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ABSTRACT. – We study the blow-up phenomenon for the porous-medium equation inRN ,
N � 1,

ut = �um + um,

m > 1, for nonnegative, compactly supported initial data. A solutionu(x, t) to this problem
blows-up at a finite timēT > 0. Our main result asserts that there is a finite number of points
x1, . . . , xk ∈ RN , with |xi − xj | � 2R∗ for i �= j , such that

lim
t→T̄

(T̄ − t)
1

m−1u(t, x)=
k∑

j=1

w∗(|x − xj |).

Here w∗(|x|) is the unique nontrivial, nonnegative compactly supported, radially symmetric
solution of the equation�wm + wm − 1

m−1w = 0 in RN andR∗ is the radius of its support.
Moreoveru(x, t) remains uniformly bounded up to its blow-up time on compact subsets of
RN \ ⋃k

j=1 B̄(xj ,R
∗). The question becomes reduced to that of proving that theω-limit set

in the problemvt = �vm + vm − 1
m−1v consists of a single point when its initial condition is

nonnegative and compactly supported.
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RÉSUMÉ. – Nous étudions le phénomène d’explosion pour l’équation des milieux poreux dans
RN , N � 1,

ut = �um + um,

m> 1, pour une donnée initiale positive ou nulle, à support compact. Une solutionu(x, t) de ce
problème explose en temps finiT̄ > 0. Notre principal résultat établit qu’il existe un nombre fini
de pointsx1, . . . , xk ∈ RN , with |xi − xj | � 2R∗ aveci �= j , tels que

lim
t→T̄

(T̄ − t)
1

m−1u(t, x)=
k∑

j=1

w∗(|x − xj |).

Ici w∗(|x|) est l’unique solution non triviale, positive ou nulle, à support compact et à symétrie
radiale de l’équation�wm + wm − 1

m−1w = 0 dansRN et R∗ est le rayon de son support. De
plus,u(x, t) reste uniformément bornée jusqu’à son temps d’explosion sur des sous-ensembles
compacts deRN \⋃k

j=1 B̄(xj ,R
∗). La question est ramenée à la démonstration que l’ensemble

ω-limite du problèmevt = �vm + vm − 1
m−1v est constitué d’un seul point quand sa donnée

initiale est positive ou nulle et à support compact.

1. Introduction

This paper deals with the description of the blow-up phenomenon in the porous-
medium equation inRN , N � 1,

ut = �um + um, (1.1)

u(x,0) = u0(x) (1.2)

wherem > 1 andu0(x) is a compactly supported, not identically zero nonnegative
function whose regularity will be specified later. The porous-medium equationut = �um

and its variations represent simple dissipative models for quantities which diffuse slowly.
In fact this simple degenerate equation exhibits, unlike the heat equation, finite speed of
propagation, which amounts in (1.1) to the fact that the support in space variable of the
solution remains bounded at all times where the solution is defined. On the other hand,
the presence of the superlinear termum as a source makes possible finite time blow-
up, for instance the space-independent solution(m − 1)−

1
m−1 (T − t)−

1
m−1 . Actually, the

(unique) solution of (1.1)–(1.2) always blows-up in finite time. This is the case for any
nonzero initial data in the more general problem

ut = �um + up (1.3)

as long as 1< p < m + 2
N

, as established in [12], a generalization of the classical
Fujita’s result form = 1 [10]. The powerp = m is certainly special since diffusion and
source share the same nonlinear growth. This gives rise to the interesting phenomenon
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of regional blow-up, meaning this blow-up taking place only in a compact set with
nonempty interior. This is in sharp contrast with phenomena typically exhibited for other
powers in the source term: In fact, while forp < m blow-up occurs in entire space, as
established in [27], forp >m blow-up is expected to occur only at a lower dimensional
set, and generically only at isolated points. Fine knowledge is today available on the
blow-up profiles of (1.3) whenm = 1 and 1< p < N+2

N−2, a basic problem that has been
the object of extensive study, see [9,15,16,24,25,29] and the references therein. Of course
if m = p = 1 no blow-up occurs at all, so that the phenomenon here described seems
quite characteristic of porous-media type equations.

The purpose of this paper is to describe completely the blow-up in (1.1)–(1.2) in
the following sense: we show that for any initial condition the solutionu develops
(exactly) a finite number of similarspherical hot spots: more precisely, there is a finite
number of disjoint balls with common radiiR∗ outside which the solution remains
uniformly bounded, while inside each of them it develops a common self-similar radially
symmetric profile(T̄ − t)−

1
m−1w∗(r), wherer is the distance to the center of these balls

andw∗ is a strictly positive function. Moreover, we show that one-ball blow-up is stable
in the sense that for a given initial data leading to one-ball blow-up, all neighboring data
exhibit the same phenomenon, with blow up taking place “approximately” in the same
ball. While k-ball blow-up is in general unstable, it becomes stable within the class of
initial data leading to blow-up with exactlyk balls.

The presence of regional blow-up in this equation was first observed and studied in
the caseN = 1 in [11]. The elliptic problem found when searching by separation of
variables a solution of the form

u(x, t) = (T̄ − t)−
1

m−1θ(x)

has been studied for radial symmetry in [1–3,17].
This paper is a continuation of our previous work [4] where the following partial result

was established: Let̄T > 0 be the time at which blow-up occurs. Lettn be any sequence
tn ↑ T̄ . Then there is a subsequence oftn which we still denotetn, and a nontrivial
compactly supported solutionw(x) of the elliptic equation

�wm + wm − 1

m − 1
w = 0, (1.4)

such that

(T̄ − tn)
1

m−1u(x, tn) → w(x)

uniformly. On the other hand, it was established in [2] that the components of the support
of w are balls of the same radii and that the solution is radially symmetric inside each
of them. This radially symmetric solution turns out to be unique, as established in [3].
Let BU(u0) be the set ofblow-up pointsof u, namely the set of pointsx for which there
are sequencesxn → x andtn → T̄ such thatu(xn, tn) → +∞. It was also shown in [4]
that this set is compact and it is precisely constituted by the union of the supports of all
possible limitingw’s. The important point unsolved in [4] was whether there is anactual
unique blow-up profile, rather than oscillation between different limiting configurations.
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The question turns out to be rather subtle, and we answer it affirmatively in the following
result.

THEOREM 1.1. –Letu(x, t) be the solution of(1.1)–(1.2), whereu0(x) is compactly
supported, continuous and such thatum

0 ∈ H 1(RN). Let T̄ > 0 be the blow-up time of
this solution. Then there are pointsx1, . . . , xk ∈ RN such that

lim
t→T̄

(T̄ − t)
1

m−1u(t, x) =
k∑

j=1

w∗(|x − xj |)

uniformly. Herew∗(|x|) is the unique compactly supported, radially symmetric solution
of (1.4). If R∗ is the radius of its support then we also have|xi − xj | � 2R∗ for i �= j .
Moreoveru(x, t) remains uniformly bounded up to its blow-up time on compact subsets
of RN \⋃k

j=1 B̄(xj ,R
∗). In other words,

BU(u0) =
k⋃

j=1

B̄(xj ,R
∗).

In light of this result, it is natural to ask for stability of the regional blow-up
phenomenon. The one-ball blow-up turns out to be stable in the following sense.

THEOREM 1.2. –Assume thatu0 compactly supported, with support contained in
B(0,M), is such thatk = 1 in the above theorem, let us say

BU(u0) = B̄(x̄,R∗).

Then, givenε > 0, there exists aδ > 0 such that for anyu1 continuous, compactly
supported inB(0,M) which besides satisfies

∥∥um
0 − um

1

∥∥
H1(RN)

< δ,

we have that

BU(u0) = B̄(x̄1,R
∗),

for some point̄x1 with |x̄ − x̄1| < ε.

In [4] it is established that the solutionu(x, t) is decreasing in the radial direction
outside the smallest ball which contains the support ofu0. From here and the fact that
w∗ is radially decreasing, it follows that a sufficient condition for one-ball blow-up to
occur is that this support lies inside a ball of radius less thanR∗.

Instead, the two-ball blow-up is not stable as the following example shows. Let us fix
pointsx1 andx2 with |x1 − x2| > 2R∗. Then the function

u(x, t) = (T̄1 − t)−
1

m−1w∗(|x − x1|)+ (T̄2 − t)−
1

m−1w∗(|x − x2|)
solves Eq. (1.1) for 0< t < min{T̄1, T̄2}. If T̄1 = T̄2, then two-ball blow-up takes place,
which however disappears as soon asT̄1 and T̄2 differ, no matter how close they are.
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This example suggests that one-ball blow-up may actually hold for “generic” initial data.
k-ball blow-up is however stablewithin the class of initial data leading to blow-up ink
balls, class which may be conjectured to be a codimensionk − 1 manifold.

