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ABSTRACT. — The following reaction-diffusion system in spatially non-homogeneous almost-
periodic media is considered in a bounded donsaia R3:

du=Acu— fu)+g, ulpa=0. 1)

Hereu = (u?, ..., u¥) is an unknown vector-valued functioff,is a given nonlinear interaction
function and the second order elliptic operatgrhas the following structure:

3
(Aew)' = by (aj; (e 0)du' (), e« 1 1=1,23,
i,j=1

whereafj (y) are given almost-periodic functions. We prove that, under natural assumptions on
the nonlinear ternf («), the longtime behavior of solutions of (1) can be described in terms of the
global attractor4® of the associated dynamical system and that the attradfo®< ¢ < g < 1,
converge to the attractad® of the homogenized problem (1) as— 0. Moreover, in the
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particular case of periodic media, we give explicit estimates for the distance between the non
homogenized4? and the homogenized? attractors in terms of the parameter
© 2002 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1991 MSC35L30; 35B40; 35B45

RESUME. — Nous considérons le systéme de réaction-diffusion suivant dans un milieu non
homogéne presque périodique en espace dans un domain&barié :

du=Acu— fu)+g, ulaa=0. 1)

Ici, u = (ul, ..., u*) est une fonction vectorielle inconnug, est une fonction d’interaction
nonlinéaire donnée et I'opérateur elliptique du second ofdra la structure suivante :

3
(Aew)' = by (al;(e70)d u' (), e« 1 1=1,23,
ij=1

ol IeSafj(y) sont des fonctions presque périodiques données. Nous prouvons que, sous de
hypothéses naturelles sur le term nonlinégi(e), le comportement asymptotique des solutions
de (1) peut etre décrit par I'attracteur glohdf du systéme dynamique associé et que les
attracteurs4?, 0 < ¢ < g9 < 1, convergent vers l'attracteut® du probléme homogénéisé de

(1) lorsques — 0. De pluis, dans le cas particulier d’'un milieu périodique, nous donnons des
estimations explicites de la distance entre les attracteur non homogédéistd'attracteur
homogénéisél® en fonction du paramétee

© 2002 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

0. Introduction

We consider the reaction-diffusion system

{a,u:Agu—f(u)Jrg, x e, 0.1)

ulj=o=1ug, ulpe=0

in a bounded domair@ € R® with a sufficiently smooth boundary. Here =
u(t,x) = ut,...,u") is an unknown vector-valued function, the functiofigu) =
(fr),..., ffu)) andg = g(x) = (g%, ..., g") are given and the second order elliptic
differential operatorA, has the following form:

Aqu:=diag(Alut, ..., A*ub) (0.2)
with
3
Al =" 8y (af; (e 7x) 0,0 (1), e <L, (0.3)
i,j=1

where the function&fj (y), y € R® are assumed to be symmetrhf,j(y) = aﬂ»i (y)) and
almost-periodic with respect to € R® (i.e. a];, € AP(R®) see e.g. [10]) for every fixed
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indexesi, j, ! and the uniform ellipticity condition

Yoa(MEE 2 vIER, v, E R, 0.4)
iJj

is also assumed (with the appropriate- 0) to be valid for every operatot’ .
We impose to the nonlinear terghthe following regularity conditions
1 mk k
{1.feC(R,R), 05)
2. 1f)] < CA+ |ul?),

for a certainp > 1, and the following anisotropic dissipativity condition: there are the
exponentyp; >2(p —1),i =1,...,k, such that

k
> i =—c, forallveR* (0.6)
i=1

which generalizes the standard isotropic ope=£ 0) and from the ours point of view is
more adopted to study the problems of type (0.1) with diagonal leadingipart

For example, ik = 2, u = (v, w) the anisotropic dissipativity assumption is satisfied
for the following non-linearities:

3 _ _ 3 _
f(u)=<” oy ﬂw), or f(u)=<”w_"§>, o, B,y €R.

w—yv v

Note that the first example (which corresponds to the Fitz—Nagumo equation see [8]
satisfies the standard isotropic dissipativity assumption as well; the second nonlinearit
satisfies the relationf*(x) + f?(u) = 0 (which is natural for chemical kinetics) and
evidently does not satisfy the isotropic dissipativity condition (see the end of Section 2
for the further examples).

