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ABSTRACT. — Let f be a signed function defined on some bounded dortaiie give
sufficient conditions ensuring the positivity ©f solution of the following equation:

—Au=f in Q, ulagg =0.
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RESUME. — Soit une fonctiory de signe non constant sur un domaine baen®n donne des
conditions suffisantes assurant la stricte positivité de la solution de I'équation :

—Au=f dans@, ulyg=0.
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1. Introduction

We are concerned with maximum principle for linear second order partial differential
equations. The maximum principle is a mathematical tool which is used frequently
in many fields of mathematics. For instance, its use is often essential in the study o
nonlinear partial differential equations: existence and qualitative result [9,5]. In this field,
the literature is well documented and our reference list is by no means exhaustive. Fc
instance, we refer to [5,11,10], for precise informations.
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For sake of clarity, let us recall the following definition: L@tbe an open bounded
subset ofR"; we say that the operator

2

a a
A:_Zaijm—i-zi:bi——i-c

. 8xi
i,j

has the maximum principle property if, for any nonnegative functforthe solutionu
of — (if it exists)
{Au =f ing, )
ulpga =0
is positive.
In the present paper, we deal with the following natural questionf lle¢ a function

defined o2 such that

ST () =sup(f(x),0) #0,

7 (x) =sup(—f(x),0) #£0.

Is the solutioru of (*) positive? We are looking for assumptions grwhich imply that

the answer to this question is positive. In a simple but significant setting the main resul
of the present paper can be stated as follows<tbe a ballB(0, R) of RY, f a function
defined onQ2 such that

fx) = g(lxl) =g" (IxI) — g~ (Ixl) (a)

whereg is a radial function. Assume that

R
/ do

oN-1
0

where, for any functiotk, i, (respectively:*) stands for the nondecreasing (respectively
the nonincreasing) rearrangement:@fvith respect to the measuredefined by

oV /N
[

(g = (87)"](s)ds >0, (b)

—

0

W(E) = /sN_lds

E

for any measurable subsgtof [0, R].
THEOREM 1. —Under hypothesi¢a) and (b), the solution: of
{—Au = f in B(O, R),
ulpe =0,
is positive.

To be more clear and explicit, let us give the meaning of our result throughout the
following particular case [14]. Suppose thatc R". Let B(0, ro) and B(0, R) be two
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open balls such that
B(0,r9) C B(O,R) C Q.
Assume that

f) ef{-a,p} and {xe€Q]| f(x)=—a} < B0, o),

wherex andg are two positive real numbers. Then the solutioof

{ —Au=f ing,
ulpe =0,
is positive if we have the following inequalities
R\" —2
e (B 22y,
p ro N(g)N_z -2
R\? 1
T N L
B~ \ro/ 1+2Log(;)

In this work the main difficulty occurs if the zero order coefficieraf operatorA is
not equal to zero; it is enough to state our results in the model case

{—Au—{—c.u:f in Q,
ulye =0.

In fact, up to some technical computations, we can obtain our results for general operatc
A. We will apply our maximum principle result to many frameworks:
(i) We will state that the solution of

{ —Au —clu|=f inB(0,R),
ulyp =0,

has a positive radial average if the radial averag¢ wérifies some natural hypothesis.
(i) We will study the positivity of the solution of the following semi-linear problem,
without monotonicity or positivity hypothesis oft:

{—Au = f(x,u) Ing,

ulype =0.
(iii) We will state the positivity of the solution of the fourth order problem
{—A%:f in Q,
ulyge = Aulze =0.

For a first result about the positivity of the solution of this equation we can see [14]
whereQ is a ring.

(iv) By a negative result we will prove that the main hypothesis used in this paper is
not related to the method.
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(v) Our method works in the case of parabolic equation.

(vi) Localization of critical point [16]: here we will explain how to use our main
result to study the star-shapedness property of the level sets of solutions to various p.d.
in the case? simply connected. Such results are already known in the@ase2,\Q2,,

Q, C Q1, Where; is, for instance, convex: [7,4,3]. And let us point out that the results
of the papers mentionned above do not apply in the €asinply connected.

2. Setting of the problem, notations and hypothesis

Let © be an open bounded and regular subsé@’6f We suppose tha® is connected.
Let us consider the solutian of the following equation

{—Au—l—c.u:f in Q, (1)

M|3g2=0.

We assume that the operate\ + c./ satisfies the maximum principle an (for more
details about maximum principle cf. [9,10]). Let us denoteAjythe negative support
of f,i.e., the set

E;={xeQ| f(x) <0}.
We assume that
FfCQ. (2)

Let ¢ andh be two functions defined af2 and such that & ¢ (x) < T. For anyx in €2,
set

g(x) =sup{k(¢(x)) | k(.) continuous function

3
defined on0, T'] s.t.kog(.) < h(.) on2}. ®)
There exists a function, (.) defined on0, T'] s.t.
hy(p(x)) =g(x) <h(x) VxeQ. 4.2
In the same way, we define, for amyin €2,
k(x) =inf{l(¢(x)) | I(.)continuous function
defined o0, T'] s.t.lop(.) > h(.) onQ}.
We define, orj0, T], a functioni?(.) such that
h? (@(x)) =k(x) = h(x) VxeQ. 4.2)

DEFINITION 1.—
1. Functionh,(.) defined by3) and (4.1)is called estimate from below afwith
respect top, on Q2.



R. TAHRAQUI / Ann. I. H. Poincaré — AN 19 (2002) 815-870 819

2. Functionh? defined by4.2)is called estimate from above bfwith respect tap,
on €2.
3. Functiong plays an important role in this study. We call it shape function.

Remarksl. —
(i) Let f be positive function. Thef, f, dx < +ooif [, fdx < +oo.
(i) Jo(If1)?dx < +o0 entails thatf, | f,| dx < +oo.
(i) f, and f¢ are bounded iff is bounded.
(iv) The hypothesisf, | f,|dx < +oo assumed in (6) Section 3, is necessary to
construct positive subsolution of (1) which is the main idea of our paper; this
is showed by the following example:

Q=B(0,R) SR*p(x) =Ix|, x=(x1,x2),
f(x) = —1/Ix1]%, if |x1| <ro, x € B(O, R),
VTVl if [x1] > ro, x € B(O, R),

with 0 < «a < % Function f belongs toL2(2) and £, (|x|) = —oc. In this case,
our method does not work.

DEFINITION 2.—Letr ands be two bounded and positive functions define@'].
Let us set

T T -

1
A(r, 5,0, T):inf[/rl///zdx(/sx/fzdx) ‘1// e H'Y(10, T[), (T) =0|.

0 0

The goal of this study is to give some sufficient conditiong tmensure the positivity
of the solutiont of Eq.(1). These conditions are nearly necessary. Roughly speaking,
our fundamental idea is to construct a positive subsolutiofilpivhich is of the form
v o ¢(.), wherev is defined or0, T']. For the sake of clarity, we present, in a first step,
our idea in a simple frameworka(x) = |x| is a radial function and the operator ifi)
is such that = 0. We will see that the case# 0 is more complex.

3. Theshapefunction isradial

To simplify the technical details of our work, we assume that
p(x)=l|x| VxeR",
c(x)=0 VxeQ.
And roughly speaking we look for positive subsolutiaw of (1) radial inB(O, R):

AW f inHY(Q), (5)

{W(x)::w(w(x)):w(lxl) in B(O,R) € Q,
Wlaa=0, W=>=0 VxeQ,

whereR is the radius of the largest ball = B(0, R) enclosed ir2. For simplicity, we
assume thab is the center of the balB. We denote

fr@x)=f(x) VxeB(O,R),



820 R. TAHRAQUI / Ann. I. H. Poincaré — AN 19 (2002) 815-870

and we assume the following hypothesis

/](f;g)(p]dx<+oo, (6)
B

{Hl’o, O<rg< R s.t. Eng(O, ro), and (7)

G(R. )= =1 Jo sV L Fr)p(s)ds dr > O

whereE; ={x € Q| f(x) <0} and where(fR)(p is given by Definition 1, and
fr(x)=f(x) VxeB(0,R\[B(O,ro\Ef],
fr@x)=0 ifx e B(O,ro\Ey.

E; C B(0, o) is called the localization hypothesis of negative supgort

Remarks2. —

(1) Let us point out that hypothesis (6) is satisfied for gngounded from below.

(2) We can relax (7) byG(R, f) = 0. In this case, the result of Theorem 1 could
be some what weaker. This situation will be studied in Theorem 2 for ellipsoidal
coordinates.

LEMMA 1.—Let us consider the function

R

1 [7 _
v :/UN—l l/sN_l(fR)w(S)dS] do.

r 0

w is positive and satisfies E¢B) written here after.
Proof. —From (7) we have:
(fR)e(r) <0, 0<r<ro,
(fR)p(r) =0, ro<r<R.

Then there exists some> rg such thatw’'(7) =0, w'(r) >0Vr, 0<r <7, w'(r) <0,
Vr, 7 <r < R. Sincew(0) > 0 from (7) andw(R) = 0, we obtain that

wr) =0 Vr, 0<r <R.

To achieve the proof, it is easy to verify thatis solution of (8) here after.
Indeed let us consider the solution of

1 d d ~ .
_I"N_ld_l"<rN_ld_l:‘)> :g(r):(fR)(p in B(O, R),

duw (8)
—(0)=0, w(R)=0.
dr



R. TAHRAQUI / Ann. I. H. Poincaré — AN 19 (2002) 815-870 821

It is easy to see that

o

R
w(r):/aNl_l/sN-lg(s)dsda. O

r 0

From hypothesis (7), we hawe(r) > 0 for anyr, 0 < r < R. Let us denote
W(x)=w(|x]) VxeB(O,R).

We have
{—AW:gSf in B(O, R), )
Wiss =0.
We are going to extend inequality (9) @, in some sense. Lét be a function defined
as follows

- . Jglx]) VxeB(O,R),
g(x)_{o Vx € Q\B(O, R),
and let us denote
. _ | W(kx) if xeB(O,R),
W(x)_{o if x € Q\B(O, R).
w belongs toH}(2). From extension lemma (cf. Appendix C) we obtain:
—AW<g inHYQ), 10
{ W e Hg(R), (10)

and

W —u € HX(Q).

Asg(x)— f(x) <0Vx € 2, g(.) — f(.) # 0, we obtain, from Stampacchia result’s [11],
that

{ AW - <g—f inHXD),

W(x) —ulx) <0 VxeQ,
i.e.,u(x) > 0Vx € Q, since from hypothesis (7) we have

W(x) >0 VxeQ.

So we have proved the following result.

THEOREM 1. —Under hypothesi¢6) and(7), the solutioru of (1) is positive in<2.

