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ABSTRACT. – We consider an optimal partition problem inN-dimensional domains related
to a method introduced by Nehari [22]. We prove existence of the minimal partition and some
extremality conditions. Moreover we show some connections between the variational problem,
the behaviour of competing species systems with large interaction and changing sign solutions
to elliptic superlinear equations.

RÉSUMÉ. – Nous étudions un problème de partition optimale dansR
N qui se relie à une métode

introduite par Nehari [22]. Nous établissons l’existence de la partition optimale et quelques
conditions d’extremalité. En plus nous démontrons un lien entre le problème variationel, le
comportement asymptotique de certains systèmes quand l’interaction tends à l’infini et les
solutions qui changent de signe pour les equations elliptiques surlinéaires.

AMS classification:35J65; 58E05

1. Introduction

In a pioneering paper of the sixties Z. Nehari, [22], proposed a method for finding
solutions with prescribed number of zeroes to ordinary differential boundary value
problems. In spite of its simplicity, Nehari’s method has revealed very useful in the
search of changing sign solutions to superlinear second order ODEs and radially
symmetric PDEs (see [3] and references therein).

In this paper we are concerned with the following related problem: let� ⊂ R
N

(N � 1) be a smooth bounded domain andf ∈ C([0,∞)) be superquadratic according
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to [22] (see(f2) below). SetF(s) = ∫ s

0 f (t)dt and let us consider the following
functional defined for allu ∈H 1

0 (�)

J ∗(u) :=
∫
�

(
1

2
|∇u(x)|2 −F

(
u(x)

))
dx;

let us introduce the set function

ϕ(ω) := inf
w∈H1(ω)
w>0

sup
λ>0

J ∗(λw),

whereω ⊂ � is an open subset of�. We are concerned with the problem offinding a
partition of� that achieves

inf
{
ϕ(ω1)+ ϕ(ω2): ω1 ∪ω2 =�, ω1 ∩ ω2 = ∅}

. (1)

WhenN = 1 (or when dealing with the radially symmetric case) the existence of an
optimal partition can be easily obtained. Moreover, as shown in [3] through the analysis
of the extremality condition involved in (1), the minimal pair provides the supports of
the positive and negative parts of a changing sign solution to the differential equation
associated toJ ∗. This procedure is precisely what is nowadays called Nehari’s method,
and thus in the following we will refer to (1) as Nehari’s problem in theN -dimensional
case. In this paper we are interested in two main questions, namely the actual solvability
of (1) whenN � 2, and then the determination of the extremality conditions provided
by the minimization procedure.

As a first step we will face the minimization in a relaxed sense, and we will establish
in Theorem 2.2 that (1) is achieved by a pair(ω1,ω2) whereωi are the disjoint supports
of nonnegative functionsu0 andv0 belonging toH 1

0 (�) – thus not necessarily open.
The proof we provide for Theorem 2.2 shows a somewhat surprising connection with

the analysis of the segregation phenomena in population dynamics with diffusion and
large interaction. This analysis has been carried out in the last two decades in many
works, see e.g. [6,19,20], and in particular by E.N. Dancer and others (see [8–13,15–
18]). These authors mainly deal with Lotka–Volterra type systems, that is, a class of non-
variational superlinear elliptic systems. In the present paper we study a complementary
class of systems, including




−�u(x)= f
(
u(x)

) − 1

ε

∂

∂u
G

(
u(x), v(x)

)
in �

−�v(x)= f
(
v(x)

)− 1

ε

∂

∂v
G

(
u(x), v(x)

)
in �

(u, v) ∈H 1
0 (�)×H 1

0 (�)

u > 0, v > 0 in�,

(2)

whereε > 0 andG is positive and such thatG(s, t) = 0 iff s · t = 0. A system of
this type can be seen as a variational version of a stationary case in a model of the
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interactive competition between two populations, and the problem of the existence of
solutions for (2) is of independent interest. We will face the question for more general
nonlinearities and we will provide the existence result Theorem 2.1 by developing a
Nehari type procedure for elliptic systems; as an application it will follow that for every
ε > 0 (2) has a solution(uε, vε). Next in Section 4 we study the asymptotic behavior
of uε andvε as ε → 0; roughly speaking, as the competing term becomes larger and
larger, the two populationsuε, vε undergo a segregation, and this process leads to a final
configuration(u0, v0) where the populations are in fact separated. It is worth pointing
out that this is one of the phenomena already observed in [17], although the internal
dynamics of the systems therein are opposite to ours and the technical reasons for this
behavior are completely different.

We proceed our analysis with the intent to prove that the partition(supp(u0),supp(v0))

is in fact a solution of the original Nehari’s problem (1). As a first result we obtain from
the asymptotic analysis thatu0 andv0 solve the differential equation

−�w(x)= f
(
w(x)

)
(3)

each on its support. In fact, a much stronger result holds in the form of Theorem 2.3,
where we show that the functionw0 := u0 − v0 is a solution of (3) – whenf is extended
as an odd function onR. Now the regularity theory for elliptic PDEs implies that each
solution to (3), and in particularw0, must be smooth; as immediate consequence the
supports of bothu0 and v0 are open and we finally have an optimal partition to the
Nehari’s problem in the form(supp(u0),supp(v0)). Moreover, the regularity ofw0 also
proves the smoothness of the free boundary and proves that the extremality condition is

∇u0(x)=−∇v0(x) x ∈ ∂
(
supp(u0)

)∩ ∂
(
supp(v0)

)
, (4)

in analogy with the one-dimensional case. With these information the analysis of the
N -dimensional Nehari’s problem in the case of partitions of� into k = 2 subsets is
complete.

