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ABSTRACT. — We consider an optimal partition problem AMdimensional domains related
to a method introduced by Nehari [22]. We prove existence of the minimal partition and some
extremality conditions. Moreover we show some connections between the variational problem
the behaviour of competing species systems with large interaction and changing sign solution
to elliptic superlinear equations.
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RESUME. — Nous étudions un probléme de partition optimale d&hsjui se relie & une métode
introduite par Nehari [22]. Nous établissons I'existence de la partition optimale et quelques
conditions d’extremalité. En plus nous démontrons un lien entre le probléme variationel, le
comportement asymptotique de certains systémes quand l'interaction tends a l'infini et le:
solutions qui changent de signe pour les equations elliptiques surlinéaires.
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1. Introduction

In a pioneering paper of the sixties Z. Nehari, [22], proposed a method for finding
solutions with prescribed number of zeroes to ordinary differential boundary value
problems. In spite of its simplicity, Nehari's method has revealed very useful in the
search of changing sign solutions to superlinear second order ODEs and radiall
symmetric PDEs (see [3] and references therein).

In this paper we are concerned with the following related problemQlet RY
(N = 1) be a smooth bounded domain afice C ([0, co)) be superquadratic according

Y Work partially supported by MURST, Project “Metodi Variazionali ed Equazioni Differenziali Non
Lineari”.
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to [22] (see(f2) below). SetF(s) = [5 f(¢)dr and let us consider the following
functional defined for alk € H} ()

1
J*(u) = /<§|Vu(x)|2 — F(u(x))> dx;
Q

let us introduce the set function

p(w):= Inf supJ*(Aw),
weHléw) >0

wherew C Q is an open subset @. We are concerned with the problemfoiding a
partition of 2 that achieves

inf{<p(a)1)—|—go(w2): w1Uw2:§, wlﬂa)zzﬂ}. (1)

When N = 1 (or when dealing with the radially symmetric case) the existence of an
optimal partition can be easily obtained. Moreover, as shown in [3] through the analysis
of the extremality condition involved in (1), the minimal pair provides the supports of
the positive and negative parts of a changing sign solution to the differential equatior
associated td*. This procedure is precisely what is nowadays called Nehari's method,
and thus in the following we will refer to (1) as Nehari’s problem in ffiedimensional
case. In this paper we are interested in two main questions, hamely the actual solvabilit
of (1) whenN > 2, and then the determination of the extremality conditions provided
by the minimization procedure.

As a first step we will face the minimization in a relaxed sense, and we will establish
in Theorem 2.2 that (1) is achieved by a p@if, w;) wherew; are the disjoint supports
of nonnegative functions, andv, belonging toH; (€2) — thus not necessarily open.

The proof we provide for Theorem 2.2 shows a somewhat surprising connection with
the analysis of the segregation phenomena in population dynamics with diffusion anc
large interaction. This analysis has been carried out in the last two decades in man
works, see e.g. [6,19,20], and in particular by E.N. Dancer and others (see [8-13,15
18]). These authors mainly deal with Lotka—\olterra type systems, that is, a class of non
variational superlinear elliptic systems. In the present paper we study a complementar
class of systems, including

A = 19 G in Q
—Au(x) = f(u(x)) ~ (u(x), v(x)) in
10 .
—Av(x) = f(v(x)) — E%G(u(x), v(x)) inQ (2)
(u,v) € H}(RQ) x HF(RQ)
u>0 v>0 in 2,

wheree > 0 and G is positive and such that(s,) =0 iff s -t = 0. A system of
this type can be seen as a variational version of a stationary case in a model of th
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interactive competition between two populations, and the problem of the existence o
solutions for (2) is of independent interest. We will face the question for more general
nonlinearities and we will provide the existence result Theorem 2.1 by developing a
Nehari type procedure for elliptic systems; as an application it will follow that for every
¢ > 0 (2) has a solutionfu,, v.). Next in Section 4 we study the asymptotic behavior
of u, andv, ase — 0; roughly speaking, as the competing term becomes larger and
larger, the two populations,, v, undergo a segregation, and this process leads to a final
configuration(ug, vg) Where the populations are in fact separated. It is worth pointing
out that this is one of the phenomena already observed in [17], although the interna
dynamics of the systems therein are opposite to ours and the technical reasons for th
behavior are completely different.