A simple and illustrative examplef. [13,14]). — In order to give a precise idea of our
result, we propose a very simple but significant exampleultet the solution of

{—Au:f inQ=B(0,R) CR",
ulpe =0,
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where f(x) € {«, 8} a.e.x € Q, « and 8 being two real numbersy < 0, 8 > 0. We
assume that

Er={xeQ|fx)=a} < B(O,ro

whereq, B, ro and R are such that:

R\ -2
B ro/ N(Z)"77-2
E (10.1)

2
L )
B ro/ 1+2Log(s)

Theorem 1 states thatis positive. Relations (10.1) mean that if the Bgtis “sufficently
far ” from the boundary of2 and if |¢| is not “too large” with respect t@, thenu is
positive. If E; = B(0, rp), (10.1) is necessary to obtainpositive.
4. Theshapefunction isellipsoidal
In Section 3, we used radial coordinates. These coordinates are not always we
adapted to the geometry @2. So we use in the following ellipsoidal coordinates
as in [17]. For this let us give a familly of parametrized ellipsoiglso) centred at

0. We denote the boundary of such an ellipsoida®(p). This boundaryd B(p) is
characterised by the following equation:

VxedB(p), Y x7/(p+g)=1 ¢;>0Vj=12... N, (12)
J

where one of thg; is zero andp is a positive parameter. In the sequel, we set
j=m;(p) = D2 Vj=12....N
mj mj(p) (P+qj) ) ] s Ly o aay .

Let us notice that we have
0= il’lf(mz-). (13)

If the ellipsoidB(p) is not degenerate, i.e., when= 0, p is given by an implicit function
() of x: p=p(x). The level sets op(.) represent boundaries 8f(p), i.e.,

dB(p) ={x|e(x)=p} forsome levep.

From the computations of [17] we obtain the following relations:

Ap(x) =28 (x, p), p=9(x), |Ve@)|* =2y, p),
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B<x>=;;m=e<m»,
E(X):WA(Z)%))F’ 13.1
9(t)=%§j:t+1qj, (13.1)
Y(x.p) = Z{Zx,?/(p + q,~>2] -

;

For more details, cf. [17]. Up to a translation, we can, to simplify, assume that the
origin O belongs ta2 and is the center of the ellipsoids. Let us set

c(x) () = ct(x)
Ve 7 T Ve

y(x) = Vx € Qs.t.|Vo(x)| #0 (14)
T =sup{p e R* | B(p) € Q}.

Let us remark thatB(p) is an increasing family of subsets &f and 7' = ¢|ypr) =
sup{¢(x) | x € B(T)}. We suppose that

~o L le@)]
7| = Vo] <M VxeQ, (15)
and
7 1IVep|? belongs taL'($). (16)

Remarks about hypothegik5). — The following example shows that (15) is somewhat
necessary.
Considerb(x) = 1/(x — x0)? Vx # xo, x €10, 1[, wherex, €10, 1] is fixed. Letu, be
the solution of
{_ug-i_b&"u&‘:ga g>00n]05 1[5

uy(0)=u.(1) =0, g bounded (17)
with

2 _ —

by (x) = 1/¢ !fxe[xo g, xot+el=1I,
b(x) ifxe]01[—1,.

Thenu,.(xg) — 0 ase — 0. Indeed, arguing by contradiction, i.e., suppose that there

existsa > 0 such that for ang, 0 < ¢ < g9

inf{u.(x) | x € [xo — €0, X0+ 0]} > a.
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We have:
1 1
/|u;|2dx +/bg(u8>2dx < g loo-lute 2.
0 0
from which we deduce

1
/bg(ug)zdx <ec.
0

Thus

2 xo+e& xote
o
0<§ / dx < / be(u.)><c Ve>D0,
xXp0—¢€ xX0—¢

or again
20° < s.c

which is not possible foe small enough. Recall that(x) = ¢ (x)/|Ve(x)| allows us
to definey ® which helps to obtain positive solutiart.) of

{_%(ﬁa’)’+y“’a=0 on[0, 71,
a(0)=0, a(T)=1,

where

N
BAs) =] +ap
j=1
andg; > 0 are some constants. From example (17), we see easily tht i§ not
bounded, the solutioa(.) of the above equation can vanish [, 7]. We will also
see later in Proposition 1, that.) > 0 on [0, T] is essential to construct a positive
subsolution of (1). So taking into account the above example, hypothesis (15) is quite
natural; indeed it(.) > 0, (15) is some what necessary to our construction because our
method requires to havg.) > 0on 0, T]. And if E. = {x € Q| c¢(x) < 0} is such that
|E.| > 0, E. C 2, we choose suitably the origif in E... Thusy (x) is bounded it:(x) is
bounded, sinc® is the center oB(p). In a first step we study positivity of the solution
v of
—Av+cto=f IinQ,
{ Ny (16.1)
In a second step, it sufficies to remark that, i nonnegative, we have
u>v in<,

which gives the expected result. Finally, let us point out thatif nonpositive we also
haveu < v in Q. These remarks show that, instead of (1), the significant problem that
we have to consider is problem (16.1). So we will study it subsequently.
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Remark— Let us point out that if
{xeQ|c(x)<0}|>0

it is necessary to suppose
lc™ L) < A1(82, A)

to have existence and classical maximum principle for ¢L)XS2, A) is the first
eigenvalue ofA, in 2, with Dirichlet boundary condition.

Remarks about hypothegi$6). — First of all, let us recall tha® is the center of the
ellipsoidsB(p). If f/|Ve|? does not belong té1(£2), we can proceed by approximation
procedure. That is to say, since from @) C 2, we choose the origi® in Q\E ; and
study the positivity of the solution, of

{—Avs +ctu,=f IinQ,
v8|39=07

where
0 if x € B(O, ¢),
fex) = { f(x) if xeQ\B(@,e),
for ¢ > 0 small enough. Next we pass to the limitagoes to zero and the expected
result follows for (16.1), if the necessary hypothesis are satisfied.

The following lemma is necessary to understand the hypothesis that we will assum
and which establishes the quantitative link between functiphs= sup(f,0), f~ =
—inf(f, 0) and their respective supports.

LEMMA 2.—There exists a unigue, 0 < t, such that
1 T 2 2 t2
72'(5) =AL1,0.0> |y )05 Vel
2
T
ML1.0.0) = (Iy¥ll)’ 5

Proof. —The functionr — A(1, 1, 0, ¢) is decreasing anti(1, 1, 0, r) — +o0 ast goes
to O". Therefore, there exists> 0 such that

‘L’2

MLL0.0) = (].)"

and
2 12
A1,L,0,0> ([|v*]..) = vt €10, 7[.

The equalityr(1,1,0,7) = (%)2}2 follows from a classical computation.

In some sense, Lemma 3 will show that the use of ellipsoidal coordinates is somewhe
“miraculous” since ellipsoidal computations are nearly similar to radial ones.
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LEMMA 3. —-We have

By =B =6()==+50). Viel0.T] (19.2)

whereq is a real constant> % and s (.) is a positive and bounded function defined on
[0, T].

Proof. —Let iy, io, ..., i, k = 1, be indexes belonging {4, 2, ..., N} such that

— 2__ 2 _ 2 _ 2
,o_ll;]fmj—mil—miz—---—mik.
Therefore
ql‘1=qi2="'=qik=0, qj>0 V_];ﬁl]_,,lk
So
1k 1 1
0(t)=§_+§ Z
P2 i T4
i.e.,

k1
6()=5."+60). O

In the sequel we need to use the following ordinary differential equation and its
solutiona(.) = a;(.):

{ —ﬂ(—ls)(ﬁ(s)a/(s))’ +y¢(s)a(s) =0 in]o, [, 20)
ad0)=0, a@)=1,
where
N
B2(s) =[] (s +4q). (21)
j=1

If there is no ambiguity, we denote the solutign.) of (20) bya(.). In Appendix B, we
prove that (20) has a unique solutiap(.) belonging toC°([0, t]) such thata(s) > 0,
Vs 0< s < t. Let us recall that the positivity af(.) requires (15) (cf. remarks about
(15)). In Appendix B the reader can find some regularity results about (20). Now let us
assume the following hypothesis:

(HO) Localization hypothesis of the negative suppBit. There exists, such that

O<tg<TandEy C B(tg) C Q.
(H1) There exists, 0 < 1o <t < T such that

t

2@:/

0

o

/a@ﬁ%ﬂ@ﬁ@ﬁm]

0

do
———— =0
a?(o)B(o)
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where

jgw::<ﬁ%az)w (cf. Definition 1), (21.1)

f)=fx) ifx¢BU)\Eyr, [f(x)=0 ifxeB(o)\Ey,
B is given by (21) and(.) is the unique solution of (20) if0, T'[.
(H2) The operatorA + ¢*(x).I and the function shape verify
2 72
T 1 _ 21
(E) S =2010.D > (Ir].0%5
Remark 3 (Comments about hypothesid and H2). — If (H1) is satisfied for > t,
given by Lemma 2, then (H1) and (H2) are not satisfied simultaneously. This means ths

f7 is not sufficiently preponderant with respectfo in a neighbourhood of ;. And
the method does not work.

THEOREM 2. —We assumélb), (16), (HO), (H1and(H2). Then the solutiom of (1)
satisfies the following
(i) u(x)>0if Z(r) >0,
(i) u(x)>0if 2(r) =0, B(rf) c Qand f #00nQ\B(1),
(i) u(x)>0if Z(r)=0and B(t) = or X (1) =0and B(r) C Q with f =0 on
Q\B().

Proof of Theorem 2. for the proof of this result, we proceed in several steps. The
main idea is to construct a positive subsolution of (1) which has the same level gets as

Stepl. (A differential equation, its link with (1) and its representation formula.) Let
us consider the following equation

{ —"(t) =0 () +y?.L() = fV,(p(t) =g(t), Vrelo1l, (22)
'/(0)=4(r) =0, tisgivenby (H1)

where fw is defined by (21.1)9(.) is given by Lemma 2 and (13.1y. is defined
by (14).

PROPOSITION 1. —Suppose thaty? belongs toL*°(]0,z[). Then there exists a
solution of(22), denoted by (.), and which has the following representation formula:

f d o B
() =a() / sz) / aB fo.p(5) ds
t 0

with B(t) = [vazl(t + ¢;)1*?, and whereu(.) is the solution of Eq(20)on ]0, T'[; 7 is
given by hypothesigi1).

Proof of Proposition 1.-From Appendix B, Eqg. (20) has a continuous positive
solution, denoted(.). Therefore, we can set

L) =a(t).v(t) VtelO,1]
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whereuv(.) is the solution of the following equation:

1 N E i 7
{_ﬁ_a(“zﬂv) =feo 0. @)
V' (0)=0, wv()=0.

By a direct integration it is easy to show that

r do o 3
v() = / i 0/ Bafo.p(5) ds.

Using hypothesis (H1) and proceeding as in Lemma 1, we can show thais
nonnegative. Thué(.) is nonnegative. O

Now let us set

_ Jlpx) ifxeB®),
W) = {0 if x € Q\B(®@).