THEOREM 1.3. –Assume thatu0 is compactly supported inB(0,M) and such that

BU(u0) =
k⋃

i=1

B̄(xi,R
∗).

Letu1 be another initial condition supported inB(0,M), with

BU(u1) =
k⋃

i=1

B̄
(
x1
i ,R

∗).
Then, givenε > 0, there exists aδ > 0 such that if‖um

0 −um
1 ‖H1(RN) < δ, then|xi −x1

i | <
ε for all i = 1, . . . , k.

It is worthwhile mentioning the apparent analogy of this stability-unstability phenom-
enon with that for single and multiple-point blow-up in (1.3) form = 1, 1< p < N+2

N−2,
analyzed in the works [9,24,25].

Now that the blow-up set is fully characterized, further questions arise, for instance
that of finding the exact behavior of the solution on the boundary of the balls determining
the blow up. On the other hand, the solution remains bounded up to the blow-up instant
outside these balls, so one may wonder whether the solution keeps evolving in some
sense after blow-up occurs. The general question of “continuation after blow-up” has
been treated for a class of related equations in [14].

Next we describe the proof of the above results. Let us introduce the change of
variables

v(x, t) = (T̄ − τ)
1

m−1u(x, τ)|τ=T̄ (1−e−t ). (1.5)

It is readily checked thatv satisfies the equation

vt = �vm + vm − 1

m − 1
v, (1.6)

v(x,0) = T̄
1

m−1u0(x). (1.7)

From Proposition 4.1 in [4], we know that given a sequencetn → +∞ there is a
subsequence, which we denote in the same way, and a nontrivial, compactly supported
solution of (1.4) so that

v(x, tn)
m → w(x)m asn → ∞,

both in uniform andH 1-senses. Thus our task in establishing Theorem 1.1 is precisely to
prove that the limitw(x) is actually the same alongeverysequencetn → +∞. A main
feature of Eq. (1.6) is the presence of a Lyapunov functional for it, namely

J (z) = 1

2

∫ (|∇zm|2 − z2m)dx + m

m2 − 1

∫
zm+1 dx. (1.8)
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In fact we have that the applications �→ J (v(·, t)) is decreasing ont > 0 and

lim
t→+∞J

(
v(·, t))= J (w).

Here and in what follows the integral symbol without limits specified means integration
on the wholeRN . The presence of this functional implies that limit points of the
trajectory must be steady states. The problem of uniqueness of asymptotic limits in
nonlinear heat equations under the presence of a Lyapunov functional has been analyzed
in a number of works. A general result due to L. Simon [28] shows the uniqueness of
the limit for uniformly parabolic equations in the case of uniform real analytic data on a
compact manifold. Uniform analiticity cannot be lifted in general in this result, at least in
the nonautonomous setting, as shown in [26]. Needless to say, the compactly supported
setting we deal with makes our situation highly nonanalytic.

Other uniqueness results in parabolic problems, nondegenerate and degenerate, are
contained in the works [5–8,13,19,18,22]. In the latter work, a renormalization method
based on L. Simon’s ideas, used in classifying singularities in an elliptic problem in [20]
was adapted to a semilinear heat equation. The general framework of this method is what
we will use here. Alternative methods for degenerate equations of porous-medium type,
in one and higher dimensions, have been devised in [7,8]. Those techniques do not apply
to the nonlinearity of Eq. (1.7), in particular those in [8], based on analiticity, because of
the presence of compactly supported steady states. This is explicitly commented in [8]
and posed as an open question.

A main technical difficulty arises when the support of the limitw contains balls that
are tangent, for this introduces a noise in the analysis which is rather delicate to get rid
of.

In the next section we explain in further detail our method. In particular we derive the
main results as corollaries of a more general fact, Theorem 2.1 whose proof is carried
out by means of the renormalization approach mentioned above, whose basic scheme is
set up by Proposition 2.1. The remaining sections of the paper are devoted to the proof
of that intermediate result.

2. Proof of the main results

The theorems stated in the previous section will be direct consequences of the
following result:

THEOREM 2.1. –Given numbersM > 0, K > 0, there exist numbersT > 0 and
t∗ > 0 such that givenε > 0, there exists aδ > 0 with the following property: Let v
be any globally defined solution of(1.7) in [0,∞) = such that

supp
(
v(·,0)

)⊂ B(0,M), (2.1)∥∥v(·,0)m
∥∥
L∞(RN)

+ ∥∥v(·,0)m
∥∥
H1(RN)

� K, (2.2)

and

lim
t→∞J

(
v(·, t))= kJ (w∗).
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Then the following holds: If w is a compactly supported steady state of(1.7) such that
for somet0 > t∗

(
sup

t0�t<t0+T

∫ (
v(x, t)m −w(x)m

)(
v(x, t) −w(x)

)
dx
)1/2

< δ,

then (
sup

t0�t<∞

∫ (
v(x, t)m −w(x)m

)(
v(x, t) −w(x)

)
dx
)1/2

)1/2

< ε.

The proof of this result is based on the following

PROPOSITION 2.1. –There exist positive numbersT , δ, C and t∗with the following
property. Letv(x, t) be any solution of(1.7), defined in0< t < ∞ as in the statement of
the above theorem. Consider pointsx1, . . . , xk and set

w(x) =
(

k∑
i=1

w∗(|x − xi|)m
)1/m

.

Assume thatt0 > t∗ is such that

η =
(

sup
t0�t�t0+T

∫ (
v(x, t)m −w(x)m

)(
v(x, t) −w(x)

)
dx
)1/2

< δ.

Then there exist points̄xi with |x̄i − xi | � Cη such that

(
sup

t0+T �t�t0+2T

∫ (
v(x, t)m − w̄(x)m

)(
v(x, t) − w̄(x)

)
dx
)1/2

� η

2
,

where

w̄(x) =
(

k∑
i=1

w∗(|x − x̄i|)m
)1/m

.

Let us see how Theorem 2.1 follows from this assertion.

Proof of Theorem 2.1. –Let ε be given and let us writew as

w(x) =
k∑

i=1

w∗(|x − xi |) =
(

k∑
i=1

w∗(|x − xi|)m
)1/m

for points xi with |xi − xj | � 2R∗. Let δ0 < δ, with δ the number predicted by
Proposition 2.1. Assume that for somet0 we have

η1 ≡ sup
t0�t�t0+T

(∫ (
v(x, t)m −w(x)m

)(
v(x, t) − w(x)

)
dx
)1/2

< δ0
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whereT is the number given by Proposition 2.1. We find then that there are points
x11, . . . , xk1 with |xi − xi1| � Cη1 such that

η2 ≡
(

sup
t∈[t0+T ,t0+2T ]

∫ (
v(x, t)m −w1(x)

m
)(
v(x, t) −w1(x)

)
dx
)1/2

� η1

2

where

w1(x) =
(

k∑
i=1

w∗(|x − xi1|)m
)1/m

.

Sinceη2 � η1/2 < δ, we can apply again Proposition 2.1 to find pointsxi2 with now
|xi2 − xi1| � C η1

2 such that

η3 =
(

sup
t∈[t0+2T ,t0+3T ]

∫ (
v(x, t)m −w2(x)

m
)(
v(x, t) −w2(x)

)
dx
)1/2

� η2

2
� η1

4
,

where

w2(x) =
(

k∑
i=1

w∗(|x − xi2|)m
)1/m

.

Iterating this procedure we find a sequencexij , j = 1,2, . . . , such that|xij − xi(j−1)| �
C η

2j and

(
sup

t∈[t0+jT ,t0+(j+1)T ]

∫
RN

(
v(x, t)m − wj(x)

m
)(
v(x, t) −wj(x)

)
dx
)1/2

� η1

2j

with xi0 = xi and

wj(x) =
(

k∑
i=1

w∗(|x − xij |)m
)1/m

.

The following fact is easily checked: there exists a constantD > 0 depending only on
m> 1 such that for all nonnegative numbersa, b, c one has

(
am − cm

)
(a − c) � D

{(
am − bm

)
(a − b) + (bm − cm

)
(b − c)

}
.

