∀t.
For this let us set

g(x)= fϕ ◦ ϕ(x)= fϕ

(
ϕ(x)
)
,

gm(x)= 1

2

[
fϕ

(
ϕ(x)
)+m− ∣∣fϕ

(
ϕ(x)
)−m
∣∣],

h(t)= (fϕ)m(t)= 1

2

[
fϕ(t)+m− ∣∣fϕ(t)−m

∣∣].
It is clear that

h ◦ ϕ(x)= h
(
ϕ(x)
)= gm(x) ∀x ∈�, (27)

which means from (25)

(gm)ϕ(t)= h(t) ∀t ∈ [0, T ]. (28)

But

gm(x)= inf
(
fϕ(ϕ(x)),m

)
� inf
(
f (x),m

)= fm(x) (29)

sincefϕ(ϕ(x)) � f (x), or again

gm(x)= (fϕ)m
(
ϕ(x)
)
� fm(x) � f (x).

Thus using (28) we obtain the result

(gm)ϕ(t)= (fϕ)m(t) � (fm)ϕ(t) � fϕ(t) ∀t, (30)

since(k1)ϕ � (k2)ϕ if k1 � k2. To prove (ii) it suffices to taket = ϕ(x) in (30).

Step3. (Regularization of Eq. (22).) In a first step we can suppose that we have (cf.
H1)

t̄∫
0

[ σ∫
0

a(s)f̃∇,ϕ(s)β(s) ds

]
dσ

a2(σ )β(σ )
> 0. (31)

The case where the left hand side of (31) is equal to zero will be treated later. From (31)
there existsm0 > 0 such that

∀m � m0

t̄∫
0

[ σ∫
0

a(s)(f̃∇,ϕ)m(s)β(s) ds

]
dσ

a2(σ )β(σ )
> 0.

In the sequelm is fixed. Letρε be the classical regular mollifier and let us define

gε(t)= (f̃∇,ϕ)m ∗ ρε(t) ∀t ∈R,

γ ϕ
ε (t)= γ ϕ ∗ ρε(t) ∀t ∈R,
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after extending(f̃∇,ϕ)m andγ ϕ by zero to the all spaceR. The operator star stands for the
convolution operator. From Remark 2.1 it is not restrictive to assumeγ ϕ

ε nonnegative in
some neighbourhood of origin 0. Thus we can apply Appendix B withγ ϕ

ε and conclude
that the solutionaε of regularized equation of (20), is positive.

Now let us consider the solution<ε(.) of the regularized equation of (22):−<′′ε (t)−
(β + ε)′(t)
(β + ε)(t)

.<′ε(t)+ γ ϕ
ε (t)<ε(t)= gε(t),

<′ε(0)= <ε(t̄ )= 0.
(32)

<ε(.) is regular and its representation formula is

<ε(t)= aε(t).

t̄∫
t

[ σ∫
0

aε(s)gε(s)(β + ε)(s) ds

]
dσ

a2
ε (σ ).(β + ε)

,

aε is solution of the regularized equation of (20). For anyt > 0

β ′(t)
β(t)

.<′ε(t)=−
β ′(t)
β(t)

.

t∫
0

gεaε.(β + ε) ds × 1

a2
ε .(β + ε)(t)

.

As β(.) is nondecreasing

∣∣∣∣β ′(t)β(t)
.<′ε(t)
∣∣∣∣� β ′(t)

β(t)
.

t∫
0

aε.|gε|ds 1

a2
ε (t)

.

But we have

‖gε‖L∞(0,t̄) � c, ‖aε‖L∞(0,t̄) � c

and aε(x) > inf[a(x)/x ∈ [0, t̄]]/2 > 0, for ∀ε � ε0, with ε0 small enough, because
aε→ a uniformly. So

∣∣∣∣β ′(t)β(t)
<′ε(t)
∣∣∣∣� c.

β ′(t)
β(t)

t∫
0

ds = c.t
β ′(t)
β(t)

� c, ∀t. (33)

From (33) we deduce

∣∣<′ε(t)∣∣� c, ∀t, (33.1)

0 � β ′(t)
β(t)

− β ′(t)
β(t)+ ε

= εβ ′(t)
β(t).(β(t)+ ε)

� β ′(t)
β(t)

.

Using (33) we obtain ∣∣∣∣(β ′(t)β(t)
− β ′(t)

β(t)+ ε

)
<′ε(t)
∣∣∣∣� c ∀t. (34)
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Let us taket = ϕ(x) in (22), we obtain:

−<′′ε
(
ϕ(x)
)− β ′(ϕ(x))<′ε(ϕ(x))

β(ϕ(x))
+ εβ ′(ϕ(x))

β(ϕ(x)).(β(ϕ(x))+ ε)
.<′ε
(
ϕ(x)
)

+ γ ϕ
ε

(
ϕ(x)
)
<ε

(
ϕ(x)
)=: gε

(
ϕ(x)
)
, ∀x ∈ B(t̄). (35)

But let us recall that we have the following important relation

β ′(ϕ(x))
β(ϕ(x))

= �ϕ(x)

|∇ϕ(x)|2 , (36)

∀x ∈�\{x ∈� | ∇ϕ(x)= 0}, i.e., a.e.x ∈�. From (35) and (36) we deduce that

−�<ε(ϕ)+ γ ϕ
ε (ϕ).|∇ϕ|2<ε(ϕ)

+ ε
β ′(ϕ).|∇ϕ|2

β(ϕ).(β(ϕ)+ ε)
<′ε(ϕ)= gε(ϕ).|∇ϕ|2 a.e.x ∈ B(t̄). (37)

Before to conclude we need to pass to the limit in (37) asε goes to zero.
Let us consider the function

ψε(x)= ε
β ′(ϕ(x)).|∇ϕ|2<′ε(ϕ(x))
β(ϕ(x))(β(ϕ(x))+ ε)

.

We have

ψε(x)−→ 0 ∀x ∈ B(t̄)\{x | ∣∣∇ϕ(x)
∣∣= 0
}

i.e., a.e.x ∈ B(t̄), and∀x ∈ B(t̄) it follows

∣∣ψε(x)
∣∣� ∣∣∇ϕ(x)

∣∣2.∣∣∣∣β ′(ϕ(x))β(ϕ(x))
<′ε
(
ϕ(x)
)∣∣∣∣� c

by (33) and the regularity ofϕ on �. So ψε tends strongly to zero inL2(�) thanks
to Lebesgue theorem. It is easy to see thatγ ϕ

ε (ϕ).|∇ϕ|2<ε(ϕ) converges strongly to
γ ϕ(ϕ)|∇ϕ|2.<(ϕ) in L2(�). On the other hand∣∣∇<ε(ϕ)

∣∣= ∣∣<′ε(ϕ).∇ϕ
∣∣� c ∀x ∈ B(t̄)

using (33.1); finallygε(ϕ) tends tog(ϕ) asε goes to zero. Now we are able to pass to
the limit in (37) asε goes to zero. We obtain{−�<(ϕ)+ γ ϕ(ϕ).<(ϕ).|∇ϕ|2= g(ϕ)= (f̃∇,ϕ)m(ϕ).|∇ϕ|2 in B(t̄),

<(ϕ)|∂B(t̄) = 0, |∇<(ϕ)|� c.
(38)

Let us estimate from above the right hand side of (38) and let us estimate from below its
left hand side; we find{−�<(ϕ)+ c(x).<(ϕ) � f (x) in B(t̄),

<(ϕ)|∂B(t̄) = 0, |∇<(ϕ)|� c in B(t̄),
(38.1)
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since we have:

c(x) � γ ϕ
(
ϕ(x)
)
.
∣∣∇ϕ(x)

∣∣2 by definition ofγ ϕ,

and

(f̃∇,ϕ)m(ϕ) � f̃

|∇ϕ|2 � f

|∇ϕ|2 in B(t̄),

from Lemma 3. Using the extension lemma of Appendix C, we can show, in the same
way as in the last part of the proof of Theorem 1, that the solutionu of (1) is positive in
�. The first part of the theorem is so proved.

Step4. Now it remains to examine the following case:

t̄∫
0

[ σ∫
0

a(s)f̃∇,ϕ(s)β(s) ds

]
dσ

a2(σ )β(σ )
= 0 (39)

(cf. (31)). If we have (39) let us set, for anyε > 0

hε(x)= f (x)+ ε ∀x ∈ B(t̄)\B(t0); hε(x)= f (x) ∀x ∈ B(t0).

For anyε > 0, it is easy to see that we have:

t̄∫
0

[ σ∫
0

a(s)(h̃ε)∇,ϕ(s)β(s) ds

]
dσ

a2(σ )(β(σ )
> 0. (40)

We have to consider two cases:
(i) B(t̄)⊂� andf �≡ 0 on �\B(t̄).
Let v be the solution of {−�v+ c(x).v = k on�,

v|∂� = 0,
(41)

where

k(x)=
{
f (x) ∀x ∈ B(t̄),
0 ∀x ∈�/B(t̄).

Then we apply the first part of the proof to obtain

vε(x) > 0 a.e.x ∈�,

wherevε is the solution of {−�vε + c.vε = kε on�,

vε|∂� = 0,
(42)

with kε is defined similarly tohε given above. Let us take the limit in (42) asε goes to
zero. We obtain
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vε ⇀ v in H 1
0 (�) weakly,

v(x) � 0 a.e.x ∈�.

As from the strong maximum principle we have

u(x) > v(x) a.e.x ∈�,

the result is then clearly proved.
(ii) B(t̄)=� or B(t̄)⊂� with f ≡ 0 on �\B(t̄). Here we also apply the first part of

the proof to obtain

uε(x) > 0 a.e.x ∈�,

whereuε is the solution of (1) with the right hand sidef replaced byhε. To achieve the
proof of our result, we pass to the limit asε goes to zero. We finally obtain

uε ⇀ u in H 1
0 (�) weakly

and

u(x) � 0 a.e.x ∈�.

Now the proof is achieved. ✷
5. General shape’s function

In order to improve our results, we are now going to enclose the negative support off

by an increasing family of level sets of some shape functionϕ satisfying the inclusion:

Ef ⊆B(t0)⊂ B(t)⊆� ∀t, t0 < t � T .

We would like to chooseϕ in such a way that the measures of the sets[B(t0)\Ef ]
and [�\B(T )] are as small as possible. The smaller these measures are, the better
these results. Indeed in the previous sections, we were not able to take into account the
behaviour off in these two areas. We shall see how to use shape functions in general to
overcome this difficulty.

