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ABSTRACT. — We study the behavior near the origin@t positive solutions: (x) of
au’ < —Au <u” (%)

in a punctured neighborhood of the originlit¥ (n > 2) where the constants anda satisfy
s <A< ”+2 and O< a < 1. We also study the existence©f positive solutions of«) in R”.
In both cases we show that changinfyom one value in the open intervéd, 1) to another value
in (0, 1) can have a dramatic effect.
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RESUME. — On étudie le comportement prés de I’ origine des solutions positives de ¢lasse
u(x) de

au* < —Au <u” ()

dans un voisinage épointé de I' origine dem’é (n > 2) ou les constantes et a satisfont

s <A< Ziz et 0< a < 1. On étudie aussi I' existence de solutions positives de cl@sse

de (x) dansR". Dans les deux cas hous montrons que changer la valeurddes I'intervalle

ouvert(0, 1) peut avoir un effet dramatique.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

Gidas and Spruck [3] prove the following two theorems:
THEOREMA [3]. — If u(x) is a C? positive solution of

—Au=u" 1.1
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in a punctured neighborhood of the originR" (n > 2) where the constarit satisfies

n n+2
n—2<)\<n—2 1.2)

then either has a removable singularity at the origin or

2/(—1)

|x] u(x) - ¢ aslx|— 0"

wherel = £(n, 1) is a positive constant.
THEOREM B [3]. — There does not exist@? positive solution of1.1)in R" (n > 2)

when the constarit satisfiesl < A < 2.

In this paper we study the more general problem
au* < —Au <u* (1.3)
in various subsets d" wherea € (0, 1). Henceforth we assume> 2.

Our two results on the local behavior at the origin@fpositive solutions of (1.3) are

THEOREM 1. —-Supposée. > n/(n — 2). Then there exist8 = a(n, 1) € (0, 1) such
that for each continuous functigp: (0, 1) — (0, co) there exists a2 positive solution
u(x) of (1.3)in R" — {0} satisfying

u(x) #O(p(x])) aslx|— 0".

THEOREM 2. —Suppose. satisfies(1.2). Then there existg8 = a(n, 1) € (0, 1) such
that if u is a C? positive solution of(1.3)in a punctured neighborhood of the origin in
R”" then

u(x) =0 (jx|7#* ) as|x| - 0" (1.4)

andu(x)/u(]x|) is bounded between positive constants|idrsmall and positive where
u(r) is the average of on the spheréx| =r.

Our two results on the local behavior at infinity 6f positive solutions of (1.3) are

THEOREM 3. —Supposée. > n/(n — 2). Then there exist8 = a(n, 1) € (0, 1) such
that for each continuous functign: (1, co) — (0, co) there exists &2 positive solution
u(x) of (1.3)in R" satisfying

u(x) # O(p(lxl))  as|x| — co.

THEOREM 4. —Suppose. satisfies(1.2). Then there existg8 = a(n, 1) € (0, 1) such
that if u is a C? positive solution of(1.3) in the complement of a compact subseR6f
then

u(x) =O(|x|7#* ) as|x| - oo (1.5)

and u(x)/i(|x|) is bounded between positive constants|fdrlarge whereii(r) is the
average of: on the spheréx| =r.

Our two results on the global existence®ft positive solutions of (1.3) are
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THEOREM 5. —Suppose. > n/(n — 2). Then there exists = a(n, 1) € (0, 1) such
that there exists &2 positive solution:(x) of (1.3)in R".

THEOREM 6. —Suppose. satisfies(1.2). Then there existg8 = a(n, 1) € (0, 1) such
that there does not exist@? positive solution:(x) of (1.3)in R”".

Whena satisfies (1.2), these six theorems show that changingm one value in the
openinterval (0, 1) to another value irf0, 1) can dramatically affect the local behavior
and global existence af? positive solutions of (1.3).

Note that Theorem 3 implies Theorem 5. However we state Theorem 5 because |
nicely complements Theorem 6 and because it facilitates our discussion below.