Now let t be any number greater thant0. Thent ∈ (t0 + jT , t0 + (j + 1)T ] for somej
and

g(t)≡
∫

RN

(
v(x, t)m − w(x)m

)(
v(x, t) − w(x)

)
dx

�D

{
sup

t̄∈[t0+jT ,t0+(j+1)T ]

∫ (
v(x, t̄)m − wj(x)

m
)(
v(x, t̄) −wj(x)

)
dx

+
∫ (

w(x)m − wj(x)
m
)(
w(x) − wj(x)

)
dx
}
.
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Now, we have thatw∗ is uniformly Hölder continuous for anym> 1, hence

∣∣(w(x)m −wj(x)
m
)(
w(x) −wj(x)

)∣∣� C max
i

|xij − xi |a

for some numbersa,C > 0. It follows that

g(t) � A

{(
η1

2j

)2

+ max
i

|xij − xi |a
}
,

for certain positive constantsA,a. Finally,

|xij − xi | � C

∞∑
l=1

η12−l = Cη1,

from where it follows that

g(t) � A
{
(η1)

2 + Caηa
1

}
<A

{
δ2

0 + Caδa0
}
< ε,

provided thatδ0 was chosen sufficiently small. This concludes the proof.✷
Proof of Theorem 1.1. –From Proposition 4.1 in [4], there is a sequencetn → ∞ such

that v(x, tn + τ) → w(x) for some nontrivial solution of (1.4), uniformly inx and for
τ in bounded intervals. We recall that the space support ofv is contained inside a ball
independent of the time variable. It follows that, givenε > 0, there exists a numbert0 > 0
such that

η1 =
(

sup
t∈[t0,t0+T ]

∫ (
v(x, t)m − w(x)m

)(
v(x, t) − w(x)

)
dx
)1/2

< δ,

whereT andδ are the numbers given by Theorem 2.1. Thus,

(∫ (
v(x, t)m − w(x)m

)(
v(x, t) −w(x)

)
dx
)1/2

< ε

for all t � t0. Sinceε is arbitrary, we have actually established that

lim
t→+∞

∫ (
v(x, t)m − w(x)m

)(
v(x, t) −w(x)

)
dx = 0,

hencew is the unique limit point of the trajectoryv(·, t), and the proof of the theorem is
complete. ✷

Proof of Theorems 1.2 and 1.3. –Assume we are in the situation of Theorem 1.3
for the initial conditionu0. Let u0n be a sequence of initial conditions such thatum

0n
converges uniformly and inH 1-sense toum

0 , and with supports contained in some
common ball. LetT̄n be the blow-up time forun, the solution with initial condition
u0n and T̄ that for u0. We claim thatT̄n → T̄ . Let T ∗ be a limit point for T̄n. After
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scaling, we end up with the following situation: There is a globally defined solutionṽ of
(1.7) with ṽ(0, x) = T ∗u0(x) which converges ast → ∞ to a nontrivial steady state. But
this implies, scaling back, that the blow-up time foru cannot be other thanT ∗. Hence
T ∗ = T̄ . Assume now additionally thatun as well asu havek-ball blow-up for anyn.
Let vn be the solution of (1.7) defined as

vn(x, s) = (T̄n − t)
1

m−1un(x, t)|t=T̄n(1−e−s ).

ThenJ (vn(·, t)) → kJ (w∗) as t → ∞. SinceT̄n → T̄ , we will have, on the one hand,
v(x, t) close tow(x) for all t > t0, while we can also make, by continuity,vn(x, t) as
close as we wish in compact intervals in time tov. As a consequence,vn will also be
close tow in an interval of lengthT aftert0, so that Theorem 2.1 applies in this situation
as well, so proving the stated result. Finally, for Theorem 1.2 it suffices to observe that for
k = 1 in the above situation, and an arbitrary sequence of initial conditions converging
to u0, one has that ifJ (v(·, t̄)) < 3

2J (w∗) thenJ (vn(·, t̄ )) < 3
2J (w∗) for all sufficiently

largen. It follows then thatJ (vn(·, t)) → J (w∗) as t → +∞, hence one-ball blow-up
holds for any initial condition close tou0 and Theorem 1.3 applies in this situation.✷

The remaining of this paper will be devoted to the proof of Proposition 2.1. To do this,
we will restate it in the next section in a more convenient form.

3. Preliminaries and a key inequality

Our task in what follows is to prove Proposition 2.1. After an indirect argument, it is
easy to see that this result follows from the following

PROPOSITION 3.1. –There exist positive numbersT and C such that if ṽn is a
sequence of solutions of Eq.(1.7) defined on0 � t < +∞, satisfying the constraints
(2.1), (2.2), and such that for some sequencetn → +∞, setting

vn(x, t) ≡ ṽn(x, tn + t),

wn(x) =
(∑

i

w∗(|x − xin|)m
)1/m

,

one has

ηn ≡
(

sup
t∈[0,T ]

∫ (
vn(x, t)

m − wn(x)
m
)(
vn(x, t) − wn(x)

)
dx
)1/2

→ 0 (3.1)

asn → ∞. Assume besides that for eachn,

lim
t→∞J

(
vn(·, t))= kJ (w∗),
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whereJ is the Lyapunov functional(1.8). Then there exist points̄xin with |x̄in − xin| �
Cηn and

(
sup

t∈[T ,2T ]

∫ (
vn(x, t)

m − w̄n(x)
m
)(
vn(x, t) − w̄n(x)

)
dx
)1/2

� ηn

2
(3.2)

for all n sufficiently large, and where

w̄n(x) =
(∑

i

w∗(|x − x̄in|)m
)1/m

.

Let vn be a sequence as in the statement of the above result. Then we have that
vn(x, t)

m − wn(x)
m → 0 in L∞ andH 1-senses inRN , uniformly locally in time t ∈

[0,∞). In fact, the estimates leading to convergence up to subsequences to steady states
derived in [4] depend only on bounds for the initial condition and on the radius of the
smallest ball containing the initial condition (in fact the size support of the solution at
all times turns out to depend only on this radius). ForT > 0 fixed, which we will choose
later, we use in what follows the following notation:

φn(x, t) ≡ vn(x, t) −wn(x)

ηn

. (3.3)

Thenφn satisfies the equation

∂φn

∂t
= m�

(
w̃m−1

n φn

)+ mw̃m−1
n φn − 1

m − 1
φn + η−1

n zn, (3.4)

where

w̃n(x, t)
m−1 ≡

1∫
0

(
wn(x) + t

(
vn(x, t) − wn(x)

))m−1
dt (3.5)

and

zn(x) =∑
i

w∗(|x − xin|)− wn(x).

Let us observe that, by definition of the numberηn we have that

(
m

∫
wn(x, t)

m−1φn(x, t)
2 dx

)1/2

� 1

for all t ∈ [0, T ]. Notice also thatzn is supported only near the boundary of the balls.
Indeed, in the limitwn must converge (up to subsequences) to a steady statew of
Eq. (1.4), hence the distance between the centersxin must be in the limit no less than
2R∗.

These facts suggest that on interior sets of the support of the limitw(x) of thewn,
which is the uniform limit ofwn, we should see convergence in certain sense ofφn to a
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solution of the degenerate parabolic equation

(φ)t = m�
(
wm−1φ

)+mwm−1φ − 1

m − 1
φ. (3.6)

The proof of Proposition 2.2 has as its key element the analysis of this convergence, and
in particular in finding the form of its limit. Thus we assume in what follows the validity
of the conditions of Proposition 2.2. We introduce some notation, and establish in
Lemma 3.1 below an inequality which will play a crucial role in the analysis of the next
sections. Following the notation of the previous section we writewin = w∗(|x − xin|),
so thatwn = (

∑k
i=1w

m
in)

1/m. Let us also consider the functions

ψn = vm
n − wm

n

ηn

, (3.7)

Gn = 1

η2
n

{
vm+1
n

m + 1
− wm+1

n

m + 1
− wm

n (vn − w)

}
, (3.8)

Hn = (m − 1)(vm+1
n − wm+1

n )+ (m+ 1)(vnwm
n − vm

n wn)

η2
n

. (3.9)

It is easily checked the existence of constantsC1 andC2, depending only onm such that
the following inequalities hold:

C1Gn � (vm
n −wm

n )(vn −wn)

η2
n

� C2Gn. (3.10)

We observe that the already defined quantity

zn =
k∑

i=1

win − wn, (3.11)

measures the “overlap” of the supports of thewin.
We also note that there exists a constantC > 0, depending onk andm, such that

wn �
k∑

i=1

win � Cwn. (3.12)

In particular 0� zn � Cwn for another constantC.
The following relation among the above defined objects may be regarded as the key

step in the proof of Proposition 2.2.