As already seen in part 3 (radial coordinaté$),s a good candidate to verify:
0<W(x) <u(x) ing. (24)

But to obtain (24) we have to us€o ¢ and{” o ¢ which are not necessarly defined.
So we have to regularize Egs. (20), (22) and (23). For this we need some approximatio
results.

Step2. (A troncature result.)

LEMMA 3 (Troncature). Let f be afunction defined of?, bounded from below. For
anym € R, we set

fu() =inf(f(x),m)=[f(x)+m—|f(x)—ml|], VxeQ.

Then we have:
() (fm @) < (f)e(®) < fo () V1,
(i) (fm(p(x) < (f)e(@(x)) < fu(x) < f(x) Vx € Q, where we have set

gm(t) =inf(g(),m) Ve, for any functiong(.).

Proof of Lemma 3. First let us remark that for any functidr.) defined or{0, 7] we
have

g,(t) =k() Vtel[0,T], (25)

gx)y=kogp(x), xeQ.
For anym € R, we have

(fm)e(®) < fo (1) Vi €[O,T]. (26)
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Let us prove

(fm () < (fm)e(t) V.
For this let us set

gx) = frp op(x)= frp(‘/’(x)),
1
gn(¥) =3 [folo) +m — | f(@(x)) —m]],
1
h) = (fp)m(@) = > [fo() +m — | f, (1) —m]].

Itis clear that

hop(x)=h(px)) =gn(x) VxeQ, (27)
which means from (25)
(&m)e(®) =h() VtelO,T]. (28)
But
gm(x) =Inf(f,(p(x)), m) <inf(f(x),m) = fou(x) (29)

since f,(¢(x)) < f(x), or again
8n () = (f)m (0(0) < fin(x) < f(0).
Thus using (28) we obtain the result
(8m)e (1) = (fIm () < (fm)p(t) < fo(t) VI, (30)
since(ky), < (ko), if k1 < ko. To prove (ii) it suffices to take = ¢(x) in (30).

Step3. (Regularization of Eq. (22).) In a first step we can suppose that we have (cf.
H1)

- o N do
O/ [ O/ a(s)fv,w(sm(s)ds] =0 (31)

The case where the left hand side of (31) is equal to zero will be treated later. From (31
there existsng > 0 such that
i o
vmzmo [ [ / a(S)(fv,w)m(S)ﬁ(S)dS]

0 -0

99 Lo
a?(0)p (o)

In the sequeln is fixed. Letp, be the classical regular mollifier and let us define

g(1) = (fy.p)m * pe(t) VIR,
vty =y?xp.(t) VteR,
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after extendingfv,w)m andy? by zero to the all spadR. The operator star stands for the
convolution operator. From Remark 2.1 it is not restrictive to assyfneonnegative in
some neighbourhood of origin 0. Thus we can apply Appendix B wfttand conclude
that the solution:, of regularized equation of (20), is positive.

Now let us consider the solutiofy(.) of the regularized equation of (22):

(B+e)@)
(B+e))
€.(0) = £,(7) =0.

—£ (1) - Lo (1) + L (0L (1) = ge (1), (32)

£.(.) is regular and its representation formula is

do

L) =a,0). / [ 0/ a:($)8:()(F +e>(s>ds] ETET

a, is solution of the regularized equation of (20). For any0

B B (1) 1
L=-"[¢a,. ds X ———— .
50 =50 ) 8 Prerds < o o0
As B(.) is nondecreasing
B' (1) ‘ B () 1
Y, 2. ds ——.
IO 5" ae-lgelds o
But we have
llgell Lo, < c, llagll Lo, < ¢

and a, (x) > infla(x)/x €[0,]]/2 > 0, for Ve < &g, with &g small enough, because
a. — a uniformly. So

ﬂ’(t)
e / ds ) <e. i (33)
From (33) we deduce
le.()| <e, Vi, (33.1)
. g B ep’ (1) /3 (1)

TR B +e ﬂ(t)(ﬁ(t)+8) HON

Using (33) we obtain
|(ﬂ’(’>_ Ao )z;(t)‘gc VI, (34)
B@) p@)+e
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Let us take = ¢(x) in (22), we obtain:
" B (p(x)) €, (p(x)) B (p(x)) ,
) — £
o) Flot) B Been o W)

+ 78 (0(0)) L (p(x)) =1 g:(p(x)), Vx € B(1). (35)
But let us recall that we have the following important relation

Blo(x) _ Ap()
Blp(x)  [Ve)|?

Vx € Q\{x € Q| Vp(x) =0}, i.e., a.ex € Q. From (35) and (36) we deduce that

—AL (@) + y!(@).IVo|*l.(p)
, B (®).|Ve|?
B(@).(B(p) +¢)

Before to conclude we need to pass to the limit in (379 goes to zero.
Let us consider the function

(36)

() = g:(9).| Vo> aexeB(@). 37)

B (9 (x)).|Vp[?L.(p(x))
Blo(x)(B(p(x) +e)

Ve(x)=¢

We have
Ye(x) — 0 Vx e B(D\{x||Ve(x)| =0}

i.e., a.ex € B(#), andvx € B(r) it follows

B'(p(x))
€ < |V 2- Z <
Y ()| < [Vo ()| Blo(x) o) <c

by (33) and the regularity ap on Q. So ¥, tends strongly to zero ih?(2) thanks
to Lebesgue theorem. It is easy to see thély).|V|?¢.(¢) converges strongly to
v?(©)|Vo|2.L(p) in L?(22). On the other hand

Ve (p)| = |t.(9).Vo| < c VxeB(D)

using (33.1); finallyg. (¢) tends tog(¢) ase goes to zero. Now we are able to pass to
the limit in (37) asc goes to zero. We obtain

{ —ALP) + 7 (@) .L(0).IVP>= g(@) = (fv.0)m(®).IVp|? in B(@), (38)
L@)lasn =0, [VL(p)| <c.

Let us estimate from above the right hand side of (38) and let us estimate from below it:
left hand side; we find

{—Aﬂ(w) +c(x).L(p) < f(x) InB(@), (38.1)
t@lapi =0, V@) <c InB@), '



832 R. TAHRAQUI / Ann. I. H. Poincaré — AN 19 (2002) 815-870

since we have:
c(x) < y“’(<p(x)).|Vg0(x)|2 by definition ofy?,

and

. f f
< <
(fV(p)m((p) X |V(ﬂ|2 X |V(,0|2
from Lemma 3. Using the extension lemma of Appendix C, we can show, in the same
way as in the last part of the proof of Theorem 1, that the solutiof (1) is positive in
Q. The first part of the theorem is so proved.
Step4. Now it remains to examine the following case:

in B(7),

t o

~ do
/[/G(S)fv,q)(s)ﬁ(s)dsl W =0 (39)

0 *~0

(cf. (31)). If we have (39) let us set, for amy- 0
h*(x) = f(x)+e VxeB®\B(to); h°(x)=f(x) VxeB().

For anye > 0, it is easy to see that we have:

t o

__ do
/ [ / a(s) (i >v,¢(s>ﬁ<s>ds] e 7O (40)

0 -0

We have to consider two cases:
() B(r) c Qandf #0on Q\B(7).
Let v be the solution of

—Av+c(x).v=k o0ng<,
41
{ V30 =0, (41)
where
_ [ f(x) VxeB(@),
k(x)_{o Vx € Q/B(D).
Then we apply the first part of the proof to obtain
v (x) >0 aexeq,
whereu, is the solution of
—Av,+cv, =k onQ
¢ ¢ ’ 42
{ UalBQ = Ov ( )

with k¢ is defined similarly t0:* given above. Let us take the limit in (42) agoes to
zero. We obtain
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ve — v in Hy(Q) weakly,
v(x) >0 a.exeQ.
As from the strong maximum principle we have

ulx)>v(x) aexeq,

the result is then clearly proved.
(i) B(r) = or B(r) C Q with f =0 on Q\B(7). Here we also apply the first part of
the proof to obtain

u.(x) >0 a.exeQ,
whereu, is the solution of (1) with the right hand sigeéreplaced by:¢. To achieve the
proof of our result, we pass to the limit agoes to zero. We finally obtain
ue —u in H}(Q) weakly

and
u(x) >0 aexeQ.
Now the proof is achieved. O

5. General shape'sfunction

In order to improve our results, we are now going to enclose the negative supgort of
by an increasing family of level sets of some shape fungi@atisfying the inclusion:

EfEB([Q)CB([)QQ Vt, o<t <T.

We would like to choosep in such a way that the measures of the 4ét&o)\E ]
and [Q2\B(T)] are as small as possible. The smaller these measures are, the bette
these results. Indeed in the previous sections, we were not able to take into account t
behaviour off in these two areas. We shall see how to use shape functions in general t
overcome this difficulty.

Let ¢ be a regular function defined @& such that

¢lag =sup{e(x) |x € Q} =T.

Since we can replageby ¢ — inf[¢(x) | x € Q] if necessary, we can always assume that
@ is nonnegative irf2. We suppose that, for any0 <t < T, the level sets op

B(t)={xe€Q|px) <t}

are connected and regular, i.e., the boundadiB¢r) are regular. The set8(z) are
an increasing family of open subsets @f In ellipsoidal coordinatesy satisfies an
important relation of structure given by (19.1) proved in Lemma 3. For general shape’s
function we do not have (19.1). So we are obliged to assume the following hypothesis:
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A Ofl
Bo(t) = - +81(t) Vte]0,T],
Be(t) = % +6,(t) Viel0, T,

where

Bx) = Ap(x)/ Vo), (42.1)

a; are positive constants,9«a; < ap, ands; are bounded positive functions defined on
[0,T],i=1,2. Letus set

Bi(t) =% exp[/&-(s)ds], i=1,2,
0

and define, for any < [0, T']

~ _ [ pis) ifsel0,0],
Pols) = {ﬁg(s) if s o, T, (43)

and consider the applicatiof
o €[0,T]— A(o) :/f;(s)ag(s)ﬂg(s)ds, (44)
0

where, for any € [0, T'], a, (.) denotes the solution of:

{ — 5 (Boay) +y%.a, =0 onl0, T}, (45)
a (0)=0, a,(T)=1

In this section we also assume the localization hypothesis (HO). Before introducing the
hypothesis needed in this part, let us give the following results

PrRoOPOSITION 2. —We have the following estimate

las lwieoqo,rp < €

wherec is a constant independant of
Its proof is an immediate consequence of the proposition of Appendix B.

PropPosITION 3 (Continuity with respect to the parameter — The functioru(o, .) =
ay (.) satisfies
() llas, = as,llgrqo.rp < c.lo1 — 02|, Wherec is a constant independant @,
and B,,,
(i) llas, — ao,llL>qo.ry) < c.lo1 — 02|, Wherec is a constant independant ¢f,,
and B,,,
(ii) Ja(o,t) —a(o’,t)| < clloy — 02| + |t — t'|]] wherec is a constant.
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To be more clear, this result will be proved later. As in Section 5, we propose to
construct a functior? solution of Eqg. (22) for a suitablé and such that o ¢ is a
positive subsolution of Eq. (1). To guarantee the positivity wie need hypothesis (H3).
Hypothesis (H4) allows us to state th&b ¢ is a subsolution of (1). To state our
hypothesis we need some preliminaries.