As a final remark let us mention that the natural extension of the Nehari’s problem
we are facing, consists in trying to partition� in k � 3 subsets: this seems to be a more
delicate problem that will be the object of a forthcoming paper.

2. Assumptions and main results

In this paper we shall deal with nonlinearitiesf :R → R andH :R2 →R
+ satisfying

the following set of assumptions:
(f1) f is C1 and there exist positive constantsC,p such that for alls ∈ R and a.e.

x ∈�

|f (x, s)| � C
(
1+ |s|p−1) 2<p < 2∗,

where 2∗ = +∞ whenN = 2 and 2∗ = 2N/(N − 2) whenN � 3;
(f2) there existsγ > 0 (2+ γ � p) such that, for alls �= 0 and a.ex ∈�

fs(x, s)s
2 − (1+ γ )f (x, s)s > 0;
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(h1) H is C1(R2) andC2 on R
2 \ {(s,0), (0, t): s, t ∈ R}; there exists a positive

constant 0<β < γ such that

∣∣H(x, s, t)
∣∣ � C

(
1+ |s| + |t|)2+β;

(h2) there exists 0<α � β such that the Hessian matrix
(
Hss(s, t)s

2 − (1+ α)Hs(s, t)s Hst (s, t)st

Hst (s, t)st Htt(s, t)t
2 − (1+ α)Ht(s, t)t

)

is non-positivedefinite for all(s, t) such thats �= 0, t �= 0 (i.e. positive (or zero)
determinant and negative diagonal terms);

(h3)

H(s, t)� 0,Hs(s, t)s � 0,Ht(s, t)t � 0 if st �= 0,

H(s, t)=Hs(s, t)=Ht(s, t)= 0 if st = 0.

Our first result, discussed in Section 3, is concerned with systems having a competitive
interaction:

THEOREM 2.1. – Letf satisfy(f1), (f2) andH satisfy(h1)–(h3). Then there exists
a solution(u, v) ∈H 1

0 (�)×H 1
0 (�) to the problem




−�u(x)= f
(
u(x)

) − ∂

∂u
H

(
u(x), v(x)

)
in �

−�v(x)= f
(
v(x)

)− ∂

∂v
H

(
u(x), v(x)

)
in �

u> 0, v > 0 in �.

(5)

Next in Section 4 we turn to the Nehari’s problem. More precisely we deal with the
following relaxed formulation of (1): let us define the functional

J0(u, v) :=
∫
�

(
1

2
|∇u(x)|2 + 1

2
|∇v(x)|2 −F

(
u(x)

)− F
(
v(x)

))
dx (6)

and let us consider the question offinding a pair of positive functions,u0 andv0, having
disjoint support and realizingJ (u0, v0)= d0:

d0 := inf
u,v∈H1

0 (�)

u �≡0,v �≡0∫
u2v2=0

sup
λ>0
µ>0

J0(λu,µv). (P0)

We shall prove

THEOREM 2.2. –Under assumptions(f1), (f2) problem(P0) has a solution(u0, v0) ∈
H 1

0 (�)×H 1
0 (�) such thatu0 > 0, v0 > 0; moreoversupp(u0) ∪ supp(v0) is a relaxed

solution of(1).
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Section 4 will be devoted to prove this result, with arguments crucially based on the
validity of Theorem 2.1.

In the last Section 5 we study the existence of changing sign solutions to the elliptic
equation (3); the main result we obtain is

THEOREM 2.3. – Under assumptions(f1), (f2) the functionw0 := u0−v0 is solution
to the problem 


−�w(x)= f

(
w(x)

)
in �

w ∈H 1
0 (�)

w changes sign exactly one time in�.

Moreover the pairsupp(u0)∪ supp(v0) is a solution of(1).

The existence of a changing sign solution is a well known fact, also for more general
kinds of elliptic equations (see [23,1,2,5,7,8,14]). The remarkable fact in our context is
the particular form of the solution we find, since, as we have already remarked in the
introduction, it provides both the solvability of the original Nehari’s problem (1) and the
extremality condition (4), besides the regularity of the free boundary.

3. A class of elliptic system

Aim of this section is to prove Theorem 2.1; to this end we assume that(f1), (f2), and
(h1)–(h3) hold and we wish to provide the existence of a pair(u, v) ∈H 1

0 (�)×H 1
0 (�)

where bothu andv are positive and solve (5). We seek solution of (5) as critical points
of the following functional

J (u, v) :=
∫
�

(
1

2
|∇u(x)|2 + 1

2
|∇v(x)|2 −F

(
u(x)

)

− F
(
v(x)

)+H
(
u(x), v(x)

))
dx (7)

(here, with some abuse of notation, we extendF andH by symmetry:F(s) := F(|s|),
H(s, t) := H(|s|, |t|)); note that the extended functions satisfy the same assumptions
than the original ones, thusJ ∈ C1(H 1

0 (�) × H 1
0 (�),R) and its critical points in

H 1
0 (�)× H 1

0 (�) are exactly the classical solutions to (5). Furthermore,F andH are
even with respect to each of their variables and this further property will be used to
obtain solutions to (5) which are indeed positive.

