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ABSTRACT. — We study the blow-up phenomenon for the porous-medium equatig? jn
N>1,

u = Au™ _’_um’

m > 1, for nonnegative, compactly supported initial data. A solutigw, ¢) to this problem
blows-up at a finite timg" > 0. Our main result asserts that there is a finite number of points
x1, ..., x¢ € RNV, with |x; — x;| > 2R* fori # j, such that

k
lim (T — t)ﬁu(t,x) = Z Wy (|x — x;).
t—T =1
Here w.(|x|) is the unique nontrivial, nonnegative compactly supported, radially symmetric
solution of the equatiomw™ + w™ — ﬁw =0 in RY and R* is the radius of its support.
Moreoveru(x,t) remains uniformly bounded up to its blow-up time on compact subsets of
RN\ Ul;le(Xj, R*). The question becomes reduced to that of proving thatthienit set

in the problemv, = Av™ 4+ ™ — ﬁv consists of a single point when its initial condition is
nonnegative and compactly supported.
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RESUME. — Nous étudions le phénomeéne d’explosion pour I'équation des milieux poreux dans
RV, N >1,

u = Au +u",
m > 1, pour une donnée initiale positive ou nulle, & support compact. Une solution) de ce
probléme explose en temps fifii> 0. Notre principal résultat établit qu’il existe un nombre fini
de pointsry, ..., xx € RV, with |x; — x;| > 2R* aveci # j, tels que

k
L 1
lim (T —)mTu(t,x) = Z wy(]x — x;1).
t—>T N
j=1
Ici wy(|x|) est I'unique solution non triviale, positive ou nulle, & support compact et a symétrie
radiale de I'équatiomw™ + w™ — ﬁw =0 dansR”" et R* est le rayon de son support. De
plus,u(x, 7) reste uniformément bornée jusqu’a son temps d’explosion sur des sous-ensemble
compacts d&®" \ U';zl B(xj, R*). La question est ramenée a la démonstration que I'ensemble

w-limite du probléemey, = Av™ + v — milv est constitué d’'un seul point quand sa donnée

initiale est positive ou nulle et a support compact.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

This paper deals with the description of the blow-up phenomenon in the porous-
medium equation ilRY, N > 1,

u, = Au™ +u", 1.1
u(x,0) =ug(x) 1.2)

wherem > 1 andug(x) is a compactly supported, not identically zero nonnegative
function whose regularity will be specified later. The porous-medium equatienAu™

and its variations represent simple dissipative models for quantities which diffuse slowly.
In fact this simple degenerate equation exhibits, unlike the heat equation, finite speed ¢
propagation, which amounts in (1.1) to the fact that the support in space variable of the
solution remains bounded at all times where the solution is defined. On the other hanc
the presence of the superlinear tesiti as a source makes possible finite time blow-
up, for instance the space-independent solution- 1)‘ﬁ(T — t)‘ﬁ. Actually, the
(unique) solution of (1.1)—(1.2) always blows-up in finite time. This is the case for any
nonzero initial data in the more general problem

u, = Au™ +u” (1.3)
aslong as < p <m+ % as established in [12], a generalization of the classical

Fujita's result form = 1 [10]. The powerp = m is certainly special since diffusion and
source share the same nonlinear growth. This gives rise to the interesting phenomenc
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of regional blow-up meaning this blow-up taking place only in a compact set with
nonempty interior. This is in sharp contrast with phenomena typically exhibited for other
powers in the source term: In fact, while fpr< m blow-up occurs in entire space, as
established in [27], fop > m blow-up is expected to occur only at a lower dimensional
set, and generically only at isolated points. Fine knowledge is today available on the
blow-up profiles of (1.3) whem =1 and 1< p < %—fg a basic problem that has been
the object of extensive study, see [9,15,16,24,25,29] and the references therein. Of cour
if m = p =1 no blow-up occurs at all, so that the phenomenon here described seem
quite characteristic of porous-media type equations.

The purpose of this paper is to describe completely the blow-up in (1.1)—(1.2) in
the following sense: we show that for any initial condition the solutiodevelops
(exactly) a finite number of similaspherical hot spotsmore precisely, there is a finite
number of disjoint balls with common radR* outside which the solution remains
uniformly bounded, while inside each of them it develops a common self-similar radially

symmetric profile(T — t)‘ﬁ w,(r), wherer is the distance to the center of these balls
andw, is a strictly positive function. Moreover, we show that one-ball blow-up is stable
in the sense that for a given initial data leading to one-ball blow-up, all neighboring data
exhibit the same phenomenon, with blow up taking place “approximately” in the same
ball. While k-ball blow-up is in general unstable, it becomes stable within the class of
initial data leading to blow-up with exactkyballs.

The presence of regional blow-up in this equation was first observed and studied ir
the caseN =1 in [11]. The elliptic problem found when searching by separation of
variables a solution of the form

u(x, 1) = (T — )" 710(x)

has been studied for radial symmetry in [1-3,17].

This paper is a continuation of our previous work [4] where the following partial result
was established: L&t > 0 be the time at which blow-up occurs. Ligtbe any sequence
t, 1 T. Then there is a subsequencerpfwhich we still denoter,,, and a nontrivial
compactly supported solutian(x) of the elliptic equation

1
Aw" +w" — ——w =0, (1.4)
m—1

such that
(T — )" Tu(x, t,) — w(x)

uniformly. On the other hand, it was established in [2] that the components of the suppor
of w are balls of the same radii and that the solution is radially symmetric inside each
of them. This radially symmetric solution turns out to be unique, as established in [3].
Let BU(ug) be the set oblow-up pointof u, namely the set of points for which there

are sequences, — x ands, — T such that(x,, 1,) — +oo. It was also shown in [4]

that this set is compact and it is precisely constituted by the union of the supports of al
possible limitingw’s. The important point unsolved in [4] was whether there iaetual
unique blow-up profilerather than oscillation between different limiting configurations.
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The question turns out to be rather subtle, and we answer it affirmatively in the following
result.

THEOREM 1.1. —Letu(x, 1) be the solution of1.1)—(1.2) whereuo(x) is compactly
supported, continuous and such thét € H(R"). Let T > 0 be the blow-up time of
this solution. Then there are points, ..., x; € RY such that

k
lim (T = )7 Tu(t, x) = 3 wa(lx = x;))

t—T =1

uniformly. Herew, (|x|) is the unique compactly supported, radially symmetric solution
of (1.4). If R* is the radius of its support then we also hgve— x;| > 2R* for i # j.
Moreoveru(x, t) remains uniformly bounded up to its blow-up time on compact subsets
of R¥ \ US_; B(x;, R*). In other words,

k
BU(uo) = | B(x;, R").
j=1

In light of this result, it is natural to ask for stability of the regional blow-up
phenomenon. The one-ball blow-up turns out to be stable in the following sense.

THEOREM 1.2. —Assume thaizg compactly supported, with support contained in
B(0, M), is such thak = 1 in the above theorem, let us say
BU(ug) = B(¥, R*).