Let ϕ be a regular function defined on� such that

ϕ|∂� = sup
{
ϕ(x) | x ∈ �̄

}= T .

Since we can replaceϕ by ϕ− inf[ϕ(x) | x ∈ �̄] if necessary, we can always assume that
ϕ is nonnegative in�. We suppose that, for anyt , 0< t < T , the level sets ofϕ

B(t)= {x ∈� | ϕ(x) < t
}

are connected and regular, i.e., the boundaries∂B(t) are regular. The setsB(t) are
an increasing family of open subsets of�. In ellipsoïdal coordinates,ϕ satisfies an
important relation of structure given by (19.1) proved in Lemma 3. For general shape’s
function we do not have (19.1). So we are obliged to assume the following hypothesis:
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β̂ϕ(t)= α1

t
+ δ1(t) ∀t ∈]0, T ],

β̂ϕ(t)= α2

t
+ δ2(t) ∀t ∈]0, T ],

where

β̂(x)=�ϕ(x)/
∣∣∇ϕ(x)

∣∣2, (42.1)

αi are positive constants, 0< α1 � α2, andδi are bounded positive functions defined on
[0, T ], i = 1,2. Let us set

βi(t)= tαi exp

[ t∫
0

δi(s) ds

]
, i = 1,2,

and define, for anyσ ∈ [0, T ]

β̌σ (s)=
{
β1(s) if s ∈ [0, σ ],
β2(s) if s ∈ [σ,T ], (43)

and consider the application>

σ ∈ [0, T ]→>(σ)=
σ∫

0

f̃ϕ(s)aσ (s)βσ (s) ds, (44)

where, for anyσ ∈ [0, T ], aσ (.) denotes the solution of:{
− 1

β̌σ
(β̌σ a

′
σ )
′ + γ ϕ.aσ = 0 on]0, T [,

a′σ (0)= 0, aσ (T )= 1.
(45)

In this section we also assume the localization hypothesis (H0). Before introducing the
hypothesis needed in this part, let us give the following results

PROPOSITION 2. –We have the following estimate

‖aσ‖W1,∞(]0,T [) � c

wherec is a constant independant ofσ .

Its proof is an immediate consequence of the proposition of Appendix B.

PROPOSITION 3 (Continuity with respect to the parameterσ ). – The functiona(σ, .)=
aσ (.) satisfies

(i) ‖aσ1 − aσ2‖H1(]0,T [) � c.|σ1 − σ2|, where c is a constant independant ofβσ1

andβσ2,
(ii) ‖aσ1 − aσ2‖L∞([0,T ]) � c.|σ1 − σ2|, where c is a constant independant ofβσ1

andβσ2,
(iii) |a(σ, t)− a(σ ′, t ′)|� c[|σ1− σ2| + |t − t ′|] wherec is a constant.
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To be more clear, this result will be proved later. As in Section 5, we propose to
construct a function< solution of Eq. (22) for a suitableθ and such that< ◦ ϕ is a
positive subsolution of Eq. (1). To guarantee the positivity of< we need hypothesis (H3).
Hypothesis (H4) allows us to state that< ◦ ϕ is a subsolution of (1). To state our
hypothesis we need some preliminaries.

Let us set

ā(t)=
{

max[aσ (t) | σ, t0 � σ � T ], 0� t � t0,
min[aσ (t) | σ, t0 � σ � T ], t0 � t � T ,

(45.1)

a(t)=
{

min[aσ (t) | σ, t0 � σ � T ], 0� t � t0,
max[aσ (t) | σ, t0 � σ � T ], t0 � t � T ,

(45.2)

β̄(t)=
{
β1(t), 0� t � t0,
β1(t), t0 � t � T ,

(45.3)

β(t)=
{
β1(t), 0� t � t0,
β2(t), t0 � t � T .

(45.4)

From Proposition 3 we have

1 � min
σ�t0

aσ (t) � min
σ�t0
t�0

a(σ, t) > 0

since a(σ, t) > 0 ∀σ � 0, ∀t � 0, by the maximum principle for Eq. (45) (cf.
Appendix B). In the same way

1� max
σ�t0

aσ (t) � min
σ�t0
t�0

a(σ, t) > 0.

(H3) There exists̄t , t0 < t̄ � T such that

t̄∫
0

1

a2(t)β(t)

[ s∫
0

ā(θ)β̄(θ)f̃∇,ϕ(θ) dθ

]
ds > 0.

Comments about(H3). – In the ellipsoïdal coordinates (H3) is identical to (H1) since
βσ = β1= β2 ∀σ .

(H4) ∀t , t0 � t � t̄

f̃∇,ϕ − γ ϕ(t).

t̄∫
t

ds

s∫
t0

f̃∇,ϕ(θ) dθ > 0.

Comments about(H4). – This hypothesis establishes the quantitative link between
f̃ +∇,ϕ

, f̃ −∇,ϕ
and their supports. Let us recall thatγ ϕ(t) = (c+/|∇ϕ|)ϕ(t). So if c(x) � 0

in �\B(t0), (H4) is obviously satisfied.
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Let us setψ(t)= ∫ t̄t ∫ st0 f̃∇,ϕ(θ) dθ . It is easy to see thatψ(t) � 0 in ]t0, t̄[, and{−ψ ′′(t)− γ ϕ(t).ψ(t) > 0 in ]t0, t̄[,
ψ(t̄)=ψ ′(t0)= 0.

(46)

From (H2),‖γ ϕ‖∞ satisfies‖γ ϕ‖∞ < π√
2

1
t̄2 . Thus it verifies also‖γ ϕ‖∞ < (π

2 )
2 1
(t̄−t0)

2

which entails that the operator− d2

dt2 − γ ϕ(t).I verifies the maximum principle in]t0, t̄[.
Thus if we give a nonpositive functiong1 in B(t0)= {x ∈� | ϕ(x) < t0} from (46), we
can see that (H4) permits us to construct a very large class of nonnegative functionsg2

in �\B(t0) such that Eq. (1) has a positive solution if

f (x)=
{
g1(x) in B(t0),
g2(x) in �\B(t0).

Indeed leth(t) be a continuous function nonnegative in[t0, t̄] and let us consider the
solutionψ of {−ψ ′′ − γ ϕ.ψ = h in [t0, t̄],

ψ ′(t0)=ψ(t̄)= 0.

ψ is positive and−ψ ′′ is nonnegative and continuous. For anyλ ∈ R , λ > 0 set

f∇,ϕ(t) :=
{
(g1)ϕ(t) in [0, t0],
−λψ ′′(t) in [t0, t̄].

There existsλ0 > 0 such that, for any λ� λ0, the functionf∇,ϕ satisfies (H3). Then the
suitable functionf is

f (x)=
{
f∇,ϕ ◦ ϕ(x).|∇ϕ(x)|2 in B(t̄),

0, for instance in�\B(t̄).

Now let us consider the following illustrative example:

f (x)=
{−a.|∇ϕ(x)|2 in B(t0), a > 0,
b.|∇ϕ(x)|2 in �\B(t0), b > 0.

In this case (H4) means

0 � γ ϕ(t) � 2b

b(t̄ − t0)2− b(t − t0)2− 2a
∫ t0

0 β1(s) ds.
∫ t̄
t

ds
β2(s)

,

∀t � t0 such thatb(t̄ − t0)
2 > b(t − t0)

2+ 2a.

t0∫
0

β1ds.

t̄∫
t

ds

β2
.

(47)

And (47) is obviously satisfied since by (H2) we have∥∥γ ϕ
∥∥∞ <

π√
2

1

t̄2
,

that is to say,‖γ ϕ‖∞ < 2/(t̄ − t0)
2 if for instancet0 > (1−

√
2
√

2/π)t̄ .
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PROPOSITION 4. –Suppose(H4) and (H0). Then we have: ∀σ ∈ [t0, t̄] the solution
<σ (.) of Eq.(22) is positive in]0, t̄[.

Proof. –From the representation formula ofvσ

<σ (t)= aσ (t).vσ (t)= aσ (t).

t̄∫
t

ds

a2
σ (s)βσ (s)

s∫
0

aσ (θ)βσ (θ)f̃∇,ϕ(θ) dθ.

From (H4) it is easy to see that

vσ (0) �
t̄∫

0

1

a2β

[ s∫
0

āβ̄f̃∇,ϕ dθ

]
ds > 0

which implies thatvσ (t) > 0, ∀t ∈ [0, t0], using the localization hypothesis. To achieve
the proof we apply the maximum principle to Eq. (23) in]t0, t̄[ and we deduce that
vσ (t) > 0, ∀t ∈ [t0, t̄[, that is to say<σ (.) is positive in]0, t̄[. ✷

PROPOSITION 5. –The function<σ (t)= <(σ, t) solution of(22) in [0, t̄] verifies:∀σ0,
0< σ0 < t0, ∃c= c(σ0) > 0 such that{∣∣<(σ, t)− <(σ ′, t ′)

∣∣� c
[|σ − σ ′| + |t − t ′|],

∀σ, σ ′ ∈ [σ0, t̄] ∀t, t ′ ∈ [σ0, t̄]. (48)

Proof. –It sufficies to state thatvσ (t) = v(σ, t) verifies (48). For this we use
Proposition 3 and we proceed as in its proof. Let us giveσ0 < σ < σ ′, 0� t < t ′ � t̄ ; we
have

v(σ, t)− v(σ ′, t ′)= v(σ, t)− v(σ ′, t)+ v(σ ′, t)− v(σ ′, t ′), (49)

∣∣v(σ ′, t)− v(σ ′, t ′)
∣∣� t ′∫

t

ds

a2
σ ′βσ ′

( s∫
0

aσ ′βσ ′ |f̃∇,ϕ|dθ
)

�
t ′∫

t

ds

a2
σ ′

s∫
0

aσ ′ |f̃∇,ϕ|dθ

that is ∣∣v(σ ′, t)− v(σ ′, t ′)
∣∣� c|t − t ′|,

wherec is a constant, since we have

inf
[
a(σ, t) | (σ, t) ∈ [0, t̄] × [0, t̄]]> 0, (50)

and

sup
[
a(σ, t) | (σ, t) ∈ [0, t̄] × [0, t̄]]<+∞, (51)

from Proposition 3. The first term in the right hand side of (49) can be written:
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∣∣v(σ, t)− v(σ ′, t)
∣∣� t̄∫

t

|a2
σ − a2

σ ′ |
a2
σ a

2
σ ′βσ

s∫
0

aσβσ |f̃∇,ϕ|dθ ds

+
t̄∫

t

|βσ − βσ ′ |
a2
σ ′βσβσ ′

s∫
0

aσβσ |f̃∇,ϕ|dθ ds

+
t̄∫

t

1

a2
σ ′βσ ′

s∫
0

[|aσ − aσ ′ |βσ + |βσ − βσ ′ |aσ ′
]|f̃∇,ϕ|dθ ds. (52)

Remarking that|βσ (s) − βσ ′(s)| = |β1(s) − β2(s)|.χ[σ,σ ′](s), using (50), (51) and the
results of Proposition 3, it is easy to state the final result.✷

PROPOSITION 6. –Under hypothesis(H4), for anyσ ∈ [0, t̄], <σ (.) satisfies:

γ ϕ(t)<σ (t)− f̃∇,ϕ(t) < 0 in ]t0, t̄[.