Theorems 1 and 2 answer two of the seven open questions posed in [8] where w
study in a general wag? positive solutions of

af () < —Au < f(u)

in a punctured neighborhood of the origin Ik wherea € [0, 1) is a constant and
f:(0,00) — (0, 00) is a continuous function. Our proof of Theorem 1 in Section 3
is different and shorter than the proofs of two special cases of Theorem 1 given in [8].

Theorem 1 is not true when< n/(n — 2). In fact we prove in [9] that if.(x) is aC?
positive solution of

0<—-Au< f(u)

in a punctured neighborhood of the origin B" where f:(0,00) — (0,00) is a
continuous function satisfying

f()y=0@"""?) ast— oo

then
u(x) =O(|x|>™) aslx| — 0"

andu(x)/u(|x|) is bounded between positive constants|fgrsmall and positive where
u(r) is the average af on the spheréx| =r.

Wheni = (n 4+ 2)/(n — 2), which is of interest in geometry, we prove in [7] that the
conclusion of Theorem 1 is true for eagke (0, 2=%"~=2) and we conjecture there that
the conclusion of Theorem 2 is true for eack (274=2 1),

Supposer satisfies (1.2) and € (0, 1). Then Gidas and Spruck [3, Theorem 3.3]
prove that ifu is a C? positive solution of (1.3) in a punctured neighborhood of the
origin in R” such that

= Aulx) g
h(x):= ST isC (1.6)
and
|Vlogh(x)| = O(ﬁ) as|x| — 0" .7)
X

then eitheru has aC* extension to the origin ofx|%¥*~Yu(x) is bounded between
positive constants fojx| small and positive. (However we do not understand the third
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sentence of their proof of Theorem 3.3 and we have contacted them for an explanation
Conditions (1.6) and (1.7) in their result cannot both be omitted whismear O by our
Theorem 1. An open question is whether conditions (1.6) and (1.7) can be omitted whe
a is near 1. This open question reduces to an ODE problem by our Theorem 2 and th
fact that everyC? positive bounded solution of (1.3) in a puncture neighborhood of the
origin has aC?! extension to the origin.

Theorem 3 is not true wheh < n/(n — 2). In fact Serrin and Zou [6, Theorem 1]
prove that if 0< A < n/(n — 2) then there does not exist positive solution of

—Au>u" inR" — B1(0)

and this result can be easily extended to include all negative values of
Consider the

Question— For what values of € R anda € (0, 1] does there exist &2 positive
solution of (1.3) inR"?

To answer this question we consider three mutually exclusive possibilities for the
value ofi.

Casel. Suppose-oco < A < n/(n — 2). Then for each: € (0, 1], (1.3) does not have
aC? positive solution inR” by Serrin and Zou'’s result mentioned above.

Casell. Supposeh satisfies (1.2). Then our Theorems 5 and 6 hold.

Caselll. Suppose(n + 2)/(n — 2) < A < co. Then for eachn € (0, 1], (1.3) has aC?
positive solution inR” because Fowler [2] shows that (1.3) with= 1 has aC? positive
radial solution inR".

For X satisfying (1.2) and forj =1,2,...,6, let I; = I;(n, A) be the set of all
a € (0,1) such that the conclusion of Theorehis true. By Theorems 1-6,

(i) 1; is a nonempty subinterval @0, 1) for j =1,2,...,6.

(i) The left endpoint of each of the intervals, I3, and/s, is 0.

(i) The right endpoint of each of the intervals, I, and/, is 1.

(IV) Ilﬂ12=13ﬂ14=15ﬂ16=®.

(V) IsUIg=(0,1) and /3 C Is.

Some interesting open questions are:

(i) IsLUI,=(0,1) (respectivelylzU I, = (0, 1))? If not, what is the local behavior
at the origin (respectively at infinity) of? positive solutions of (1.3) when
a€(0,1) — (I U L) (respectivelya € (0,1) — (I3U I4))?

(II) Ish=I3= 15?

(III) Is L=1,= IG?