Then, givens > 0, there exists & > 0 such that for anyu; continuous, compactly
supported inB(0, M) which besides satisfies

lug = uf || yaayy < 8

we have that
BU(uo) = B(x1, RY),
for some poinfc; with [x — x| < e.

In [4] it is established that the solutian(x, ¢) is decreasing in the radial direction
outside the smallest ball which contains the suppomifFrom here and the fact that
wy is radially decreasing, it follows that a sufficient condition for one-ball blow-up to
occur is that this support lies inside a ball of radius less tRan

Instead, the two-ball blow-up is not stable as the following example shows. Let us fix
pointsx; andx, with |x; — x2| > 2R*. Then the function

u(x,t) = (T, — )" 1w, (|x — x1)) + (Tp — £) " Tw, (|1x — x2|)

solves Eq. (1.1) for G< 1 < min{Ty, T»}. If Ty = T>, then two-ball blow-up takes place,
which however disappears as soon7asand 7, differ, no matter how close they are.
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This example suggests that one-ball blow-up may actually hold for “generic” initial data.
k-ball blow-up is however stableithin the class of initial data leading to blow-up &n
balls, class which may be conjectured to be a codimerisierl manifold.

THEOREM 1.3. —Assume thaig is compactly supported iB(0, M) and such that

k
BU(uo) = | J B(x;, RY).
i=1

Letu; be another initial condition supported iB(0, M), with
k -
BU(u1) = | B(x}', R*).
i=1

Then, givere > 0O, there exists @ > 0 such that if|jug —u?'|| y2ry) < 8, then|x; —xt <
gforalli=1,... k.

It is worthwhile mentioning the apparent analogy of this stability-unstability phenom-
enon with that for single and multiple-point blow-up in (1.3) fer=1, 1< p < %—fg
analyzed in the works [9,24,25].

Now that the blow-up set is fully characterized, further questions arise, for instance
that of finding the exact behavior of the solution on the boundary of the balls determining
the blow up. On the other hand, the solution remains bounded up to the blow-up instar
outside these balls, so one may wonder whether the solution keeps evolving in som
sense after blow-up occurs. The general question of “continuation after blow-up” has
been treated for a class of related equations in [14].

Next we describe the proof of the above results. Let us introduce the change o
variables

- 1
v(x, 1) = (T — )" Tu(x, T)|;=fa—e- (1.5)
It is readily checked that satisfies the equation
1
v, = Av" + 0" — v, (1.6)
m—1
v(x,0) = TaTug(x). (1.7)

From Proposition 4.1 in [4], we know that given a sequence> +oo there is a
subsequence, which we denote in the same way, and a nontrivial, compactly supporte
solution of (1.4) so that

v(x, )" - wkx)" asn— oo,

both in uniform andd 1-senses. Thus our task in establishing Theorem 1.1 is precisely to
prove that the limitw(x) is actually the same alorgyerysequence, — +oo. A main
feature of Eq. (1.6) is the presence of a Lyapunov functional for it, namely

1
J(z)zé/(IVzmlz—zz’")dx—l— " 1/z'"+1dx. (1.8)

m2 —
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In fact we have that the applicatioan— J(v(-, t)) is decreasing on> 0 and
t_llrroo J(v(, 1) =J(w).

Here and in what follows the integral symbol without limits specified means integration
on the wholeR". The presence of this functional implies that limit points of the
trajectory must be steady states. The problem of uniqueness of asymptotic limits ir
nonlinear heat equations under the presence of a Lyapunov functional has been analyz
in a number of works. A general result due to L. Simon [28] shows the uniqueness of
the limit for uniformly parabolic equations in the case of uniform real analytic data on a
compact manifold. Uniform analiticity cannot be lifted in general in this result, at least in
the nonautonomous setting, as shown in [26]. Needless to say, the compactly supporte
setting we deal with makes our situation highly nonanalytic.

Other uniqueness results in parabolic problems, nondegenerate and degenerate,
contained in the works [5-8,13,19,18,22]. In the latter work, a renormalization method
based on L. Simon’s ideas, used in classifying singularities in an elliptic problem in [20]
was adapted to a semilinear heat equation. The general framework of this method is wh:
we will use here. Alternative methods for degenerate equations of porous-medium type
in one and higher dimensions, have been devised in [7,8]. Those techniques do not app
to the nonlinearity of Eq. (1.7), in particular those in [8], based on analiticity, because of
the presence of compactly supported steady states. This is explicitly commented in [&
and posed as an open question.

A main technical difficulty arises when the support of the limitontains balls that
are tangent, for this introduces a noise in the analysis which is rather delicate to get ri
of.

In the next section we explain in further detail our method. In particular we derive the
main results as corollaries of a more general fact, Theorem 2.1 whose proof is carrie
out by means of the renormalization approach mentioned above, whose basic scheme
set up by Proposition 2.1. The remaining sections of the paper are devoted to the proc
of that intermediate result.

2. Proof of themain results
The theorems stated in the previous section will be direct consequences of th
following result:

THEOREM 2.1. —Given numbersM > 0, K > 0, there exist numberg > 0 and
t* > 0 such that givere > 0, there exists & > 0 with the following property Let v
be any globally defined solution ¢E.7)in [0, co) = such that

supp(v(-,0)) C B(O, M), (2.1)
[0¢, 0] oo gy + [0, 0" <K, (2.2)

” HY(RN)
and

tango J(v(, 1) =kJ(w,).
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Then the following holddf w is a compactly supported steady statghf7) such that
for somerg > 1*

1/2
( sup (v, )" —w@)™) (v(x, 1) — w(x)) dx) <,

to<t<to+T

then
1/2

( sup /(v(x,t)’"—w(x)’")(v(x,t)—w(x))d.x)l/2> <s.

1<t <00

The proof of this result is based on the following

PROPOSITION 2.1. —There exist positive numbefs, §, C and t*with the following
property. Letv(x, ¢t) be any solution of1.7), defined i < ¢ < oo as in the statement of
the above theorem. Consider points..., x; and set

X 1/m
w(x) = (Zw*ux—xm"’) .
i=1

Assume thafy > ¢* is such that
1/2
n= ( sup (v(x, )" —w)™) (v(x, 1) — w(x)) d.x) < 8.
tot<Lto+T

Then there exist pointg with |x; — x;| < Cn such that

’

1/2
sup v(x, )" —wx)™) (v(x, 1) —w(x))dx <
( J ) ) )

to+T <t <to+2T

N

where
1/m

k
w(x) = (Zw*ux - )m)"’)

i=1
Let us see how Theorem 2.1 follows from this assertion.