We proceed our analysis with the intent to prove that the partisappuo), SUp(vo))
is in fact a solution of the original Nehari’s problem (1). As a first result we obtain from
the asymptotic analysis thag andvg solve the differential equation

—Aw(x) = f(wx)) 3)

each on its support. In fact, a much stronger result holds in the form of Theorem 2.3
where we show that the functiang := ug — v is a solution of (3) — wherf is extended

as an odd function of®. Now the regularity theory for elliptic PDEs implies that each
solution to (3), and in particulawg, must be smooth; as immediate consequence the
supports of bothig and vy are open and we finally have an optimal partition to the
Nehari's problem in the fornisupfug), Supvg)). Moreover, the regularity ofvg also
proves the smoothness of the free boundary and proves that the extremality condition i

Vug(x) = —Vug(x) x € d(Supfuo)) N3 (SUppvo)), 4)

in analogy with the one-dimensional case. With these information the analysis of the
N-dimensional Nehari's problem in the case of partitionsofnto k = 2 subsets is
complete.

As a final remark let us mention that the natural extension of the Nehari’'s problem
we are facing, consists in trying to partitiéhin k > 3 subsets: this seems to be a more
delicate problem that will be the object of a forthcoming paper.

2. Assumptionsand main results

In this paper we shall deal with nonlinearitigs R — R and H : R? — R* satisfying
the following set of assumptions:
(f1) f is C! and there exist positive constar@s p such that for alls € R and a.e.
x e
lf, ) <C(L+IsIP™h) 2<p <2,

where 2 = +oowhenN =2 and 2 =2N /(N — 2) whenN > 3;
(f2) there existy > 0 (2+ y < p) such that, for alk #0 and a.ex € Q2

fi(x, )82 — A+ y) f(x,s)s > 0;
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(h1) H is CY(R? and C? on R?\ {(s,0), (0,1): s,t € R}; there exists a positive
constant O< 8 < y such that

|H(x,s,0)| < C(1+Is] + [¢])**";

(h2) there exists G< o < B such that the Hessian matrix

H, (s, 1)s?> — (L+a)H(s, t)s H, (s, 1)st
H, (s, t)st H,(s,0)t> — (L+a)H,(s, )t

is non-positivedefinite for all(s, ) such thaty £ 0, ¢ £ 0 (i.e. positive (or zero)
(ha) determinant and negative diagonal terms);
3

H(s,t) >0, Hy(s,t)s 20, H (s, t)t 20 if st £0,

H(s,t)=H(s,t)= H;(s,t)=0 if st =0.
Ouir first result, discussed in Section 3, is concerned with systems having a competitiv
interaction:

THEOREM 2.1. — Let f satisfy(f1), (f2) and H satisfy(h1)—(h3). Then there exists
a solution(u, v) € Hy(2) x Hi () to the problem

0 .
—Au(x) = f(u(x)) — EH(M(X), v(x)) InQ

d ) 5
—Av(x) = f(v(x)) — aH(u(x), v(x)) inQ ©)

u>0 v>0 in Q.

Next in Section 4 we turn to the Nehari’s problem. More precisely we deal with the
following relaxed formulation of (1): let us define the functional

1 1
Jo(u,v) := /<§|Vu(x)|2 + §|Vv(x)|2 — F(u(x)) — F(v(x))) dx (6)

Q

and let us consider the questionfiofding a pair of positive functions,, andvg, having
disjoint support and realizing (i, vo) = do:

do:= inf supJo(Au, uv). (Po)
u,veHI(Q) >0
uz0,v20 #1>0
fu2v2:0

We shall prove

THEOREM 2.2. —Under assumptionéfi), ( f2) problem(Py) has a solutior(ug, vg) €
H}(Q) x HE () such thatug > 0, vo > 0; moreoversupp(uo) U SUPfvo) is a relaxed
solution of(1).
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Section 4 will be devoted to prove this result, with arguments crucially based on the
validity of Theorem 2.1.

In the last Section 5 we study the existence of changing sign solutions to the elliptic
equation (3); the main result we obtain is

THEOREM 2.3. — Under assumptiongf), (f>) the functionwg := ug— vg is solution
to the problem

—Aw(x) = f(w(x)) InQ

w € H}(Q)

w changes sign exactly one timegin
Moreover the paisuppug) U supf(vp) is a solution of(1).

The existence of a changing sign solution is a well known fact, also for more general
kinds of elliptic equations (see [23,1,2,5,7,8,14]). The remarkable fact in our context is
the particular form of the solution we find, since, as we have already remarked in the
introduction, it provides both the solvability of the original Nehari’s problem (1) and the
extremality condition (4), besides the regularity of the free boundary.