In particular we are interested in the search ofminimalsolutions of (5), that is, critical
points ofJ achieving the lower value ofJ when restricted to the critical setN :

N :=
{
(u, v) ∈ T :

∂J (u, v)

∂u
· u= ∂J (u, v)

∂v
· v = 0

}
,

where

T := {
(u, v) ∈H 1

0 (�)×H 1
0 (�): u �≡ 0, v �≡ 0

}
.
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Setting

c := inf
(u,v)∈N

J (u, v) (P )

we are going to prove

PROPOSITION 3.1. –Under assumptions(f1)–(h3) there exists a critical point forJ ,
say(uc, vc) ∈N , such thatJ (uc, vc)= c.

The proof of the proposition will be divided into three steps; the first consists in
studying the behaviour ofJ when restricted to the plane generated by a fixed pair(u, v)

with nontrivial components:

LEMMA 3.1. – Let (u, v) ∈ T and consider

'(u, v) := sup
λ>0
µ>0

J (λu,µv).

Then there exists a unique pair of positive numbersλ(u, v) andµ(u, v) such that
(i) '(u, v)= J (λ(u, v)u,µ(u, v)v);
(ii) (λ(u, v)u,µ(u, v)v) ∈N ;
(iii) there existsγ, γ1 > 0 such that if(u, v) ∈ N then ‖u‖p � γ, ‖v‖p � γ and

‖u‖ � γ1, ‖v‖ � γ1;
(iv) '(·) is l.s.c. with respect to the weak convergence inT ;
(v) the map(u, v) �→ (λ(u, v),µ(u, v)) is continuous fromT to R

+ ×R
+.

Proof. –Fix (u, v) ∈ T and define((λ,µ) := J (λu,µv). As a function of two real
variables,( is of classC2 on R

2 but the axes. We are interested in studying the set of
critical points of(; by a direct analysis, exploiting the superlinear behaviour off as in
(f2) and the positivity ofH as in(h3), it is easy to show that( has a local minimum
at the origin and one mountain pass on each of the semi-axes. On the other hand, by
means of topological degree computations, we will show that there are exactly four local
maxima, one in each quadrant, and this will finally prove assertion (i).

Let (λ̄, µ̄) be a critical point of(; then

λ̄

∫
�

(
|∇u|2 − 1

λ̄2
f (λ̄u)λ̄u+ 1

λ̄2
Hu(λ̄u, µ̄v)λ̄u

)
= 0,

µ̄

∫
�

(
|∇v|2 − 1

µ̄2
f (µ̄v)λ̄v + 1

µ̄2
Hv(λ̄u, µ̄v)µ̄v

)
= 0.

(8)

CLAIM 1. – If λ̄ �= 0 andµ̄ �= 0, then(λ̄, µ̄) is a local maximum for(.

Let λ̄ �= 0 andµ̄ �= 0. In order to investigate the nature of such a critical point of(,
we are going to study the quadratic form associated to the pair(λ̄, µ̄), defined as

Q(a, b)=(λλ(λ̄, µ̄)a
2 + 2(λµ(λ̄, µ̄)ab+(µµ(λ̄, µ̄)b

2, (a, b) ∈ R
2;

we wish to show thatQ(a, b) < 0 for all (a, b) ∈ R
2. We estimate the second derivative

(λλ by exploiting first(f2) and then the identities (8)
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(λλ(λ̄, µ̄)=
∫
�

(
|∇u|2 − 1

λ̄2
f ′(λ̄u)λ̄2u2 + 1

λ̄2
Huu(λ̄u, µ̄v)λ̄

2u2
)

�
∫
�

(
|∇u|2 − 1+ α

λ̄2
f (λ̄u)λ̄u+ 1

λ̄2
Huu(λ̄u, µ̄v)λ̄

2u2
)

=−α
∫
�

|∇u|2 + 1

λ̄2

∫
�

(
Huu(λ̄u, µ̄v)λ̄

2u2 − (1+ α)Hu(λ̄u, µ̄v)λ̄u
)
.

Analogous calculations lead to:

(µµ(λ̄, µ̄)� −α
∫
�

|∇v|2 + 1

µ̄2

∫
�

(
Hvv(λ̄u, µ̄v)µ̄

2v2 − (1+ α)Hv(λ̄u, µ̄v)µ̄v
)
,

while

(µλ(λ̄, µ̄)= 1

µ̄λ̄
Huv(λ̄u, µ̄v)λ̄uµ̄v.

Thus we can bound the formQ from above with

Q(a, b)�−αa2
∫
�

|∇u|2 − αb2
∫
�

|∇v|2 +QH(λ̄u, µ̄v)(a, b),

where the quadratic formQH is negatively definite by assumption(h2). Thus the claim
follows.

CLAIM 2. –There are exactly four critical points with nonzero components(and thus
maxima), one in each of the quadrants.

By the growth assumptions onF andH ,((λ,µ)→−∞ as|λ|+|µ| →∞, implying
that( must have at least a local maximum in each of the quadrants. Moreover, since(

turns out to be concave outside a suitably large ballBR , we have

deg(∇(,0,BR)=+1.