Proof of Theorem 2.1. ket ¢ be given and let us write as

1/m

k k
wx) =Y w,(lx —x|) = (Zw*ux — xl-|>m>

i=1 i=1

for points x; with |x; — x;| > 2R*. Let §o < §, with § the number predicted by
Proposition 2.1. Assume that for someave have

12
nm= sup (/(v(x, H" —w@)") (vix, 1) — w(x)) dx) <&

tot<Lto+T
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where T is the number given by Proposition 2.1. We find then that there are points
X115+ s Xk1 with Ix,- — xi1| < CT]l such that

1/2
7= ( e /(U(x’ H" —wi(0)") (v(x, 1) — wa(x)) dx) S %
telto+T,10+2T1

where
1/m

k
wi(x) = (Z w,(|x — xl-1|)'">
i=1

Sincen, < 11/2 < 8, we can apply again Proposition 2.1 to find points with now
|xi2 — x;1| < C% such that

1/2
s = ( sup /(v(x, D" — wa(x)") (v(x, 1) — wa(x)) dx) <
t€lto+2T,10+3T] 2 4

where

k 1/m

wa(x) = (Z wy (Jx — xl-2|>m>

i=1
Iterating this procedure we find a sequenge j =1, 2, ..., such thaflx;; — x;j_1| <
CZ- and

27/

vz n
< [ sup /(v(x, D" —w;(x)") (v(x, 1) —w;(x)) d.x) <=

. . 2
to+jT,to+(j+1)T] RN

with Xi0 = X; and

X 1/m
w;(x) = (Zw*ux —x,-j|>m> :

i=1
The following fact is easily checked: there exists a constant 0 depending only on
m > 1 such that for all nonnegative numbers, ¢ one has

(@" =c™)(a—c) < D{(a" =b")(a—=Db)+ (b" —")(b—0)}.

Now letr be any number greater thapn Thent € (fo+ jT, 10+ (j + 1)T] for somej
and

g(t)= /(v(x, D" —w(x)™) (v(x, 1) —w(x))dx

RN

<D{ sup /(v(x,f)m—wj(x)”’)(v(x,t_)—wj(x))d.x

telto+jT,to+(j+1)T]

+ /(w(x)’" —w;(0)") (wx) —w;(x)) dx}
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Now, we have thatv, is uniformly Holder continuous for any > 1, hence
[(wE)™ —w;(x)")(wx) —w;(x))| < C ml_ax|xl-j — x;|*
for some numbers, C > 0. It follows that

2
g() < A{(%) + max|x;; —Xi|a},

for certain positive constants, a. Finally,
o0
lxij — x| < CZmZ_I =Cn,
=1

from where it follows that
() <A{()* + Cnf} < A{S5+C85} <,
provided thay was chosen sufficiently small. This concludes the proaf.

Proof of Theorem 1.1. From Proposition 4.1 in [4], there is a sequence> oo such
thatv(x, t, + t) — w(x) for some nontrivial solution of (1.4), uniformly im and for
T in bounded intervals. We recall that the space suppott isfcontained inside a ball
independent of the time variable. It follows that, givers 0, there exists a numbey> 0
such that

1/2
m= ( sup (v(x, )" —w@)™) (v(x, 1) — w(x)) dx) <4,
telto,to+T]

whereT ands are the numbers given by Theorem 2.1. Thus,

1/2
(/(v(x, H" —wx)") (v(x, 1) —w(x)) d.x) <e¢
for all r > 1. Sincee is arbitrary, we have actually established that

t_llrpoo (v(x, )" —w@)™) (v(x, 1) —w(x))dx =0,
hencew is the unique limit point of the trajectomy(-, ¢), and the proof of the theorem is
complete. O

Proof of Theorems 1.2 and 1.3Assume we are in the situation of Theorem 1.3
for the initial conditionug. Let uqp, be a sequence of initial conditions such thgf
converges uniformly and if-sense toul, and with supports contained in some
common ball. Let7, be the blow-up time fou,, the solution with initial condition
uo, and T that for ug. We claim that7, — T. Let T* be a limit point for7,,. After
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scaling, we end up with the following situation: There is a globally defined solatimin
(1.7) withv(0, x) = T*uo(x) which converges as— oo to a nontrivial steady state. But
this implies, scaling back, that the blow-up time focannot be other thai*. Hence
T* = T. Assume now additionally that, as well asu havek-ball blow-up for anyx.
Let v, be the solution of (1.7) defined as

= 1
vn(-xa S) = (Tn - t)’7'711’ln(x7 t)|t:7_",,(1—e*°')'

ThenJ (v,(-, 1)) — kJ(w,) ast — oo. SinceT, — T, we will have, on the one hand,
v(x,t) close tow(x) for all # > t9, while we can also make, by continuity, (x, t) as
close as we wish in compact intervals in timeutoAs a consequence,, will also be
close tow in an interval of lengthl" afterr,, so that Theorem 2.1 applies in this situation
as well, so proving the stated result. Finally, for Theorem 1.2 it suffices to observe that fol
k =1 in the above situation, and an arbitrary sequence of initial conditions converging
to uo, one has that it (v(-, 1)) < 27 (w,) thenJ (v,(-, 7)) < 2J(w,) for all sufficiently
largen. It follows then that/ (v, (-, t)) — J(w,) ast — +oo, hence one-ball blow-up
holds for any initial condition close t@, and Theorem 1.3 applies in this situation

The remaining of this paper will be devoted to the proof of Proposition 2.1. To do this,
we will restate it in the next section in a more convenient form.
3. Preliminaries and a key inequality

Our task in what follows is to prove Proposition 2.1. After an indirect argument, it is
easy to see that this result follows from the following

PrRopPOSITION 3.1. —There exist positive number and C such that ifv, is a
sequence of solutions of E€L.7) defined on0 < ¢ < 400, satisfying the constraints
(2.1), (2.2), and such that for some sequence- +oo, setting

Uy (x, 1) =0, (x, 1, + 1),

1/m
wy (x) = (Z wy(|x —x,-n|)'"> :

one has

12
Ny = ( sup [ (va(x, )" — w, (x)™) (va(x, 1) — wy(x)) d.x) -0 (3.1)
1€[0,T]

asn — oo. Assume besides that for each

lim 7 (v, 1) =kJ (w,),
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whereJ is the Lyapunov functiondll.8). Then there exist pointg, with |X;,, — x| <
Cn, and

1/2 n
( sup /(vn(x, D" — W, (x)™) (v (x, 1) — Wy (x)) dx) < 7" (3.2)

te[T,2T]

for all n sufficiently large, and where

1/m
Wy (x) = (Z w, (|x —x,-n|>’") :

Let v, be a sequence as in the statement of the above result. Then we have th:
Va(x, )" — w,(x)™ — 0 in L*® and H'-senses irRY, uniformly locally in timet €
[0, 00). In fact, the estimates leading to convergence up to subsequences to steady stal
derived in [4] depend only on bounds for the initial condition and on the radius of the
smallest ball containing the initial condition (in fact the size support of the solution at
all times turns out to depend only on this radius). Fos 0 fixed, which we will choose
later, we use in what follows the following notation:

U (X, 1) — wy (x)

¢n(xv t) = (33)
M
Theng, satisfies the equation
n ~ — ~ — 1 —_
o A () = 4 (3.4)
where
1
Wo(x, )" L= /(w,,(x) + 1 (v, (x, 1) — wn(x)))m_ldt (3.5)
0
and

2n(X) =Y wi(1X — Xin]) — wa (x).