LEMMA 3.1. – The following relation holds:

1

(m− 1)η2
n

∫ (
vm
n − wm

n

)
zn � −

∫
∂

∂t
Gn + 1

m2 − 1

∫
Hn − m

(m2 − 1)η2
n

∫
wm

n zn.
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Proof. –Let J be the Lyapunov functional for (1.6) given by (1.8). Let us set

I = 2

(
J (vn) −

k∑
i=1

J (win)

)
.

ThenI � 0 and we have

I =
∫ (∣∣∇vm

n

∣∣2 − ∣∣∇(wm
n

)∣∣2)−
∫ (

v2m
n − w2m

n

)

+ 2m

m2 − 1

∫ (
vm+1
n −

k∑
i=1

wm+1
in

)
+
∫ (∑

i �=j

∇win · ∇wjn

)
−∑

i �=j

wm
inw

m
jn.

After integrating by parts and using the equations we get

I = −
∫ (

�vm
n + �wm

n

)(
vm
n − wm

n

)−
∫ (

v2m
n − w2m

n

)

+ 2m

m2 − 1

∫ (
vm+1
n −

k∑
i=1

wm+1
in

)
− 1

m − 1

∫ ∑
i �=j

wm
inwjn.

Thus

I = −
∫

vnt
(
vm
n −wm

n

)− 1

m− 1

∫ (
vn +

k∑
i=1

win

)(
vm
n −wm

n

)

− 1

m − 1

∫ ∑
i �=j

wm
i wj + 2m

m2 − 1

∫ (
vm+1
n −

k∑
i=1

wm+1
in

)
.

So we obtain, after recalling thatη2
n
∂Gn

∂t
= vnt (v

m
n − wm

n ),

I = −η2
n

∂Gn

∂t
+ 1

m − 1

∫ (
vnw

m
n − vm

n

k∑
i=1

win

)
+ 1

m + 1

∫ (
vm+1
n −

k∑
i=1

wm+1
in

)
.

Since the functionalJ is nonincreasing along trajectories we obtain, after some algebraic
manipulations and recalling the definition ofHn andzn, that

0� −∂Gn

∂t
+ 1

m2 − 1

∫
Hn + 1

η2
n

∫
wm+1

n − (
∑k

i=1w
m+1
in )

m + 1

− 1

m − 1

1

η2
n

∫ (
vm
n − wm

n

)( k∑
i=1

win − wn

)
− 1

m − 1

∫
wm

n

zn

η2
n

.

It follows from Lemma A.1, in the appendix, that

(
wm+1

n −
k∑

i=1

wm+1
in

)
� 1

m− 1

(
wm

n zn
)
. (3.13)

Hence
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0� −∂Gn

∂t
+ 1

m2 − 1

∫
Hn

− 1

m − 1

1

η2
n

∫ (
vm
n − wm

n

)( k∑
i=1

win −wn

)
− m

m2 − 1

∫
wm

n

zn

η2
n

which yields the desired result.✷
The result just proven plays an essential role in the analysis to follow in the

next sections. In Section 4 we will obtain estimates which will lead in particular to
convergence ofφn in a suitable sense in Section 5. An important step is to obtain a
proper control on the size ofη−1

n zn, which is measuring the degree of superposition of
the balls constituting the support ofwn. In Section 6 we will express the limitφ of the
φn’s in terms of eigenvalues and eigenfunctions of the elliptic operator in Eq. (3.6). The
fact that the operator does not degenerate in the interior of the support ofw yields strong
smooth convergence there. However a finer understanding of the behavior ofφn near the
boundary of the support ofw is needed, and found in Section 7.

It should be remarked that a particularly delicate situation is the case thatw has
adjacent balls in their support, since the effect of superposition is in fact present up to
the limit, and that has to been taken care of. This is perhaps the main difficulty overcame
in this paper.

4. Further estimates

In this section we establish, as consequences of Lemma 3.1, some important estimates
which will lead in particular to convergence ofφn in a suitable sense. Our first result
provides a uniform control on the overlap of the supports of thewin by means of the
following estimate forzn.

LEMMA 4.1. – There is aC > 0 such that for alln we have

η−2
n

∫
wm

n zn � C. (4.1)

Proof. –Integrating in time from 0 toT the inequality of Lemma 3.1 we obtain

0�
∫ (

Gn(x,0) − Gn(x,T )
)+

T∫
0

∫
Hn

− 1

m− 1

1

η2
n

T∫
0

∫ (
vm
n − wm

n

)( k∑
i=1

win − wn

)
− m

m2 − 1

T∫
0

∫
wm

n

zn

η2
n

.

Recalling now that,
∫
Gn(x, t) � C for all 0� t � T and thatHn � CGn, we obtain

m

m2 − 1

T∫
0

∫
wm

n

zn

η2
n

� C − 1

m − 1

1

η2
n

T∫
0

∫ (
vm
n −wm

n

)( k∑
i=1

win − wn

)
,
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where the constantC depends now also inT . On the other hand,

1

η2
n

T∫
0

∫ (
vm
n −wm

n

)( k∑
i=1

win −wn

)
� I

where

I = 1

η2
n

T∫
0

∫
{x|vn(x)<

∑k

i=1
win(x)}

(
vm
n −wm

n

)( k∑
i=1

win − wn

)
.

Now, using (3.10) and (3.12), after an application of the mean value theorem we get

|I | �
∣∣∣∣∣

T∫
0

∫
(vm

n − wm
n )

η2
n

(vn − wn)

∣∣∣∣∣
1/2∣∣∣∣∣

T∫
0

∫
{x|v(x)<∑k

i=1
win(x)}

(vm
n − wm

n )

(v −wn)

z2
n

η2
n

∣∣∣∣∣
1/2

�C

∣∣∣∣∣
T∫

0

∫
{x|v(x)<∑k

i=1
win(x)}

mwm−1
n

z2
n

η2
n

∣∣∣∣∣
1/2

� C

∣∣∣∣
∫

wm
n

zn

η2
n

∣∣∣∣
1/2

.

Hence

m

m2 − 1
η−2
n

∫
w2

nzn � C + C

∣∣∣∣∣
T∫

0

∫
wm

n

zn

η2
n

∣∣∣∣∣
1/2

.

From here the proposition immediately follows.✷
Examining the above proof, now applied integrating between 0 and anyt > 0, and

using the result just proved we see that we have actually established the following bound.

COROLLARY 4.1. –We have that there is a constantC such that for allt > 0 one has

0�
∫ (

Gn(x,0) − Gn(x, t)
)

+ 1

m2 − 1

t∫
0

∫
Hn + C

t∫
0

(∫
Gn(x, s)dx

)1/2

ds +Ct +C. (4.2)

As a further consequence, we see that since
∫
Gn(x,0) � C, and as we have said,

|Hn| � CGn, the following fact holds.

COROLLARY 4.2. – There are constantsa, b > 0 such that for alln, t ,∫
Gn(x, t) � beat . (4.3)

5. Convergence

We will use here the results of the previous section to establish convergence of the
quantitiesψn and φn in the appropriate sense. Let us note thatψn defined by (3.7)
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satisfies the equation

(φn)t = �ψn + ψn − 1

m − 1
φn + zn

(m− 1)ηn

. (5.1)

Integrating (5.1) againstψn, recalling that∂
∂t
Gn = ψn

∂φn

∂t
, we obtain

∂

∂t

∫
Gn dx =

∫
∂φn

∂t
ψn dx

= −
∫

|∇ψn|2 dx +
∫

ψ2
n − 1

m − 1

∫
φnψn + 1

m − 1

∫
zn

ηn

ψn. (5.2)

LEMMA 5.1. –There exists a constantC > 0 such that∫
zn

ηn

ψn −
∫

φnψn � C.

Proof. –We have∫
zn

ηn

ψn =
∫

{x/zn(x)�(vn−wn)(x)}

zn

ηn

ψn +
∫

{x/zn(x)>(vn−wn)(x)}

zn

ηn

ψn

�
∫

φnψn +
∫

{x/zn(x)>(vn−wn)(x)}

zn

η2
n

(
vm
n − wm

n

)

�
∫

φnψn +C
1

η2
n

∫
wm

n zn

where the last inequality holds by (3.12). Now the lemma follows by Proposi-
tion 4.1. ✷

As a consequence of the above result, we can establish the following estimate (local
in time) forψn, from where convergence in the appropriate sense ofφn will follow.

LEMMA 5.2. – Givent > 0, there existsC(t) > 0 such that

t∫
0

∫ (∣∣∇ψn(·, s)
∣∣2 + ∣∣ψn(·, s)

∣∣2)ds � C(t) (5.3)

for all n.

Proof. –Let us recall that

∫
Gn(s, x)dx � beas.