It is assumed also that the external fogce L?(R2), the initial dateug € L>(R2), and
the solutionu(¢) of problem (0.1) is defined to be a function

ue L®([0,T] x Q) NL2([0, T, Wy(22)) N C(I0, T1, L*(2)) (0.7)

which satisfies Eqg. (0.1) in the sense of distributions. (Here and below, we denote by
W'r the Sobolev space of functions whose derivatives up to draelusively belong
toL”and| - |l;,p :== Il - llwe.r.)

The problems of type (0.1) has been intensively studied by many authors. The
longtime behaviour of solutions of (0.1) féikede > 0 are considered under the various
assumptions on the nonlinear terfrand the operatoA, = A in [1,6,13].

The homogenization problems for individual solutions of linear and nonlinear elliptic
or parabolic equations of the form (0.1) has been investigated in [2,5,7,20] (see also th
references therein).

The longtime behaviour of solutions of RDE and even hyperbolic equations in the non-
homogenized periodic media with asymptotic degeneracy has been studied in [3,12].
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In the present paper, we study the case where we have a system of reaction-diffusic
equations (0.1) in the non-homogenized almost-periodic media. (For simplicity, we
restrict ourselves to consider only the most relevant from the applications point of view
3-dimensional case, but the applied methods work after the minor changings for at
arbitrary space dimension)

It is proved that, under assumptions (0.2)—(0.6), problem (0.1) possesses a glob:
attractor 4° in the phase spacey € ® = L*°(Q), for every fixede > 0. Moreover,
these attractors are occured to be uniformly bounded with respect+00 in the
spaceC? () of Holder continuous functions with an appropriate Holder exponent
1>28>0:

| A*[| 2y S € for e < go. (0.8)

In order to study the behaviour of attracta® when ¢ — 0, we introduce the
homogenized problem for equation (0.1)

8,u=Aou—f(u)+g,
0.9
{M|asz=0, ul;—o = Uo, (0.9)

where Ao = diag{A}, ..., A§} and the elliptic operatorst) are constructed by the
standard formulae of the almost-periodic homogenization theory (see e.g. [20]).

It is proved that this limit problem also possesses the attra¢fdn the phase space
ug € ® and the family of attractors!® tends to the limit attractord® in the following
sense:

dist oy g, (A%, A%°) — 0 whene — 0. (0.10)

Here the Hdolder exponent @ 28’ < 28 < 1 and dis{ denotes the non-symmetric
Hausdorff distance between subsets of the space

disty (X, Y) := supin; lx — yllv. (0.11)

xeX Ve

Thus, the attractorgl®, ¢ € [0, gg], are occured to be upper-semicontinioug &t 0 in
the spac&? ().

In order to illustrate the obtained results, we give a more detailed consideration of the
case where the coefficiemz{sj are assumed to be periodic. In this case, imposing some
additional requirements on the structure of the limit attractBrand using the method
of asymptotic expansions, we give the explicit estimate of the error of approximation
of the non-homogenized attractors of (0.1) by the attractbrof the homogenized
equation (0.9). Namely, assume in addition that the limit attractor is exponential, i.e.
there is a positive number> 0 and the functiorQ such that, for every bounded subset
B C @, the following is true:

dist 2., (S°B, A°) < Q(IIBllo)e™", (0.12)

wheresS? is a semigroup inb generated by the limit equation (0.9).
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THEOREM. —Let the coefﬁcientafj be periodic and smooth enough and let the limit
attractor A° be exponential. Then

diSTC(Q) (.Ag, AO) < CSK, (013)

where the constanf and exponend < « < 1 can be calculated explicitly.

It is worth to emphasize also that the exponential rate of convergence (0.12) has bee
already established for some classes of equations (0.9). For instance, let the nonline
term f (u) be potential, i.e.

fw)=V,F(u), FeC?*R"R) (0.14)

which is always true in a scalar cage= 1. Then, Eg. (0.9) evidently possesses the
global Lyapunov function and, consequently, for gengtg(for which equation (0.9)

has a finite number of equilibria and all of them are hyperbolic), the attrafois
regular and exponential (see [1,15]). Therefore, due to the theorem, the estimate (0.1
is valid in this case.