Let us observe that, by definition of the numiggrwe have that

1/2
(m / wn(x,t)m_l¢n(x,t)2dx> <1

for all + € [0, T']. Notice also that, is supported only near the boundary of the balls.
Indeed, in the limitw, must converge (up to subsequences) to a steady staié
Eqg. (1.4), hence the distance between the centgrmust be in the limit no less than
2R*.

These facts suggest that on interior sets of the support of thediif of the w,,
which is the uniform limit ofw,, we should see convergence in certain sensg, ¢d a
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solution of the degenerate parabolic equation

(@) =mA(w"1p) + mw™ ¢ — ﬁ¢. (3.6)
The proof of Proposition 2.2 has as its key element the analysis of this convergence, ar
in particular in finding the form of its limit. Thus we assume in what follows the validity
of the conditions of Proposition 2.2. We introduce some notation, and establish in
Lemma 3.1 below an inequality which will play a crucial role in the analysis of the next
sections. FoIIowing the notation of the previous section we write= w..(|x — x;,|),
so thatw, = (3_, w")¥™. Let us also consider the functions

1243

mo__ ™

Uy n
vfn = s (3 . 7)
Mn

m+1 m+1
G — i{ vy w

H — (m — 1)(v,’1"+l _ w;"+1) —|—2(m +D,w) — v,’fwn). (3.9)
M
Itis easily checked the existence of constant&ndC,, depending only om such that
the following inequalities hold:

€16, < U = W )2(”" — W) 0,6, (3.10)
n

We observe that the already defined quantity

k
Zin = Z Wip — Wy, (311)
i=1

measures the “overlap” of the supports of thg.
We also note that there exists a consté@nt 0, depending otk andm, such that

k
w, < Z wi, < Cw,. (3.12)
i=1

In particular 0< z,, < Cw, for another constant.
The following relation among the above defined objects may be regarded as the ke
step in the proof of Proposition 2.2.

LEMMA 3.1. — The following relation holds

o - [ J e G [
(m—l)n,% v Zn\ 91 G, m2_1 n (m2_1)77,% W, Zn-
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Proof. —Let J be the Lyapunov functional for (1.6) given by (1.8). Let us set

k
= 2<J(vn> -3 J(wm>> :

i=1

Then! > 0 and we have

1= / (9o = V@) ) = [ w2 = w2
1/( m+1 Zw’"+1> +/<ZVwin.ijn> —waﬁw}"n.

i#] i#]
After integrating by parts and using the equations we get

I=- / (80 + Awr)(v::' —uff) = [ (@2 = w?)

— ( m+1 ;4}11-5-1) /Zw Wiy
I:—/Unt(U,T — ;,n T 1/<Un+zwm> Uy Zl>

1
) T+ 1/< Zwiﬁi“)

So we obtain, after recalling thaf 22 = v, (v — w/"),

1=—n23G"+ 1 /me_vmiw' + / m+1 Zwm+1
"or m—1 )\ T A +1

Since the functional is nonincreasing along trajectories we obtain, after some algebraic
manipulations and recalling the definition &f, andz,,, that

3G 1 1wt — (O with
* m?—1 * n2 m—+1

1 1 m m : 1 m <n
_mn—rzl/(vn—wn)<;wm—wn>—m wnn—}%.

It follows from Lemma A.1, in the appendix, that

Thus

1

( i Zw;’:fl> < ('), (3.13)

Hence
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G 1
Og_—n 7/Hn
ot +m2—1

which yields the desired result.0O

The result just proven plays an essential role in the analysis to follow in the
next sections. In Section 4 we will obtain estimates which will lead in particular to
convergence of, in a suitable sense in Section 5. An important step is to obtain a
proper control on the size of;'z,, which is measuring the degree of superposition of
the balls constituting the support of,. In Section 6 we will express the limg of the
¢,’s in terms of eigenvalues and eigenfunctions of the elliptic operator in Eq. (3.6). The
fact that the operator does not degenerate in the interior of the suppostiefds strong
smooth convergence there. However a finer understanding of the behagjoneér the
boundary of the support ab is needed, and found in Section 7.

It should be remarked that a particularly delicate situation is the caseuthes
adjacent balls in their support, since the effect of superposition is in fact present up tc
the limit, and that has to been taken care of. This is perhaps the main difficulty overcam
in this paper.

4. Further estimates

In this section we establish, as consequences of Lemma 3.1, some important estimat
which will lead in particular to convergence ¢f, in a suitable sense. Our first result
provides a uniform control on the overlap of the supports ofitheby means of the
following estimate forz,,.

LEMMA 4.1.—There is aC > 0 such that for allz we have
n2 / Wz, < C. (4.1)

Proof. —Integrating in time from 0 td@" the inequality of Lemma 3.1 we obtain

og/(Gn(x,O)—Gn(x,T))+/T/Hn

_mn_n// —w (Zwm‘ ) 1// nn'

Recalling now that/ G, (x,7) < C forall 0<r < T and thatH, < CG,, we obtain

T 1 10 ‘
m m Zn

w' = C———// v, —w, Win — Wy |,
mz—lo// n2 m—1n2 ( )<; )

n
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where the constar@ depends now also ifi. On the other hand,

where
T

I=n—1}%/ / (vZ’—wZ‘)(Zwm—wn).

O (xfun () <D0, win ()
Now, using (3.10) and (3.12), after an application of the mean value theorem we get

T ( m m) 12, T
v, —w
|I|< /%(Un_wn)
0 n

=
(W —wy) 72

0 {x|v<x><2f’ L win ()
T
<C‘/ / mwm 1Z ‘/ m
~X
O <3k win )

2

Hence

m

m /wZn cC+C

From here the proposition immediately foIIowsm

m

Examining the above proof, now applied integrating between 0 and an@, and
using the result just proved we see that we have actually established the following bounc

COROLLARY 4.1. -We have that there is a constafitsuch that for allr > 0 one has

0< /(Gn(x, 0) — G,(x.1))

1//H +C/</G(x s)dx)l/zds—i-Ct-l—C (4.2)

As a further consequence, we see that sificg, (x, 0) < C, and as we have said,
|H,| < CG,, the following fact holds.

COROLLARY 4.2.— There are constants, » > 0 such that for alls, ¢,

/ G, (x, 1) < be". 4.3)

5. Convergence

We will use here the results of the previous section to establish convergence of th
guantitiesy,, and ¢,, in the appropriate sense. Let us note tiiatdefined by (3.7)
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satisfies the equation

SR

1
(¢n)t = Avfn + wn - m (51)

1?