On the other hand, let us count all the possible critical points of(: by the
superquadraticity property ofF we know that( has one local minimum at the origin,
providing a local degree+1; moreover, by arguments similar to the ones in the previous
Claim 1, it is easy to prove that( has exactly four critical points with one null
component (one on each semiaxis) having index−1. A word of caution must be entered
at this point: by the assumptions onH , J needs not to beC2 on the axis; this problem
can be avoided by an homotopy argument. Finally the other possible critical points are
local maxima by Claim 1, and thus the local degree at each of them is+1. Letn be the
number of such maxima: by the excision property of the degree it must hold:

+1= deg(∇(,0,BR)= (+1) · 1+ (−1) · 4+ (+1) · n
that givesn= 4, proving the claim.
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Now we define(λ(u, v),µ(u, v)) as the unique local maximum of( in the first
quadrant, and we will prove that it satisfies (i)–(v).

Assertion (i) follows by construction; (ii) follows by noting that(λ(u, v),µ(u, v)) is
(the unique) positive solution of (8). Now take(u, v) ∈N , so thatλ(u, v)= µ(u, v)= 1
and by (8) it holds, for instance

0=
∫
�

(|∇u|2 − f (u)u+Hu(u, v)u
)
�

∫
�

(|∇u|2 − f (u)u
)

(9)

by the positivity ofH . Now (iii) follows by using the subcritical assumption(f1) and
the Sobolev inequality.

In order to prove the weak l.s.c. property of', let (un, vn) weakly converging
to (u0, v0) ∈ T . Then ‖u0‖ + ‖v0‖ � lim inf ‖un‖ + ‖vn‖; on the other side, due to
the subcritical growth ofF (assumption(f1)) and thanks to the compact embedding
H 1

0 (�)⊂ Lq for all 2< q < 2∗, it holds

'(u0, v0)= J
(
λ(u0, v0)u0,µ(u0, v0)v0

)
� J

(
λ(u0, v0)un,µ(u0, v0)vn

)+ o(1)�'(un, vn)+ o(1),

and passing to the limit

'(u0, v0)� lim inf
n→∞ '(un, vn)

as required. Finally (v) holds as a consequence of the Implicit Function Theorem applied
to (8). ✷

Note that, if we define the following value

d := inf
(u,v)∈T

'(u, v) (10)

it turns out by the lemma thatd = c. This remark will be useful in proving that the
problem of minimizingJ on the Nehari manifoldN has a solution:

LEMMA 3.2. –There exists(uc, vc) ∈N such thatJ (uc, vc)= c.

Proof. –Let (un, vn)⊂N be a minimizing sequence and assumeJ (un, vn) � c + 1.
Now, computing:(α+ 2)J (un, vn)−∇J (un, vn) · un with α > 0 as in assumption(h2),
we have

(α+ 2)c� α

2

∫
�

[|∇un|2 + |∇vn|2]+
∫
�

[
f (un)un − (2+ α)F(un)

]

+
∫
�

[
f (vn)vn − (2+ α)F(vn)

]

+
∫
�

[
(2+ α)H(un, vn)−Hu(un, vn)un −Hv(un, vn)vn

]
,
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where by assumptions(f2) and(h2) the three terms in square brackets are positive. We
have

‖un‖2 +‖vn‖2 � 2(2+ α)

α
(c+ 1) (11)

and thus the sequence(un, vn) is bounded. Hence there exists(ū, v̄) ∈H 1
0 (�)×H 1

0 (�)

weak limit of (un, vn). It is easy to verify that(ū, v̄) ∈ T ; indeed by Lemma 3.1(iii),
it holds ‖un‖p � γ, ‖vn‖p � γ for all n ∈ N, and, by the strong convergence inLp of
(un, vn) to (ū, v̄), we also obtain‖ū‖p � γ, ‖v̄‖p � γ .

Now we can apply Lemma 3.1 to(ū, v̄): by the weak l.s.c. property of' as in (iv),
we have'(ū, v̄)� c; furthermore, by definition ofd as in (10) it holds'(ū, v̄)� d ≡ c.
Thus

c≡ sup
λ>0
µ>0

J (λū,µv̄)

and by applying Lemma 3.1 again, we obtain the existence of a pair(λ̄, µ̄) such that
(due to (i))c ≡ J (λ̄ū, µ̄v̄) and (due to (ii))(λ̄ū, µ̄v̄) ∈N . Setting(uc, vc) := (λ̄ū, µ̄v̄)

we finally conclude the proof. ✷
LEMMA 3.3. –If (uc, vc) ∈N andJ (uc, vc)= c, then(uc, vc) is a critical point ofJ .

Proof. –Assume by contradiction that(uc, vc) ∈N , J (uc, vc)= c, but∇J (uc, vc) �=
0. Then there existsρ > 0 andδ > 0 (we may assume 4δ < γ1 as in Lemma 3.1(iii)) such
that

(u, v) ∈ Bδ

(
(uc, vc)

) ⇒‖∇J (u, v)‖� ρ.

By the quantitative deformation lemma (see, for instance, [24]) we derive the existence
of a continuous mapη :H 1

0 (�)×H 1
0 (�)→H 1

0 (�)×H 1
0 (�) and a constantν > 0 such

that:
(i) η(u, v)= (u, v) for all (u, v) such that‖(u−uc, v−vc)‖> 4δ or |J (u, v)−c|>

2ν;
(ii) J (η(u, v))� J (u, v) for all (u, v) ∈H 1

0 (�)×H 1
0 (�);

(iii) (u, v) ∈ B2δ((uc, vc))∧ J (u, v)� c+ ν ⇒ J (η(u, v))� c− ν.