3. A classof dliptic system

Aim of this section is to prove Theorem 2.1; to this end we assumég fhgt( f2), and
(h1)—(h3) hold and we wish to provide the existence of a gairv) € H(Q) x HF(Q)
where bothu andv are positive and solve (5). We seek solution of (5) as critical points
of the following functional

1 1
J(u, v) ::/(§|Vu(x)|2+ E|Vu(x)|2 — F(u(x))
Q

— F(v(x)) + H (u(x), v(x))> dx (7

(here, with some abuse of notation, we exténdnd H by symmetry:F(s) := F(|s]),
H(s,t) := H(|s|, [t])); note that the extended functions satisfy the same assumptions
than the original ones, thug € CY(H}(Q) x H(R),R) and its critical points in
Hol(Q) X Hol(Q) are exactly the classical solutions to (5). Furthermdteand H are
even with respect to each of their variables and this further property will be used to
obtain solutions to (5) which are indeed positive.

In particular we are interested in the searcimafimalsolutions of (5), that is, critical
points of J achieving the lower value of when restricted to the critical SAf:

N = {(u,v) eT: 90/, v). = 07w, v) -sz},

u
u ov
where

T :={(u,v) € Hy(Q) x Hy(Q): u#0, v#0}.
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Setting
c:= inf J(u,v) (P)
(u,v)e

we are going to prove

PrRopPosSITION 3.1. —Under assumptioné&f1)—(h3) there exists a critical point foy,
say(u., v.) € N, such that/ (u., v.) = c.

The proof of the proposition will be divided into three steps; the first consists in
studying the behaviour of when restricted to the plane generated by a fixed @ai)
with nontrivial components:

LEMMA 3.1.—Let(u,v) € 7 and consider

®(u, v) := supJ (Au, uv).
=
Then there exists a unique pair of positive numbeis v) and 1« (u, v) such that
i) @, v)=J\(u,v)u, u(u, v)v);
(i) (A(u,v)u, u(u, v)v) e N;
(iii) there existsy, y1 > 0 such that if(u, v) € N then|lul|, > y, |vl, > y and
lull = y1, vl = y1;
(iv) @) isl.s.c. with respect to the weak convergenc& in
(v) the map(u, v) = (A(u,v), u(u, v)) is continuous fron¥ to R* x R™.

Proof. —Fix (u,v) € 7 and define¥ (A, u) := J (Au, uv). As a function of two real
variables,V is of classC? on R? but the axes. We are interested in studying the set of
critical points of¥; by a direct analysis, exploiting the superlinear behaviouf ak in
(f2) and the positivity ofH as in(h3), it is easy to show tha¥ has a local minimum
at the origin and one mountain pass on each of the semi-axes. On the other hand, |
means of topological degree computations, we will show that there are exactly four loca
maxima, one in each quadrant, and this will finally prove assertion (i).

Let (X, 1) be a critical point of'; then

_ 1 - - 1 _

x/(wmz— ?f()\u))\u + ﬁHu()\u,uv)MO =0,
Q

(8)

a 1 - 1 -

u/(lelz — ﬁf(,uv))\v + ﬁHU()\u, ;w);w) =0.
Q

CLAIM 1.—If A £0andj # 0, then(k, 1) is a local maximum fory.

Let 2 # 0 andjt # 0. In order to investigate the nature of such a critical poin@of
we are going to study the quadratic form associated to the(pair), defined as

0(a,b) =V, (k, a’ + 2W,, (A, ab + W, (x, )b?, (a,b) € R%;

we wish to show thaQ (a, b) < 0 for all (a, b) € R?. We estimate the second derivative
v, by exploiting first( f2) and then the identities (8)
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. 1. 1
vl = [ <|Vu|2 — 1 Ga) R 2 Hy G, ;w)xzuz)

<

{O\b

1 N R _
<|Vu|2 _ ;O‘f(/\u)/\u + 5 Huu G, ﬁv)k2u2)

_ 2 i To=.\72.2 T =oNT
=—a [ |Vu| —i—iz (Hyu e, ro)2u® — (1 + a) H,(Au, lv)du).
Q Q
Analogous calculations lead to:

- 1 - -
W) < =t [190P 4+ 25 [ (Hy Gt fio)i?s? = (L4 o0 H, Gt ) ).
Q Q

while
1 L
\DMA()M PL) =—H,,(\u, MU))\MMU.
A

Thus we can bound the for@ from above with

0(a,b) <—aa2/|Vu|2—ab2/|Vv|2+ Ou(hu, fv)(a, b),
Q Q

where the quadratic fornd y is negatively definite by assumpti@h,). Thus the claim
follows.

CLAaIM 2. —There are exactly four critical points with nonzero componéatgl thus
maximag, one in each of the quadrants.