Let us set

a — maXa, (1) | o, o <o <T], 0<r <1,
a(t)_{mm[ao(t)|0', 0<o<T], to<t<T, (45.1)

_[min[a, (?) |o, o<o <T], 0<t<1,
(Z)_{max[ao(t)“f, <o <T], th<t<T, (45.2)

s B, 0<i<n,
po={f Dty (45.3

[P0, 0<t<io,
é(t)_{ﬁz(t), <t <T.

From Proposition 3 we have

(45.4)

1> mlnag(t) mina(o,t) >0
o >t >t
° t>0o
since a(o,t) > 0 Yo > 0, Vt > 0, by the maximum principle for Eqg. (45) (cf.
Appendix B). In the same way

1> maXa(, (t) > mina(o,t) > 0.
/t /fo
0 >0

(H3) There exists, 1o < r < T such that

1 N

1 - - ~
O/M L/“(‘))ﬁ@)fv,w(@)de] ds > 0.

Comments aboyH3). — In the ellipsoidal coordinates (H3) is identical to (H1) since
Bs =pP1=pB2Vo.
(H4) Vt,t0<t <1

fog —V‘p(t)-/dS/fv,(p(Q)dQ > 0.

Comments aboutH4). — This hypothesis establishes the quantitative link between

f+ fv‘ and their supports. Let us recall that(r) = (¢ /|Ve)? (). So if c(x) <0
in Q\B(to) (H4) is obviously satisfied.



836 R. TAHRAQUI / Ann. I. H. Poincaré — AN 19 (2002) 815-870

Let us sety (1) = ft f,o fo. »(0)d0. Itis easy to see that(r) > 0in Jr, ¢[, and

Y1) =y @O)p (@) >0 in .71,
{wﬂ — §/(10) =O. (46)

From (H2), ||y« satisfies|y? |« < 7_2 Thus it verifies alsd|y?|e < (Z )20 2

which entails that the operatengl—tz2 — y¥(t).1 verifies the maximum principle ifro, [.
Thus if we give a nonpositive functiogy in B(fg) = {x € Q| ¢(x) < 1o} from (46), we
can see that (H4) permits us to construct a very large class of nonnegative furggtions
in Q\ B(fo) such that Eg. (1) has a positive solution if

_ [ g1(x) inB(t),
4 (x)‘{gzm in Q\B(10).

Indeed leth(z) be a continuous function nonnegative[ig, 7] and let us consider the
solutionyr of

{ —y" =y Y =h inlt,1],
¥ (to) = ¢ (1) =0.
Y is positive and-1” is nonnegative and continuous. For ang R , A > 0 set

_ [ (8)e@® In[0, 1],
Jo.pt) = { —M;”(t) in [fo, 71.

There exists,y > 0 such that, for any 2 1o, the functionfy , satisfies (H3). Then the
suitable functionf is

flo) = { fo.009().IVo@)? in B(@),
0, forinstance in\B(7).

Now let us consider the following illustrative example:
Fy = { —a.|Vpx)[? inB(ip),a >0,
b.|\Ve(x)|>  inQ\B(t), b > 0.
In this case (H4) means
2b

Ogyw(t)g — 2 2 to r ds ’
b(t —t9)*—b(t — 1) —Zafo Pa(s)ds. ff Ba(s)

(47)
ds

Yt > to such thab(f — 19)? > b(t — 1p)* + 2a. / Bads.
2

And (47) is obviously satisfied since by (H2) we have
g <=1
7l < T332

that is to say||y?|l« < 2/(f — 10)? if for instancery > (1 — \/2v/2/7)i.
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PROPOSITION 4. —Suppos€H4) and (HO). Then we havevo € [1, 1] the solution
£, (.) of EQ.(22) is positive in]0, 7].

Proof. —From the representation formula of

t d s B
0o (8) = ay ()00 (1) = ay (1), / m / 5 (0)By (6) . (6) db.
r 9 e 0

From (H4) it is easy to see that

s

7

1 o~

(o)) >/Tﬁ[/éﬁfv,¢d9] ds>0

0 a —*0

which implies that, (r) > 0, Vr € [0, 1], using the localization hypothesis. To achieve
the proof we apply the maximum principle to Eq. (23)]m, [ and we deduce that
v, (1) > 0, Vr € [1o, t[, that is to say, (.) is positive in]0,7[. O

PROPOSITION 5. —The functior?,, (1) = £(o, t) solution of(22)in [0, ] verifies:Voy,
0 < 09 < 1y, Ac = ¢(0g) > 0 such that

{)z(a, n -, ) <cllo—o'| +1t =1, (48)
Yo, o' € [0y, ] Vi, t' € [0y, [].

Proof. —It sufficies to state thab,(r) = v(o,t) verifies (48). For this we use
Proposition 3 and we proceed as in its proof. Letus giye o <o/, 0<1t <1’ <, we
have

v(o,t) —v(o', ) =v(o,t) —v(o',t) +v(o’, 1) —v(c’, 1), (49)

! s

ds

lu(o’, t)—v(G/,l/)|</a2,8 ( ao/ﬂo/|fv,¢|d9>
A 0

t' s
ds ~
< 2 ao/lfv,(p| de
ao/ 0
t

lv(o’, 1) — (o', 1) <clt =1,

that is

wherec is a constant, since we have
infla(o, 1) | (0,1) €[0,7] x [0,7]] >0, (50)

and
supla(o, 1) | (o, 1) € [0, 7] x [0, 7]] < 400, (51)
from Proposition 3. The first term in the right hand side of (49) can be written:
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, a2 |
|v(a,t>—v<o,z>|<t gg,e /oﬁolfwld9ds

1Bo — B
+/ g / o Byl frp 46 ds

I 1 s _
—|—t/mo/[|ag —ag/lﬁa"i_l,ga _ﬂo/lag/]lfv,(p|d9ds' (52)

Remarking thaig, (s) — Bo(s)| = |B1(s) — B2(s)|.X[0.01(s), USINg (50), (51) and the
results of Proposition 3, it is easy to state the final resutt.

PROPOSITION 6. —Under hypothesigH4), for anyo < [0, 7], £, (.) satisfies:
y? (1) (t) = fu.,(t) <O inlto, 1.

Proof. —From (22) we have

(t)— (¥¥ls — fu.4)(s)ds,

t

I
o<zg(r>=/5 - [/ﬁa(fv,w —y‘/’&)d@] ds,
r o 0

I l 10 5 N
oag(z)g/ﬁ (s)/ﬁo(fv,w—y“’ﬁo)d%s
o 0

A A
+/ ~ /ﬁo(fv,fp—y‘pﬁg)des, vt > 19,
/ Bo(s))

(/ﬁafv (pd9> vt > 1o,
Bs (s)

sincey?{, is nonnegative, angfv,(p is nonpositive in0, 7o]. And using the fact thag,,
is nondecreasing, we obtain

0< ¥, (t)<j

0< £, (1) < //va,w(mde.
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From this it follows that
t s
YY), (t) — fv,w(t) < J/“’(t)//fv,w(Q)dQ — fue®) <0 Vt>1g
1

by (H4). O
We need the previous proposition to prove the following result:
PROPOSITION 7. —There exist$ > rg such thaté; (.) verifies:
2.(t)=>0 Vrel0,4],
ti(1) <0 Vrels,il.

Proof. —Let us set
V(o,1) =B, (1).L,(t) Vo e[0,i], Vi #o.

From Eqg. (22) it follows

Vo, = / B (s — fuu) do, (53)
0

which shows that — V (o, ) is also continuous at=o.
First step We claim that there exists > 1y such thatV (o, o) > 0.
By Proposition 5 we have:

V(o,0) = V(tg, o) — 2cloc — 1] Vo > tq. (54)

But V (1, tp) is positive by using the hypothesis of localization and sipé¢) > 0.
Thus
V (1o, to)

V(o,0)>0 VosuchthatO<o —1 < yPa

Second step. We claim thétz, r) < 0.
Consider

V(i 1) :/,ét—(y%,——fv,w)ds.
0

We have{;(r) > 0 in [0,7[. In addition £.(r) = 0. So £7(.) is nonincreasing in a
neighbourhood’(7) of (7), i.e.,V(t,1) <0,Vt € V(7). We argue by contradiction. That
is we supposé’ (z, 1) = 0. Let us recall that

V(t,t)>0 Vi< (55)

We have two cases to consider.
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First case V(z,t) > 0 Vt, 1o <t <1 that is, using (55)¢;(.) is nondecreasing on
[0, 7]. As ¢7(0) > O and &(r) = 0, we obtain a contradiction.

Second caseéhere existg € r, t[ such thatV (z,1) < 0. As from (55)V (¢, t9) > O,
we deduce that there existg |1, [ such thatV (7, f) = 0. Now from (53) we can write

V@D = VA = [ Byt foy)ds =0, (56)

This is a contradiction since

vl — fy, <0 inli, i,

by using hypothesis (H4) and Proposition 6. Consequéntly 7) < O.

Third step We claim that there exists € |1, 7[ such thatV (5,5) =0 thatis 4 (.) is
derivable at and¢), (6) =0.

Let us set

W={o €lto,7[ | V(o,0) > 0},
0 =supo |o eWj.

It is clear that\V £ ¢ and g < 6 < . We claim thatV(6,5) = 0. We argue by
contradiction. Supposg (4, ) > 0. From Proposition 5 we deduce
V(o,0) >V (06,6)—2c|lo — G, Vo.

SoV(o,0) > 0 for any o such that O< 0 — 6 < V(6,6)/(4c). This contradicts the
definition of6. So the claim is proved.