Let us consider the deformation under this map of the surface5(s, t) := (sRuc, tRvc),
whereR is fixed in such a way that(R − 1)γ1 > 4δ. By the monotonicity properties
of η and Lemma 3.1, we have that sups>0,t>0η(5(s, t)) < c. Now we claim thatη ◦ 5
intersects the manifoldN and thus, by definition ofc it holds supη(5(s, t)) � c, a
contradiction. To prove the claim, let us consider the map:

H : [0,1]2 →R
+ ×R

+

(s, t) �→ (
λ
(
η(5(s, t))

)− 1,µ
(
η(5(s, t))

)− 1
)

which is continuous by Lemma 3.1(v). By construction it holds:
• if s = 0, thenH1(0, ·)=+∞; indeed, since5(0, t)= (0, tRvc), it holds‖51(0, t)−
uc‖ = ‖uc‖ > γ1 > 4δ by the choice ofδ. Thus by property (i) of the mapη, we
know thatη(5(0, t))= 5(0, t)= and thusH1(0, t)= λ(0, tRvc)=+∞;

• if s = 1, thenH1(0, ·) < 0; indeed since5(1, t)= (Ruc, tRvc), it holds‖51(1, t)−
uc‖ = (R − 1)‖uc‖ > 4δ by the choice ofR. Thus η(5(1, t)) = 5(1, t) and
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H1(1, t)= λ(Ruc, tRvc) < 1. This last fact is due to the choice ofR large: observe
that, due to the superquadraticity ofF , J is negative far from the origin; on the other
hand, the functionsλ(·, ·), µ(·, ·) provide the scaling that the arguments needs to
achieve the maximum ofJ , that is positive and hence achieved near the origin.

Analogous considerations allow to prove that the second component ofH is positive
when t = 0 and negative ift = 1. Thus we are in condition to apply Miranda
Theorem [21], and we find(s̄, t̄ ) such thatH(s̄, t̄)= (0,0); this impliesη(5(s̄, t̄)) ∈N
and close the proof. ✷

Now the proof of Proposition 3.1 follows by simply combining Lemma 3.2 and
Lemma 3.3, and thus we have the existence of a pair(uc, vc) of critical points ofJ
such thatJ (uc, vc) = c. What is left to show, in order to obtain by this result the
full of Theorem 2.1, is that bothuc and vc are strictly positive. To this aim we note
that J (uc, vc) = c = J (|uc|, |vc|) by definition of F̄ and H̄ . Then by Lemma 3.3 we
know that(|uc|, |vc|) is a critical point ofJ and so its components must be smooth by
the standard regularity theory for elliptic PDEs. In this way we obtain the equalities
uc = |uc| � 0, vc = |vc| � 0; now the strict inequalities comes by the strong maximum
principle. With this final remark the proof of our main Theorem 2.1 is complete.

4. The relaxed Nehari’s problem

We are going to deal with the relaxed formulation of Nehari’s problem presented in
Section 2 in the form(P0). Let us recall that it consists in facing the minimax problem

d0 := inf
u,v∈H1

0 (�)

u �≡0,v �≡0∫
u2v2=0

sup
λ>0
µ>0

J0(λu,µv),

where

J0(u, v) :=
∫
�

(
1

2
|∇u(x)|2 + 1

2
|∇v(x)|2 − F

(
u(x)

) −F
(
v(x)

))
dx.

Note thatd0 coincides with the minimal value ofJ0 restricted to the critical setN0

c0 := inf
{
J0(u, v): (u, v) ∈N0,

∫
u2v2 = 0

}
,

N0 :=
{
(u, v) ∈ T :

∂J0(u, v)

∂u
· u= ∂J0(u, v)

∂v
· v = 0

}
.

(12)

Indeed, as consequence of Lemma 3.1 (note thatH ≡ 0 satisfies assumptions(h1)–(h3))
it holdsd0 = c0.

Our main result in this setting is Theorem 2.2, that is, the existence of positive
functionsu0, v0, having disjoint supports and realizingJ0(u0, v0) = d0. We present a
proof of these facts that passes through the solution of the approximating problems(Pε)

described below.
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4.1. Systems with large interaction

Let us fix a functionG :R2 →R satisfying(h1)–(h3). For all fixedε > 0, let us define
the energy functional associated to system (2) for such a choice ofG andε:

Jε(u, v) :=
∫
�

(
1

2
|∇u(x)|2 + 1

2
|∇v(x)|2

− F
(
u(x)

)− F
(
v(x)

) + 1

ε
G

(
u(x), v(x)

))
dx (13)

and consider the following problem:finding a pair of positive functions,uε andvε, which
realize

dε := inf
u,v∈H1

0 (�)

u �≡0,v �≡0

sup
λ>0
µ>0

Jε(λu,µv). (Pε)

Note that

dε � d0 (14)

indeedJε coincides withJ0 on pairs of functions having disjoint support.
We are going to prove

PROPOSITION 4.1. –Assume thatf satisfies(f1), (f2). Then
1) for everyε > 0 problem(Pε) has a solution(uε, vε) ∈H 1

0 (�)×H 1
0 (�);

2) there exists(u0, v0) ∈H 1
0 (�)×H 1

0 (�) such that(uε, vε)→ (u0, v0) in H 1
0 (�)×

H 1
0 (�) and(u0, v0) solves(P0).