By the growth assumptions dnandH, ¥ (A, u) — —oo as|A|+ |u| — oo, implying
that W must have at least a local maximum in each of the quadrants. MoreoverNsince
turns out to be concave outside a suitably large Ballwe have

degVV, 0, Bg) = +1.

On the other hand, let us count all the possible critical points¥ofby the
superquadraticity property df we know that¥ has one local minimum at the origin,
providing a local degree-1; moreover, by arguments similar to the ones in the previous
Claim 1, it is easy to prove that has exactly four critical points with one null
component (one on each semiaxis) having indéx A word of caution must be entered
at this point: by the assumptions @h, J needs not to b&? on the axis; this problem
can be avoided by an homotopy argument. Finally the other possible critical points are
local maxima by Claim 1, and thus the local degree at each of theri.itetn be the
number of such maxima: by the excision property of the degree it must hold:

+1=degVV¥,0,Br)=(+1) -1+ (-1 -4+ (+1)-n

that givesn = 4, proving the claim.
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Now we define(A(u, v), u(u, v)) as the unique local maximum oF in the first
quadrant, and we will prove that it satisfies (i)—(v).

Assertion (i) follows by construction; (ii) follows by noting thét(u, v), u(u, v)) is
(the unique) positive solution of (8). Now take, v) € NV, so that\(u, v) = u(u,v) =1
and by (8) it holds, for instance

0= /(IVu|2 G+ Hyu, vu) > /(IVu|2 ~ fluu) 9)
Q

Q

by the positivity of H. Now (iii) follows by using the subcritical assumptidrf;) and
the Sobolev inequality.

In order to prove the weak l.s.c. property &, let (u,,v,) weakly converging
to (ug, vo) € 7. Then |lug|l + |lvoll < liminf ||lu, || + ||v,|l; on the other side, due to
the subcritical growth off' (assumption( /1)) and thanks to the compact embedding
H}(Q) c L7 forall 2 < g < 2%, it holds

@ (uo, vo) = J (A(uo, vo)uo, p(uo, vo)vo)
< J()\.(uo, UO)unv M(MOv UO)Un) + 0(1) < (D(Mn, vn) + 0(1)v
and passing to the limit
D (ug, vg) < liminf ®(u,, v,)
n—oo

as required. Finally (v) holds as a consequence of the Implicit Function Theorem appliec
to(8). O

Note that, if we define the following value

d:= inf_®(u,v) (20)

(u,v)eT

it turns out by the lemma that = ¢. This remark will be useful in proving that the
problem of minimizing/ on the Nehari manifoldV" has a solution:

LEMMA 3.2. —There existsu,., v.) € N such that/ (u., v.) = c.

Proof. —Let (u,, v,) C N be a minimizing sequence and assuie,,, v,) < c + 1.
Now, computing:(a + 2)J (u,, v,) — VJ (u,, v,) - u, with @ > 0 as in assumptiot,),
we have

(@+2)c> % / [V, + [V, |?] + / [f u)u, — 2+ a)F(u,)]
Q Q

+ / [ (o) vn — 2+ ) F (0,)]
Q

+/[(2+ (X)H(I/ln, vn) - Hu(um vn)un - Hv(una vn)vn]7
Q
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where by assumptiongf,) and (k) the three terms in square brackets are positive. We
have

22+ a)
i |I? + v, |I% < ———(+D (11)

and thus the sequence, , v,) is bounded. Hence there exists v) € H3(2) x H3(S2)
weak limit of (u,, v,). It is easy to verify tha(i, v) € 7; indeed by Lemma 3.1(iii),
it holds ||lu,|l, = v, llv.ll, = y for all n € N, and, by the strong convergencelifi of
(uy, v,) to (u, v), we also obtairjil]|, > v, |[vll, > v.

Now we can apply Lemma 3.1 t@, v): by the weak |.s.c. property @b as in (iv),
we haved (i, v) < c; furthermore, by definition of as in (10) it holdsb (i, v) > d =c.
Thus

c=supJ(iu, uv)
A>0
n>0
and by applying Lemma 3.1 again, we obtain the existence of a(pait) such that
(due to (i))c = J (rit, av) and (due to (ii))(Ait, iv) € N. Setting(u, v.) = (Ait, id)
we finally conclude the proof. O

LEMMA 3.3. —If (u., v.) € N andJ (u., v.) = c, then(u,, v.) is a critical point of J.

Proof. —Assume by contradiction thai., v.) € N, J(u., v.) =c, butVJ (u., v.) #
0. Then there exists > 0 ands > 0 (we may assume 48 < 1as in Lemma 3.1(iii)) such
that

(u,v) € Bs((ue, ve)) = VI (u, v)| = p.