Proof. –From (22) we have

<′σ (t)=
1

β̌σ (t)

t∫
0

β̌σ

(
γ ϕ<σ − f̃∇,ϕ

)
(s) ds,

0� <σ (t)=
t̄∫

t

1

β̌σ (s)

[ s∫
0

β̌σ

(
f̃∇,ϕ − γ ϕ<σ

)
dθ

]
ds,

0� <σ (t) �
t̄∫

t

1

β̌σ (s)

t0∫
0

β̌σ

(
f̃∇,ϕ − γ ϕ<σ

)
dθ ds

+
t̄∫

t

1

β̌σ (s)

s∫
t0

β̌σ

(
f̃∇,ϕ − γ ϕ<σ

)
dθ ds, ∀t � t0,

0� <σ (t) <

t̄∫
t

1

β̌σ (s)

( s∫
t0

β̌σ f̃∇,ϕdθ

)
, ∀t � t0,

sinceγ ϕ<σ is nonnegative, and̃f∇,ϕ is nonpositive in[0, t0]. And using the fact thaťβσ

is nondecreasing, we obtain

0� <σ (t) �
t̄∫

t

s∫
t0

f̃∇,ϕ(θ) dθ.
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From this it follows that

γ ϕ(t)<σ (t)− f̃∇,ϕ(t) < γ ϕ(t)

t̄∫
t

s∫
t0

f̃∇,ϕ(θ) dθ − f̃∇,ϕ(t) < 0 ∀t � t0

by (H4). ✷
We need the previous proposition to prove the following result:

PROPOSITION 7. –There existŝσ > t0 such that<σ̂ (.) verifies:

<′σ̂ (t) � 0 ∀t ∈ [0, σ̂ [,
<′σ̂ (t) � 0 ∀t ∈]σ̂ , t̄[.

Proof. –Let us set

V (σ, t)= β̌σ (t).<
′
σ (t) ∀σ ∈ [0, t̄], ∀t �= σ.

From Eq. (22) it follows

V (σ, t)=
t∫

0

β̌σ

(
γ ϕ<σ − f̃∇,ϕ

)
dθ, (53)

which shows thatt→ V (σ, t) is also continuous att = σ .
First step. We claim that there existsσ > t0 such thatV (σ,σ ) > 0.
By Proposition 5 we have:

V (σ,σ ) � V (t0, t0)− 2c|σ − t0| ∀σ � t0. (54)

But V (t0, t0) is positive by using the hypothesis of localization and sinceγ ϕ(t) � 0.
Thus

V (σ,σ ) > 0 ∀σ such that 0< σ − t0 <
V (t0, t0)

4c
.

Second step. We claim thatV (t̄, t̄) < 0.
Consider

V (t̄, t)=
t∫

0

β̌t̄

(
γ ϕ<t̄ − f̃∇,ϕ

)
ds.

We have<t̄ (t) > 0 in [0, t̄[. In addition <
t̄
(t̄ ) = 0. So <t̄ (.) is nonincreasing in a

neighbourhoodV(t̄) of (t̄), i.e.,V (t̄, t) � 0 ,∀t ∈ V(t̄). We argue by contradiction. That
is we supposeV (t̄, t̄ )= 0. Let us recall that

V (t̄, t) > 0 ∀t � t0. (55)

We have two cases to consider.
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First case: V (t̄, t) � 0 ∀t, t0 � t � t̄ that is, using (55),<t̄ (.) is nondecreasing on
[0, t̄]. As <t̄ (0) > 0 and <̄t (t̄ )= 0, we obtain a contradiction.

Second case: there existst ∈]t0, t̄[ such thatV (t̄, t) < 0. As from (55)V (t̄, t0) > 0,
we deduce that there existst̂ ∈]t0, t̄[ such thatV (t̄, t̂)= 0. Now from (53) we can write

V (t̄, t̄)− V (t̄, t̂ )=
t̄∫

t̂

β̌t̄

(
γ ϕ<t̄ − f̃∇,ϕ

)
ds = 0. (56)

This is a contradiction since

γ ϕ<t̄ − f̃∇,ϕ < 0 in ]t0, t̄[,
by using hypothesis (H4) and Proposition 6. ConsequentlyV (t̄, t̄) < 0.

Third step. We claim that there existŝσ ∈]t0, t̄[ such thatV (σ̂ , σ̂ )= 0 that is <̂σ (.) is
derivable at̂σ and<′σ̂ (σ̂ )= 0.

Let us set

W = {σ ∈]t0, t̄[ | V (σ,σ ) > 0
}
,

σ̂ = sup{σ | σ ∈W}.

It is clear thatW �= ∅ and t0 < σ̂ < t̄ . We claim thatV (σ̂ , σ̂ ) = 0. We argue by
contradiction. SupposeV (σ̂ , σ̂ ) > 0. From Proposition 5 we deduce

V (σ,σ ) � V (σ̂ , σ̂ )− 2c|σ − σ̂ |, ∀σ.
So V (σ,σ ) > 0 for any σ such that 0< σ − σ̂ < V (σ̂ , σ̂ )/(4c). This contradicts the
definition of σ̂ . So the claim is proved.

Fourth step. Let us prove thatV (σ̂ , t) < 0, ∀t ∈]σ̂ , t̄[. Suppose that there exists
t ∈]σ̂ , t̄[ such thatV (σ̂ , t) > 0. So there exists̃t , σ̂ < t̃ < t̄ such thatV (σ̂ , t̃)= 0. This
and the claim of the third step give:

V (σ̂ , t̃ )− V (σ̂ , σ̂ )=
t̃∫

σ̂

β̌σ̂

(
γ ϕ<σ̂ − f̃∇,ϕ

)
dθ = 0

which contradicts hypothesis (H4) from Proposition 6. Consequently we have proved
that:

<′σ̂ (σ̂ )= 0, <′σ̂ (t) � 0 ∀t ∈]0, σ̂ [, <′σ̂ (t) � 0 ∀t ∈]σ̂ , t̄[. ✷
Proof of Proposition 3. –It is very technical. To simplify let us set

ai = aσi
, β̌σi

= νi, i = 1,2.

From (45) we have

a′1(t)− a′2(t)=�1(t)+�2(t)
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where

�1(t)= 1

ν1(t)

t∫
0

ν1.γ
ϕ.(a1− a2) ds, (57)

�2(t)= 1

ν1(t)
.

t∫
0

ν1.γ
ϕa2ds − 1

ν2(t)
.

t∫
0

ν2.γ
ϕa2 ds

=
t∫

0

ν2(t)ν1(s)− ν2(s)ν1(t)

ν1(t)ν2(t)
.γ ϕ.a2 ds. (58)

For anyt ∈ [0, T ] we have obviously∣∣∣∣∣
σ2∫

σ1

a2(s)γ
ϕ(s).

ν2(t)ν1(s)− ν2(s)ν1(t)

ν1(t)ν2(t)
ds

∣∣∣∣∣� 2

σ2∫
σ1

a2(s)
∣∣γ ϕ(s)

∣∣ds. (58.1)

To be more clear we can supposeσ1 < σ2. From (57) and using Cauchy–Schwarz
inequality we can see that

T∫
0

∣∣�1(t)
∣∣2 dt �

∥∥γ ϕ
∥∥2∞.

T 2

2
.‖a1− a2‖2

L2. (59)

To estimate�2 we have to consider three cases:
First case. t ∈ [0, σ1] , ν1(t)= β̌σ1(t)= βσ (t)= β1(t), ν2(t)= β̌σ2(t)= β1. So

�2(t)= 0 ∀t ∈ [0, σ1]. (60)

Second case. t ∈]σ1, σ2[, ν1(t)= β̌σ1(t)= β2(t), ν2(t)= β̌σ2(t)= β1(t). We have

�2(t)=
σ1∫

0

E(t, s) ds +
t∫

σ1

E(t, s) ds

where

E(t, s)= ν2(t)ν1(s)− ν2(s)ν1(t)

ν1(t).ν2(t)
.a2(s)γ

ϕ(s).

From the first case we have
σ1∫

0

E(t, s) ds = 0,

and�2(t) becomes

�2(t)=
t∫

σ1

ν2(t)ν1(s)− ν2(s)ν1(t)

ν1(t).ν2(t)
.a2(s)γ

ϕ(s) ds;
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∣∣�2(t)
∣∣� t∫

σ1

(∣∣∣∣ν1(s)

ν1(t)

∣∣∣∣+ ∣∣∣∣ν2(s)

ν2(t)

∣∣∣∣)a2(s)
∣∣γ ϕ(s)

∣∣ds,
which becomes again

∣∣�2(t)
∣∣� 2

t∫
σ1

a2(s).
∣∣γ ϕ(s)
∣∣ds ∀t ∈]σ1, σ2], (61)

sinceνi = β̌σi
is nondecreasing,i = 1,2.

Third case. t ∈]σ2, T ], ν1(t)= β̌σ1(t)= β2(t), ν2(t)= β̌σ2(t)= β2(t). Thus

t∫
σ2

E(t, s) ds = 0,

and from the first case
σ1∫

0

E(t, s) ds = 0.

Thus

�2(t)=
σ1∫

0

E(t, s) ds +
σ2∫

σ1

E(t, s) ds +
t∫

σ2

E(t, s) ds ∀t, σ2 < t � T ,

becomes

�2(t)=
σ2∫

σ1

E(t, s) ds ∀t, σ2 < t � T . (62)

Thanks to (58.1), (62) gives:

∣∣�2(t)
∣∣� 2.