(iv) Which of the intervaldl;, j=1,2,...,6, are open?

With regard to question (iii) we have

THEOREM 7. —Suppose. satisfieq1.2). Then
I;>Is and Iy D s

where we defing* = {a: a e I}.
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2. Preliminary lemmas

For later we need two lemmas.

LEMMA 1.—Suppose, foj =1,2,..., there exists a2 positive solution:;(x) of
ajlxl_"uﬁé—Aujélxl_"u? inT; (2.1a)
uj(x) #O(|x|" @00y as|x| — 0F (2.1b)

whererl’; is a punctured neighborhood of the originIRf' (n > 2), > > n/(n — 2) and
o € [0, 2) are constants, and the sequereg} 2, C (0, 1] converges ta < (0, 1]. Then
there exists a2 positive solutiorv of

a*v* < —Av<v inR™. (2.2)

Wheno =0 anda; =1, Lemma 1 is well-known and easy to prove using a blow-up
argument of Schoen [5]. See also Chen and Lin [1, p. 982]. However wie(®, 1),
C? regularity is lost at a critical point in their proofs and new methods are needed.

Proof of Lemmal. — Choose positive constants such thatB,, (0) C I'; U {0} and
let2; = B,;(0). Sinceu; is positive and superharmonic Ity, it is well-known (see for
example [4]) that

uj, —Auje LY(Q)) (2.3)

and that there exist a nonnegative constaptand a continuous functioh; : Q; — R
which is harmonic ir2; such that

. —Au; _
i) = g [ TR Gk ) forxe@—{0)  (2.4)
! |x[n=2 |x — y|"=2 ! ’
Qj
Herewa, = W wherew, is the volume of the unit ball iiR”. It follows from (2.3),

(2.1a), and the nonnegativity ef that u; € LY(Q;). Thus, sincex > n/(n — 2) we
havem; =0.

Let{e;}32, C (0,1 be a sequence which converges to 0. Chdgse%ﬂj — {0} such
that ||mj_>oo |/€]| =0,

; = 12/~ 2 |—0/(—1 =
lemoo|gjxj| /0D 1%,177/% Dy (%)) =00, and

(2.5)
max|h;| < |x;|~& /D,
)

Following Schoen [5], leB; = B, ;;|(x;) and definep; :B; — [0, 00) by
@i (x) =u;(x)d; ()% V|x|7/*D " whered, (x) = dist{x, d B;}.
Chooser; € B; such thaiy; (x;) = maxz ¢;. Then

@j(x;) = ¢j(Xj) > 00 asj— oo (2.6)
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by (2.5).
Making the change of variables

w; (&) = u@ 11772 (x,) 0012 4 x 2.7)
j(x5)
in (2.4) we obtain
—Aw: -
w ) =a, [ LG et @) fore ;- (6) (2.8)
%

whereX; is the set of alE € R” such thatx, as given by (2.7), is i®2; and wher€; is
the inverse image of = 0 in (2.7) and where

hj(x)
I/tj(x]')‘

H;)=
By (2.5) and (2.6) we have

1 g)-0/G-D)
maxiH;| < S T 0 asj— o, (2.9)

f @j(x;)

Note that the ball given byx — x| < %dj (x;) maps under the transformation (2.7)
onto the ball¢| < p; where

1 _ ;
pj = é(,oj(xj)(A V72 5 00 asj— oo

and that

. (x )\ 2/ =D) /(A1)
o= B (D)0

(Oj(xj) dj(x) |xj|
1 N o/(=1)
<22/0=D (—+ 8’) for |§] < p;
1— Ej

becausel; (x) > 3d;(x;) for |x — x;| < 1d;(x;). Also by (2.1a) we have

1_81 ’ A 1+€j 7 N
<l+sj> ajwjé—ij<<l_8j> wj for |&] < p;. (2.10)

It follows therefore from standard elliptic theory that there exists a continuously
differentiable functionw : R" — [0, co) such that a subsequencewf (which we again
denote byw;) converges uniformly on compact subsetsijfto w. (However unless

a = 1 we cannot conclude that is C2.)
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Letting j — oo in (2.8) and using (2.9), (2.10), and Fatou’s lemma we get

aw(g)*

2 n )
W&z | e
R)l

d¢ for& eR". (2.11)

Thus liminf;_.. w(¢) = 0 for otherwise the integral in (2.11) would be infinite for
eachté e R".