By the quantitative deformation lemma (see, for instance, [24]) we derive the existence
of a continuous map: H} () x H3(2) — HI() x Hy(S2) and a constant > 0 such
that:
) n(u,v) = (u,v) forall (u, v) such that| (v —u., v—v.)|| > 48 or|J(u,v) —c| >
2v;

(i) J((u,v)) < J(u,v) forall (u,v) € H}(RQ) x H}(Q);

(i) (u,v) € Bas((tte, v ) AJu,v) <c+v=>J(u,v)) <c—v.
Let us consider the deformation under this map of the sufaeer) := (sRu., tRv.),
whereR is fixed in such a way thatR — 1)y, > 45. By the monotonicity properties
of n and Lemma 3.1, we have that sup,_on(I'(s, 7)) < c. Now we claim thaty o I'
intersects the manifold\ and thus, by definition ot it holds sup(I'(s, 7)) > ¢, a
contradiction. To prove the claim, let us consider the map:

H:[0,1)? > R x R
(s,0) > (A(n(T(s, 1)) — 1, w(n(T(s,1)) — 1)
which is continuous by Lemma 3.1(v). By construction it holds:

e if s =0,thenH(0, -) = +o00; indeed, sincé& (0, 1) = (0, tRv,), it holds|| T, (0, 1) —
uc|l = lu.ll > y1 > 48 by the choice of. Thus by property (i) of the map, we
know thatn(I"(0, 7)) =I'(0, r) = and thusH; (0, r) = A(0,  Rv,) = +o0;

o if s =1, thenH,(0, ) < 0; indeed sinc& (1, t) = (Ru., tRv.), itholds|I"'y(1,7) —
ucll = (R — Dluc|| > 48 by the choice ofR. Thus n(I'(1,1)) = I'(1,¢) and
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Hi(1, 1) = A(Ru., tRv.) < 1. This last fact is due to the choice Bflarge: observe
that, due to the superquadraticity Bf J is negative far from the origin; on the other
hand, the functiona.(-, -), u(-, -) provide the scaling that the arguments needs to
achieve the maximum of, that is positive and hence achieved near the origin.
Analogous considerations allow to prove that the second componéhitisfpositive
when ¢t = 0 and negative ift = 1. Thus we are in condition to apply Miranda
Theorem [21], and we finds, 7) such thatH (s, 7) = (0O, 0); this impliesn(I'(s, 7)) e N
and close the proof. O

Now the proof of Proposition 3.1 follows by simply combining Lemma 3.2 and
Lemma 3.3, and thus we have the existence of a @airv.) of critical points of J
such thatJ (u., v.) = ¢. What is left to show, in order to obtain by this result the
full of Theorem 2.1, is that botlh, and v, are strictly positive. To this aim we note
that J (uc, v.) = ¢ = J(|ucl, |v.|) by definition of F and H. Then by Lemma 3.3 we
know that(ju.|, |v.|) is a critical point of/J and so its components must be smooth by
the standard regularity theory for elliptic PDEs. In this way we obtain the equalities
u.=lu.| >0, v. =|v.| = 0; now the strict inequalities comes by the strong maximum
principle. With this final remark the proof of our main Theorem 2.1 is complete.

4. Therelaxed Nehari’s problem

We are going to deal with the relaxed formulation of Nehari's problem presented in
Section 2 in the forn{Py). Let us recall that it consists in facing the minimax problem

do:= Inf  supJo(ru, uv),
uveHHQ) 1>0
uz#0,v£0 H>0

fuZUZ:O
where
1 1
Jo(u, v) := /(§|Vu<x>|2 + §|Vv(x>|2 — F(u(x)) — F(v(x))) dx.
Q

Note thatdy coincides with the minimal value of; restricted to the critical se¥/

co:=inf{Jo(u,v): (u,v)e/\fo,/uzv2=0},

No:= {(u,v) eT: 9Jolu, v) ‘U= 9Jolu, v) -v=0}.
ou dv

(12)

Indeed, as consequence of Lemma 3.1 (notekhat 0 satisfies assumptiotis;)—(h3))
it holdsdp = ¢p.