Integrating (5.1) against,, recalling that’. G, = v, %, we obtain

ot
E/Gndxz/%%dx
at at

:_/|v¢n|2dx+/w,f—ﬁ/¢nwn+ﬁ/%wn- (5.2)

LEMMA 5.1. -There exists a constaxt > 0 such that
Zn
2= [ <c.
M

Proof. —We have

Z Z Z
n_"wn = / _HWH + / _HWn
! {x/z2n ()< (U —wp) (x)} " {x/z2n (x)>(Up—wy) (x)}
Z
< / GV + / = (o —w)y)
(/20 () > (a—w) (X))

1
g/d)nwn"i_cﬁ/w;nzn

where the last inequality holds by (3.12). Now the lemma follows by Proposi-
tion4.1. O

As a consequence of the above result, we can establish the following estimate (loce
in time) for ¢,,, from where convergence in the appropriate sensg, fill follow.

LEMMA 5.2. - Givenr > 0, there exist€(¢) > 0 such that

//(|wn<-,s>|2+!wn(-,s>|2) ds < C(0) (5.3)
0

for all n.

Proof. —Let us recall that
/Gn(s, x)dx < be”’,

Since the functiorv is bounded we see that,| < C|¢,|. Hence, using (3.10), we get
¥2 < CG,. Now integrating relation (5.2) in time, betweer= 0 ands = ¢ and using
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Lemma 5.2 and Corollary 4.2 we get

j/|vw,,(-,s>yz<Ceaf,
0

and the result is thus proven

As a consequence of the last result, the sequénasan be assumed, after passing to
a subsequence, weakly convergent #((0, S); H(R")) for eachS > 0. Let (s, x)
be this limit. Assume now that

k
wx) =Y wi(lx —x)),

so that the support ofv is the union of disjoint ballsB(x;, R*), i = 1,...,k. Let
A=, B(x;, R*). Then if we defingp = w=""~Yy on B = (0, 00) x A then

S

[ [1v =)+ oft < o

0 A

for eachS > 0. In the next lemma we study further this convergence.

LEMMA 5.3. —=The function¢ is of classC* in B and ¢,(t,x) — ¢(t, x) in the
uniform C*-sense over compact subsetf3oMoreoverg solves on3 the equation

1
¢t = mAwm_1¢ + mwm_1¢ — m(]& (54)

Besides the map— [ w™~1(x)¢?(¢, x) dx is continuous and

/ 100211, x) chx — / w1 p2(t, x) dx

_2//<myv m=1g | —m(w" )’ + ilqﬁ) dx dr. (5.5)
n A "
Additionally, for any functiors € C*(A) with [, (w™ 124 [Vw™17)[?) dx < +00

[t @snncmde— w0, 06w dr
A A

2
1
= //<mv(wm—1¢)v; —mw" lpc + —1¢g> dx dr. (5.6)
A "
Proof. —We recall thatp, satisfies the equation
Zn

(D) = Aanpy) + anpy — by + ———— (57)
(m - 1)7711
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where a, = ”U; Thena, — mw™ ! uniformly. Hence over compacts @ the
coefficienta, Is uniformly positive and bounded, ang = 0 there for largen. The
standard theory for quasilinear nondegenerate parabolic equations, see [21], gives th
this convergence is also uniform in tiigt-sense over compacts &, so thatVa, is
also bounded there. From Lemma 2.1, it follows thdtnorm on any parabolic cube
compactly contained 8. Again the theory for nondegenerate parabolic equations in
[21] provides uniform estimates faf* norms over compacts ds, from whereC*
convergence follows.

Now, givens > 0 let us consider a smooth cut-oftQn(x) < 1 compactly supported
in A with n(x) =1 if dist(x, A) > § and |[V(x)| < C/§ for all x. Let us integrate
Eq. (5.7) againsh?y, in space and in time betweenr= ¢, andr = , to obtain

/ G (11, )0 (x) dx — / Gn(t2, )n(x) dx

=j/n2(|vwn|2 — 2+ ﬁm%) dr i +j/2nVnwnvwn dr

wherey,, andG,, are defined in (3.7) and (3.8). Now we let> oo and get

/ w()" %11, x)n(x) dr — / w(x)" L2 (12, ) (x)
1
_// <’vwm l¢’ ( m— l ) m_lwm—l¢2>dxdt

m—1 m—1 —
+//217V77¢w V(w" ¢)dx =1+11.

Now, let us writeA4; = {x € A | dist(x, 3.4) < §}. Sincew™ ! vanishes quadratically on
the boundary ofd, thenw™~2/2 < C§ on As. It follows that

||||<C//¢w<'" D72y (wmte) dx dr < C//{¢2 m- l+|v(wm—1¢)|2}dx.

5% .Aa 5% .A(S

Since the function inside the integral is indeed integrable by construction, it follows that
[ll| — 0 as we lets — 0. Let us recall that for each> 0 [ G,(t, x)dx < C(¢), from
where it follows that[ ¢2(¢, x)w”1(x) dx is finite. Then, lettings go to zero in the
above equality, relation (5.5) thus follows. The proof of the remaining assertion of the
lemma is similar, so that we omit it.C

6. Thespectral problem

In this section we will analyze the spectrum of the linear elliptic operator associated
to Eq. (5.4). The purpose of this is to find an expansiog of terms of eigenvalues and
eigenfunctions of this operator.
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Thus we consider the eigenvalue problem

1
mA(w" ) +mw™ ¢ — m‘ﬁ +1¢$=0 (6.1)

m—=1

with ¢ such thatw™ ¢ € HY(B) and w"z ¢ € L?(B). Here w(x) = w,(|]x]) and
B = B(0, R*). Equivalently, the problem can be restated as

1
mAY +my — mw*m—% +aw ™Dy =0 (6.2)

with ¢ € H where
H=HYB)NL3(B),
with

L2(B) = {w e LA(B) \ /w—“"—l)w? < +oo}.
B

Now we make the following observation: for a givén< 0, the set of distributional
solutionsys € H of (6.2) is finite-dimensional. In fact, usingn as a test function, where
n € C*(R) is such that)(x) = 1 for dist(x, dB) > § and|Vn| < C/§ then

(i) fe
B
== [wvnvy+m 1w
B

Now, sincew”~! vanishes quadratically ohB, as the above lemma states, it follows
that|w™~Y/2vy| < C. Thus

2 1 _ —(m—1) 2)_ 2
L/n(mww +(—m_l A)w v2)—m [y

12
<e( w—<m—1>|w|2) .
R*—6<|x|<R*

Letting § — O we get

/m|vw|2+ (ﬁ —A) /w—<'"—1>1/f2:m/1/f2. (6.3)
B

It follows that the unit ball inZ2-norm of the corresponding eigenspace is bounded in
H*'-norm, hence compact, so that the multiplicity of the eigenvalue is finite. Moreover,
only a finite number of eigenvalues<< 0 may exist. In fact, if an infinite number of
them exist, then one can construct an infinite orthonormal sequence of eigenfunction
that must converge producing a contradiction.
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Let A be the finite-dimensional vector space spanned by all eigenfunctiofs in
associated to nonpositive eigenvalues. Let us consider the nurhbaren by

A*:—+m|nf{/IV1/fI2 [ [wroby?=

/w-<m-1>wg —0, V¢ eN}. (6.4)