σ2∫
σ1

a2(s).
∣∣γ ϕ(s)
∣∣ds, ∀t ∈]σ2, T ]. (63)

By (60)

T∫
0

∣∣�2(t)
∣∣2 dt = σ2∫

σ1

∣∣�2(t)
∣∣2 dt + T∫

σ2

∣∣�2(t)
∣∣2dt.

From (61) and using Cauchy–Schwarz inequality:
σ2∫

σ1

∣∣�2(t)
∣∣2dt � 4

σ2∫
σ1

[ t∫
σ1

a2(s)
∣∣γ ϕ(s)

∣∣ds]2dt
� 4
∥∥γ ϕ
∥∥2∞.(σ2− σ1)

2.‖a2‖2
L2. (63.1)
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From (63) and after some similar computations, we obtain

T∫
σ2

∣∣�2(t)
∣∣2dt � 4

∥∥γ ϕ
∥∥2∞.‖a2‖2

∞.(T − σ2)(σ2− σ1)
2. (63.2)

Using (60), (63.1) and (63.2) we have:

T∫
0

∣∣�2(t)
∣∣2dt � 4

∥∥γ ϕ
∥∥2∞.(σ2− σ1)

2[‖a2‖2
L2 + T ‖a2‖2

∞
]
. (63.3)

By Young inequality we have for anyθ > 0

∣∣a′1(t)− a′2(t)
∣∣2 � (1+ θ)

∣∣�1(t)
∣∣2+(1+ 1

θ

)∣∣�2(t)
∣∣2.

After integrating on[0, T ], using (63.3) and (59), it follows

T∫
0

∣∣a′1(t)− a′2
∣∣2dt � (1+ θ)

∥∥γ ϕ
∥∥2∞.

T 2

2
‖a1− a2‖2

L2

+ 4
(

1+ 1

θ

)
.c.
∥∥γ ϕ
∥∥∞(σ2− σ1)

2, (63.4)

where we have used the fact that‖a2‖2
L2+ T .‖a2‖2∞ � c, constant independent ofβ̌σ2 by

Proposition 2. Let us set

2γ0 =
λ1(1,1,0, T )−‖γ ϕ‖2∞.T 2/2

λ1(1,1,0, T )
.

By hypothesis (H′2), γ0 > 0 and

‖γ ϕ‖2∞T 2

2
< λ1(1,1,0, T ).(1− γ0).

Let us chooseθ > 0 small enough such that

δ = (1− γ0)λ1(1,1,0, T )− (1+ θ)
‖γ ϕ‖2∞.T 2

2
> 0. (63.5)

From (63.4), using (63.5) and Appendix A, we obtain

γ0‖a′1− a′2‖2
L2 + δ‖a1− a2‖2

L2 � c.|σ1− σ2|2. (63.6)

The second estimate is an easy consequence of (63.6). From Appendix B we can write

a(σ, t)= aσ (t)=
t∫

T

a′σ (s) ds + 1 ∀σ, ∀t,
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a(σ, t)− a(σ ′, t ′)=
t∫

T

(
a′σ (s)− a′σ ′(s)

)
ds +

t∫
t ′

a′σ ′(s) ds.

So ∣∣a(σ, t)− a(σ ′, t ′)
∣∣� c
[|σ − σ ′| + |t − t ′|],

using the first estimate and Appendix B that is‖a′σ ′‖L∞(0,T ) � c. ✷
Now we are in position to prove the main result of this part.

THEOREM 3. –Assume hypothesis(15), (16), (H0), (H2), (H3)and (H4). Then the
solutionu of {−�u+ c.u= f in �,

u|∂� = 0

is positive.

Proof. –It is very similar to the one of Theorem 2. So we do not repeat it. To simplify
the notations we denote byσ the real number̂σ given by Proposition 7. Let us recall
that by Proposition 7 we have

<′(t) := <′σ (t) � 0, ∀t ∈ [σ, t̄]; <′(t) � 0, ∀t ∈ [0, σ ].
To state our result, it sufficies to prove the inequality{−�<(ϕ)+ c+.<(ϕ) � f in H−1(�),

<(ϕ)|∂� = 0, <(ϕ) ∈H 1
0 (�),

(64)

where<(.) := <σ (.) is solution of{−<′′ − θ.<′ + γ ϕ.<= f̃∇,ϕ in ]0, t̄[,
<′(0)= 0, <(t̄)= 0,

(65)

with θ(t)= β̌ ′σ (t)/β̌σ (t) ∀t ∈]0, t̄[.
For this we can assume that<(.) is regular enough to define<′′ ◦ ϕ and<′ ◦ ϕ (cf. third

step of the proof of Theorem 2), that is to say we do not write the regularization part of
this proof. Recall that<(.) has the following representation formula

<(t)= aσ (t).

t̄∫
t

ds

β̌σ (s)a
2
σ (s)

s∫
0

β̌σ aσ f̃∇,ϕ(θ) dθ,

whereaσ is solution of{
− 1

β̌σ

(
β̌σ a

′
σ

)′ + γ ϕ.aσ = 0 in ]0, T [,
a′σ (0)= 0, aσ (T )= 1.

Let us set
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�1= {x ∈ B(t̄) | ϕ(x) ∈]0, σ [},
�2= {x ∈ B(t̄) | ϕ(x) ∈]σ, t̄[}.

We have to examine two cases:
First case. For anyx ∈�1 sett = ϕ(x) in (65). We have:

−<′′(ϕ)− θ(ϕ)<′(ϕ)+ γ ϕ(ϕ).<(ϕ)= f̃∇,ϕ(ϕ) in �1 (66)

and

θ
(
ϕ(x)
)= β̌ ′σ (ϕ(x))

β̌σ (ϕ(x))
= β ′1(ϕ(x))

β1(ϕ(x))
= β̂ϕ

(
ϕ(x)
)
� β̂(x) in �1

since 0< ϕ(x) < σ ∀x ∈�1. But from Proposition 7, we have

<′(ϕ)=−
ϕ∫

0

aσβσ f̃∇,ϕ ds.
1

a2
σ (ϕ)β̌σ (ϕ)

� 0 in �1.

Thus, using (42.1), it follows

−θ
(
ϕ(x)
)
<′
(
ϕ(x)
)
�−β̂(x).<′

(
ϕ(x)
)=− �ϕ(x)

|∇ϕ(x)|2 .<
′(ϕ(x)) in �1

or

−θ(ϕ)<′(ϕ) �− �ϕ

|∇ϕ|2<
′(ϕ) in �1. (67)

In the same way we can prove that

γ ϕ
(
ϕ(x)
)
<
(
ϕ(x)
)
� γ (x).<

(
ϕ(x)
)= c+(x)

|∇ϕ(x)|2<
(
ϕ(x)
)

in B(t̄) (68)

sinceγ ϕ(ϕ) � γ in B(t̄) and<(ϕ) > 0 by Proposition 4. And also we have

f̃∇,ϕ

(
ϕ(x)
)
� f̃ (x)

|∇ϕ(x)|2 � f (x)

|∇ϕ(x)|2 in B(t̄) (69)

by (21.1) and Definition 1. From (67), 68) and (69), (66) becomes

−<′′(ϕ)|∇ϕ|2−�ϕ<′(ϕ)+ c+.<(ϕ) � f in �1,

or

−�<(ϕ)+ c+<(ϕ) � f in �1. (70)

Second case. For anyx ∈�2, sett = ϕ(x) in (65). Exactly in the same way as above
we can prove that

−�<(ϕ)+ c+<(ϕ) � f in �2, (71)
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since

θ
(
ϕ(x)
)
� β̂(x) in �2,

and

<′
(
ϕ(x)
)=−∫ ϕ0 aσβσ f̃∇,ϕ ds

a2
σ (ϕ).β̌σ (ϕ)

� 0 in �2,

from Proposition 7. The remainder of the proof is now clear. In fact (70) and (71)
“entail formally” inequality (64). To justify the above computations we proceed, as in
Theorem 2, by regularization and use the extension lemma in Appendix C.✷

6. General data in right hand side: role of the symmetrization

Through the illustrative example of part (3) and the proof of Theorems 2 and 3, we
have seen that the localization of the negative supportEf plays a crucial role. It is natural
to ask what happens if, for instance, the negative supportEf is not easily localisable or
is too close from the boundary of�. For studying this question, we will use the notion of
rearrangement in the sense of Hardy–Littlwood. This notion appears quite naturally in
this situation. Unfortunately for the time being, the method used previously only works
in ellipsoïdal and radial coordinates if we use the symmetrization techniques.

For convenience of the reader and precision of speech, we recall some elementary
notions of rearrangement. Letν be a bounded positive measure, absolutely continuous
with respect to the Lebesgue measure on[0, T ]. If ]0, T [ is an open bounded subset of
R andv is a nonnegative function belonging toL1(]0, T [), the distribution function of
v, with respect toν, is the functionµv defined by

µv(t)= ν
({

s ∈]0, T [: v(s) > t
})

, t ∈R
+.

For s ∈ [0, T ] we set

v∗(s)= sup
{
t : µv(t) � s

};
v∗ is the decreasing rearrangement ofv with respect to the measureν. Let us set

v∗(s)= v∗(T − s), s ∈ [0, T ].

v∗ is the increasing rearrangement ofv with respect to the measureν. Let us now recall
some results about rearrangements that we need in the sequel (cf. [2,8]).

PROPOSITION 8. –Letv ∈ L1(]0,1[, ν). For anyν-measurable subsetE of [0, T ] we
have:

(i) (v|E)∗(s) � (v∗|[0,ν(E)])(s) ∀s ∈ [0, ν(E)], wherev|E stands for the restriction of
v to E,

(ii) (v|E)∗(s) � (v∗|[0,ν(E)])(s) ∀s ∈ [0, ν(E)].
The proof is left to the reader (cf. for instance [8,2]).
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Consider the general setting of the problem in Section 6. We do not assume the
localization hypothesis of the negative support ofEf . To simplify the notations, let us
set

g(t)= f̃∇,ϕ(t)=
(

f̃

|∇ϕ|2
)

ϕ

(t), ∀t ∈ [0, T ];
g(t)= g+(t)− g−(t), ∀t ∈ [0, T ].

To simplify the exposition, let us assume thatg belongs toL∞([0, T ]) and let us consider
the measureν defined as follows: for any measurable subsetE of [0, T ]

ν(E)=
∫
E

aβ(s) ds.