Fourth step Let us prove thatV(o,t) < 0, Vt €0, [. Suppose that there exists
t €16, t[ such thatV (&, 1) > 0. So there exists, & <t < f such thatV (6, r) = 0. This
and the claim of the third step give:

:
VGD=VE.6) = [ fs(r*ts — frp)do =0
which contradicts hypothesis (H4) from Proposition 6. Consequently we have provec
that:
€,(6)=0, €i()=0 Vrel0,6[, £()<0 Vrels,i[. O
Proof of Proposition 3. 4 is very technical. To simplify let us set
a; = ae,, ,va.:v,-, =12

From (45) we have
aj(t) — ay(t) = Ag(t) + Ao(t)
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where
1 t
A1(t) = —— / v1.y¥. (a1 — az) ds, (57)
v1(1)
0
t t
1 1
As(t) = —./vl.y“’azds — ——. [ vo.y®asds
v1(1) ] V(1) /

t

:/ v2(1)va(s) — va(s)va(r) Vo
V() v2(t) o

For anyr € [0, T] we have obviously

azds. (58)

02

/ ax(s)y* ().

o1

v2(H)v1(s) — va(s)vi(7) ds
v1(t)va()

<2/a2(s)]y‘/’(s)]ds. (58.1)

To be more clear we can suppose < o,. From (57) and using Cauchy—Schwarz
inequality we can see that

T
T2
/yAl(t>|2dt< Iy? )12 lar — azli%. (59)
0
To estimateA, we have to consigler three cases: 5
Firstcaset € [0, 01] , v1(t) = Bo, (t) = Bo (1) = B1(t), vo(t) = Bo, (1) = P1. SO
As(t) =0 Vrel0,oq]. (60)

Second case € Jo1, o3[, v1(1) = By, (1) = Ba(1), va(t) = B, (1) = P1(z). We have

Az(t):/E(t,s)ds—i—/E(t,s)ds
0 o1

where

E(t.s) = v2(1)v1(s) — va(s)vi(r)
v1(1).v2(2)

From the first case we have

az(s)y¥(s).

o1
/E(t,s)ds =0,
0

andA,(r) becomes

t

[ v2()va(s) —va(s)va()
2= | v1(0)v2(0)

az(s)y?(s)ds;

o1
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|Az(r)|<j(

o1

Vo (s)
V(1)

v1(s)
v1(1)

Daz(sﬂy‘/’(s)!ds,

which becomes again

|A2()| < Z/az(s).|y‘”(s)|ds Vi € oy, 03], (61)

o1

sincey; = ,é(,l, is nondecreasing,= 1, 2.
Third caser € oz, T1, v1(t) = oy (1) = B2(1), v2(1) = By, (1) = B2(1). Thus

t
/E(t,s)ds =0,
02

and from the first case
o1
/E(t,s)ds =0.
0

Thus
o1 a2 t
Ag(t):/E(t,s)ds+/E(t,s)ds+/E(t,s)ds Vt, oo <t <T,
0 o1 02

becomes

02
Ag(t):/E(t,s)dS Vi, op <t <T. (62)
01

Thanks to (58.1), (62) gives:

|A(1)| < 2. /az(s).])/“’(s)| ds, Vte€los T (63)
By (60)

T o2 T

/]Az(t)|2dt=/]Az(t)|2dt+/|A2(t)|2dt.

0 o1 02

From (61) and using Cauchy—Schwarz inequality:

02 2

/yAz(t)|2dt<4/ L/az(s)|y‘p(s)|ds1 dt

o1

<4|y?|% (02— op2 az] 2. (63.1)
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From (63) and after some similar computations, we obtain

T
/]Az(t)lzdt <Ay ?|2. Nazl% (T = 02) (02 — o1)%. (63.2)

02

Using (60), (63.1) and (63.2) we have:

T

/ M) dr < 4|y?|)% (02— o0 ?[llaallZ2 + T llaal%]. (63.3)
0

By Young inequality we have for argy> 0

1
|, (1) — ay()]> < A+ 0)| A0 + (1+ 5) |Ax() .

After integrating o0, T'], using (63.3) and (59), it follows
T T2
[las0) = a3l ar < @+0)y 7.5 s = ali
0

1
—|—4(1+ 5).0.”)/“’Hoo(oz—al)z, (63.4)

where we have used the fact tmatzniz + T.||laz2||2, < ¢, constant independent 6;2 by
Proposition 2. Let us set

o, _ 21(1,1,0,T) — [[y*l2,.T?/2
Yo= 11(1,1,0,7)

By hypothesis (H), y, > 0 and

ly#lI2, 72
2

Let us choosé > 0 small enough such that

< )\'1(15 15 05 T)(l - Vo)

lyel3,.T2

5=01-y)r1(1,1,0,7)—(1496) >

> 0. (63.5)

From (63.4), using (63.5) and Appendix A, we obtain
Vollay — asll72 + 8llar — azll72 < c.loy — o2, (63.6)

The second estimate is an easy consequence of (63.6). From Appendix B we can write

t
a(o, t):ag(t):/a;(s)ds—i—l Yo, Vi,
T
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t

a(o,t) —a(o', ") = [ (a,(s) —a,.(s))ds+ [ a, (s)ds.
/ /

So
la(o, 1) —a(o’, 1) <c[lo —o'|+ |t — 1],

using the first estimate and Appendix B thaf{ég. || ~o.r) <c. O

Now we are in position to prove the main result of this part.

THEOREM 3. —Assume hypothes{d5), (16), (H0), (H2), (H3)and (H4). Then the
solutionu of

{—Au—i—c.u:f in Q,
ulpo=0

is positive.

Proof. —It is very similar to the one of Theorem 2. So we do not repeat it. To simplify
the notations we denote ly the real numbeé given by Proposition 7. Let us recall
that by Proposition 7 we have

0@t):=0 (t)<0, Vielo,i]; ¢(@#)>0, Vtel0 o]
To state our result, it sufficies to prove the inequality

{—M((p) +ctl(p) < f in HY(Q), 64)
UPlan=0, £(p) € HX(RQ),

wherel(.) := £, (.) is solution of

{_Z//_9.£/+y‘/’.£=f~'v,¢ in 10, [, (65)
00 =0, £(1)=0,

with 6(1) = B (1) /B (1) V1 €10, 1.

For this we can assume thét) is regular enough to defing o ¢ and?’ o ¢ (cf. third
step of the proof of Theorem 2), that is to say we do not write the regularization part of
this proof. Recall that(.) has the following representation formula

; ds o ~
f(f)=ao(1)-t/mo/ﬂoaofv,¢(9)d9,

wherea, is solution of

—Bi(ﬁvga(’,)/ +y%a,=0 in]0,TJ,
a0 =0, a(T)=1

Let us set
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Qi1={x e B() | px)€l0,0[},
Qo={x € B() | ¢(x) €lo,1[}.

We have to examine two cases:
First case For anyx € Q4 setr = ¢(x) in (65). We have:

—"(9) = 0@ (9) + 7*(@).£(®) = fyo(@) N2 (66)

and

_ Polo) _ Bile() _
Bo(p(x))  Balp(x))

since O< ¢(x) < o Vx € 1. But from Proposition 7, we have

0 (¢p(x)) Bo(p(x)) < B(x) in

4
@)=~ [ aBs frpds.——————>0 inQy.
’ !aﬁﬁwsﬁmmw> '
Thus, using (42.1), it follows
—0(p() € () =~ (00) = =22 (o)) i
[Vo(x)?
or
o)l (@) > -2 i) ing (67)
% Q)= |V(/>|2 % 1-
In the same way we can prove that
Y (o)) L(ex) =y (x).L(px)) = ey L(p(x)) in B(7) (68)
[Vo(x)?

sincey?(¢) <y in B(t) andé(¢p) > 0 by Proposition 4. And also we have

Foulom) < L2« T i (69)

VeI T Vo) 2
by (21.1) and Definition 1. From (67), 68) and (69), (66) becomes

—"(@) |Vl — Apl (p) + ¢ l(p) < f  InQy,
or

—Al(p)+cTl(p) < f InQy. (70)

Second casd-or anyx € 5, sett = ¢(x) in (65). Exactly in the same way as above
we can prove that

—ALp) +cTlp) < f N2y, (71)
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since

0(p(x)) = B(x) inQ,
and

_f(;paoﬂafv,q)ds <0
a2(9).fo(9)

from Proposition 7. The remainder of the proof is now clear. In fact (70) and (71)
“entail formally” inequality (64). To justify the above computations we proceed, as in
Theorem 2, by regularization and use the extension lemma in AppendixiC.

U(p) = n o,

6. General datain right hand side: role of the symmetrization

Through the illustrative example of part (3) and the proof of Theorems 2 and 3, we
have seen that the localization of the negative suppgiplays a crucial role. Itis natural
to ask what happens if, for instance, the negative supppiit not easily localisable or
is too close from the boundary &f. For studying this question, we will use the notion of
rearrangement in the sense of Hardy—Littlwood. This notion appears quite naturally ir
this situation. Unfortunately for the time being, the method used previously only works
in ellipsoidal and radial coordinates if we use the symmetrization techniques.

For convenience of the reader and precision of speech, we recall some elemental
notions of rearrangement. Letbe a bounded positive measure, absolutely continuous
with respect to the Lebesgue measurg@ri']. If 10, T'[ is an open bounded subset of
R andv is a nonnegative function belonging (10, T[), the distribution function of
v, with respect to, is the functionu, defined by

wo(@®) =v({s €10, T[: v(s) >1}), reR".

Fors € [0, T'] we set

v (s) =sup{r: () > s}

v* is the decreasing rearrangementafith respect to the measuve Let us set
V() =v"(T —s), s€[0,T].

v, IS the increasing rearrangementwofvith respect to the measure Let us now recall
some results about rearrangements that we need in the sequel (cf. [2,8]).

PROPOSITION 8. —Letv € L*(]0, 1, v). For anyv-measurable subsét of [0, T] we
have
(1) WlE)«(s) = (ViljowE))(s) Vs € [0, v(E)], wherev|g stands for the restriction of
vio E,

(i) (le)*(s) < W*o,uE)(s) Vs € [0, v(E)].

The proof is left to the reader (cf. for instance [8,2]).
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Consider the general setting of the problem in Section 6. We do not assume th
localization hypothesis of the negative supportfgf. To simplify the notations, let us
set

g = fog(t) = <|V{o|2>¢(’)’ Vi€ [0, T

g)=g"(t)—g (1), Vtel0,Tl.
To simplify the exposition, let us assume tlgdielongs ta.*° ([0, T']) and let us consider
the measure defined as follows: for any measurable subiBetdf [0, T']

V(E) = /a,B(s) ds.

E

PrRopPOSITION 9. —We have

t t y (1)

[edv=[apgas> [ 1" - @) ©)ds

0 0 0
wherey () = v([0, t]) = féa(&)ﬁ(@)d@ and where the rearrangements gf and g~
are taken with respect to.

The proof is a straightforward consequence of the equimeasurability property of the
rearrangements and of Proposition 8.

PropPOSITION 10. —Let us consider the function

y(s)

T
_ 1 + —\*
w(f)—t/mo/[(g ) — (g )](a)dods.

It is well defined on0, T1.
Proof. —It suffices to prove thab is well defined at = 0. We have

T v (s) T
1 1
0< 0/ = O/ (¢")a(0) do ds < O/ 25 () r () ds

since(g™), is nondecreasing. Thus

T y(s)

1
0< O/ 5 O/ (g)u(0) do ds <

/ (E @) 72

a?(s)

since

s

K} T
y(s) = /a(a)ﬁ(a)da < BGs) /a(o)da < Bs). /a(o)do <)
0 0

0
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by using the fact thag is nondecreasing. In the same way we can prove that

1
0< | —
/azﬁ

0

(s)
(g7) (0)dods <c.