Our main result in this setting is Theorem 2.2, that is, the existence of positive
functionsug, vg, having disjoint supports and realizinfy(ug, vo) = do. We present a
proof of these facts that passes through the solution of the approximating pral#tems
described below.
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4.1. Systemswith largeinteraction

Let us fix a functionG : R? — R satisfying(h1)—(h3). For all fixeds > 0, let us define
the energy functional associated to system (2) for such a choiGeaoide:

1 1
Jo(u, v) i=/<§|VM(X)|2 + EIVv(JC)I2
Q

1
— F(u(x)) = F(v(x)) + EG(M(X)’ v(x))) dx (13)

and consider the following problerfinding a pair of positive functiong, andv,, which
realize

d. ;.= inf  supJ.(Au, puv). (P.)
u,veH&(Q) A>0
u#0,v£0 un>0
Note that
de < dO (14)

indeedJ, coincides withJy on pairs of functions having disjoint support.
We are going to prove

PROPOSITION 4.1. —Assume thay satisfies(f1), (f2). Then

1) for everye > 0 problem(P;) has a solution(u,, v.) € H} () x H3}(Q);

2) there existSuo, vo) € HF(Q) x HF(Q) such that(u,, v;) — (uo, vo) iN HF(Q) x
H§(2) and (uo, vo) Solves(Po).

Proof of1). —Lete > 0 be fixed. By applying Theorem 2.1 with the choiiés, 1) :=
%G(s, t), we immediately obtain the existence of a soluti@ap, v.) to (P.). It is easy
to prove that there existg > 0, independent of, such thatfl|u,| + ||v.|| < y2. To this
end it suffices to recall inequality (11) in the proof of Lemma 3.2 that provides, for every
>0,

22+ )
o

llue 12 4 flve |12 < (ce +1).

Sincec, = d, < dp the required estimate follows by setting

22+ a)
V2 =

(do+1).

Henceforth there exists a weak linito, vo) € H3(2) x HF(Q):
(U, ve) = (uo,v0) & —0. (15)

Moreover it holdsug £ 0 and vg # 0; indeed, as consequence of inequality (9) in
the proof of Lemma 3.1(iii), we know thatu.|[, > v, |lvll, = y for somey >0
independent ot. By the compact embedding}(Q) — L? we get|luoll, > y and
lvoll, = ¥, giving the result. O
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The second part of Proposition 4.1 will be essentially provided in the following crucial
lemma:

LEMMA 4.1.—Let (ug, vg) be the weak limit ofu,, v.) whene — 0 as in(15). Then
it holds:
(i) (uo, vo) € No;
(i)) llue — uoll = O, [lve — voll — O;
(iii) % fo G e, ve) = O;
(iv) ¢, — co.

Proof. —Let us first note that, sincé:q, vg) € 7, then we findig > 0, 1o > 0 such
that (Aouo, Lovo) € Np. By summing up the following equalities

0
a_Ja(USv V) -u, =0,
u

0
Efo(kouo, Movo) - Aoug =0

and then passing to the limit, we obtain

/(f()»ouo) S (uo)

Aoltg 1o

1
)u% + lim —/Gu(ug, vou, < 0.
e—>0¢g
Q

Since f(¢)/|t] is increasing by f>) and the limit is non-negative, we obtain that< 1.
Analogous estimates for the component involvipganduvg imply that g < 1 too.
Let us now make explicit the fact thétouo, wovo) € No:

22 / Vuol? — / f Crotto) hatto = 0,
Mo/|VU0| —/f(MOUO)MOUO— (16)

o / Vol - / Flouo) + 22 / Vvol? — / F(ovo0) > co.
Q Q Q Q

By multiplying the third inequality with(2 + @), « > 0 chosen as in assumpti@h,),
and then summing up with the two equalities, we obtain

2
@+ a)co< %“ / Vuol? + / [f Guotto)hotto — (2 + &) F (hoo)]
Q Q

2
M—SX/IVvo|2+/[f(uovo)uovo— @+a)F(uovo)].  (17)
Q
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Observe that the weak convergencegwof, v,) € N, to (ug, vo) implies
/ Vuol? / f woo + lim ¢~ / Gulue, v <O,
/ Va0l / F (woyvo + lim &~ / G (e, v, <O, 18)

1
lim c, > 5/ |Vuol? + |Vuol? —/F(uo)—/F(vo)+ Iimog_l/G(ug,vg).
Q Q Q

As before, multiply the last inequality b2 + «) and then sum up the three

@+alime.> 5 [ (190 +19uol?)
Q

+ / [f (oo — (2 + @) F(uo)] + / [ (w)vo — 2+ &) F (v0)]
Q Q

#lim e [[@+@)Ge 1) = Gulte, v = Gulie, v,
Q
Now, since by constructiony > ¢, for all ¢ > 0, we can compare this inequality with
(17); to shorten notation we introdud®(z) := f(¢)t — (2+ a) F(¢), noting thatF(¢) is
increasing for > 0 by (/). It turns out

: / (32— 1) |Vuol2 + (42 — 1) |Vuol?]
4 / (F(hotto) — Fuo)] + / [F (ovo) — F(wo)]
Q Q

> lim e~ [[2+ )G we, v0) = Gyte, v e = Gulue, v,
Q
By assumptiongy), (h3) it turns out that the term at the r.h.s. is non-negative: now
since bothig and g are not greater than 1, we conclude that in fagt uo = 1. This
proves assertion (i) and, in turn, implies that:

im e [[@+ G, v) = Gulue, v, = Goluee,vv] =0, (19)
Q

From this the strong convergencegf and v, to their limits easily follows. Indeed, if
we assume for instance that Iif;@quSF > [q |Vuol?, then all the above inequalities
become strict, leading a contradiction in (19). Thus (ii) is proved.