Since the functionv is bounded we see that|ψn| � C|φn|. Hence, using (3.10), we get
ψ2

n � CGn. Now integrating relation (5.2) in time, betweens = 0 ands = t and using
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Lemma 5.2 and Corollary 4.2 we get

t∫
0

∫ ∣∣∇ψn(·, s)
∣∣2 � Ceat ,

and the result is thus proven.✷
As a consequence of the last result, the sequenceψn can be assumed, after passing to

a subsequence, weakly convergent inL2((0, S);H 1(RN)) for eachS > 0. Let ψ(s, x)

be this limit. Assume now that

w(x) =
k∑

i=1

w∗(|x − xi |),

so that the support ofw is the union of disjoint ballsB(xi,R
∗), i = 1, . . . , k. Let

A=⋃k
i=1B(xi,R

∗). Then if we defineφ = w−(m−1)ψ onB = (0,∞) ×A then

S∫
0

∫
A

∣∣∇(wm−1φ
)∣∣2 + ∣∣wm−1φ

∣∣2 < +∞

for eachS > 0. In the next lemma we study further this convergence.

LEMMA 5.3. –The functionφ is of classC1 in B and φn(t, x) → φ(t, x) in the
uniformC1-sense over compact subsets ofB. Moreoverφ solves onB the equation

φt = m�wm−1φ + mwm−1φ − 1

m − 1
φ. (5.4)

Besides the mapt → ∫
wm−1(x)φ2(t, x)dx is continuous and∫

A

wm−1(x)φ2(t1, x)dx −
∫
A

wm−1(x)φ2(t2, x)dx

= 2

t2∫
t1

∫
A

(
m
∣∣∇(wm−1φ

)∣∣2 −m
(
wm−1φ

)2 + 1

m − 1
φ2
)

dx dt. (5.5)

Additionally, for any functionζ ∈ C1(A) with
∫
A(wm−1ζ 2 + |∇wm−1ζ )|2)dx < +∞∫

A

wm−1(x)φ(t1, x)ζ(x)dx −
∫
A

wm−1(x)φ(t2, x)ζ(x)dx

=
t2∫

t1

∫
A

(
m∇(wm−1φ

)∇ζ − mwm−1φζ + 1

m − 1
φζ

)
dx dt. (5.6)

Proof. –We recall thatφn satisfies the equation

(φn)t = �(anφn)+ anφn − φn + zn

(m − 1)ηn

(5.7)
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where an = vmn −wm

vn−w
. Then an → mwm−1 uniformly. Hence over compacts ofB the

coefficient an is uniformly positive and bounded, andzn ≡ 0 there for largen. The
standard theory for quasilinear nondegenerate parabolic equations, see [21], gives that
this convergence is also uniform in theC1-sense over compacts ofB, so that∇an is
also bounded there. From Lemma 2.1, it follows thatL2 norm on any parabolic cube
compactly contained inB. Again the theory for nondegenerate parabolic equations in
[21] provides uniform estimates forC1,α norms over compacts ofB, from whereC1

convergence follows.
Now, givenδ > 0 let us consider a smooth cut-off 0� η(x) � 1 compactly supported

in A with η(x) = 1 if dist(x,A) > δ and |∇(x)| � C/δ for all x. Let us integrate
Eq. (5.7) againstη2ψn in space and in time betweent = t1 andt = t2 to obtain∫

Gn(t1, x)η(x)dx −
∫

Gn(t2, x)η(x)dx

=
t2∫

t1

∫
η2
(

|∇ψn|2 −ψ2
n + 1

m − 1
ψnφn

)
dx dt +

t2∫
t1

∫
2η∇ηψn∇ψn dx

whereψn andGn are defined in (3.7) and (3.8). Now we letn → ∞ and get∫
w(x)m−1φ2(t1, x)η(x)dx −

∫
w(x)m−1φ2(t2, x)η(x)dx

=
t2∫

t1

∫
η2
(∣∣∇wm−1φ

∣∣2 − (wm−1φ
)2 + 1

m− 1
wm−1φ2

)
dx dt

+
t2∫

t1

∫
2η∇ηφwm−1∇(wm−1φ

)
dx = I + II .

Now, let us writeAδ = {x ∈A | dist(x, ∂A) � δ}. Sincewm−1 vanishes quadratically on
the boundary ofA, thenw(m−1)/2 � Cδ onAδ . It follows that

|II | � C

t2∫
t1

∫
Aδ

φw(m−1)/2∇(wm−1φ
)

dx dt � C

t2∫
t1

∫
Aδ

{
φ2wm−1 + ∣∣∇(wm−1φ

)∣∣2}dx.

Since the function inside the integral is indeed integrable by construction, it follows that
|II | → 0 as we letδ → 0. Let us recall that for eacht > 0

∫
Gn(t, x)dx � C(t), from

where it follows that
∫
φ2(t, x)wm−1(x)dx is finite. Then, lettingδ go to zero in the

above equality, relation (5.5) thus follows. The proof of the remaining assertion of the
lemma is similar, so that we omit it.✷

6. The spectral problem

In this section we will analyze the spectrum of the linear elliptic operator associated
to Eq. (5.4). The purpose of this is to find an expansion ofφ in terms of eigenvalues and
eigenfunctions of this operator.
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Thus we consider the eigenvalue problem

m�
(
wm−1φ

)+ mwm−1φ − 1

m− 1
φ + λφ = 0 (6.1)

with φ such thatwm−1φ ∈ H 1(B) and w
m−1

2 φ ∈ L2(B). Here w(x) = w∗(|x|) and
B = B(0,R∗). Equivalently, the problem can be restated as

m�ψ + mψ − 1

m − 1
w−(m−1)ψ + λw−(m−1)ψ = 0 (6.2)

with ψ ∈ H where

H = H 1(B)∩ L2
w(B),

with

L2
w(B) =

{
ψ ∈ L2(B)

∣∣∣ ∫
B

w−(m−1)ψ2 < +∞
}
.

Now we make the following observation: for a givenλ � 0, the set of distributional
solutionsψ ∈ H of (6.2) is finite-dimensional. In fact, usingψη as a test function, where
η ∈ C∞(7) is such thatη(x) = 1 for dist(x, ∂B) > δ and|∇η| � C/δ then

m

∫
B

|∇ψ |2η +
(

1

m− 1
− λ

)∫
w−(m−1)ψ2η

= −m

∫
B

ψ∇η∇ψ + m

∫
|ψ |2η.

Now, sincewm−1 vanishes quadratically on∂B, as the above lemma states, it follows
that |w(m−1)/2∇η| � C. Thus∣∣∣∣

∫
B

η

(
m|∇ψ |2 +

(
1

m− 1
− λ

)
w−(m−1)ψ2

)
− m

∫
ψ2η

∣∣∣∣
� C

( ∫
R∗−δ<|x|<R∗

w−(m−1)|ψ |2
)1/2

.

Letting δ → 0 we get

∫
B

m|∇ψ |2 +
(

1

m − 1
− λ

)∫
w−(m−1)ψ2 = m

∫
ψ2. (6.3)

It follows that the unit ball inL2-norm of the corresponding eigenspace is bounded in
H 1-norm, hence compact, so that the multiplicity of the eigenvalue is finite. Moreover,
only a finite number of eigenvaluesλ � 0 may exist. In fact, if an infinite number of
them exist, then one can construct an infinite orthonormal sequence of eigenfunctions
that must converge producing a contradiction.
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Let N be the finite-dimensional vector space spanned by all eigenfunctions inH

associated to nonpositive eigenvalues. Let us consider the numberλ∗ given by

λ∗ = 1

m − 1
+m inf

{∫
B

|∇ψ |2 −
∫

ψ2/

∫
w−(m−1)ψ2 = 1,

∫
w−(m−1)ψζ = 0, ∀ ζ ∈ N

}
. (6.4)

We claim thatλ∗ > 0. In fact, assumeλ∗ � 0 and letψn be a minimizing sequence of the
above quantity. It follows thatψn is bounded in the spaceH . Letψ be the weak limit in
H of some subsequence. Then

1

m− 1
+ m

∫
B

|∇ψ |2 − m

∫
ψ2 � λ∗ � 0.

Henceψ �= 0 and
∫
w−(m−1)ψ2 � 1. The definition ofλ∗ gives then that necessarily∫

w−(m−1)ψ2 = 1, and henceψ attains the infimum. It easily follows thatλ∗ is an
eigenvalue of problem (6.2), withψ as associated eigenfunction. Since

∫
B w−(m−1)ψζ =

0 for all ζ ∈N , it follows thatλ∗ > 0, a contradiction which proves the desired result.
In what follows we shall label the first (possibly repeated)k0 negative eigenvalues of

problem (6.1) as

λ1 � λ2 � · · · � λk0 < 0,

with associated eigenfunctionsφ1, . . . , φk0, orthonormalized so that

∫
B

φiφj = δij .