Proof of1). – Let ε > 0 be fixed. By applying Theorem 2.1 with the choiceH(s, t) :=
1
ε
G(s, t), we immediately obtain the existence of a solution(uε, vε) to (Pε). It is easy

to prove that there existsγ2 > 0, independent ofε, such that‖uε‖ + ‖vε‖< γ2. To this
end it suffices to recall inequality (11) in the proof of Lemma 3.2 that provides, for every
ε > 0,

‖uε‖2 +‖vε‖2 � 2(2+ α)

α
(cε + 1).

Sincecε = dε � d0 the required estimate follows by setting

γ2 := 2(2+ α)

α
(d0 + 1).

Henceforth there exists a weak limit(u0, v0) ∈H 1
0 (�)×H 1

0 (�):

(uε, vε)⇀ (u0, v0) ε→ 0. (15)

Moreover it holdsu0 �≡ 0 and v0 �≡ 0; indeed, as consequence of inequality (9) in
the proof of Lemma 3.1(iii), we know that‖uε‖p � γ , ‖vε‖p � γ for someγ > 0
independent ofε. By the compact embeddingH 1

0 (�) ↪→ Lp we get‖u0‖p � γ and
‖v0‖p � γ , giving the result. ✷
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The second part of Proposition 4.1 will be essentially provided in the following crucial
lemma:

LEMMA 4.1. –Let (u0, v0) be the weak limit of(uε, vε) whenε→ 0 as in(15). Then
it holds:

(i) (u0, v0) ∈N0;
(ii) ‖uε − u0‖→ 0, ‖vε − v0‖→ 0;
(iii) 1

ε

∫
�G(uε, vε)→ 0;

(iv) cε → c0.

Proof. –Let us first note that, since(u0, v0) ∈ T , then we findλ0 > 0, µ0 > 0 such
that(λ0u0,µ0v0) ∈N0. By summing up the following equalities

∂

∂u
Jε(uε, vε) · uε = 0,

∂

∂u
J0(λ0u0,µ0v0) · λ0u0 = 0

and then passing to the limit, we obtain

∫
�

(
f (λ0u0)

λ0u0
− f (u0)

u0

)
u2

0 + lim
ε→0

1

ε

∫
�

Gu(uε, vε)uε � 0.

Sincef (t)/|t| is increasing by(f2) and the limit is non-negative, we obtain thatλ0 � 1.
Analogous estimates for the component involvingvε andv0 imply thatµ0 � 1 too.

Let us now make explicit the fact that(λ0u0,µ0v0) ∈N0:

λ2
0

∫
�

|∇u0|2 −
∫
�

f (λ0u0)λ0u0 = 0,

µ2
0

∫
�

|∇v0|2 −
∫
�

f (µ0v0)µ0v0 = 0,

λ2
0

2

∫
�

|∇u0|2 −
∫
�

F(λ0u0)+ µ2
0

2

∫
�

|∇v0|2 −
∫
�

F(µ0v0)� c0.

(16)

By multiplying the third inequality with(2+ α), α > 0 chosen as in assumption(h2),
and then summing up with the two equalities, we obtain

(2+ α)c0 � λ2
0α

2

∫
�

|∇u0|2 +
∫
�

[
f (λ0u0)λ0u0 − (2+ α)F(λ0u0)

]

+ µ2
0α

2

∫
�

|∇v0|2 +
∫
�

[
f (µ0v0)µ0v0 − (2+ α)F(µ0v0)

]
. (17)
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Observe that the weak convergence of(uε, vε) ∈Nε to (u0, v0) implies
∫
�

|∇u0|2 −
∫
�

f (u0)u0 + lim
ε→0

ε−1
∫
�

Gu(uε, vε)uε � 0,

∫
�

|∇v0|2 −
∫
�

f (v0)v0 + lim
ε→0

ε−1
∫
�

Gv(uε, vε)vε � 0,

lim
ε→0

cε � 1

2

∫
�

(|∇u0|2 + |∇v0|2)−
∫
�

F(u0)−
∫
�

F(v0)+ lim
ε→0

ε−1
∫
�

G(uε, vε).

(18)

As before, multiply the last inequality by(2+ α) and then sum up the three

(2+ α) lim
ε→0

cε � α

2

∫
�

(|∇u0|2 + |∇u0|2)

+
∫
�

[
f (u0)u0 − (2+ α)F(u0)

]+
∫
�

[
f (v0)v0 − (2+ α)F(v0)

]

+ lim
ε→0

ε−1
∫
�

[
(2+ α)G(uε, vε)−Gu(uε, vε)uε −Gv(uε, vε)vε

]
.

Now, since by constructionc0 � cε for all ε > 0, we can compare this inequality with
(17); to shorten notation we introduceF(t) := f (t)t − (2+ α)F(t), noting thatF(t) is
increasing fort > 0 by (f2). It turns out

α

2

∫
�

[(
λ2

0 − 1
)|∇u0|2 + (

µ2
0 − 1

)|∇v0|2]

+
∫
�

[
F(λ0u0)−F(u0)

]+
∫
�

[
F(µ0v0)−F(v0)

]

� lim
ε→0

ε−1
∫
�

[
(2+ α)G(uε, vε)−Gu(uε, vε)uε −Gv(uε, vε)vε

]
.