PROPOSITION 9. –We have

t∫
0

g dν =
t∫

0

aβg ds �
γ (t)∫
0

[
(g+)∗(s)− (g−)∗(s)

]
ds

whereγ (t) = ν([0, t]) = ∫ t0 a(θ)β(θ) dθ and where the rearrangements ofg+ and g−
are taken with respect toν.

The proof is a straightforward consequence of the equimeasurability property of the
rearrangements and of Proposition 8.

PROPOSITION 10. –Let us consider the function

ω(t)=
T∫
t

1

a2(s)β(s)

γ (s)∫
0

[
(g+)∗ − (g−)∗

]
(σ ) dσ ds.

It is well defined on[0, T ].
Proof. –It suffices to prove thatω is well defined att = 0. We have

0�
T∫

0

1

a2β

γ (s)∫
0

(g+)∗(σ ) dσ ds �
T∫

0

1

a2β
(g+)∗
(
γ (s)
)
.γ (s) ds

since(g+)∗ is nondecreasing. Thus

0�
T∫

0

1

a2β

γ (s)∫
0

(g+)∗(σ ) dσ ds � c.

T∫
0

(g+)∗(γ (s))

a2(s)
ds (72)

since

γ (s)=
s∫

0

a(σ )β(σ ) dσ � β(s)

s∫
0

a(σ ) dσ � β(s).

T∫
0

a(σ ) dσ � c.β(s)
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by using the fact thatβ is nondecreasing. In the same way we can prove that

0 �
T∫

0

1

a2β

γ (s)∫
0

(g−)
∗
(σ ) dσ ds � c.

T∫
0

(g−)∗(0)
a2(s)

ds. (73)

Consequently (72) and (73) imply the claimed result.✷
Consider the functionh(s) = (g+)∗(s) − (g−)∗(s). Sinceg+ �≡ 0 andg− �≡ 0, there

existst ∈]0, ν([0, T ])] such that

h(s)� 0 a.e.s ∈ [0, t[,
h(s)� 0 a.e.s ∈]t, ν([0, T ])].

Sett0= inf[t ∈ [0, γ (T )/h(t) � 0]. It is clear thatt0 > 0 sinceg− �≡ 0. So we have{
h(s) � 0 in [0, t0],
h(s) � 0 in ]t0, γ (T )]. (74)

Let us point out that[0, t0] contains the negative supportEh of h; and thusEh is
localized. Then a natural question arises: what is the hypothesis (H1) becoming?

Answer: (H1) becomes (H′1): there exists̄t ∈]t0, T ] such that:

t̄∫
0

1

a2β(s)

γ (s)∫
0

[
(g+)∗ − (g−)∗

]
(σ ) dσ ds > 0.

PROPOSITION 11. –Under(H′1) the function

v̂(t)=
t̄∫

t

1

a2(s)β(s)

γ (s)∫
0

[
(g+)∗ − (g−)∗

]
(σ ) dσ ds

is positive in]0, t̄[.
Proof. –ConsiderG(t)= ∫ t0[(g+)∗− (g−)∗](σ ) dσ , defined for anyt belonging to the

range[0, γ (t̄)] of γ . SinceEh is localized, from (H′1) there exists a uniquẽt such that:
G(t̃)= 0,
G(t) < 0 ∀t ∈ [0, t̃[,
G(t) > 0 ∀t ∈]t̃ , γ (t̄)].

And sinceγ is continuous and increasing, there exists a uniqueŝ ∈]t0, t̄[ such that
γ (ŝ)= t̃ , that is

G ◦ γ (ŝ)= 0,

G ◦ γ (s) < 0 ∀t ∈ [0, ŝ[,
G ◦ γ (s) > 0 ∀t ∈]ŝ, t].
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But v̂′(t)=−G ◦ γ (t)/(a2(t)β(t)) ∀t ∈]0, t̄[, which means that
v̂′(ŝ)= 0,

v̂′(s) > 0 in [0, ŝ[,
v̂′(s) < 0 in ]ŝ, t̄[.

Since from (H′1) v̂(0) > 0 and sincêv(t̄)= 0, the result follows. ✷
THEOREM 4. –Let us assume(H′1). Then the solutionu of Eq.(1) is positive in�.

Proof. –Consider the following function

v(t)=
t̄∫

t

1

a2(s)β(s)

( s∫
0

gaβ dσ

)
ds, ∀t ∈ [0, t̄].

From Proposition 9 we have:

v(t) � v̂(t) ∀t ∈ [0, t̄]

sincea2(t)β(t) > 0∀t > 0. Thus the solution<(t)= a(t).v(t) of (22) is positive in]0, t̄[.
Now, proceeding as in Theorem 2 of the Section 4, we can construct, from<(.), a positive
subsolution of (1). And the result follows from the maximum principle.✷

7. Applications

In this section, our main goal is to give some direct applications of our result.

7.1. Averaging positivity

Let us consider the following problem{−�u− c(x)|u| = f in �= B(0,R),

u|∂� = 0,
(75)

wherec(x) is a regular function such that:

0< α � c(x) < λ1(�,B), ∀x ∈�,

whereα is a positive constant andλ1(�,B) the first eigenvalue of� in B with Dirichlet
condition. We assume that problem (75) has a solutionu. We denote byγ (|x|) the
following function

γ (r)= inf
[
c̃.|v|(r)
|ṽ|(r)

∣∣∣ v regular
]
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where, for any regular functionh, we set

h̃(x)=
∫

SO(n)

h(Ax) dµ(A)

with µ is a left- (or right)-Haar measure onSO(n), the rotational group inRn,A ∈ SO(n).
We haveh̃(x)= h̃(|x|) – (cf. [18,19]). It is easy to see that

λ1(�,B) > γ (|x|) � α, ∀x ∈�.

Then we consider the following radial problem:{−�v = f̃ (|x|) in B(0,R),

v|∂B = 0,

wheref̃ (r) is defined previously.
Similarly to (7), we assume that:

R∫
0

[ σ∫
0

f̃ (r)rn−1 dr

]
dσ

σ n−1
> 0, (76)

{
r ∈ [0,R] | f̃ (r) < 0

}= [0, r1], r1 < R. (77)

From our Theorem 1, we have

v(x)= v(|x|) > 0, ∀x ∈ B(0,R).

We have {−�v − γ (|x|)v � f̃ (|x|) in B(0,R),

v|∂B = 0
(77.1)

since�ũ= �̃u – (see [19]). It is well known that, for anyω ∈H 1(B), we can definẽω.
Thusũ is well defined and we have{−�ũ− c̃|u| = f̃ in B(0,R),

ũ|∂B = 0.
(78)

Let us state an estimate from above of the left hand side of (78).

−�ũ− γ (|x|)ũ �−�ũ− γ (|x|)|̃u|� f̃ =−�ũ− c̃|u|

sincec̃|u|� γ (|x|).|̃u|; i.e., ũ solves the following inequality{−�ũ− γ (|x|)ũ � f̃ �−�v − γ (|x|).v in B(0,R),

ũ|∂B = 0= v|∂B
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after using (77.1). A straightforward application of the maximum principle gives the
result:

1

σr

.

∫
|x|=r

u(x) dσ > 0, ∀r ∈]0,R[.

Consequently we have proved that iff satisfies (76) and (77), then the solutionu of (75)
is such that̃u(|x|) > 0 in ]0,R[.
7.2. Biharmonic operator

To simplify, we take�= B(0,R) and we consider{
�2u= f in B(0,R),

u|∂B =�u|∂B = 0.
(79)

We denote, for anyx ∈ B(0,R)

k(|x|)= sup
{
h(|x|) | h radial function s.t.h(| · |) � f (·) onB(O,R)

};
and we consider the Green functionG of −� in B(0,R). We assume thatf satisfies
assumptions (80) and (82) given here after:∫

B

k(|y|)
[∫

B

G(0, z)G(z, y) dz

]
dy > 0, (80)

there existsr0 ∈ [0,R[ such that the function

K(r)=
r∫

0

k(s)sN−1 ds (81)

verifies: {
K(r) < 0, on [0, r0[,
K(r) � 0, on [r0,R[. (82)

Our goal is to prove that, under assumptions (80) and (82), the solutionu of the
biharmonic problem (79) is positive. Setting

ω =−�u,

we have: {−�u= ω,

u|∂B = 0,
(83)

and {−�ω= f,

ω|∂B = 0.
(84)
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Let us now consider the solutionv of:{
�2v = k,

v|∂B =�v|∂B = 0,
(85)

and let us set

m=−�v.

We have: {−�m= k,

m|∂B = 0,
(86)

and {−�v =m,

v|∂B = 0.
(87)

This functionm is radial and satisfies:

m(|x|) � ω(x) in B(0,R),

m(|x|)=
R∫
|x|

1

σN−1

[ σ∫
0

k(r)rN−1dr

]
dσ =

R∫
|x|

1

σN−1
K(σ)dσ. (87.1)

From (82), it is clear that:{
m(|x|) > 0 ∀x, |x|> r0,

{x ∈ B(0,R) |m(|x|) < 0} = [0, r1[ (88)

for somer1 in [0, r0]. In Eqs. (87), (88) and hypothesis (80) play, respectively, the roles
of localization hypothesis (7.1) and (7.2) if we want to apply Theorem 1. Thusv is
positive, and so isu since we have

u(x) � v(|x|) ∀x ∈ B(0,R).

Remarks. –
(i) it is possible to assume hypothesis ensuring positivity ofm by application of

Theorem 1. But in this case, the positivity ofu is immediate sincev is obviously positive.
(ii) assumptions (80) and (82) are only simple sufficient conditions ensuring positivity

of u. Here, our aim is not to give general conditions ensuring positivity ofu but to explain
clearly how to use our result in some applications. It is possible to improve notably
conditions (80) and (82).

(iii) using (81) and (87.1) it is possible to explain the condition (80) more explicitly
with respect tok(·).
7.3. A negative result

The following example shows, if it is necessary, that hypothesis (7) and (H1) do not
seems related to the method. Let us consider{−�u= f (|x|) in �,

u|H = 0, H = ∂�.
(89)
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LetB(0,R) be the smallest open ball containing� andB(O, r) the largest ball enclosed
in �. We assume thatf (|x|) is nonnegative in�\B(O, r). Let us denote bỹf (|x|) the
natural extension off to B(0,R) and let us assume that we have

R∫
0

dσ

σ n−1

[ σ∫
0

f̃ (r)rn−1 dr

]
< 0 (90)

∂u

∂η

∣∣∣∣
∂�

< 0. (91)

Thenu is nonpositive in a neighbourhood of 0. Indeed let us consider the solutionv of{−�v = f̃ (|x|) in B(0,R),

v|∂B = 0.
(92)

Set

ũ(x)=
{
u(x) if x ∈�,

0 if x ∈ B(0,R)\�.