We observe also thatλ = 0 is an eigenvalue and that∂wm

∂xi
are associated eigenfunctions

for i = 1, . . . ,N . Besides, as proved in Lemma A.3 in the appendix, the only
eigenfunctions of (6.1) forλ = 0 are linear combinations of the functions∂w

∂xi
.

Remark6.1. – Assume thatλ < 0 is an eigenvalue of problem (6.1) andφ an
associated eigenfunction. For further purposes, we want to estimate the size ofφ near
the boundary. We have thatu = − ∂w

∂r
> 0 satisfies

m�
(
wm−1u

)+ mwm−1u− 1

m− 1
u+ λu < 0

in B(0,R∗) \ {0}. Hence, near the boundary,φ can be estimated in absolute value by a
suitable multiple ofu. It follows, from Lemma A.2, that

|φ(x)| � C(R∗ − |x|) 3−m
m−1 � Cw(|x|) 3−m

2 ,

whereC depends for instance on
∫
wm−1φ2.



C. CORTÁZAR ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 927–960 947

Now let φ(x, t) be the function found in Lemma 4.1. LetB be one of the balls
constituting the setA. Let us consider the expansion inB,

φ(x,0) =
k0∑
i=1

Ciφi +
N∑
i=1

Di

∂w

∂xi
+ θ(x)

where ∫
B

θφi =
∫
B

θ
∂w

∂xj
= 0 (6.5)

for all i, j . Now let us consider the function

φ̃(x, t) = φ(x, t) −
k0∑
i=1

Cie
−λi tφi −

N∑
i=1

Di

∂w

∂xi
.

Let us observe that

∑
C2

i +∑D2
i �

∫
B

wm−1φ2(0)dx � 1.

Clearly φ̃(x, t) satisfies the equation

(φ̃)s = m�wm−1φ̃ +mwm−1φ̃ − 1

m − 1
φ̃

onB × (0,∞). Our first claim is that

∫
B

φ̃(·, s)φi =
∫
B

φ̃(·, s) ∂w
∂xj

= 0

for all s > 0. In fact, let us set

ϕ(s) =
∫
B

φ̃(·, s)φi .

The definition ofφ̃ impliesϕ′(s) == −λiϕ(s). Sinceϕ(0) = 0, the claim follows. Now,
let us set

η(s) =
∫
B

wm−1φ̃(·, s)2.

Then

η′(s) = −2
∫
B

m

(∣∣∇(wm−1φ̃
)∣∣2 − m

(
wm−1φ̃

)2 + wm−1

m− 1
φ̃2
)

dx.
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Now, sinceφ̃ satisfies the orthogonality relations (6.5), it follows that

η′(s) � −2λ∗η(s),

and hence

η(s) � η(0)e−2λ∗s

where, we recall,λ∗ > 0 andη(0) � 1. Finally, linear parabolic regularity implies that
exponential decay at this rate forφ̃ also holds uniformly on compact subsets ofB.

We summarize the above considerations in the following proposition, which provides
a description of the limiting functionφ(t, x) insideA.

PROPOSITION 6.1. –We have

φ(x, t) =
k∑

i=1

k0∑
j=1

Dije
−λj tφi(x − xj ) +

k∑
j=1

N∑
i=1

Cij

∂w(x − xj )

∂xi
+ θ(x, t), (6.6)

whereθ(x, t) converges to zero ast → +∞, exponentially uniformly inside compact
sets of the setA.

7. Analysis near the boundary

In the last two sections we have found the validity of convergence ofφn to φ

essentiallyin the interior of the support of the limitingw. Here we will show estimates
which provide control ofφn near the boundary of the support ofw. As a by-product
we shall establish that the exponentially increasing terms in the expansion (6.6) actually
vanish identically, and as a further consequence that the contribution of the region near
the boundary on the integral ofGn is basically negligible.

The next result estimates the contribution near the boundary to the integral ofGn in
terms of a boundary integral for the limiting function. We should mention that here, the
key estimate, Lemma 3.1, again plays a role.

LEMMA 7.1. –There exist numbersA andc, depending only onm, with the following
property: Givenε > 0 and 0< r0 < R∗, with r0 sufficiently close toR∗ and anyt > 0,
we have that for alln sufficiently large,∫

⋂k

i=1
{|x−xi |�r1}

Gn(x, t)dx

� A

[
e−ct + ε +w

3m−3
2∗ (r0)

k∑
i=1

sup
(s,r)∈[0,t ]×[r0,r1]

∫
|x−xi |=r

φ2(x, s)dσ
]

(7.1)

wherer1 = r0+R∗
2 .

Proof. –Set

Dn =
k⋂

i=1

{x/|x − xin| � r0}
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and define forx ∈ Dn

g(x) = wm
∗ (ar0)−

k∑
i=1

wm
∗ (a|x − xin|)

where

a ≡ 2R∗

R∗ + r0
> 1.

We note that the sets{x/a|x − xin| � R∗} are disjoint for alln sufficiently large. Let
us multiply Eq. (5.1) byψn(x, t)g(x) and integrate on the regionDn. Sinceg vanishes
on the boundary of this region, recalling that(Gn)t = ψn(φn)t , an integration by parts
yields

∂

∂t

∫
Dn

Gn(x, t)g(x)dx =Bn(t) +
∫
Dn

ψ2
n

2
�g(x)dx

+
∫
Dn

{
−|∇ψn|2 +ψ2

n − 1

m − 1
φnψn + znψn

(m− 1)ηn

}
g(x)dx

(7.2)

where

Bn(t) = −a∂wm∗
∂r

(ar0)

k∑
i=1

∫
|x−xin|=r0

ψ2
n

2
dσ.

Now, �wm∗ = w∗
m−1 − wm∗ � 0 for |x| � r0 if r0 is sufficiently close toR∗, hence we

assume�g(x) � 0 on Dn. On the other hand,g(x) = wm∗ (ar0) on the support ofzn,
for all largen, since by definition ofzn its support is contained in the union of the sets
{r0 < |x − xi| < R∗} ∩ {r0 < |x − xj | < R∗} for i, j = 1, . . . , k and i �= j . Using these
observations and (7.2) we get

∂

∂t

∫
Dn

Gn(x, t)g(x)dx �Bn(t) +
∫
Dn

{
ψ2

n − 1

m− 1
φnψn

}
g(x)dx

+ wm
∗ (ar0)

∫
Dn

znψn

(m − 1)ηn

. (7.3)

On the other hand, recalling the definition ofψn and thatzn � 0, Lemma 3.1 implies

1

(m− 1)ηn

∫
znψn � −

∫
∂Gn

∂t
+ 1

m2 − 1

∫
Hn.

Now, by definition of the corresponding quantities, we see that

1

m2 − 1
Hn = 1

m − 1
φnψn − 2

m− 1
Gn,
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hence
1

(m − 1)ηn

∫
znψn � −

∫
∂Gn

∂t
+ 1

m − 1
φnψn − 2

m− 1
Gn. (7.4)

Then using (7.4) in relation (7.3) we obtain that∫
Dn

∂Gn

∂t
g(x)�Bn(t) + 1

m− 1

∫
Dn

φnψn

(
wm

∗ (ar0)− g(x)
)

− wm
∗ (ar0)

∫
∂Gn

∂t
+
∫
Dn

{
ψ2

ng(x) − 2wm∗ (ar0)

m− 1
Gn

}
. (7.5)

Now, given t∗ > 0 we have thatvn → w uniformly on [0, t∗] × RN . Thus, if r0 is
sufficiently close toR∗ we obtain that

ψ2
n � 1

(m− 1)
Gn

for |x| � r0 and 0< t < t∗ for largen. Hence

ψ2
ng(x) − 2wm∗ (ar0)

m − 1
Gn � −(wm∗ (ar0) + g(x))

2(m − 1)
Gn

on this region. Also,wm∗ (ar0) − g(x) = 0 onFn =⋂k
i=1{a|x − xin| � R∗}. Substituting

this information into relation (7.5), we obtain the following differential inequality for all
sufficiently largen.

Y ′
n(t) � Bn(t) + Wn(t) − cYn(s), 0< t < t∗,

wherec is a positive constant depending only onm and

Yn(t)=
∫
Dn

Gn(x, t)
(
wm

∗ (ar0) + g(x)
)
,

Wn(t)= 1

m − 1

∫
Dn\Fn

φnψn

(
wm

∗ (ar0)− g(x)
)
.