<

T
(g7) (0
a?(s)

ds. (73)

o

Consequently (72) and (73) imply the claimed resultt
Consider the functiork(s) = (g%).(s) — (g7)*(s). Sinceg* # 0 andg™ # 0, there
existst €10, v([0, T])] such that
h(s) <0 a.esel01],
h(s)>0 a.eselt,v(0, T)H].
Settg =inf[r € [0, y(T)/h(t) = 0]. Itis clear thaty > 0 sinceg~ = 0. So we have

h(s) <0 in[O, 1],
1hor S0 il (74)
Let us point out thaf0, o] contains the negative suppol;, of &; and thusk, is
localized Then a natural question arises: what is the hypothesis (H1) becoming?

Answer: (H1) becomes (H): there exists € 7o, T'] such that:

r 7 (s)

1 —\*
0/612,3(5) 0/[(g+)*_(g )](6)do ds > 0.

ProPOSITION 11. —Under(H’1) the function

v (s)

Ao 1 v oy
”“)‘1/2565563 Z‘Hg ) — (877 (0) do ds
is positive in]0, 7[.

Proof. —ConsiderG (1) = [y[(g")«— (g7)*1(o) do, defined for any belonging to the
rangelO0, y ()] of y. SinceE,, is localized, from (ML) there exists a uniquesuch that:

G() =0,
G() <0 VvtelOo1],
G@t)>0 Veelt,y@)]
And sincey is continuous and increasing, there exists a unigjegls, r[ such that
y(§) =1, that is
Goy(s)=0,
Goy(s)<0 Vrel0,5],
Goy(s)>0 Vrels,tl.
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Butd'(t) = —G o y(t)/(a®(t) B(t)) Vt €]0, f[, which means that

0'(8) =0,
V' (s) >0 in[O,s],
V() <0 in]s,z[.
Since from (H1) v(0) > 0 and since () = 0, the result follows. O

THEOREM 4. —Let us assumg@H'1). Then the solutiom of Eq.(1) is positive in.

Proof. —Consider the following function

N

1 -
v(t)=t/m<o/gaﬂd0> ds, VtelO,1].

From Proposition 9 we have:
v(t) = 0(t) Vrel0,r1]
sincea®(1)B(t) > 0Vt > 0. Thus the solutiord(r) = a(t).v(¢) of (22) is positive in0, 7].
Now, proceeding as in Theorem 2 of the Section 4, we can construct/frpra positive
subsolution of (1). And the result follows from the maximum principles
7. Applications

In this section, our main goal is to give some direct applications of our result.
7.1. Averaging positivity

Let us consider the following problem

{—Au—c(x)|u|:f in 2= B(0, R), (75)

ulpe =0,
wherec(x) is a regular function such that:
O<a<elx) <Ai(A,B), VxeQ,

whereq is a positive constant arid (A, B) the first eigenvalue oA in B with Dirichlet
condition. We assume that problem (75) has a solutioWe denote byy (|x|) the
following function

c.|v|(r)
[v](r)

y(r) = inf[ v regulaﬂ
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where, for any regular functioh, we set

h(x) = / h(Ax)du(A)

SO(n)

with u is a left- (or right)-Haar measure &QO(n), the rotational group ifR”, A € SQn).

We haven(x) = h(|x]) — (cf. [18,19]). Itis easy to see that
M(A,B)>y(x]) Z2a, VxeQ.
Then we consider the following radial problem:

{—Av = f(lx]) in B(O, R),

v|sp =0,

where f(r) is defined previously.
Similarly to (7), we assume that:

o

/R [ / f(r)r"—ldr] —
0 0

{re[OR|f(r)<O} [0,71], r1<R.

>0,

From our Theorem 1, we have
v(x)=v(x]) >0, VxeB(@,R).

We have

{ —Av—y(xv < f(x) in B(O, R),
v|op=0

(76)

(77)

(77.1)

sinceAi = Au — (see [19]). It is well known that, for any € H(B), we can defin.

Thusu is well defined and we have

{—Aﬁ—cm =f inB(O,R),
ulyp =0.

Let us state an estimate from above of the left hand side of (78).
—Au =y (xDi = =AM =y (IkDlul > f = —Au = clul
sinceclu| = y (|x|).|ul; i.e., & solves the following inequality

{ —Ali—y(x])i > f >—Av—y(x).v inB@O,R),
L7|aB =0= v|aB

(78)
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after using (77.1). A straightforward application of the maximum principle gives the
result:

i. / u(x)do >0, VrelO,R].

r
lx|=r

Consequently we have proved thafikatisfies (76) and (77), then the solutioof (75)
is such that:(|x|) > 01in ]0, R].

7.2. Biharmonic operator
To simplify, we take2 = B(0, R) and we consider

A’u=f inB(,R)
P 79
{M|aB=AM|aB=0- (79)

We denote, for any € B(0, R)
k(|x|) = sup{h(|x|) | h radial function s.ta(| - |) < f(-) on B(O, R) };

and we consider the Green functichof —A in B(0, R). We assume thaf satisfies
assumptions (80) and (82) given here after:

] [ 60066 naz]ay=o (80)
B B
there existsq € [0, R[ such that the function
K(r)= / k(s)sNtds (81)
0

verifies:
K@) <0, on]0,rgl,
K(r) =20, onl[ro, RI.
Our goal is to prove that, under assumptions (80) and (82), the solutiof the
biharmonic problem (79) is positive. Setting

(82)

w=—Au,
we have:
—Au=w
’ 83
{M|aB=O, ( )
and

{‘A“’:f’ (84)
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Let us now consider the solutianof:

A%v =k
’ 85
{v|aB=Av|aB=o, (85)
and let us set
m=—Av.
We have:
—Am=k
’ 86
{m|33 =0, ( )
and
—Av=m
’ 87
{ vlpp =0. ®7)
This functionm is radial and satisfies:
m(|x]) <w(x) in B(0, R),
R 1 o R 1
m(|x|):/0N_l [/k(r)rN_ldr] do = [ ——K(0)do. (87.1)
|x| 0 |x|
From (82), it is clear that:
{m(lxl) >0 Vx,|x|>ro, (88)
{x € B(O,R) |m(|x|) <0} =[O0, r1[

for somery in [0, rg]. In Egs. (87), (88) and hypothesis (80) play, respectively, the roles
of localization hypothesis (7.1) and (7.2) if we want to apply Theorem 1. Thiss
positive, and so ia since we have

u(x) =2 v(lx]) VxeB(O,R).

Remarks. —

(i) it is possible to assume hypothesis ensuring positivitynoby application of
Theorem 1. Butin this case, the positivity:ofs immediate since is obviously positive.

(i) assumptions (80) and (82) are only simple sufficient conditions ensuring positivity
of u. Here, our aim is not to give general conditions ensuring positivitylmit to explain
clearly how to use our result in some applications. It is possible to improve notably
conditions (80) and (82).

(iii) using (81) and (87.1) it is possible to explain the condition (80) more explicitly
with respect ta(-).

7.3. A negative result

The following example shows, if it is necessary, that hypothesis (7) and (H1) do not
seems related to the method. Let us consider

{—AM = f(x) inQ,

ulr =0, T'=9Q. (89)
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Let B(0, R) be the smallest open ball containifgand B(O, r) the largest ball enclosed
in Q. We assume thaf (|x|) is nonnegative irf2\ B(0, r). Let us denote by (|x|) the
natural extension of to B(0, R) and let us assume that we have

R o
/(:i(il [/f(r)r"_ldr] <0 (90)
0 0
du <0. (91)
M lsre

Thenu is nonpositive in a neighbourhood of 0. Indeed let us consider the solutén

{—Av = f(x) inB(O,R), (92)

vy =0.
Set

~ . Jukx) ifxeQ,

u(x) = {0 if x € B(0, R)\Q.
From (91) and the extension lemma (cf. Appendix C), we deducesttsad subsolution
of (92). Thus from the maximum principle is nonpositive in a neighbourhood of 0
sincev(0) < 0 by (90). Finally let us point out that we can state a more general negative
result [16].

7.4. Localization of critical points

Let ©2 be an open subset &, Q = Q1\Q», Q> C Q4, Whereg; is star-shaped with
respect to 0. In this geometric situation there exist some hypothesis satisfigauty
ensuring that the level sets of the solutioof

{—Au:f in Q, (93)

ulpe =0,

are star-shaped [3,14,4] (for instance). Let us point out that the method used in th
previous references does not workSifis simply connected. Here our goal is to give
some results about star-shapedness of the case is star-shaped with respect to
some ballB(0, r) (or with respect to 0). Without loss of generality of our method, we
can assume thgt(x) = f(Jx]) in R" and is regular enough. Suppose thdtas a local
maximum at 0. Assume that is nonnegative and satisfies the following localization
hypothesis: considering the subgetf 2,

E={xeQ|-2f(x]) — Ix|.f'(Ix)) <O},

there existsg > 0 such that

E C B(0, rg) C Q. (94)
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For somep > 0 such thatB (0, ro) C B(0, p) € 2, let us consider, the solution of

{ —Av, =g(x]) inB(0,p), (95)
Up|aB(0,p) =0,

with g(lx) = =21 (lx]) — |x[. f'(Ix]). Set

- _ fv,(x) if xeB(0,p),
”P(x)—{op if x ¢ B(O, p).

Now let us remark thab (x) = x.Vu(x) is solution of

wlye >0,

{—Aa):g(lxl) in Q, (96)

where the positivity of the boundary condition follows from Hopf maximum principle.

THEOREM 5 (Necessary conditions).Gonsider» and v, and assume thai is
regular in a neighbourhood d.
(1) If v, is a subsolution of96) then we have

7 do

/[/g(s)s"_lds] 1 <0.
O-n—

0 0

(2) If v, is a positive subsolution ¢96), then

pPr o

/[/g(s)s"_ldsl a:il =0.

0 ‘o ?

(3) Suppose that has the localization hypotheq[84) andv, is a positive subsolution
of (96), then

p =sup{r>0|B(0,r) CQ}.
Proof. —v, has the following representation formula

o

vp(x):vp(lxl):/[/g(s)sn_lds

x| =0

do

1

o

and v,(0) < w(0) = 0 sinceu is regular at 0. Ifv,(x) > 0 Vx € Q, it follows that
v,(0) = 0. To prove the third part of our result, we argue by contradiction, i.e., assume
that there existp, 0 < rg < p < R such thatv, is a positive subsolution of (96) and
where

R =sup{r >ro| B(O,r) C Q}.

From the localization hypothesis (94) we have
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O<v,(x) <vy(x) VxeB(0p), x#0,
0<v,(x) <vi(x) Vxeg,

by using maximum principle and extension lemma in Appendix C, whgrie defined
similarly asv,. We have

0=10,(0) = 1,(0) < v, (0) = 7, (0).
by using the second part of the result. Thus
v,>0 VxeB(O,R)
and therefor@z(.) is a positive subsolution of (96) from Theorem 1. So we have
0<v,(0)= liLno Ve (X) < )lciLnow(X) =w(0)

which contradicts the fact that(0) = 0 sinceu is regular at 0. O
Now, from the above result it is necessary to assume:

o

R
O/L/g(s)s”_lds

R =sup{r >rq| B(O,r) C Q}. (98)
From (94) and (97) it follows that

do
-1 =

0, (97)

O—n

R
/g(s)s”_lds > 0. (99)
0

COROLLARY. —Assume that: is regular andO is a point wherex has a local
maximum. Suppose hypothe@4d), (97), (98)and (99). ThenO is the only critical point
of u. In addition the level sets

Ft)={xeQlu(x)>1t}
of u are star-shaped with respect @
Proof. —It sufficies to remark that (94) and (97) imply that
R o

vR(x)=vR(|x|)=/[/g(s)s"_lds] 99 0. VxeB(O.R). x£0.