Let us now prove assertion (iii). To this aim we deduce by (16))and 1, the relation
Jo |Vuol? = [ f (uo)uo. Back to (18) we obtain that

Iimos_l/Gu(ug, v )u, =0
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and the analogs farg. Now (19) becomes
Iimos_l/G(ug,vg) =0
Q

as desired. Furthermore, we deduce by (iii) that
lim ¢, = J (uo, vo) = co,
e—0

where the last inequality follows by the definitiongfand (i). Now it is enough to recall
that lim,_.gc, < cg by (14) to show that indeed limq ¢, = cq, proving (iv). O

Proof of2). —In order to conclude the proof of Proposition 4.1 it suffices to show that
uo andvg have disjoint support: this is consequence of property (iii) and of the strong
convergence ofu,, v,) to its weak limit. Indeed this implies

/ Guo, vo) =0
Q

by assumption(ks) this meansug(x) - vo(x) = 0 a.e.x €  and proves suppg) N
supfvg) = ¥. Moreover by (iv) we also obtaiy(ug, vo) = co, finally proving that
(uo, vo) solves(Py). O

As a final remark, note that, if we pass to the limit in (2)as- 0, by exploiting the
strong convergence of the solutio@s,, v,) to the pair(ug, vo) and (iii), we realize that

—Aug(x) = f(uo(x)) x € SUPHuo),

(20)
—Avg(x) = f(vo(x)) x € Supfvo).

5. An equivalent problem

Let (ug, vo) be the pair solving(Py) as provided by Proposition 4.1. Aim of this
section is to prove thabg = ug — vg is a solution of (3) as in Theorem 2.3. We have
already noticed in the introduction that this result leads to answer our main question:
about the original Nehari’s problem (1).

The proof of Theorem 2.3 is based on the equivalence between the approximatin
procedure shown above and a minimax technique of Nehari type devoted to prove th
existence of a changing sign solution for the Eq. (3).

5.1. A changing sign solution of (3)

Let us consider the energy functional associated to (3):

Jo(w) == /<%|Vw(x)|2 — F(x, w(x))) dr, we Hy(RQ).
Q
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Since we are interested in functions ($2) which change sign, it is worth introducing
the subset
T..={uec Hy(Q): u" #£0, u~ £0}.
Let us define
Ne={ueT:VJu) -u"=VJwu ) -u" =0}

and the minimum of/, restricted toV,

Cy 1= uler}\ff* Jo(u). (21)

We claim that;

PROPOSITION 5.1. —There exists a changing sign functien. € H}(Q2) such that
J*(w*) = Cx and

—Aw,(x) = f(x, wi(x)) x€Q.

The proof of this existence theorem follows the line and the technical ideas exploited
in Section 3 and thus it falls naturally in three parts corresponding to Lemmas 3.1, 3.2
and 3.3:

LEMMA 5.1. - Letu € 7, and consider

®(u) :=supJ,(sut —tu~).
s>0
t>0

Then there exists a unique pair of positive numberé:) and A~ («) such that
(i) @) =LAt wut — A~ Wu");
(i) ATwut — A" (wu~ e Ny;
(iii) there existy, ro > O such that ifu € N, then|lu®||, > ry, [u®]| > ry;
(iv) @(-) islower semicontinuous with respect to the weak convergengg in
(v) the mapu — (A1 (1), A~ (u)) is continuous frorrHOl(Q) toR x R.

As an immediate consequence of this lemma, it turns out that

d, = u|2£ D (u) =y

this fact is crucial when proving that the problem of minimizidg on the Nehari
manifold A, has a solution:

LEMMA 5.2. —There exists:, € N, such that/ (u,) = c,.

Finally, the third step in the proof of the existence of a changing sign solution to (3)
consists in proving that any point at levglis critical for J,.:

LEMMA 5.3. —If u, € N, and J,.(u,) = c, thenu, is a critical point of J,.