We now show that (2.11) holds with the inequality reversed and the factamitted.
Let & € R” and lete > 0. Chooset, € R” such thatw (&) < £/2"~* and then choose
r > 0 such that

¢ — &2l <2 —&| for[¢]>r. (2.12)
For j large enough thaB, (0) C ¥; — {§;} we have by (2.8) that
—Aw;(¢)d
w;(§1) =y / wji@)_f‘Flj‘FHj@l) (2.13)
I¢l<r & =&
where
Ijl:Oln 7_Aw](§)_d2§
[ —&l"
%;—B,(0)

< 2 2[w; (&) — H;(&2)], by (2.12) and (2.8)
< e, forjlarge

by (2.9). Thus lettingi — oo in (2.13) and using (2.10) we find

) de w(¢) d

w (1) < oy +e<a, | —=—=+e. (2.14)
e & — &2 o ¢ — &2

Sincee > 0 was arbitrary it can be omitted in (2.14). Thus letting

B w(;)*dg
v(&) —aan a2

we have by (2.11) that is a C? nonnegative solution of (2.2). By (2.7);(0) = 1 and
thusv is positive onR”. O

LEMMA 2.—Suppose, foj =1,2,..., there exists &2 positive solutior;(y) of

CljUj

v; () # O(yI* ) as|y| - oo
where Q; is the complement of a compact subsetRdf (n > 2), A is a constant
satisfying(1.2), and the sequencf;}52; C (0, 1] converges ta: € (0, 1]. Then there
exists aC? positive solutionv of (2.2).

< —Av; <v) ing;
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Proof. —Let u;(x) = |y|”_2vj(y) wherey = x/|x|?. (This is the Kelvin transform.)
Thenu (x) is aC? positive solution of (2.1a,b) where=n+2—1(n — 2) € (0, 2) and

Fj={xeR" x/|x|*eQ;}

is a punctured neighborhood of the origin. Thus Lemma 2 follows from Lemmal.

3. Proofs

In this section we prove Theorems 1-7.
Proof of Theorem.. —DefineW, w:R" — R by

1, for|y| <1
_! 1
o) {|| _, forfyl>1
=

and w = N(W*) where N is the Newtonian potential operator ov&r. Thenw(y)
equals
1 1 1 1 1 )
n—2[\2 Mn—-2)-2 2 n

1 1 K 1 L 1 ) < 1 1 ) 1 ]
n=2y"2[\n An—-2)—n rMn—2)—n An-—2)—2) |y|r-2-n
depending on whethey| < 1 or |y| > 1 respectively. Hence

L< YO
w(y)

or

C, foryeR" (3.1)

whereC; = C1(n, A) and C, = Ca(n, A) are positive constants whose values wailt
change from line to line.

For eachk > 0 defineV,, v,:R" - R by V,,(x) = KW(x/h), whereK = K (h)
satisfiesk*~1h? = 1, andv;, = N(V}*). Then

vp(x) = Kw(%) for x e R".

Thus by (3.1)

V
1 < n) <Cy forxeR" and h>0. (3.2)
vp(x)

K, for |x| <h

= L

Vi (x) { . for x| > A (3.3)
|x|n—2

For later note that
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whereL = L(h) satisfies
L= prm2mn (3.4)
Let ¢ be a positive constant and ket (0, 1) — (0, co) be a continuous function. Let