By assumptions(h2), (h3) it turns out that the term at the r.h.s. is non-negative: now
since bothλ0 andµ0 are not greater than 1, we conclude that in factλ0 = µ0 = 1. This
proves assertion (i) and, in turn, implies that:

lim
ε→0

ε−1
∫
�

[
(2+ α)G(uε, vε)−Gu(uε, vε)uε −Gv(uε, vε)vε

] = 0. (19)

From this the strong convergence ofuε andvε to their limits easily follows. Indeed, if
we assume for instance that lim

∫
� |∇uε|2 > ∫

� |∇u0|2, then all the above inequalities
become strict, leading a contradiction in (19). Thus (ii) is proved.

Let us now prove assertion (iii). To this aim we deduce by (16) andλ0 = 1, the relation∫
� |∇u0|2 = ∫

� f (u0)u0. Back to (18) we obtain that

lim
ε→0

ε−1
∫
�

Gu(uε, vε)uε = 0
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and the analogs forv0. Now (19) becomes

lim
ε→0

ε−1
∫
�

G(uε, vε)= 0

as desired. Furthermore, we deduce by (iii) that

lim
ε→0

cε = J (u0, v0)� c0,

where the last inequality follows by the definition ofc0 and (i). Now it is enough to recall
that limε→0 cε � c0 by (14) to show that indeed limε→0 cε = c0, proving (iv). ✷

Proof of2). – In order to conclude the proof of Proposition 4.1 it suffices to show that
u0 andv0 have disjoint support: this is consequence of property (iii) and of the strong
convergence of(uε, vε) to its weak limit. Indeed this implies

∫
�

G(u0, v0)= 0

by assumption(h3) this meansu0(x) · v0(x) = 0 a.e.x ∈ � and proves supp(u0) ∩
supp(v0) = ∅. Moreover by (iv) we also obtainJ0(u0, v0) = c0, finally proving that
(u0, v0) solves(P0). ✷

As a final remark, note that, if we pass to the limit in (2) asε→ 0, by exploiting the
strong convergence of the solutions(uε, vε) to the pair(u0, v0) and (iii), we realize that

−�u0(x)= f
(
u0(x)

)
x ∈ supp(u0),

−�v0(x)= f
(
v0(x)

)
x ∈ supp(v0).

(20)

5. An equivalent problem

Let (u0, v0) be the pair solving(P0) as provided by Proposition 4.1. Aim of this
section is to prove thatw0 = u0 − v0 is a solution of (3) as in Theorem 2.3. We have
already noticed in the introduction that this result leads to answer our main questions
about the original Nehari’s problem (1).

The proof of Theorem 2.3 is based on the equivalence between the approximating
procedure shown above and a minimax technique of Nehari type devoted to prove the
existence of a changing sign solution for the Eq. (3).

5.1. A changing sign solution of (3)

Let us consider the energy functional associated to (3):

J∗(w) :=
∫
�

(
1

2
|∇w(x)|2 − F

(
x,w(x)

))
dx, w ∈H 1

0 (�).
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Since we are interested in functions ofH 1
0 (�) which change sign, it is worth introducing

the subset

T∗ := {
u ∈H 1

0 (�): u
+ �≡ 0, u− �≡ 0

}
.

Let us define

N∗ := {
u ∈ T∗: ∇J (u+) · u+ = ∇J (u−) · u− = 0

}
and the minimum ofJ∗ restricted toN∗

c∗ := inf
u∈N∗

J∗(u). (21)

We claim that:

PROPOSITION 5.1. –There exists a changing sign functionw∗ ∈ H 1
0 (�) such that

J∗(w∗)= c∗ and

−�w∗(x)= f
(
x,w∗(x)

)
x ∈�.

The proof of this existence theorem follows the line and the technical ideas exploited
in Section 3 and thus it falls naturally in three parts corresponding to Lemmas 3.1, 3.2
and 3.3:

LEMMA 5.1. – Letu ∈ T∗ and consider

'(u) := sup
s>0
t>0

J∗(su+ − tu−).

Then there exists a unique pair of positive numbersλ+(u) andλ−(u) such that
(i) '(u)= J∗(λ+(u)u+ − λ−(u)u−);
(ii) λ+(u)u+ − λ−(u)u− ∈N∗;
(iii) there existr1, r2 > 0 such that ifu ∈N∗ then‖u±‖p � r1, ‖u±‖� r2;
(iv) '(·) is lower semicontinuous with respect to the weak convergence inT∗;
(v) the mapu �→ (λ+(u), λ−(u)) is continuous fromH 1

0 (�) to R×R.

As an immediate consequence of this lemma, it turns out that

d∗ := inf
u∈T∗

'(u)≡ c∗;

this fact is crucial when proving that the problem of minimizingJ∗ on the Nehari
manifoldN∗ has a solution:

LEMMA 5.2. –There existsu∗ ∈N∗ such thatJ (u∗)= c∗.

Finally, the third step in the proof of the existence of a changing sign solution to (3)
consists in proving that any point at levelc∗ is critical forJ∗:

LEMMA 5.3. –If u∗ ∈N∗ andJ∗(u∗)= c∗, thenu∗ is a critical point ofJ∗.