The following remark allows us to get easily the proofs of the first two lemmas directly
from the corresponding results in Section 3. As a matter of facts it is equivalent to study
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J, on H}(2) andJo on Hi(2) x H () restricted to pairgu, v) such that
suppu) N suppv) =9 (22)

since it holds

Ywe HY(Q) w=wvi=w = { ékggv) :Joéuj,ol&,’ o).
Note that the constraint (22) is closed both with respect to strong and weak convergenc
of Hy(Q2) x H(R); with this we conclude that Lemmas 5.1 and 5.2 holds as simple
consequence of Lemmas 3.1 and 3.2.

Concerning the proof of Lemma 5.3, we point out that it formally follows the scheme
illustrated in Lemma 3.3, but, for the readers convenience, we prefer to discuss it in al
the details.

Proof of Lemma5.3. —Assume by contradiction that, € N,, J.(u,) = c,, but
VJ.(u,) # 0. Then there existp > 0 and§ > 0 (we may assume 4§ < ras in
Lemma 5.1(iii)) such that

u e Bs(u,) = ||VJ(u)|| = p.

By the quantitative deformation lemma (see, for instance, [24]) we derive the existence
of a continuous map: H}(Q) — H(Q) and a constant > 0 such that:
() n(u) =u for all u such that|u — u.|| > 48 or |J,(u) — c,| > 2¢;

(i) J(n(u)) < Jo(u) for all u € H(Q);

(i) u € Bos(u) A Jo(u) <+ 6= J.(n(u)) <c. —e.
Let us consider the deformation under this map of the surfaeer) := sRu — tRu_,
whereR is fixed in such a way thatR — 1)r, > 45. By the monotonicity properties
of n and Lemma 5.1, we have that sup,_on(I'(s, )) < c.. Now we claim thaty o I"
intersects the manifoldV,, and thus, by definition of, it holds sup;(I'(s, 1)) > ¢, a

contradiction. To prove the claim, let us consider the map:
H [0, 1]2—>]R x R
(s,0) > (AT (n(T(s,1))) — 1,2~ (n(T(s,1))) — 1)

which is continuous by Lemma 5.1(v). By construction it holds:

e if s =0, thenH;(0, ) = +o00; indeed, sincd (0, r) = —ru_, it holds | (0, r)* —
ul|l = |luf| > r2 > 45 by the choice oB. Thus by property (i) of the map, we
know thatn(T"(0, 7)) =T'(0, ) = and thusH; (0, t) = AT (—ru; ) = +o0;

e if s =1, then H1(0,-) < O; indeed sincel'(1,7) = Ru} — tRu,, it holds
IC@, 0T —uf|| = (R—Du}| > 45 by the choice of. Thusn(I'(1,¢)) =T'(1,¢)
andH1(1, 1) =AT(Ruf —tRu,) < 1.

Analogous considerations allow to prove that the second componéhitisfpositive
when r = 0 and negative iff = 1. Thus we are in condition to apply Miranda
Theorem [21], and we fings, 7) such thatH (5, 7) = (0, 0); this impliesn(I' (5, 1)) € N,
that concludes the proof.O
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We have thus proved the existence result in Proposition 5.1. The remainder of thi
section will be devoted to establish the equivalence between the variational procedur
on which the proof of Proposition 5.1 is based and the approximating technique leading
to definecy as in Section 4. This is stated in the following:

LEMMA 5.4.—Let ¢o and c, be defined as i(12) and (21). Then¢y = ¢* and
settingwg := ug — vo With (ug, vo) as in (15), thenwyg is a solution of(3). Moreover
(supfug) U supp(vg)) is a solution of(1).

Proof. —let us remark that, i: andv have disjoint supports, thefy(u, v) = J,(u) +
Jo(v) = J(u — v).

Letw, asin Theorem 5.1 and defing := w; andv, := w; : with these we will prove
the first inequalityeq < ¢*: sincew, is critical for J, one easily finds

0Jo(uy, vy) ] . 9Jo(uts, V) )

*:0
u * ov v

and hencéu,, v,) € No. Sinceco = infay, Jo(u, v), thenco < Jo(uy, vi) = Ju(wy) = ¢y,
proving the desired inequality.

co = c,. Now let us consider the pai#g, vo) as in Proposition 4.1. Sindeg, vo) € No,
thenwg := ug — v belongs taV, andJ, (wg) = Jo(uo, vo) = co. This impliesc, < ¢ by
definition ofc,.

Now we know that/, (wg) = c,, and it suffices to apply Lemma 5.2 to prove that
is indeed a critical point for,.. Moreover by the regularity theory for elliptic PDEs we
know that supfug) and suppug) are open and thus they provide a solution to (1)

With this we have finally proven the crucial Theorem 2.3.
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