It follows that

Yn(s) � Yn(0)e
−ct + e−ct

t∫
0

ecs
(
Bn(s) +Wn(s)

)
ds. (7.6)

We will estimate the right hand side of (7.6). First, we see thatBn(s) → B(s) and
Wn(s) → W(s) uniformly on compact sets where

B(s) = −a∂wm∗
∂r

(ar0)

k∑
i=1

∫
|x−xi |=r0

m2w2(m−1)
∗ (r0)

φ2

2
dσ,
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and

W(s) = m

m − 1

k∑
i=1

∫
r0�|x−xi |� r0+R∗

2

φ2(wm−1
∗ (|x − xi |))(wm

∗ (ar0) − g(x)
)
.

Now,

(
wm
)′
(r0)w

2m−2(r0) = 2

m − 1

(
w

m−1
2
)′
(r0)w

m(r0)w
3m−3

2 (r0),

andw(ar0) < w(r0) , for r0 close enough toR∗, so that

|B(s)| � Cwm(r0)w
3m−3

2 (r0)

k∑
i=1

∫
|x−xi |=r0

φ2 dσ.

On the other hand,

|W(s)| � Cwm−1
∗ (r0)w

m
∗ (ar0)

(
R∗ − r0

2

) k∑
i=1

sup
r∈[r0,

r0+R∗
2 ]

∫
|x−xi |=r

φ2 dσ.

Since ∂
∂r
w

m−1
2∗ (R∗) > 0, we have

R∗ − r0

2
� Cw

m−1
2∗ (r0)

for someC > 0 depending only onm, provided thatr0 is sufficiently close toR∗. From
these facts and (7.6) we see that for givenε > 0 andt > 0,

Yn(t) � Yn(0)e
−ct + ε +Cwm

∗ (r0)w
3m−3

2∗ (r0)sup
[0,t ]

k∑
i=1

sup
r∈[r0,

r0+R∗
2 ]

∫
|x−xi |=r

φ2 dσ,

for all sufficiently largen, where we have used again thatw∗(ar0) < w∗(r0). Finally,
it is easily checked that for some constantC independent ofr0 close toR∗, such that
1 � w∗(r0)

w∗(ar0)
� C. Sinceg(x) = wm∗ (ar0) for |x| � r0+R∗

2 , the result of the lemma readily
follows. ✷

We prove next two important consequences of the estimate given by the above lemma:
One is that no exponentially increasing terms are present in the expansion (6.6) forφ,
and that the integrals ofGn near and outside the boundary of the support ofw become
arbitrarily small asn → ∞.

COROLLARY 7.1. –In the expansion(6.6), we actually haveDij = 0 for i =
1, . . . , k0, j = 1, . . . , k.
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Proof. –To establish this assertion, we consider the estimate provided by Corol-
lary 3.1. We have then that,

∫
Gn(x, t)dx � 1

m2 − 1

t∫
0

∫
Hn + C

( t∫
0

(∫
Gn(x, s)dx

)1/2

ds + t + 1

)
(7.7)

for certain numberC independent oft andm. Let us fix a numberr0 close toR∗ and as
in the previous lemma, setr1 = r0+R∗

2 . We also write

Ar1 =
k⋃

i=1

{x/|x − xi | � r1}.

Then there is a constantD > 0 depending onr0 such that

|Hn| � D

η2
n

|vn − w|3 onAr1,

from where it follows that

t∫
0

∫
Ar1

Hn → 0 asn → ∞

for each fixedt . We note that for anyσ > 0 and any t >0 one has

s1/2 � σs + σ−1.

Then from relation (7.7), recalling that|Hn| � CGn, we find that for someC > 0
independent ofr0 andσ , and all sufficiently largen,

∫
Ar1

Gn(x, t)dx � C

[(
1

m2 − 1
+ σ

) t∫
0

∫
RN\Ar1

Gn + σ

t∫
0

∫
Ar1

Gn + σ−1t + 1

]
.

Then, passing to the limit, recalling thatGn converges uniformly inAr1 × [0, t] to
mwm−1φ2, we get

∫
Ar1

mwm−1φ2(x, t)dx − Cσ

t∫
0

∫
Ar1

mwm−1φ2(x, s)dx ds

� lim sup
n→∞

C

( t∫
0

∫
RN\Ar1

Gn + σ−1t + 1

)
. (7.8)
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Now, from the expression (6.6) forφ, we obtain

φ(x, t) =
k∑

i=1

k0∑
j=1

Dije−λj tφi(x − xj ) + O(1)

with O(1) uniformly bounded in time and space insideAr1. It follows that

∫
A∇∞

wm−1φ2(x, t)dx =
k∑

i=1

∫
B(xi,r1)

wm−1φ2(x, t)dx

=
k∑

i=1

k0∑
j=1

∫
B(xi,r1)

wm−1D2
ije−2λj tφi(x − xj )

2 dx + O(1)

=
k∑

i=1

k0∑
j=1

D2
ije−2λj t + O(1).

Thus, if we fix nowσ sufficiently small, we get

∫
Ar1

mwm−1φ2(x, t)dx − Cσ

t∫
0

∫
Ar1

mwm−1φ2(x, s)dx ds

= C̄

k∑
i=1

k0∑
j=1

D2
ije2λj t + O(t) (7.9)

whereC̄ > 0. On the other hand, from Lemma 7.1 we can find numbersA andc which
depend only onm so that

lim sup
n→∞

∫
RN\Ar1

Gn(x, s)dx

� A

{
e−cs + w

3m−3
2∗ (r0)sup

{ ∫
|x−xi |=r

φ2(x, s)dσ/s ∈ [0, t], r ∈ [r0, r1], 1 � i � k

}}
.

(7.10)

We recall that from Remark 6.1|φ(x)| � Cw(|x|) 3−m
2 , hence

w
3m−3

2 (r0)sup
{ ∫

|x−xi |=r

φ2 dσ/| s ∈ [0, t], r ∈ [r0, r1], 1� i � k

}

� Cw(r0)
m+3

2

k∑
i=1

k0∑
j=1

D2
ije2λj t + O(1), (7.11)
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whereC is independent ofr0. Using relations (7.8), (7.9), (7.10), and (7.11) we get then
that for certain constantC

k∑
i=1

k0∑
j=1

D2
ije−2λj t � Cw(r0)

m+3
2

k∑
i=1

k0∑
j=1

D2
ije−2λj t + O(t),

whereC is independent ofr0. Sincew(r0) may be chosen arbitrarily small, we obtain a
contradiction from this last relation for allt sufficiently large if any of theDij ’s was not
zero. HenceDij = 0 for all i, j , and the proof of the lemma is complete.✷

Combining Lemma 7.1 and Corollary 7.1, we get the validity of the following fact.

COROLLARY 7.2. – Let ε > 0 be given. Then there exist numbers0< r0 < R∗ and
s∗ > 0 such that for each given̄s � s∗ and alln sufficiently large we have

sup
s∈[s∗,s̄]

∫
⋂k

i=1
{|x−xi |>r0}

Gn(s, x)dx < ε.

8. Conclusion: the proof of Proposition 3.1

Now we are ready to prove Proposition 3.1.
We define

x̄in = ηn(Ci1, . . . ,CiN).

Then|x̄in| � Cηn with C = C(m). Let us write

w̄n(x) =
(

k∑
i=1

wm
∗ (x − xi + x̄in)

)1/m

.

We want to estimate the quantity

In(s) =
∫ (

vn(x, s)
m − w̄n(x)

m
)(
vn(x, s) − w̄n(x)

)
dx.

Let us considerr ∈ [0,R∗], to be determined later, and set

Ar =
k⋂

i=1

{|x − xi | > r}.

Then

In(s)=
∫
Aδ

(
vm
n − w̄m

n

)
(vn − w̄n)dx

+
∫

RN \Aδ

(
vm
n − w̄m

n

)
(vn − w̄n)dx = I 1

n (s) + I 2
n (s).
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We have

I 1
n (s) � C

[∫
Ar

(
vm
n − wm

n

)
(vn − wn)dx +

∫
Ar

(
w̄m

n −wm
n

)
(w̄n − wn)dx

]
.

Now, from 3.10, we get∫
Ar

(
vm
n − wm

n

)
(vn − wn)dx � Cη2

n

∫
Ar

Gn(x, s)dx,

again withC = C(m). Corollary 7.2 then implies that ifr is chosen close enough toR∗,
depending onm, ands � s∗, with s∗ also depending only onm then for alln sufficiently
large

C

∫
Ar

Gn(x, s)dx <
1

8
.