The following remark allows us to get easily the proofs of the first two lemmas directly
from the corresponding results in Section 3. As a matter of facts it is equivalent to study
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J∗ onH 1
0 (�) andJ0 onH 1

0 (�)×H 1
0 (�) restricted to pairs(u, v) such that

supp(u)∩ supp(v)=∅ (22)

since it holds

∀w ∈H 1
0 (�) u :=w+v :=w− ⇒

{
J∗(w)= J0(u, v),

∇J∗(w)=∇J0(u, v).

Note that the constraint (22) is closed both with respect to strong and weak convergence
of H 1

0 (�)× H 1
0 (�); with this we conclude that Lemmas 5.1 and 5.2 holds as simple

consequence of Lemmas 3.1 and 3.2.
Concerning the proof of Lemma 5.3, we point out that it formally follows the scheme

illustrated in Lemma 3.3, but, for the readers convenience, we prefer to discuss it in all
the details.

Proof of Lemma5.3. –Assume by contradiction thatu∗ ∈ N∗, J∗(u∗) = c∗, but
∇J∗(u∗) �= 0. Then there existsρ > 0 and δ > 0 (we may assume 4δ < r2 as in
Lemma 5.1(iii)) such that

u ∈ Bδ(u∗)⇒
∥∥∇J (u)∥∥ � ρ.

By the quantitative deformation lemma (see, for instance, [24]) we derive the existence
of a continuous mapη :H 1

0 (�)→H 1
0 (�) and a constantε > 0 such that:

(i) η(u)= u for all u such that‖u− u∗‖> 4δ or |J∗(u)− c∗|> 2ε;
(ii) J∗(η(u))� J∗(u) for all u ∈H 1

0 (�);
(iii) u ∈ B2δ(u∗)∧ J∗(u)� c∗ + ε⇒ J∗(η(u))� c∗ − ε.

Let us consider the deformation under this map of the surface5(s, t) := sRu+∗ − tRu−∗ ,
whereR is fixed in such a way that(R − 1)r2 > 4δ. By the monotonicity properties
of η and Lemma 5.1, we have that sups>0,t>0η(5(s, t)) < c∗. Now we claim thatη ◦ 5
intersects the manifoldN∗ and thus, by definition ofc∗ it holds supη(5(s, t)) � c∗, a
contradiction. To prove the claim, let us consider the map:

H : [0,1]2 →R×R

(s, t) �→ (
λ+

(
η(5(s, t))

)− 1, λ−
(
η(5(s, t))

)− 1
)

which is continuous by Lemma 5.1(v). By construction it holds:
• if s = 0, thenH1(0, ·)=+∞; indeed, since5(0, t)=−tu−∗ , it holds‖5(0, t)+ −
u+∗ ‖ = ‖u+∗ ‖ > r2 > 4δ by the choice ofδ. Thus by property (i) of the mapη, we
know thatη(5(0, t))= 5(0, t)= and thusH1(0, t)= λ+(−tu−∗ )=+∞;

• if s = 1, then H1(0, ·) < 0; indeed since5(1, t) = Ru+∗ − tRu−∗ , it holds
‖5(1, t)+−u+∗ ‖ = (R−1)‖u+∗ ‖> 4δ by the choice ofR. Thusη(5(1, t))= 5(1, t)
andH1(1, t)= λ+(Ru+∗ − tRu−∗ ) < 1.

Analogous considerations allow to prove that the second component ofH is positive
when t = 0 and negative ift = 1. Thus we are in condition to apply Miranda
Theorem [21], and we find(s̄, t̄ ) such thatH(s̄, t̄ )= (0,0); this impliesη(5(s̄, t̄ )) ∈N∗,
that concludes the proof.✷
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We have thus proved the existence result in Proposition 5.1. The remainder of this
section will be devoted to establish the equivalence between the variational procedure
on which the proof of Proposition 5.1 is based and the approximating technique leading
to definec0 as in Section 4. This is stated in the following:

LEMMA 5.4. –Let c0 and c∗ be defined as in(12) and (21). Then c0 ≡ c∗ and
settingw0 := u0 − v0 with (u0, v0) as in (15), thenw0 is a solution of(3). Moreover
(supp(u0) ∪ supp(v0)) is a solution of(1).

Proof. –let us remark that, ifu andv have disjoint supports, thenJ0(u, v)= J∗(u)+
J∗(v)= J∗(u− v).

Letw∗ as in Theorem 5.1 and defineu∗ :=w+∗ andv∗ :=w−∗ : with these we will prove
the first inequalityc0 � c∗: sincew∗ is critical forJ∗ one easily finds

∂J0(u∗, v∗)
∂u

· u∗ = ∂J0(u∗, v∗)
∂v

· v∗ = 0

and hence(u∗, v∗) ∈N0. Sincec0 = infN0 J0(u, v), thenc0 � J0(u∗, v∗)= J∗(w∗)= c∗,
proving the desired inequality.
c0 � c∗: now let us consider the pair(u0, v0) as in Proposition 4.1. Since(u0, v0) ∈N0,

thenw0 := u0 − v0 belongs toN∗ andJ∗(w0)= J0(u0, v0)= c0. This impliesc∗ � c0 by
definition ofc∗.

Now we know thatJ∗(w0)= c∗, and it suffices to apply Lemma 5.2 to prove thatw0

is indeed a critical point forJ∗. Moreover by the regularity theory for elliptic PDEs we
know that supp(u0) and supp(v0) are open and thus they provide a solution to (1).✷

With this we have finally proven the crucial Theorem 2.3.
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