From (91) and the extension lemma (cf. Appendix C), we deduce thatũ is a subsolution
of (92). Thus from the maximum principleu is nonpositive in a neighbourhood of 0
sincev(0) < 0 by (90). Finally let us point out that we can state a more general negative
result [16].

7.4. Localization of critical points

Let � be an open subset ofR
n, �=�1\�̄2, �̄2⊂�1, where�i is star-shaped with

respect to 0. In this geometric situation there exist some hypothesis satisfied byf and
ensuring that the level sets of the solutionu of{−�u= f in �,

u|∂� = 0,
(93)

are star-shaped [3,14,4] (for instance). Let us point out that the method used in the
previous references does not work if� is simply connected. Here our goal is to give
some results about star-shapedness ofu in the case� is star-shaped with respect to
some ballB(0, r) (or with respect to 0). Without loss of generality of our method, we
can assume thatf (x)= f (|x|) in R

n and is regular enough. Suppose thatu has a local
maximum at 0. Assume thatf is nonnegative and satisfies the following localization
hypothesis: considering the subsetE of �,

E = {x ∈� | −2f (|x|)− |x|.f ′(|x|) < 0
}
,

there existsr0 > 0 such that

E ⊆ B(0, r0)⊂�. (94)
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For someρ > 0 such thatB(0, r0)⊂ B(0, ρ)⊆�, let us considervρ the solution of{−�vρ = g(|x|) in B(0, ρ),
vρ |∂B(0,ρ) = 0, (95)

with g(|x|)=−2f (|x|)− |x|.f ′(|x|). Set

ṽρ(x)=
{
vρ(x) if x ∈ B(0, ρ),
0 if x /∈ B(0, ρ).

Now let us remark thatω(x)= x.∇u(x) is solution of{−�ω= g(|x|) in �,

ω|∂� > 0,
(96)

where the positivity of the boundary condition follows from Hopf maximum principle.

THEOREM 5 (Necessary conditions). –Considerω and ṽρ and assume thatu is
regular in a neighbourhood of0.

(1) If ṽρ is a subsolution of(96) then we have

ρ∫
0

[ σ∫
0

g(s)sn−1 ds

]
dσ

σ n−1
� 0.

(2) If ṽρ is a positive subsolution of(96), then

ρ∫
0

[ σ∫
0

g(s)sn−1 ds

]
dσ

σ n−1
= 0.

(3) Suppose thatg has the localization hypothesis(94)andṽρ is a positive subsolution
of (96), then

ρ = sup
{
r > 0 | B(0, r)⊆�

}
.

Proof. –vρ has the following representation formula

vρ(x)= vρ(|x|)=
ρ∫

|x|

[ σ∫
0

g(s)sn−1 ds

]
dσ

σ n−1

and vρ(0) � ω(0) = 0 sinceu is regular at 0. Ifṽρ(x) � 0 ∀x ∈ �, it follows that
vρ(0)= 0. To prove the third part of our result, we argue by contradiction, i.e., assume
that there existsρ, 0 < r0 < ρ < R such that̃vρ is a positive subsolution of (96) and
where

R = sup
{
r > r0 | B(0, r)⊆�

}
.

From the localization hypothesis (94) we have
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0<vρ(x) < v
R
(x) ∀x ∈ B(0, ρ), x �= 0,

0� ṽρ(x) � ṽ
R
(x) ∀x ∈�,

by using maximum principle and extension lemma in Appendix C, whereṽ
R

is defined
similarly asṽρ . We have

0= ṽρ(0)= vρ(0) < v
R
(0)= ṽ

R
(0),

by using the second part of the result. Thus

v
R
> 0 ∀x ∈ B(0,R)

and thereforẽvR(.) is a positive subsolution of (96) from Theorem 1. So we have

0< v
R
(0)= lim

x→0
v

R
(x) � lim

x→0
ω(x)= ω(0)

which contradicts the fact thatω(0)= 0 sinceu is regular at 0. ✷
Now, from the above result it is necessary to assume:

R∫
0

[ σ∫
0

g(s)sn−1 ds

]
dσ

σ n−1
= 0, (97)

R = sup
{
r � r0 | B(0, r)⊆�

}
. (98)

From (94) and (97) it follows that

R∫
0

g(s)sn−1 ds > 0. (99)

COROLLARY. – Assume thatu is regular and 0 is a point whereu has a local
maximum. Suppose hypothesis(94), (97), (98)and(99). Then0 is the only critical point
of u. In addition the level sets

F(t)= {x ∈� | u(x) > t
}

of u are star-shaped with respect to0.

Proof. –It sufficies to remark that (94) and (97) imply that

vR(x)= vR(|x|)=
R∫
|x|

[ σ∫
0

g(s)sn−1 ds

]
dσ

σ n−1
> 0, ∀x ∈ B(0,R), x �= 0.

From Theorem 1 it follows that

ω(x)= x.∇u(x) > 0 ∀x ∈�, x �= 0;
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that is to say|∇u(x)| �= 0 ∀x �= 0. We deduce the last part of the result from the implicit
function theorem. ✷

Remark. – Let us point out that hypothesis (97) is somewhat strong. In a forthcoming
work [16] we propose to relax it by considering the functionx.∇u(x)/|x|2, x �= 0, which
is more pertinent than the functionx.∇u(x) used in this paper. But the study of the
equation satisfied byx.∇u(x)/|x|2 requires a preliminary investigation.

7.5. Positive solutions of semi-linear problems

We are concerned with the positivity of the solutionu of{−�u= f (x,u) in �= B(0,R),

u|∂B = 0,
(100)

for instance, for some suitablef :�×R→R, ensuring the existence ofu. Let us set

g(r)= inf
[
f
(
x,u(x)

) | x ∈ B(0,R), |x| = r
]

(101)

and suppose thatg = g+ − g− belongs toL2(�). Let us consider the increasing
rearragement(g+)∗ of g+ and the decreasing rearrangement(g−)∗ of g−, with respect
to the measuredν = sn−1 ds. Assume that

R∫
0

dσ

σ n−1
.

γ (σ )∫
0

[
(g+)∗ − (g−)

∗]
(s) ds > 0

whereγ (σ )= ∫ σ0 sn−1 ds. Proceeding in the same way as in Example 4, we can see that
the function

v̂(|x|)=
R∫
|x|

dσ

σ n−1

γ (σ )∫
0

[
(g+)∗ − (g−)

∗]
(s) ds

is positive. Takingdν = sn−1 ds in Proposition 9, Section 5, we obtain

v(|x|) � v̂(|x|) ∀x ∈ B(0,R)

where

v(|x|)=
R∫
|x|

dσ

σ n−1

σ∫
0

g(s)sn−1 ds

is the solution of: {−�v = g(|x|) in B(0,R),

v|∂B = 0.

From (101),v is a subsolution of (100). Thus

u(x) � v(|x|) > 0 ∀x ∈ B(0,R). ✷
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7.6. Parabolic equation

Here we are concerned with the positivity of the solution of linear parabolic equation.
We need to start with some preliminary remarks. let us consider the following equation

∂u

∂t
− ∂2u

∂x2
= f (x) in ]−1,1[ × ]0, T [

u(−1)= u(1)= 0, u(x,0)= u0(x).

(102)

Let us assume thatf is nonnegative and belongs toC∞([−1,1]). Suppose thatu0

belongs toC∞([−1,1]) and satisfies the following: there exists[a, b] ⊂ ]−1,1[ such
thatu0(x) < 0 ∀x ∈ [a, b]. Then from regularity result (cf. [1] Theorem X.10) it follows
that there existst0, 0< t0 < T such thatu(x, t) < 0, ∀(x, t) ∈ [a, b] × [0, t0]. Even iff
is nonnegative, the previous result shows that it is necessary to impose some assumption
onu0, to obtain the positivity ofu. Now let us consider ∂u

∂t
−�u= f (x, t) in B(0,R)× ]0, T [,

u|; = 0, ; = ∂�× ]0, T [, u(x,0)= u0.

Let us assume that there existsg(|x|) such that:

f (x, t) � g(|x|) a.e.(x, t) ∈ B(0,R)× ]0, T [,
R∫

0

ds

sn−1

s∫
0

σ n−1g(s) ds � 0,

Eg ⊆ B(0, r0)⊂B(0,R).

Suppose

u0(x) � v(x)= v(|x|) a.e.x ∈ B(0,R), (103)

wherev is the solution of {−�v = g(|x|) in B(0,R),

v|∂B = 0.

From our previous results we havev(x) � 0. Thusω= u− v satisfies
∂ω

∂t
−�ω= f (x, t)− g(|x|) � 0 in B(0,R)× ]0, T [,

ω|∂; = 0, ω(x,0)= u0(x)− v(x) � 0 in B(0,R).

Finally, the positivity ofu follows from maximum principle of parabolic equation (cf.
[5,9]).

Remark. – The condition (103) cannot be improved. In fact, let us consider a function
v ∈ C2([−1,+1]) ∩H 1

0 (]−1,+1[) such that:
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v(0)= v(−1)= v(1)= 0, v′′(−θ)= v′′(θ)= 0, for someθ > 0,

v′′(x) < 0 ∀x ∈ [−1,−θ[ ∪ ]θ,1], v′′(x) > 0 ∀x ∈ ]−θ, θ[.
Let us setf (x, t) := −v′′(x) and letu0 be such that{−u′′0(x) < f (x) in ]−1,+1[,

u0(−1)= u0(1)= 0, u0 ∈C2([−1,+1]).
It is clear that there existsη > 0 such thatu0(x) < 0 ∀x ∈]−η, η[. And thus the solution
u of (102) is negative in a neighbourhood of 0, fort > 0 small enough.

7.7. Extension to general elliptic operator

It is possible to extend our result (Theorems 1, 2) to operators of the form

A=∑
ij

aij (x)
∂2

∂xi∂xj

+∑
i

bi(x)
∂

∂xi

+ c(x).

Formally our method works. The difficulties are technical.

Appendix A. First eigenvalue of a degenerate operator

Let β1, β2, β be three positive continuous functions defined on[0, T ], such that
0< β2(t) � β(t) � β1(t) ∀t > 0,
c.β2(t) � β(t) ∀t > 0, c= constant> 0,
β(0)= 0.