O—n—l
x] =0

From Theorem 1 it follows that

wox)=x.Vulx)>0 VxeQ, x#0;
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that is to sayVu(x)| # 0 Vx # 0. We deduce the last part of the result from the implicit
function theorem. O

Remark— Let us point out that hypothesis (97) is somewhat strong. In a forthcoming
work [16] we propose to relax it by considering the functioRWu (x)/|x|?, x # 0, which
is more pertinent than the functionVu(x) used in this paper. But the study of the
equation satisfied by.Vu(x)/|x|? requires a preliminary investigation.

7.5. Positive solutions of semi-linear problems
We are concerned with the positivity of the solutioiof

{ —Au= f(x,u) inQ=B(0,R), (100)

ulsp =0,
for instance, for some suitable: 2 x R — R, ensuring the existence of Let us set
g(r)=inf[f(x,u(x)) | x € B(O,R), |x|=r] (101)

and suppose thag = g — g~ belongs toL?(2). Let us consider the increasing
rearragementg*), of g™ and the decreasing rearrangemégit)” of g—, with respect
to the measurgv = s" 1 ds. Assume that

v(o)

R

d .
/ 7 [ g = (g ](s)ds > 0
0

o1’

o

wherey (0) = [5 s"~*ds. Proceeding in the same way as in Example 4, we can see that
the function

R y (o)

d *
3(Ix]) = / id / (g — (¢7)](s)ds
0

o-n—l
x|

is positive. Taking/v = s"~*ds in Proposition 9, Section 5, we obtain
v(lx]) =2 0(Ix]) Vx e B(O, R)

where
R

d o
wixh = [ 55 [ewstds
0

|x]

is the solution of:
—Av=g(lx]) inB(,R),
{ vl =0.
From (101),v is a subsolution of (100). Thus

u(x) >2v(lx]) >0 Vxe B(0O, R). O
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7.6. Parabolic equation

Here we are concerned with the positivity of the solution of linear parabolic equation.
We need to start with some preliminary remarks. let us consider the following equation

du  9%u .
u(=1)=u@)=0, wu(x,0)=ug(x).

Let us assume thaf is nonnegative and belongs ©>([—1, 1]). Suppose that
belongs toC*°([—1, 1]) and satisfies the following: there exidts, b] C ]—1, 1] such
thatug(x) < 0Vx € [a, b]. Then from regularity result (cf. [1] Theorem X.10) it follows
that there existg, 0 < o < T such thatu(x, ) <0,V(x,?) € [a, b] x [0, tg]. Even if f

is nonnegative, the previous result shows that it is necessary to impose some assumpti
Onug, to obtain the positivity ofi. Now let us consider

at

8_u —Au= f(x,t) inB@O,R)x]0,TI,
uly =0, L =0Qx10,T[, u(x,0)=uo.

Let us assume that there exigtgx|) such that:

fx,t) > g(x]) a.e.x,t) e B(O,R)x]0,T[,

R s
d

|55 [orteas=o
N

0 0

E, € B(0,ro) C B(O, R).

Suppose
up(x) = v(x) =v(|x]) a.ex € B(,R), (103)
whereuv is the solution of

{ —Av=g(lx]) inB(O,R),
vy =0.

From our previous results we havéx) > 0. Thusw = u — v satisfies

ot

{a—w—Aw:f(x,t)—g(|x|)>0 inB(0,R)x 10, T,
wlps =0, w(x,0) =ug(x) —v(x)>0 inB(0O,R).

Finally, the positivity ofu follows from maximum principle of parabolic equation (cf.
(5,9D).

Remark— The condition (103) cannot be improved. In fact, let us consider a function
v e C2([—1, +1]) N H}(1—1, +1]) such that:
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v(0)=v(-1) =v(1)=0, v'(-0)=v"H)=0, forsomed >0,
V/(x) <0 Vxe[-1 -0[U]16,1], v'(x)>0 Vxe]-0,0[.

Let us setf (x, 1) := —v”(x) and letug be such that

{ —ug(x) < f(x) in]-1,+1],
ug(—1) =up(1) =0, uge C3([—1,+1)).

It is clear that there exists > 0 such thatg(x) < 0Vx €]—n, n[. And thus the solution
u of (102) is negative in a neighbourhood of 0, fos 0 small enough.

7.7. Extension to general elliptic operator
It is possible to extend our result (Theorems 1, 2) to operators of the form

+ bl X
Bx,-axj i

A:Zaij(x) + c(x).
ij

Bxi

Formally our method works. The difficulties are technical.

Appendix A. First eigenvalue of a degener ate operator
Let 81, B2, B be three positive continuous functions defined@r'], such that

0< o) <B(@) < Pr(t) Vi>0,
c.Bo(t) =2 B@) Vt>0, c=constant-0, (A1)
p(0) =0.
We assume that is nondecreasing. We have the following result
PROPOSITION A.1. —
T "2
o poydn |, ]

1
P >—>0
Jo Bv?dx

2(B,B,0,T) = inf{ =

where

V = {v defined on0, T[ | y/Bv and/Bv' € L?(10, T[), v(T) = 0}.

In addition the mapl" — A1(B, 8,0, T) is nonincreasing and.1(3, 8,0, T) tends to
+oo asT goes to0™.

Proof. —Let us remark that for any belonging toV, v € H(]e, T[) Ve > 0. Thus we
have

T
Vxe€l0, T[,VueV, Bx)u(x)=-— / VB x).u'(s)ds;



R. TAHRAQUI / Ann. I. H. Poincaré — AN 19 (2002) 815-870 859

T T
VB ()| < / VB ()] ds < / VB )| ds

T
< [ VBGw'®)]ds
0

sincef(.) is hondecreasing. Using Cauchy—Schwarz inequality we obtain:

T
Vx>0, B@|u@| < T./ﬁ(s)yu’(s)|2ds,
0

and by integraton it follows

f Blu'(s)|* ds
f Blu(s)|2ds’
from which we deduce the first result. The remaining result is clear.
COROLLARY. —
T 2
"d
)\'l(ﬁjn ﬁ27 07 T) = Inf [w ’ S W:| 2 Kl(ﬁ, ﬁ, O, T)
fO ,32v2dx

where
W = {v defined onl0, T[ | /Bov and \/B1v’ € L3(]0, T), v(T) = 0}.

Proof. —Let us givev belonging toW. From (A.1), it is clear that/Bv and /Bv’
belong toL?(]0, T[), i.e., W C V. We have
JT L) dx fo B dx
1T Bov2dx ~ [ pu2dx
Jo B(v) dx
I Bav2dx

, YveWCV;
> M(B,B,0,T), YveW

from which the result follows easily. O

PROPOSITION A.2. —For anyt, 0 <t < T we have

)\1(13’ 13’ z, T) > )\'l(ﬁ7 ﬁ7 07 T)

Proof. —Let us remark that

ST B dx

T uds ‘veHl(]t,T[), W(T) =0 (A.2)

rM(B, Bt T) = inf[
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since B is continuous and positive dm, T']. Let us denote by:1(8, 8,0, T) the right
hand side of (A.2). Itis clear that we have

[ o BW) dx 1 _
(B, B,t,T) > u1(B,B,0,T) =inf| = ——— ] ve H*(10,T)), v(T)=0
Jo Bv2dx
since
Yve HY(0, T[), vly.r€ HX(t, TD).
As

{ve H'(QO, T[) |v(T) =0} C V
we can claim that
pi(B,B,0,T) > (B, B,0,T). (A.3)
From (A.2) and (A.3) we deduce the resulta
Remark— An easy computation shows that
2
T3

T

A(1,1,0,7)= <§>

Appendix B. A degenerate ordinary differential equation

Let us consider the following equation:

—(Bd’)' +yBa=0 in]0, T,
{ (Ba')(0)=0, a(T)=1, (B.1)

wherep(.) is a continuous, positive and nondecreasing function defind@®,dn] such
that

B0 =0, B@)=ct* V>0

¢ anda are positive constants, is a bounded function which has a constant sign in a
neighbourhood of 0. We suppose that

r(8,8,0,T)>y (t)+n a.erel0,T], (B.2)
wheren is a positive constany; ~ () = —inf(0, y (¢)),

T N
B, ]

) pv2dx

r(B8,6,0,T)= inf[

with
V={velLZ(0,T)|+Bvandy/pv € L*0,T), v(T) =0},
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%

Lo°©0,7) "

ProPOSITION B.1. —Assume that satisfies(B.2). Then Eq.(B.1) has a unique
solution, denoted by, (.), which is positive and belongs 0. In additionag(.) belongs
to W>°(]0, T|) if y is nonnegative in a neighbourhood @f If y satisfies(B.3), the
following estimate holds

laglysmy, < K

wherekK is a constant independent gf

Proof. —If there is no ambiguity, we denotg(.) by a(.).
First step (Existence).
Let b be a regular function of0, T'] such that

b(x)=0 Vxe[0,7r] forsomer >0, b(T)=1,

and let us set = [(Bb") — yBb]/+/B anda = u + b. It is sufficient to prove the existence
of a solutionu of

—(Bu) +yBu=k onl0,T|,
{(ﬂu’)(0)=0, u(T)=0. (B.2.1)

This equation has the following variational formulation:

T

T T
A(u,v) :/,Bu’v/dx +/y,8uvdx :/k\/ﬁvdx YveV. (B.3.1)
0 0

0

From Appendix A and sinceg verifies (2) Lax—Milgram theorem shows that there exists
a unique solutiow of (B.3.1). And it is classical to see thais also solution of (B.2.1).

Second stepa(x) >0Vx €[0, T].)