Also, it follows from Lemma A.2, in the appendix, that

C
(
w̄m

n − wm
n

)
(w̄n −wn) � Kη2

n

with K depending onm andk only. Therefore takingr closer toR∗, if necessary, we get

C

∫
Ar

(
w̄m

n − wm
n

)
(w̄n − wn)dx � η2

n

8

if n is large enough. Putting these two estimates together we see that if we chooseT � s∗,
then

I 1
n (s) � η2

n

4
for all s ∈ [T ,2T ] provided thatn is sufficiently large.

On the other hand, we recall that

vn(x, s) = wn(x) + ηnφn(x, s),

which we can write, in view of Proposition 6.1 and Corollary 7.1, as

vn(x, s) = wn(x) + ηn

N∑
j=1

Cij

∂w∗
∂xi

(x − xi) + ηnθ(x, s) + (φn(x, s) − φ(x, s)
)
,

whereθ decays exponentially in compact sets ofA.
Now, sincer has been already fixed and lim inf|xin −xjn| � 2R∗ asn → ∞ for i �= j ,

it follows that if x ∈ RN \ Ar then

wn(x) =
k∑

i=1

w∗(x − xi)
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and

w̄n(x) =
k∑

i=1

w∗(x − xin + x̄in)

if n is sufficiently large. From these observations it follows that

lim
n→∞η−2

n

∫
RN\Ar

(
vm
n − w̄m

n

)
(vn − w̄n)dx = m

∫
RN \Ar

wm−1(x)θ2(x, s)dx

uniformly on s on compact subsets of(0,∞). Sinceθ(x, s) decays exponentially we
have that there are positive numbersA anda, depending only onm, such that

I 2
n (s) � η2

nAe−at .

Consequently we have

In(s) � η2
n

(
1

4
+ Ae−aT

)

for all s ∈ [T ,2T ]. Making T larger if necessary (depending only onm) we obtain
that the quantity between brackets is less than 1/2. This concludes the proof of the
proposition. ✷

Appendix A

LEMMA A.1. – With the notation of Section3, we have

(
wm+1

n −
k∑

i=1

wm+1
in

)
� 1

m− 1

(
wm

n zn
)
. (A.1)

Proof. –By homogeneity, it suffices to establish the following general fact on real
numbers:

For any nonnegative numbersh1, . . . , hk such that
∑k

i=1h
m
i = 1 one has

(
1−

k∑
i=1

hm+1
i

)
� 1

m − 1

(
k∑

i=1

hi − 1

)
. (A.2)

To prove (A.2), we seth = (h1, . . . , hk),

F(h) =
k∑

i=1

hi + (m− 1)
k∑

i=1

hm+1
i and P(h) =

k∑
i=1

hm
i

we see that our problem reduces to show that the minimum of the functionF , over to the
setS = {h | P(h) = 1, h1 � 0, . . . , hk � 0}, is greater thanm. If a minimum ofF overS
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is attained at a pointh with all coordinates positive, then Lagrange multiplier rule yields
the existence of a numberλ such that

1

hm−1
i

+ (m2 − 1
)
hi = mλ for all i = 1, . . . , k.

For eachi, this equation has at most two solutions, which we denote bya and b.
Therefore there are integersp and q such thatp + q = k, pam + qbm = 1 and the
minimum ofF is given by

pa + qb + (m− 1)
(
pam+1 + qbm+1).

It is clear that ifa � b this quantity is greater or equal to

ka + (m − 1)kam+1

with kam = 1. This last number is greater or equal tom if k � 1. So far we have proved
that any minimum attained at the interior ofS is greater or equal tom. Studying the
possible minima attained at the boundary ofS reduces to the same problem with a
different value ofk. Inequality (A.2) is thus established, and the proof of the lemma
is concluded. ✷

Our next result refers to the behavior of the functionw near the boundary ofB.

LEMMA A.2. – Let w∗(|x|) be the unique radially symmetric, compactly supported
solution of

�wm + wm − 1

m − 1
w = 0,

andB(0,R∗) its support. Then there exist positive constantsA andB such that

A(R∗ − r)
2

m−1 � w∗(r) � B(R∗ − r)
2

m−1 ,

A(R∗ − r)
3−m
m−1 � −w∗(r)′ � B(R∗ − r)

3−m
m−1 ,

for all r ∈ [0,R∗].
Proof. –The functionz = wm∗ satisfies

z′′ + N − 1

r
z′ + z − 1

m− 1
z1/m = 0.

Multiplying by z′ and integrating fromr to R∗ we get

z′(r)2

2
+ z(r)2

2
−

R∗∫
r

N − 1

s
z′(s)2 ds − m

m2 − 1
z

m+1
m (r) = 0.

Hence nearr = R∗,

z′(r)2 � Az
m+1
m (r)
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and hencez−m+1
2m z′ � −A1/2 , so thatz

m−1
2m (r) � A(R∗−r), whencew(r) � A(R∗−r)

2
m−1

nearr = R∗. On the other hand, again nearR∗,

−rN−1z′(r) � C

R∗∫
r

z1/m(s)sN−1 ds,

or, sincez is decreasing inr ,

−rN−1z′(r) � C
(
(R∗)N − rN

)
z1/m(r).

It follows that−z
−1
m z′(r) � C(R∗ − r). Thusz

m−1
m (r) � C(R∗ − r)2 and hence

w(r) � C(R∗ − r)
2

m−1

nearr = R∗. Similar estimates for the derivative follow from those forw and the above
intermediate computations. MakingA smaller andB bigger, if necessary, the lemma is
proved. ✷

The following lemma was used in Section 6. Since its proof follows closely the proof
of Lemma 4.2 of [23], we only sketch it here.

LEMMA A.3. – The only eigenfunctions of(6.1) for λ = 0 are linear combinations of
the functions∂w

∂xi
.

Proof. –The lemma will be proved as soon as we prove that the eigenspace
corresponding toλ = 0 has dimension less or equal toN − 1. So letψ satisfy

m�ψ +mψ − 1

m− 1
w−(m−1)ψ = 0. (A.3)

Let µk , ek(σ ), with σ ∈ SN−1, be the eigenvalues and eigenvectors of the Laplace–
Beltrami operator onSN−1. We recall that

µ0 = 0<µ1 = · · · = µN = N − 1<µN+1 � · · · .
We normalizeek so that they form a complete orthonormal basis ofL2(SN−1). Now we
set

ϕk(r) =
∫

SN−1

ψ(r, σ )ek(σ )dσ

and observe thatϕk satisfies

mϕ′′
k + m

N − 1

r
ϕ′
k +mϕk − w−(m−1)

m − 1
ϕk = mµkϕk on 0< r < R∗. (A.4)

We note that forϕ0 we have

mϕ′′
0 + m

N − 1

r
ϕ′

0 + mϕ0 − w−(m−1)

m− 1
ϕ0 = 0 on 0< r < R∗
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with ϕ′
0(0) = 0 and ϕ0(R

∗) = 0.
Also settingz = wm we see that

z′′ + N − 1

r
z′ + z − z1/m

m − 1
= 0 on 0< r < R∗.

According to Proposition 4.1 in [3], the corresponding linearized equation

mϕ′′ +m
N − 1

r
ϕ′′ + mϕ − z−m−1

m

m − 1
ϕ = 0

has no nontrivial solutions satisfyingz′(0) = 0 and z(R∗) = 0. We observe that the
results of [3] hold the same for the casep = 1 in the notation of that paper. This implies
ϕ0 ≡ 0 sincez−m−1

m = w−(m−1). Therefore, as in [23], the lemma will be proved as soon
as we prove thatϕk ≡ 0 for all k � N + 1. To do this assume for a contradiction that
ϕk �= 0 for somek � N + 1. Since in this case, as in [23], we can assume thatϕk(r) is
positive for small values ofr , we have that there existsρk ∈ (0,R∗] such thatϕk(r) > 0
if r ∈ (0, ρk) andϕk(ρk) = 0. Multiplying (A.4) by rN−1(wm)′ and integrating from 0 to
ρk, after integrating by parts twice and using boundary values, one gets

ρN−1
k ϕ′

k(ρk)
(
wm
)′
(ρk)+ (N − 1+µk)

ρk∫
0

rN−3ϕk(r)
(
wm
)′
(r)dr = 0.

This is a contradiction sinceϕ′
k(ρk) � 0 and(wm)′(r) < 0 for r ∈ (0,R∗). The lemma is

proved. ✷
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