(A.1)

We assume thatβ is nondecreasing. We have the following result

PROPOSITION A.1. –

λ1(β,β,0, T )= inf
[∫ T

0 β(v′)2
dx∫ T

0 βv2 dx

∣∣∣ v ∈ V

]
� 1

T 2
> 0

where

V = {v defined on]0, T [ |√βv and
√

βv′ ∈L2(]0, T [), v(T )= 0
}
.

In addition the mapT → λ1(β,β,0, T ) is nonincreasing andλ1(β,β,0, T ) tends to
+∞ asT goes to0+.

Proof. –Let us remark that for anyv belonging toV , v ∈H 1(]ε, T [) ∀ε > 0. Thus we
have

∀x ∈]0, T [,∀u ∈ V,
√

β(x)u(x)=−
T∫

x

√
β(x).u′(s) ds;
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√
β(x)
∣∣u(x)∣∣� T∫

x

√
β(x)
∣∣u′(s)∣∣ds �

T∫
x

√
β(s)
∣∣u′(s)∣∣ds

�
T∫

0

√
β(s)
∣∣u′(s)∣∣ds,

sinceβ(.) is nondecreasing. Using Cauchy–Schwarz inequality we obtain:

∀x > 0, β(x)
∣∣u(x)∣∣2 � T .

T∫
0

β(s)
∣∣u′(s)∣∣2ds,

and by integraton it follows

1

T 2
�
∫ T

0 β|u′(s)|2 ds∫ T
0 β|u(s)|2 ds ,

from which we deduce the first result. The remaining result is clear.✷
COROLLARY. –

λ1(β1, β2,0, T )= inf
[∫ T

0 β1(v
′)2

dx∫ T
0 β2v

2dx

∣∣∣ v ∈W

]
� λ1(β,β,0, T )

where

W = {v defined on]0, T [ |√β2v and
√

β1v
′ ∈L2(]0, T [), v(T )= 0

}
.

Proof. –Let us givev belonging toW . From (A.1), it is clear that
√

βv and
√

βv′
belong toL2(]0, T [), i.e.,W ⊂ V . We have∫ T

0 β1(v
′)2

dx∫ T
0 β2v

2dx
�
∫ T

0 β(v′)2
dx∫ T

0 βv2 dx
, ∀v ∈W ⊂ V ;

∫ T
0 β1(v

′)2
dx∫ T

0 β2v
2dx

� λ1(β,β,0, T ), ∀v ∈W

from which the result follows easily. ✷
PROPOSITION A.2. –For any t , 0< t < T we have

λ1(β,β, t, T ) > λ1(β,β,0, T ).

Proof. –Let us remark that

λ1(β,β, t, T )= inf
[∫ T

t β(v′)2
dx∫ T

t βv2 dx

∣∣∣ v ∈H 1(]t, T [), v(T )= 0
]

(A.2)
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sinceβ is continuous and positive on[t, T ]. Let us denote byµ1(β,β,0, T ) the right
hand side of (A.2). It is clear that we have

µ1(β,β, t, T ) > µ1(β,β,0, T )= inf
[∫ T

0 β(v′)2
dx∫ T

0 βv2dx

∣∣∣ v ∈H 1(]0, T [), v(T )= 0
]

since

∀v ∈H 1(]0, T [), v|]t,T [ ∈H 1(]t, T [).
As {

v ∈H 1(]0, T [) | v(T )= 0
}⊂ V

we can claim that

µ1(β,β,0, T ) > λ1(β,β,0, T ). (A.3)

From (A.2) and (A.3) we deduce the result.✷
Remark. – An easy computation shows that

λ1(1,1,0, T )=
(
π

2

)2

.
1

T 2
.

Appendix B. A degenerate ordinary differential equation

Let us consider the following equation:{−(βa′)′ + γβa = 0 in ]0, T [,
(βa′)(0)= 0, a(T )= 1,

(B.1)

whereβ(.) is a continuous, positive and nondecreasing function defined on[0, T ] such
that

β(0)= 0, β(t) � c.tα ∀t > 0;
c andα are positive constants,γ is a bounded function which has a constant sign in a
neighbourhood of 0. We suppose that

λ1(β,β,0, T ) > γ −(t)+ η a.e.t ∈ [0, T ], (B.2)

whereη is a positive constant,γ −(t)=− inf(0, γ (t)),

λ1(β,β,0, T )= inf
[∫ T

0 β(v′)2
dx∫ T

0 βv2 dx

∣∣∣ v ∈ V

]

with

V = {v ∈ L2
loc(]0, T ]) |

√
βv and

√
βv′ ∈ L2(0, T ), v(T )= 0

}
,
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λ1(1,1,0, T ) >
T 2

2
‖γ ‖2

L∞(0,T )
. (B.3)

PROPOSITION B.1. –Assume thatγ satisfies(B.2). Then Eq.(B.1) has a unique
solution, denoted byaβ(.), which is positive and belongs toV . In additionaβ(.) belongs
to W 1,∞(]0, T [) if γ is nonnegative in a neighbourhood of0. If γ satisfies(B.3), the
following estimate holds:

‖aβ‖
W1,∞(0,T )

� K

whereK is a constant independent ofβ.

Proof. –If there is no ambiguity, we denoteaβ(.) by a(.).
First step. (Existence).
Let b be a regular function on[0, T ] such that

b′(x)= 0 ∀x ∈ [0, τ ] for someτ > 0, b(T )= 1,

and let us setk = [(βb′)′ −γβb]/√β anda = u+b. It is sufficient to prove the existence
of a solutionu of {−(βu′)′ + γβu= k on ]0, T [,

(βu′)(0)= 0, u(T )= 0.
(B.2.1)

This equation has the following variational formulation:

A(u, v)=
T∫

0

βu′v′ dx +
T∫

0

γβuv dx =
T∫

0

k
√

βv dx ∀v ∈ V. (B.3.1)

From Appendix A and sinceγ verifies (2) Lax–Milgram theorem shows that there exists
a unique solutionu of (B.3.1). And it is classical to see thatu is also solution of (B.2.1).

Second step. (a(x) � 0 ∀x ∈ [0, T ].)
Let us remark that ifa belongs toH 1(]0, T [), the result is classical. It is obvious that

a belongs toH 2(]ε, T [) ∀ε > 0. Thereforea anda′ are continuous on]0, T ]. We have
two cases to consider:

(i) first case: lim|a(t)| = +∞ ast→ 0+;
(ii) second case: lim|a′(t)| = +∞ ast→ 0+.
(i) Let ε > 0 be small enough to obtain that the sign function ofa is constant on]0, ε]

and|a(t)|� |a(ε)| ∀t ∈]0, ε]. We argue by contradiction, i.e., we suppose that∣∣{x | a(x) < 0
}∣∣> 0

where|F | stands for the Lebesgue measure of the measurable setF . We have

T∫
0

(
λ1(β,β,0, T )− γ −(x)

)
(a−)

2
β(x) dx > 0. (B.4)
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If we chooseε small enough, we can assume that

T∫
ε

[
λ1(β,β,0, T )− γ −

]
β(a−)

2
dx > ‖γ ‖∞.

ε∫
0

βa2 dx (B.5)

since
∫ T

0 βa2 dx <+∞. Let us set

ã(x)=
{
a(x) ∀x ∈ [ε, T ],
a(ε) ∀x ∈]0, ε[,

it is clear that̃a ∈H 1(]0, T [). After multiplying (B.1) by ã−, and integrating by parts,
we obtain

T∫
0

βa′(ã−)′ dx +
T∫

0

βγ aã
−
dx = 0

i.e.,

T∫
ε

βa′(a−)′ dx −
T∫

ε

βγ (a−)
2

dx −
ε∫

0

βγ (a−)ã
−
dx = 0 (B.6)

sincea andã have the same sign in]0, ε]. (B.6) can be written

T∫
ε

β
[
(a−)′
]2

dx +
T∫

ε

βγ (a−)
2

dx +
ε∫

0

βγ a−ã− dx = 0. (B.7)

But from Appendix A

T∫
ε

β
[
(a−)′
]2

dx � λ1(β,β, ε, T ).

T∫
ε

β(a−)
2
dx

� λ1(β,β,0, T ).

T∫
ε

β(a−)
2
dx. (B.8)

From (B.7) and (B.8) we can write

T∫
ε

λ1(β,β,0, T )β(a−)
2
dx +

T∫
ε

βγ +(a−)
2
dx

−
T∫

ε

βγ −(a−)
2
dx +

ε∫
0

βγ a−ã− dx � 0, (B.9)

or again
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T∫
ε

[
λ1(β,β,0, T )− γ −

]
β
(
(a−)
)2

dx − ‖γ ‖∞
ε∫

0

βa2 dx

+
T∫

ε

βγ +(a−)
2
dx � 0, (B.10)

since |a−(ε)| = |ã−(s)| � |a(s)| ∀s ∈]0, ε], |a−(s)| � |a(s)| ∀s ∈]0, T [. (B.10)
contradicts (B.5). Thereforea−(x)= 0 a.e.x ∈]0, T ].

(ii) Since γ has a constant sign in a neighbourhood of 0,a is monotone in
neighbourhood of 0, from (B.1). Thus the limit of|a(t)|, as t goes to 0+, exists. And
in this case we can suppose lim|a(t)| = θ <+∞, ast→ 0+.

As the functiona belongs toC0(]0, T ]), it is bounded on[0, T ]. Hence we have

T∫
0

∣∣a(s)∣∣ ds <+∞. (B.11)

By (B.1) βa′ is a continuous function on[0, T ] and

∀x > 0 a′(x)β(x)=
x∫

0

γβa ds,

∀x > 0
∣∣a′(x)∣∣� 1

β(x)

x∫
0

|γ |.β.|a|ds � ‖γ ‖∞ 1

β(x)

x∫
0

β(x)|a|ds

sinceβ(.) is nondecreasing. Thus we have

∀x > 0,
∣∣a′(x)∣∣� ‖γ ‖∞.

T∫
0

|a(s)|ds.