Let us remark that if: belongs toH(]0, T[), the result is classical. It is obvious that
a belongs toH?(]e, T[) Ve > 0. Thereforen anda’ are continuous o0, T]. We have
two cases to consider:

(i) first case: lima(z)| = +o0 ast — 0%;

(i) second case: linu/(r)| = +o0 ast — 07

(i) Let ¢ > 0 be small enough to obtain that the sign functiom @ constant o0, ¢]
andla(t)| > |a(e)| Vt €]0, €]. We argue by contradiction, i.e., we suppose that

[{x]a(x)<0}|>0

where| F| stands for the Lebesgue measure of the measurable. $#¢& have

T
/ (h(B. 8.0.T) — y~(x)) (@)’ B(x) dx > O. (B.4)
0
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If we chooses small enough, we can assume that

T

/ (B, 8.0.T) — y~1B@) dx > 1y ll. / Ba?dx (B.5)
0

&
since [y Ba?dx < +oo. Let us set

~ _Jakx) VxelgT],
a(x) = {a(e) Vx €10, ],

it is clear thatz € H(]0, T[). After multiplying (B.1) bya—, and integrating by parts,
we obtain
T T
/,Ba’(&‘)’dx + /,Bya&f dx =0
0

0

i.e.,
T T 5 &
/,Ba’(a_)’dx—/ﬂy(a_) dx—/ﬂy(a‘)ﬁf dx=0 (B.6)
& & 0

sincea anda have the same sign i@, £]. (B.6) can be written
T T , e
/ﬁ[(a—)’]zdx +/,6y(a—) dx +/,6ya—a— dx =0. (B.7)
e & 0

But from Appendix A

T

T
/ Bl 2dx = (B, B.e. T). / Bla~) dx

T
> 11(8, B, 0, T)./,B(a_)zdx. (B.8)

From (B.7) and (B.8) we can write

T T
/ J(B. .0 TYB(a) dx + / By*(a) dx

T e
—/ﬂy_(a_)zdx+/,3ya_5_dx <0, (B.9)
& 0

or again
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T e
/ [h1(B. £.0.T) — y~]B((a™))?dx — Iy e / Ba? dx
& 0

+ / By*(a) dx <0, (8.10)

since |a=(¢)| = |a (s)] < la(s)| Vs €]0,¢], la (s)| < la(s)|] Vs €]0,T[. (B.10)
contradicts (B.5). Therefore™ (x) =0 a.ex € ]0 T].

(i) Since y has a constant sign in a neighbourhood ofa0js monotone in
neighbourhood of 0, from (B.1). Thus the limit f(r)|, ast goes to 0, exists. And
in this case we can suppose liiizr)| = 6 < +o0, ast — 0*.

As the functiona belongs toC°(]0, T')), it is bounded on0, T']. Hence we have

T

/’a(s)] ds < +00. (B.11)
0

By (B.1) Bd’ is a continuous function ofd, 7] and

Vx>0 d(x)Bx) :/yﬁads,

Vx>0 |d'(n]< /|J/| Blalds <y lloo7— /ﬁ(X)Ialds

B(x)

sincef(.) is nondecreasing. Thus we have

B(x)

V>0, |d'(0|< ||y||oo./|a(s>|ds.
0

And by (B.11) we obtain that belongs tow > (]0, 7). Now we can multiply (B.1) by
a~—, and after integrating by parts we obtain:

T T
~ [ pl@)Pax— [ypay ax=o,
0 0
T T T
[Bl@) P ax= [y pay ax+ [ypaar=0. (@12
0 0

0
From Proposition A.1, (B.12) becomes:

T T
/[Al(ﬁ, B.0.T)—y~]Ba™) dx + / y*Ba™) dx <O0. (B.13)
0 0
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From (B.2), (B.13) entails that~(x) = 0 a.e.x €]0, T]. This achieves the proof of the
second step.

Third step (a > 0.)

We first propose to prove that limo+ a(x) > 0. Then, in a second step, we will show
thata(x) > 0Vx €]0, T].

(a) We argue by contradiction and we use Gronwall technique. Assu)e= 0.
From (B.1) we obtain

¥ o

Vx>0 Cl/(X) < m

./,B(S)a(s) ds. (B.14)
0

Sincea(0) =0,a € C°([0, T]) and (B.14) becomes

X

Vx>0 d((x)< ||y||oo/a(s) ds (B.15)
0

becauses(.) is nondecreasing. (B.15) can be written:

U'(x) < 1Y lloe-U(x) Vx>0,
{ U@) >0, U©0)=U'0)=0, (8.16)
where
Ux)= /a(s)ds >0.
0
By integration (B.16) entails
V') < Iyl [ UG ds.
0
Thus we have
U'(x) Lo Us)ds
v 0 —— < 00T TN 00+
x> U) Iyl U) 1V 1loo-x
sinceU (.) is hondecreasing, i.e.,
U'(x)
< 00X, V¥ . B.17
U 1Y lloo-x x>0 ( )

Letr > O be arbitrary and & ¢ < ¢. After integrating by parts ofx, ¢], (B.17) becomes

17 lloo
2

0<U@)<U(e) exp[ (> — 32)} < C.U(e). (B.18)
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Passing to the limit in (B.18), asgoes to zero, we obtain
UH)=0 Vi>0 ie. a=0

which contradicts (B.1). Thus lim(x) > 0, asx — 0*.
(b) We now suppose that there exisgs> 0 such that:(xg) = 0. Buta(x) > 0 for any
xin 10, T] anda(.) belongs toC(]0, T[). This entails that we have

a’(xg) =0.

Then, from (B.1), we can write

X

Vi>xo @ ()< ||y||oo/a(s>ds.

X0
Then we proceed exactly as in (a) to conclude that
a(x)=0 Vx, xo<x<T.

And this contradicts (B.1) sinc&(T) = 1.

We point out that in previous steps we do not have necessarily the positivityirof
neighbourhood of 0.

Fourth step (a € W+*(10, T]).)

Here we need to use that is nonnegative in a neighbourhood of 0, denoted by
#(0) =10, 7]. From (B.1), Bd(.) is increasing in¥ (0). As (8a’)(0) = 0, we have

Ba'(x) >0 Vx e€¥(0),

a(x)=>0 Vxev(0).

Hencea is increasing if0, t]. Therefore lim_, ¢+ a(x) exists and we have

0< Iir&a(x) <a(r) < +oo.

Sincea € €°(]0, T']) we can set

a(0) = IirBl+ a(x),

anda(0) > 0, by the third step. Consequently.) belongs toC°([0, 7']) and from (B.1)
we obtain:

X

Vx>0, |a'()|< ﬁ(—lm/'y'ﬁ(”“(” < ||y||oo./a(s>ds.

0
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Thus
Vx>0, |a'@)]<Iyllo-llalloo-

This proves thatt ¢ W1>°(]0, T|).
Fifth step (||a,9||WLOO(O,T> <.K.)
Now let us prove the estimate

lagll,1 o, < K = constant independent gt

We have:

X

1/2

T
@] <1yl [ ap)ds < ||y||oo.ﬁ</|a,e|2ds> . (B19)
0

0

by Cauchy—Schwarz. We have

T T
12 2 T2 2
[1aszas <1z~ [ lagias.
0 0
By Poincaré inequality (cf. Appendix A) we have

T T
T2
3L 1,0, T)/|aﬁ _12ds < ||y||§o.7./|a,s|2ds,
0 0
T2\
(,\1(1, 1,0,7) — ||y||§o.7>./|aﬁ|2ds
0

T T 1/2
<20(L, 1,0, T)/la,glds <20(L, 1,0, T)ﬁ(/ |a,3|2ds> ,
0 0

or again
211(1, 1,0, THNT
From (B.19) and (B.20) we deduce easily that

lagll , < (B.20)
laglle <C, Nl <C

where C denotes some constant independengofNow the proof of Proposition 1 is
complete. O

B.1. Another regularity result

Let us consider the problem studied previously. Let us assume jythagrifies
inequality (B.2) and take8(¢) = c.t*, « > 0. We suppose that there exists> 0 such
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that

a—1

PrROPOSITION B.2. —If y satisfiegB.21), then the solutiom of following equation

{|y(r)| <d.r? Vrel0,rl, (8.21)

{ — & (r*a’) +ya=0 in (0, T,
(r*a)(0)=0, a(T)=1

belongs tow>°(]0, T'[). In additiona’(0) = 0.

Proof. —From Proposition 1 there exists a unique functiosuch that-*/2a(r) and
r%2q'(r) belong toL?(]0, T[). Thus for anyr, 0 < r < rp, we have

r“a’(r):/s“y(s)a(s)ds,

0

r

/s“|y(s>||a<s>|ds,

0

1

Vr>0, |d(r)|< -

|a' (1) Sd./s9|a(s)]ds Vr,0<r < ry.
0

Using Cauchy—Schwarz, we obtain

T 1/2
r29—oz+l 5
Vr, 0<r<rg, |d(r)]< d.m(()/s“]a(sﬂ ds) . (B.22)

As a’ is continuous oi0, T'[, we have

i Jd(0)] =0
i.e., we can set, by definitiom, (0) = 0, sincea € C1(]0, T[). Inequality (B.22) entails
thata’ belongs toL*° (10, T[); and since

T
a(r) = /a’(s) ds +1,

we can claim that belongs toWw1>*(10, T[). O

Remark— Assume thaty verifies (H2). Let us giveg(.) such thatg(t) ~ t* in a
neighbourhood of 0. We can prove that the solutigrof

—5(Bap) +yag=0 inl0,Tl,
(Bay)(0)=0, a(T)=0,
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belongs tow'>(]0, T'[) and verifieSa}g(O) = 0. In addition, proceeding as in the proof
of Proposition 1, we can state thiats |1~ < C, C is constant independent gf

Appendix C. Extension result

Let Q be a bounded open set&f', and® be an open regular subset@f Consider
the operator

0

A:—Za

ij

(“”a >+Zﬁ’

We suppose that is uniformly elliptic:

i l

S (0EE > alE? aexeQ, VEeRY,
aisaconstant- 0, «o;; =«;; Vi, j.

Let v be the solution of the following equation

Av=f In®,
C.1
{v|3@:0, (€.1)

where f belongs taL?(©).

EXTENSION LEMMA. — Suppose that the solutianof (C.1) satisfies

0
3 a7 cosin, x;) ‘ 10 <0 in HY2(30), (C.2)
— Xj
12%)

wheren stands for the outer normal #®®. Then we have
v < f in the sense off ~X(Q),

where, for any function defined or®, s stands for the extension ety zero, tof.

Proof. —It is based on Green formula. For any nonnegative fungtidielonging to
D(2), we have, integrating by parts:

0 g _

0 ov > < >
— _al_’go — — —Q;;i—, U
< lz]: ax; ax; lz: 0x; Y dx; DI(Q)xD(Q)

H’l(Q)xH&(Q)

_/ Z(ax,a”a ) v

/Zal]a cosn, x;)pdo

IR

ad av
<[ =S Za— )pdx, c.3
/ ;(Eixiajaxj)(p o ( )

(€]
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thanks hypothesis (C.2) and singe H}(Q2), with

- . [Vu(x) a.e.in®,
Vo) = {0 in Q\®. (€.4)

From (C.4) it follows

dv 0
[ S bivdi= [ S g gax (C5)

Q |1 )
/c'ﬁ(pdx = /cv(pdx. (C.6)
Q )

Finally (C.3), (C.5) and (C.6) give
(AT.0), 10 e < / Avgdx = / fodx= / Fodx,
0 0 Q
for any nonnegative belonging toH (). That isAv < finsense off1(Q). O
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