We claim thatr* > 0. In fact, assume* < 0 and lety,, be a minimizing sequence of the
above quantity. It follows thay, is bounded in the spadé. Let ¢ be the weak limit in
H of some subsequence. Then

—1+m/|vw2—m/w2<x <0
B

Hencey # 0 and [ w~ ™Yy 2 < 1. The definition ofA* gives then that necessarily

Jw=™m=Yy2 =1 and hencey attains the infimum. It easily follows thdt* is an

eigenvalue of problem (6.2), with as associated eigenfunction. Sinfgas=""Vy¢ =

0 for all ¢ € V, it follows thatA* > 0, a contradiction which proves the desired result.
In what follows we shall label the first (possibly repeatkgihegative eigenvalues of

problem (6.1) as

AMSA2< Sy <0,

with associated eigenfunctioqs, . .., ¢,, orthonormalized so that

/¢i¢j =4ij.
B

We observe also that= 0 is an eigenvalue and th%g‘ﬁ are associated eigenfunctions

for i = 1,..., N. Besides, as proved in Lemma A.3 in the appendix, the only
eigenfunctions of (6.1) fox = 0 are linear combinations of the functlo§1§

Remark6.1. — Assume thak < 0 is an eigenvalue of problem (6.1) and an
associated eigenfunction. For further purposes, we want to estimate the gizecaf
the boundary. We have that= —<* > 0 satisfies

1
mA(w’"_lu) +mw" - u—+ru<0
m—1

in B(O, R*) \ {0}. Hence, near the boundary,can be estimated in absolute value by a
suitable multiple of:. It follows, from Lemma A.2, that

3—m

()] < C(R* — |x]) =t < Cw(je])*2

whereC depends for instance ofw™~1¢?2.
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Now let ¢ (x,t) be the function found in Lemma 4.1. Lét be one of the balls
constituting the setl. Let us consider the expansion i)

¢(x,0) = ZC@

where

/ O = axj - (6.5)

for all i, j. Now let us consider the functlon
N

~ d
Gx, 1) =p(x,1) — }jc e il g, —ZDia—:.
i=1

1

Let us observe that
> CF+> DI /w’"—1¢2(0)dx <1
B

Clearly ¢ (x, 1) satisfies the equation

@)y = mAw" G+ muw" - —=
m—1

on B x (0, 00). Our first claim is that

B/i»(-,sw,- =B/¢3(-,s>aa7"; _0

for all s > 0. In fact, let us set

o(s) =/¢S(-,s>¢i.
B

The definition ofg implies¢’(s) == —i,;¢(s). Sinceg(0) = 0, the claim follows. Now,
let us set

n(s) = / w1, )2
B
Then

n'(s) = —2/m <|V(wm_l¢~>) |2 - m(wm_ld;)z + —Z

B
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Now, sinceg satisfies the orthogonality relations (6.5), it follows that

n'(s) < =20 n(s),
and hence

n(s) <n(@e "
where, we recallp* > 0 andn(0) < 1. Finally, linear parabolic regularity implies that
exponential decay at this rate fgralso holds uniformly on compact subsetshaf
We summarize the above considerations in the following proposition, which provides
a description of the limiting functiog (¢, x) inside A.

PrRoPOSITION 6.1. —We have

0
¢<x,t>—ZZDUe-*f¢,(x—x]>+§j§jc,, “’(x WEZX) g, (6.6)

i=1j=1 j=1li=1 Xi

wheref (x, t) converges to zero as— +oo, exponentially uniformly inside compact
sets of the se.

7. Analysis near the boundary

In the last two sections we have found the validity of convergence,ofo ¢
essentiallyin the interior of the support of the limiting. Here we will show estimates
which provide control ofp, near the boundary of the support @f As a by-product
we shall establish that the exponentially increasing terms in the expansion (6.6) actuall
vanish identically, and as a further consequence that the contribution of the region nec
the boundary on the integral 6f, is basically negligible.

The next result estimates the contribution near the boundary to the integraliof
terms of a boundary integral for the limiting function. We should mention that here, the
key estimate, Lemma 3.1, again plays a role.

LEMMA 7.1.-There exist numbers andc, depending only om, with the following
property. Givene > 0 and0 < ro < R*, with rg sufficiently close taR* and any: > 0,
we have that for alk sufficiently large,

/ G, 1) dr
Nyl —xil=r1)
3m k

<A{e—“+e+w* ()Y sup / ¢>2(x,s)da] (7.1)
]

i=1 (s,r)€[0,t]x[ro,r1

X—xi|=r

wherery = tE.

Proof. —Set

k

Dn = m{x/lx _xin| > rO}
i=1
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and define fox € D,,

k
g(x) =w}(aro) — Y _ wl(alx — xi|)
i=1
where
_ 2R¥
- R*+rg
We note that the setsc/a|x — x;,| < R*} are disjoint for alln sufficiently large. Let
us multiply Eq. (5.1) by, (x, t)g(x) and integrate on the regiah,,. Sinceg vanishes

on the boundary of this region, recalling th@t,), = v, (¢,);, an integration by parts
yields

> 1.

/ Gu(x.1)g(x) dr = B, (1) + / Y A gy e

Dy Dy

_ 2 2 1 ZnYn }
+ [{Avut v = o+ e d

Dy

where

Bn(t) =

(aro) Z / ” do.

i=1
[x=xin|=ro

Now, Aw]' = - — w! > 0 for |x| > ro if 1o is sufficiently close toR*, hence we
assumeAg(x) < 0 on D,. On the other handg(x) = w!'(arg) on the support ot,,

for all largen, since by definition ot, its support is contained in the union of the sets
{ro<Ix —xi| <R }N{ro<|x —xj| <R*}fori,j=1,...,k andi # j. Using these
observations and (7.2) we get

1
/G (x, 1)g(x) dr < B, (z>+/{w3— mwn}g(x)dx

Dy

" (ai’o)/( Z”wl”)n (7.3)

On the other hand, recalling the definitionyaf and thatz, > 0, Lemma 3.1 implies

1
n ng_ H
(m—l)nn/“// at 1/

Now, by definition of the corresponding quantities, we see that

Loy Ly 2
m2—1 n—m 1}1 n m_l n»
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hence

1 G, 1 2
AN n ng_ — aW¥n n_—Gn- 7.4
(m—l)nn/zw YRR A —— (7-4)

Then using (7.4) in relation (7.3) we obtain that

n(z>+— / B (W (aro) — g()

— " (aro) / -~ { Mcn}. (7.5)

-1
Now, givent* > 0 we have thaw, — w unlformly on [0, #*] x RY. Thus, if rg is
sufficiently close taR* we obtain that

ar ¢

Dy

y2< ——,
n (m—l)

for |x| > rp and O< ¢t < ¢* for largen. Hence

2w} (aro) G, < (wi'(aro) + g(x))
-1 2(m—1)

Ylg(x) —

n

on this region. Alsow? (arg) — g(x) =00nF, = ﬂf;l{apc — xin| = R*}. Substituting
this information into relation (7.5), we obtain the following differential inequality for all
sufficiently largen.