And by (B.11) we obtain thata belongs toW 1,∞(]0, T [). Now we can multiply (B.1) by
a−, and after integrating by parts we obtain:

−
T∫

0

β
[
(a−)′
]2

dx −
T∫

0

γβ(a−)
2
dx = 0,

T∫
0

β
[
(a−)′
]2

dx −
T∫

0

γ −β(a−)
2
dx +

T∫
0

γ +β(a−)
2
dx = 0. (B.12)

From Proposition A.1, (B.12) becomes:

T∫
0

[
λ1(β,β,0, T )− γ −

]
β(a−)

2
dx +

T∫
0

γ +β(a−)
2
dx � 0. (B.13)



864 R. TAHRAOUI / Ann. I. H. Poincaré – AN 19 (2002) 815–870

From (B.2), (B.13) entails thata−(x)= 0 a.e.x ∈]0, T ]. This achieves the proof of the
second step.

Third step. (a > 0.)
We first propose to prove that limx→0+ a(x) > 0. Then, in a second step, we will show

thata(x) > 0 ∀x ∈]0, T ].
(a) We argue by contradiction and we use Gronwall technique. Assumea(0) = 0.

From (B.1) we obtain

∀x > 0 a′(x) � ‖γ ‖∞
β(x)

.

x∫
0

β(s)a(s) ds. (B.14)

Sincea(0)= 0, a ∈ C0([0, T ]) and (B.14) becomes

∀x > 0 a′(x) � ‖γ ‖∞
x∫

0

a(s) ds (B.15)

becauseβ(.) is nondecreasing. (B.15) can be written:{
U ′′(x) � ‖γ ‖∞.U(x) ∀x > 0,
U(x) � 0, U(0)=U ′(0)= 0,

(B.16)

where

U(x)=
x∫

0

a(s) ds � 0.

By integration (B.16) entails

U ′(x) � ‖γ ‖∞.

x∫
0

U(s) ds.

Thus we have

∀x > 0
U ′(x)
U(x)

� ‖γ ‖∞.

∫ x
0 U(s) ds

U(x)
� ‖γ ‖∞.x

sinceU(.) is nondecreasing, i.e.,

U ′(x)
U(x)

� ‖γ ‖∞.x, ∀x > 0. (B.17)

Let t > 0 be arbitrary and 0< ε < t . After integrating by parts on[ε, t], (B.17) becomes

0� U(t) � U(ε)exp
[‖γ ‖∞

2

(
t2− ε2)]� C.U(ε). (B.18)
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Passing to the limit in (B.18), asε goes to zero, we obtain

U(t)= 0 ∀t > 0 i.e. a ≡ 0

which contradicts (B.1). Thus lima(x) > 0, asx→ 0+.
(b) We now suppose that there existsx0 > 0 such thata(x0)= 0. Buta(x) � 0 for any

x in ]0, T ] anda(.) belongs toC1(]0, T [). This entails that we have

a′(x0)= 0.

Then, from (B.1), we can write

∀x > x0 a′(x) � ‖γ ‖∞
x∫

x0

a(s) ds.

Then we proceed exactly as in (a) to conclude that

a(x)= 0 ∀x, x0 � x � T .

And this contradicts (B.1) sincea(T )= 1.
We point out that in previous steps we do not have necessarily the positivity ofγ in

neighbourhood of 0.
Fourth step. (a ∈W 1,∞(]0, T [).)
Here we need to use thatγ is nonnegative in a neighbourhood of 0, denoted by

ϑ(0)= ]0, τ ]. From (B.1), βa′(.) is increasing inϑ(0). As (βa′)(0)= 0, we have

βa′(x) � 0 ∀x ∈ ϑ(0),

i.e.,

a′(x) � 0 ∀x ∈ ϑ(0).

Hencea is increasing in]0, τ ]. Therefore limx→0+ a(x) exists and we have

0� lim
x→0+

a(x) � a(τ) <+∞.

Sincea ∈ C0(]0, T ]) we can set

a(0)= lim
x→0+

a(x),

anda(0) > 0, by the third step. Consequentlya(.) belongs toC0([0, T ]) and from (B.1)
we obtain:

∀x > 0,
∣∣a′(x)∣∣� 1

β(x)

x∫
0

|γ |β(s)a(s) � ‖γ ‖∞.

x∫
0

a(s) ds.
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Thus

∀x > 0,
∣∣a′(x)∣∣� ‖γ ‖∞.‖a‖∞.

This proves thata ∈W 1,∞(]0, T [).
Fifth step. (‖aβ‖

W1,∞(0,T )
� K .)

Now let us prove the estimate

‖aβ‖
W1,∞(0,T )

� K = constant independent ofβ.

We have:

∣∣a′β(x)∣∣� ‖γ ‖∞.

x∫
0

aβ(s) ds � ‖γ ‖∞.
√

x

( T∫
0

|aβ |2ds
)1/2

, (B.19)

by Cauchy–Schwarz. We have

T∫
0

|a′β |2 ds � ‖γ ‖2
∞

T 2

2

T∫
0

|aβ |2ds.

By Poincaré inequality (cf. Appendix A) we have

λ1(1,1,0, T )

T∫
0

|aβ − 1|2 ds � ‖γ ‖2
∞.

T 2

2
.

T∫
0

|aβ |2ds,

(
λ1(1,1,0, T )−‖γ ‖2

∞.
T 2

2

)
.

T∫
0

|aβ |2 ds

� 2λ1(1,1,0, T )

T∫
0

|aβ |ds � 2λ1(1,1,0, T )
√

T

( T∫
0

|aβ |2ds
)1/2

,

or again

‖aβ‖
L2 � 2λ1(1,1,0, T )

√
T

λ1(1,1,0, T )−‖γ ‖2∞.T 2/2
. (B.20)

From (B.19) and (B.20) we deduce easily that

‖aβ‖∞ � C, ‖a′β‖∞ � C

whereC denotes some constant independent ofβ. Now the proof of Proposition 1 is
complete. ✷
B.1. An other regularity result

Let us consider the problem studied previously. Let us assume thatγ verifies
inequality (B.2) and takeβ(t) = c.tα , α > 0. We suppose that there existsr0 > 0 such
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that { |γ (r)|� d.rθ ∀r ∈ [0, r0],
θ > α−1

2 .
(B.21)

PROPOSITION B.2. –If γ satisfies(B.21), then the solutiona of following equation{− 1
rα
(rαa′)′ + γ a = 0 in (]0, T [),

(rαa′)(0)= 0, a(T )= 1

belongs toW 1,∞(]0, T [). In additiona′(0)= 0.

Proof. –From Proposition 1 there exists a unique functiona such thatrα/2a(r) and
rα/2a′(r) belong toL2(]0, T [). Thus for anyr , 0< r < r0, we have

rαa′(r)=
r∫

0

sαγ (s)a(s) ds,

∀r > 0,
∣∣a′(r)∣∣� 1

rα

r∫
0

sα|γ (s)|∣∣a(s)∣∣ds,
∣∣a′(r)∣∣� d.

r∫
0

sθ
∣∣a(s)∣∣ds ∀r,0< r < r0.

Using Cauchy–Schwarz, we obtain

∀r, 0< r < r0,
∣∣a′(r)∣∣� d.

r2θ−α+1

2θ − α+ 1
.

( T∫
0

sα
∣∣a(s)∣∣2 ds)1/2

. (B.22)

As a′ is continuous on]0, T [, we have

lim
r→O+
∣∣a′(r)∣∣= 0

i.e., we can set, by definition,a′(0)= 0, sincea ∈ C1(]0, T [). Inequality (B.22) entails
thata′ belongs toL∞(]0, T [); and since

a(r)=
T∫

r

a′(s) ds + 1,

we can claim thata belongs toW 1,∞(]0, T [). ✷
Remark. – Assume thatγ verifies (H′2). Let us giveβ(.) such thatβ(t) ∼ tα in a

neighbourhood of 0. We can prove that the solutionaβ of{− 1
β
(βa′β)′ + γ aβ = 0 in ]0, T [,

(βa′β)(0)= 0, a(T )= 0,
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belongs toW 1,∞(]0, T [) and verifiesa′β(0)= 0. In addition, proceeding as in the proof
of Proposition 1, we can state that‖aβ‖W1,∞ � C, C is constant independent ofβ.

Appendix C. Extension result

Let � be a bounded open set ofR
N , andM be an open regular subset of�. Consider

the operator

A=−∑
ij

∂

∂xi

(
αij

∂

∂xi

)
+∑

i

βi

∂

∂xi

+ c.

We suppose thatA is uniformly elliptic:{∑
ij αij (x)ξiξj � α|ξ |2 a.e.x ∈�, ∀ξ ∈R

N,

α is a constant> 0, αij = αji ∀i, j.
Let v be the solution of the following equation{

Av = f in M,

v|∂M = 0,
(C.1)

wheref belongs toL2(M).

EXTENSION LEMMA. – Suppose that the solutionv of (C.1)satisfies

∑
i,j

αij

∂v

∂xj
cos(n, xi)

∣∣∣∣ ∂M � 0 in H−1/2(∂M), (C.2)

wheren stands for the outer normal to∂M. Then we have:

Aṽ � f̃ in the sense ofH−1(�),

where, for any functions defined onM, s̃ stands for the extension ofs by zero, to�.

Proof. –It is based on Green formula. For any nonnegative functionϕ belonging to
D(�), we have, integrating by parts:〈

−∑
i,j

∂

∂xi

αij

∂ṽ

∂xj

, ϕ

〉
H−1(�)×H1

0
(�)

=
〈
−∑

i,j

∂

∂xj

αij

∂ϕ

∂xi

, ṽ

〉
D′(�)×D(�)

=
∫
M

−∑
ij

(
∂

∂xi

αij

∂v

∂xj

)
.ϕ dx

+
∫
∂M

∑
ij

αij

∂v

∂xj

cos(n, xi)ϕ dσ

�
∫
M

−∑
ij

(
∂

∂xi

αij

∂v

∂xj

)
ϕ dx, (C.3)
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thanks hypothesis (C.2) and sinceṽ ∈H 1
0 (�), with

∇ṽ(x)=
{∇v(x) a.e. inM,

0 in �\M̄.
(C.4)

From (C.4) it follows ∫
�

∑
i

βi

∂ṽ

∂xi

ϕ dx =
∫
M

∑
i

βi

∂v

∂xi

ϕ dx, (C.5)

∫
�

cṽϕ dx =
∫
M

cvϕ dx. (C.6)

Finally (C.3), (C.5) and (C.6) give

〈Aṽ,ϕ〉
H−1(�)×H1

0
(�)

�
∫
M

Avϕ dx =
∫
M

f ϕ dx =
∫
�

f̃ ϕ dx,

for any nonnegativeϕ belonging toH 1
0 (�). That isAṽ � f̃ in sense ofH−1(�). ✷
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