Uo= W and let{e; 72.C (0,1 be a sequence such that

Zsj =e. (3.5)
j=1
Since, by (3.3) and (3.4),
—xJ
lim sup M:0 forj=12,...,

h=0% | >r; Up(x)

wherex/ = (27%/,0,...,0) e R" andr; = 272/71, there existsh; € (0,r)), j =1,
2, ..., such that

o0
S L% <oco whereL; = L(h;)=h{""27D, (3.6)
j=1
: K, ~2/(.-1)
lim — =00 WhereK; =K (h;)=h; , (3.7)
j=oe @(|x71) !
and
C, ; .
Uj(x) < C—son(x) for |x —x/| >r;andj=1,2,... (3.8)
2

whereU;(x) =V, (x —x/) for j=1,2,....
Lettingu; = N(U}), j=0,1,..., and noting that (3.2) and (3.1) imply

U; )

C1< <C; forxeR"andj=0,1,... (3.9)
uj(x)
it follows from (3.8) that
1 8j .
ujé—Ujé—Uoésjuo OnR"—B,.(xJ) (310)
Cl C2 J

forj=1,2,....
Letro > 0. Choose a positive integgs such thajx”°| +r;, < ro. Then forj > jo and
|x| > 2r¢ we see by (3.3) that
. L% L%
Uj(0)* = Vi, (x —x7)" = J < —1 (3.11)

- |x — x7|(=22 = rén—Z)k

and
(n— )AL’ (n — 2AL%

A
|V(U](x) )| = |x _xj|1+(n—2)k = r(()n—2)k+l :




898 S.D. TALIAFERRO/ Ann. I. H. Poincaré — AN 19 (2002) 889-901

Thus by (3.6),552 . U;(x)* is C* and uniformly Lipschitz continuous opx| > 2ro.

J=Jo
Hencezjﬁ":O U;(x)* is uniformly Lipschitz continuous ofx| > p for eachp > 0.
Also by the monotone convergence theorem,

u::N(ZU}):ZN(U}):ZuJ- in R" — {0} (3.12)
j=0 j=0 j=0

which by (3.10) and (3.5) implies thatis finite at each point oR” — {0}. Henceu is
C?onR" — {0} and

—Au=>Y Ur<) Ciui<Cypu" inR"—{0}. (3.13)
j=0 j=0
Furthermore, it follows from (3.12), (3.9), and (3.7) that

u(x’) S uj(xj) >in(xj)_ 1 K;

— > — > — =———"—"——>00 asj— 00.
e(x/D = o(x/]) = Cz @lx/))  Cop(lx/])
To complete the proof of Theorem 1, we now show
CA
—A 1 * inR" — {0}. (3.14)

u = WU
First by (3.12), (3.10), (3.5), (3.9), and (3.13) we hav&®ih— {0} — Uj‘;l B, (x/) that
Ciu* < Cy(ug+ eug)* < (L+&)*U§ < L+ &) (—Auw).

Next let j be a fixed positive integer. Then by (3.10),
u; <eug in By, (x)) fori ¢ {0, j}.

Thus by (3.12), (3.5), (3.9), and (3.13) we haveBin(x/) that
Cru* < Ci(uo+uj +eug)* < Cy(1+ &) (uo+u;)*
<CrA+ )27 ug +uh) <A+ )27 H UG+ UY)
<(1+6)*2 7 H—Au).
Hence (3.14) holds. O

Remark— The proof of Theorem 1 gives an explicit expressiondor, A). Indeed,
letting

1 1 1

1
Al=_4— "~ Ay="4+_— " and
1=t rn—2-2 Tt in-2-2
aly 1

- An—2)—n’
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the optimal choices fo€1(n, 1) andCz(n, A) in (3.1) are

B n—2 and C_n—2
o max{Al, A3} 2= A2

1

and the proof of Theorem 1 shows that a(n, 1) in the statement of Theorem 1 can
be taken to be any positive number less than

i _ A3
Ci2-1 " 2-1maxA};, A3}

Proof of Theoren2. — Suppose for contradiction that for each constaat(0, 1) there
exists aC? positive solutionu(x) of (1.3) in a punctured neighborhood of the origin in
R" such that (1.4) does not hold. Then lettifig}72, C (0, 1) be any sequence which
converges to 1, we have by Lemma 1 with= 0 that there exists @2 positive solution
of (1.1) inIR” which contradicts Theorem B in the introduction.