Y,;(l)<B,1(1)+W,1(Z)—CYn(S), O<t <t

wherec is a positive constant depending only mrand

Y, () = / G, 1) (W™ (aro) + g(x)).

D)l
1
a0 = = [ (! @ro) — gx).
D\Fy
It follows that
Y,(s) < Y,(0e“+ e‘”/e“(Bn (s) + W, (s)) ds. (7.6)

We will estimate the right hand side of (7.6). First, we see tBats) — B(s) and
W, (s) — W (s) uniformly on compact sets where

B(s):—

(aro)z / m2w2m=D (o )¢

Ix Xi|=ro
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and

W(s) = m—Z / ¢2(w;"—1<|x—x,-|>)(w;"(aro>—g(x>).

ro<|x —X; |<

Now,

(w™) (ro)w?"~2(ro) = m—z_ £ (7)o ro)w ™7 (r0).

andw(arg) < w(rg) , for rg close enough t®*, so that

k
B(s)| < Cu (ro)w ™ (rg) S / % do.

=1y xil=ro
On the other hand,

* k

|W(s)|<Cw;f-1(ro)wf(aro)<R _r°>z sup / $?do.

2 ; R
i=1 refro, "%

*
I x=xi|=r

m—

Slnce w*2 (R*) > 0, we have

R*_r I}I—
0 <Cwi? (ro)

for someC > 0 depending only om, provided thaty is sufficiently close taR*. From
these facts and (7.6) we see that for given 0 andr > 0,

_ k
Y, (1) <Y, (0)e + ¢+ Cw*’"(ro)wjT3 (ro)Sup» ,  sup / $? do,

[0,¢] rot+R
2

i=1reflro, Ix=xi|=r

for all sufficiently largen, where we have used again that(arg) < w.(ro). Finally,

it is easily checked that for some constahiindependent ofy close toR*, such that
1< 200 < €. Sinceg(x) = w!(arg) for |x| > & the result of the lemma readily

wy(arg) >

follows. O

We prove next two important consequences of the estimate given by the above lemm:
One is that no exponentially increasing terms are present in the expansion (6/6) for
and that the integrals a, near and outside the boundary of the supporidiecome
arbitrarily small as: — oo.

COROLLARY 7.1.—In the expansion(6.6), we actually haveD;; = 0 for i =
ko, j=1,.. k.
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Proof. —To establish this assertion, we consider the estimate provided by Corol-
lary 3.1. We have then that,

/Gn(x,t)d.x<mzl_lO//Hn+C<0/t</Gn(x,s)dx>l/2ds+t+1> (7.7)

for certain numbeC independent of andm. Let us fix a number, close toR* and as
in the previous lemma, sef = % We also write

k
A =/l = xi <)

i=1

Then there is a constait > 0 depending omg such that

3

D
|Hn|<?|vn_w| OnArla

n

from where it follows that

t

//Hn—>0 asn — oo

0 A,
for each fixedt. We note that for ang > 0 and any ¢ >0 one has
st/? <Los+ o L.

Then from relation (7.7), recalling tha#H,| < CG,, we find that for someC > 0
independent ofy ando, and all sufficiently large:,

t t

1
<2 1+o>/ / Gn+a//Gn+o_1t+1].
m_
A

0 RN\ A, 0

/ G,(x,)dx <C
Ay

Then, passing to the limit, recalling that, converges uniformly in4,, x [O,¢] to
mw” 12, we get

t

/mwm_lgbz(x,t)dx—Co//mwm_lqﬁz(x,s)dxds
A 0 A,

t

< limsupC (/ / Gp+o %+ 1). (7.8)

0 RMA,
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Now, from the expression (6.6) far, we obtain
k ko
G(x. )= D& ¢;(x —x;) +O(1)

i=1 j=1

with O(1) uniformly bounded in time and space insidg, . It follows that

k
/wm—1¢2(x,z)dx=2 / w1 p?(x, 1) dx

Av oo =1 (x,r1)

k ko
=>> w" D% e P i (x — x;)%dx + O(D)

i=1 f'le(xi r1)

k
_ZZDZ —Zk/t+0(1)

i=1j=1

Thus, if we fix nowo sufficiently small, we get

/mwm Y2(x, 1) dx — Ca//mwm 192(x, s) dx ds

Ary 0 Ay

=C ZZDZeZM’ +0(1) (7.9)

whereC > 0. On the other hand, from Lemma 7.1 we can find numbBeasidc which
depend only omz so that

limsup G,(x,s)dx
n—oo

R\ A,y

<A{ Cv+w*m (ro)sup{ / ¢2(x,s)da/s€[0,t],I’G[ro,l’l],1<i<k}}-

x—x;|=r
(7.10)
We recall that from Remark 6% (x)| < Cw(|x|) 2", hence
P osup [ g2da/ls el relonl 1<i <k
lx—xi|=r
m+3 k ko
<Cw(rg)'2 > > Die" +0(1), (7.11)

i=1 j=1
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whereC is independent ofy. Using relations (7.8), (7.9), (7.10), and (7.11) we get then
that for certain constar@

ZZDZ e 2t < Cw(ro)mHZZDz —2hj1 +0(),

i=1j=1 i=1j=1

whereC is independent ofy. Sincew(rg) may be chosen arbitrarily small, we obtain a
contradiction from this last relation for allsufficiently large if any of theD;;’s was not
zero. HenceD;; =0 for all i, j, and the proof of the lemma is complete

Combining Lemma 7.1 and Corollary 7.1, we get the validity of the following fact.

COROLLARY 7.2.— Lete > 0 be given. Then there exist numbérs: o < R* and
s* > 0 such that for each given > s* and all n sufficiently large we have

sup / G,(s,x)dx < e.
s€[s*,5]

k
(i_yflx—xil>ro}

8. Conclusion: the proof of Proposition 3.1

Now we are ready to prove Proposition 3.1.
We define

)_Cin = nn(cilv ey CiN)-
Then|x;,| < Cn, with C = C(m). Let us write

1/m

k
a)n(-x) = (Zw*m(x — X +/€zn)>

i=1
We want to estimate the quantity
1) = [ ()" = 0" (00, 5) = 0 (6))

Let us consider € [0, R*], to be determined later, and set
k
Ar=(x = x;| > r}.
i=1
Then
1,(s) = /( — D) (v — i)

+ / m_ - m (vn_wn)dx_l (S)+I (S)
RN\ Aj
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We have

I;(S) < C |:/(vz1 - wzl)(vn - wn) dx + /(wzl - w;,n)(wn - wn) dx .
A,

r

Now, from 3.10, we get

[ —up) @ - wodc< o [ G
A, A,

again withC = C(m). Corollary 7.2 then implies that if is chosen close enough RY,
depending omz, ands > s*, with s* also depending only om then for alln sufficiently
large

1
C/Gn(x,s)dx < g
A,
Also, it follows from Lemma A.2, in the appendix, that
C(w)

n

_w )(wn_wn) K’?,,

with K depending om: andk only. Therefore taking closer toR*, if necessary, we get

if n is large enough. Putting these two estimates together we see that if we ghpose
then
2

n
INs) <2
n (s) 4

forall s € [T, 2T] provided that: is sufficiently large.
On the other hand, we recall that

vn(-xa S) = wn(-x) + 77n¢n(9€, 5)7

which we can write, in view of Proposition 6.1 and Corollary 7.1, as

U (x, S)—wn(X)-i-nnZC “(x = x0) + 1a0(x, 8) + (Palx,8) — (x,9)),

l_]a

wheref decays exponentially in compact setsAf
Now, sincer has been already fixed and liminf, — x;,| > 2R* asn — oo for i # j,
it follows that if x e RV \ A, then

k
wa(X) =Y wy(x — x;)
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and

k
W, (x) = Z Wy (X — Xjy + Xin)
i=1

if n is sufficiently large. From these observations it follows that
lim 7, / (v — ™) (v, — W,) dx =m / w"H(x)6%(x, 5) dx
RN\ A, RM\A,

uniformly ons on compact subsets @0, co). Sincef(x, s) decays exponentially we
have that there are positive numbdrainda, depending only om, such that

13(s) < nPAe,
Consequently we have

1
L(s) <n? (Z + Ae‘”)

for all s € [T, 2T]. Making T larger if necessary (depending only er) we obtain
that the quantity between brackets is less tha®. This concludes the proof of the
proposition. 0O

Appendix A

LEMMA A.1.— With the notation of Sectio8, we have

m

k
1
m+l_§ : m+1 < — m L) Al
(wn pt Wip ) _ 1(wnz ) ( )

Proof. —-By homogeneity, it suffices to establish the following general fact on real
numbers:

For any nonnegative numbets, ..., h; such thatzleh;” = 1lone has
k 1 k
1-) At < —— hi—1). A2
(o) <t (2 -) 2

To prove (A.2), we sek = (hq, ..., hy),

k

k k
F(h)y=> hi+m—-1> h'' and P(h)y=>_hy

i=1 i=1 i=1

we see that our problem reduces to show that the minimum of the fun€tiomer to the
setS={h|P(h)=21,h1>0,...,h >0}, is greater tham. If a minimum of F over S
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is attained at a point with all coordinates positive, then Lagrange multiplier rule yields
the existence of a numbérsuch that

1
W-I—(mz—l)hl:m)\ f0ra||i=1,...,k.

For eachi, this equation has at most two solutions, which we denote: land b.
Therefore there are integegs andg such thatp + g = k, pa™ + gb™ = 1 and the
minimum of F' is given by

pa—+qgb+ (m—1) (path’l + qb’"“).
Itis clear that ifa < b this quantity is greater or equal to
ka + (m — Dka™ "

with ka™ = 1. This last number is greater or equakidf k£ > 1. So far we have proved
that any minimum attained at the interior 8fis greater or equal te:. Studying the
possible minima attained at the boundary $feduces to the same problem with a
different value ofk. Inequality (A.2) is thus established, and the proof of the lemma
is concluded. O

Our next result refers to the behavior of the functiomear the boundary a8.

LEMMA A.2. - Letw,(|x|) be the unique radially symmetric, compactly supported
solution of

1
Aw" +w" — ——w =0,
m—1
and B(0, R*) its support. Then there exist positive constasitand B such that

AR = )"t < w,(r) < B(R* — )1,
AR — 1)t < —w,(r) < B(R* — r)t,
forall r € [0, R*].

Proof. —The functionz = w!" satisfies

N-1 1

7"+ 7+z— ZHYm=o.
m—1

Multiplying by z” and integrating front to R* we get
R*

7(r)?  z(r)? N-1,6 , m  mti o
5 + > —/ S Z'(s) ds—m2_1z (r)y=0.

r

Hence near = R*,

22> A (r)



958 C. CORTAZARET AL./ Ann. I. H. Poincaré — AN 19 (2002) 927-960

and hence—%" 7 < —AY?  sothat’% (r) > A(R* —r), whencew(r) > A(R* —r)m1
nearr = R*. On the other hand, again ne®t,

pN1 /(r)<C/ YmsysN=1ds,

or, sincez is decreasing im,
PN ) < C(RHY —rM) 2™ ().
It follows that —z 7 ' (r) < C(R* — r). Thusz "= (r) < C(R* — r)? and hence
w(r) < C(R* = )7t

nearr = R*. Similar estimates for the derivative follow from those forand the above
intermediate computations. Making smaller andB bigger, if necessary, the lemma is
proved. O

The following lemma was used in Section 6. Since its proof follows closely the proof
of Lemma 4.2 of [23], we only sketch it here.

LEMMA A.3. - The only eigenfunctions @.1)for A = 0 are linear combinations of
the functions}.

Proof. —-The lemma will be proved as soon as we prove that the eigenspace
corresponding ta. = 0 has dimension less or equalXo— 1. So lety satisfy

mAlﬁ—i-ml//—%l ~m=Dy, — Q. (A.3)

Let uy, ex(o), with o € SV~1, be the eigenvalues and eigenvectors of the Laplace—
Beltrami operator or§V 1. We recall that

mo=0<pr=---=py=N—1<pupn;1<

We normalizee; so that they form a complete orthonormal basi€.6(S" ). Now we
set

w= [ vooeao
N-1
and observe that, satisfies

. N-—-1 ) w—(m—l)
M@ +m—— @t M — —

oy =murpr onO<r < R*. (A.4)

We note that fogpg we have

w—m=1
1 =0 onO<r<R*

-1 ,
$o+meo —

meg +m
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with ¢5(0) = 0 and ¢(R*) =0.
Also settingz = w” we see that

N -1 Zl/m

7"+ 7 +z—

1=O on O<r < R*.

According to Proposition 4.1 in [3], the corresponding linearized equation

" N-1 " Z_mTil
me" +m——¢" +mp — ——¢ =0
r m—1

has no nontrivial solutions satisfying(0) = 0 andz(R*) = 0. We observe that the
results of [3] hold the same for the cage=1 in the notation of that paper. This implies
wo=0 sincez ™" = w1, Therefore, as in [23], the lemma will be proved as soon
as we prove thap, = 0 for all k > N + 1. To do this assume for a contradiction that
o # 0 for somek > N + 1. Since in this case, as in [23], we can assume ¢hat) is
positive for small values of, we have that there existg € (0, R*] such thatp, () > 0
if r € (0, pr) andgy (o) = 0. Multiplying (A.4) by N~1(w™)" and integrating from 0 to
ok, after integrating by parts twice and using boundary values, one gets

Pk
P ok (o) (w™) (o) + (N — 1+ ) / V30 (r) (w™) (r) dr = 0.
0

This is a contradiction sinag, (ox) < 0 and(w™)'(r) < 0 forr € (0, R*). The lemma is
proved. O
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