Let u(x) be aC? positive solution of (1.3) in a punctured neighborhood of the origin
in R" which satisfies (1.4). To complete the proof of Theorem 2, it remains only to show
thatu(x)/u(]x]) is bounded between positive constants [figrsmall and positive, and
this is indeed the case by the asymptotic Harnack inequality (see Veron [10, Lemma 1.5]
and the fact that

—Au(x)
u(x)

Proof of Theoren3. — A proof of Theorem 3 can be obtained by making the following
changes to the proof of Theorem 1. The first change occurs above (3.6) where we no
definex/ = (2%/,0,...,0) andr; = 1. The next change is to replace the paragraph
containing equation (3.11) with the following paragraph.

Let ro > 1. Choose a positive integgs such thatx/”°| — 1 > rg. Then forj > j, and
|x] < ro we see by (3.3) that

0< <u@)t=0(x|"? aslx|]—->0". O

. L
. Ao — )‘_ J s
Uj(x)" =V, (x —x/)" = |x — x7|(n=D% SLj

and
(n —2)AL;

2 s

Thus by (3.6),23‘;].0 Uj(x)* is C* and uniformly Lipschitz continuous ofx| < ro.
Hencezjj‘;O U;(x)* is uniformly Lipschitz continuous ofx| < p for eachp > 0.
Finally, in the remainder of the proof of Theorem 1 replace each occurrence of

R” — (O} with R". O

Proof of Theoremtl. — The proof of Theorem 4 is basically the same as the proof of
Theorem 2 except we use Lemma 2 instead of Lemma 1. We omit the details.
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Proof of Theorenb. —Theorem 5 has three short proofs. First, Theorem 3 implies
Theorem 5. Second, by Theorem 1 there exists a congtari®, 1) such that (1.3) has a
C? positive solution: in R” — {0} which does not satisfy (1.4). Applying Lemma 1 with
o =0and witha; =a andu; =u for j =1,2,..., we obtain Theorem 5. And third, a
C?2 positive solution of (1.3) ilR" with a = (C1/Cy)* is u = C3/*Pw, whereCy, C,,
andw are as defined in the first paragraph of the proof of Theorentd.

Proof of Theorenb. —Suppose for contradiction there exists a sequengEZ; C
(0,1) such that lim_,a; =1 and a sequencig; :R" — (O, 00)}321 of C? functions
satisfying

aju; <—Au; < u; in R”. (3.15)

It follows then from Lemma 2 and Theorem B that (after omitting a finite number of
terms of the sequencs)

uj(x) =O(Ix|7#* D) as|x| — oco. (3.16)

Thusu; assumes its maximum at somge R". By translating and scaling eaah we
can assume; =0 and

u;(0) zlzr%gXuj. (3.17)
It follows from (3.15), (3.17), and standard elliptic theory that there exists a continuously
differentiable functionu :R" — [0, co) such that a subsequencewgf(which we again
denote byu;) converges uniformly on compact subsetsR¥f to «. Thus multiplying
(3.15) by a nonnegative test functigne C§°(R"), integrating ovetR”, integrating by
parts, and lettingg — oo we obtain

u* < —Au<ut inD'(RY).

Hence—Au = u* in D'(R") and this together with the fact thatis C* impliesu is C?,
which contradicts Theorem B.O

Proof of Theoren?. —Let {aj}52, (0,1 - I» be a sequence which converges to the

left endpointA, of I,. Then by the last paragraph of the proof of Theorem 2 there exists
a C? positive solution; of

aju; < —Au; < u;
in a punctured neighborhodd; of the origin such that
uj(x) #O(x|7%*1)  as|x| — 0",
Thus by Lemma 1 withr = 0 we haveA} € Is. Hence
Ie C (A3, 1) = (A2, 1) C I}

Similarly, using Lemma 2 instead of Lemma 1, we obtajc 7}. O
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