Note that the estimates of the form (0.13) (for a symmetric or non-symmetric
distance) for the regular attractors of the abstract semigroups which possess th
Lyapunov functions and depend regularly on a parameteas been obtained in [1]
(see Remark 4.3 for estimate (0.13) of the symmetric distance in our case).

These results has been recently applied in [16] for obtaining the estimates of the
form (0.13) for the reaction diffusion equations with, = A, and spatial rapid
quasiperiodic oscilations in the subbordinated terms (f.e:) := a(e1x) f(u) or
a more general non-linearitieg(u, e~1x)). The analogues of these estimates for a
singular perturbed non-autonomous parabolic systems with tapigoral oscilations
in subbordinated terms (for instance witk= g(¢ ¢, x)) has been obtained in [19].

1. Uniform apriori estimates

In this section, we derive several estimates for the solutions of Eq. (0.1) which are of
fundamental significance for our purposes.

We start with the uniform (with respect to— 0) L?i-estimates for the solutions
of (0.1).

THEOREM 1.1. — Let assumption$0.2)—(0.6)be satisfied and let be a solution of
problem(0.1). Then, the following estimate is valid

k

k k
Sl < o DIwolg e vt Swgt).
i=1 i=1 i=1

whereC, o > 0 are independent af.

Proof. —Let us multiply the/th equation of (0.1) by’ ()|’ (1)|”, integrate ovek € Q
and integrate by parts the leading teahin the following way:
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4! ’(m+2)/2)>

—Cl|Vi (| |5, (1.2)

(here we have used also the uniform ellipticity (0.4)).
Taking the sum of all obtained inequalities and taking into the account the dissipativity
assumption (0.6), we obtain

k k
at(zuufmné’f;iz) O ST9 (0P 2,
i=1 i=1

k
<Ci+ Y (' ' (0]") =C1+ G (). (1.3)
i=1

(ALl ') = —@ (S b, (77273,

iJj

Denote also
& ; i+2 a ; (p1+2)/2y (2
F =Yl @0, @0 =YV o " PR e, @)
i=1 i=1

We now note that, due to the Fridrich’s inequalify,(r) < C19, () and, consequently,
applying the Gronwall inequality to (1.3), we derive after the standard computations tha

T+1

sup F,(t) + @, (1) dr
te[T, T+1) “

T+1

<CF,0e " +C1+ / e 0|6, (1)] dt, (1.5)

with the appropriate: > 0.

Thus, the main problem now is to estimate the integral into the right-hand side of (1.5).
To this end, we transform it to the following form which is more convenient for our
purposes:

T+1 t+1

/ |G (1) dt < C2 sup}( g ot=D/2 / e‘“(T+1_’)|Gu(s)|ds>. (1.6)
0

te[0, T
t

It is essential for us that the constar is independent of.
Let W;([t, t + 1]) :== LP+2([t, t + 1], L27*+Y(Q)). Then, due to Holder inequality

t+1
/| g u (s)]u (s)|p)|ds Hu

pi+1

pi+2 pit2
A tt+1])||g||02 MHM y i

wiqri+1p T Cullglloz ™

a.7)
where the constant can be chosen arbitrarily small. In order to estimate the first term
in the left-hand side of (1.7), we need the following interpolation result.
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LEMMA 1.1. - LetQ € R® be smooth domain. Then
0

||U”L‘i( [t,t4+1],L2(Q)) X C”U”Loo( [t,041],L2()) ”U”LZ([I,H-l],WLZ(SZ))’ (18)

whereg = £ andg = &.

Proof. —Indeed, according to the standard interplolation theorem (see e.g. [14]),
inequality (1.8) is valid with exponentsand6 satisfying the relations

1 1-6 6 1 1-6 1 1
= —. g ) [ 1.9
00 + 2 2q 2 (2 3) (1.9)
Solving system (1.9), we obtain the exponents from the lemma. Lemma 1.1 is proved.
O
Embedding (1.8) implies particularly, that
j || Pit2
I Wil 1) S +2)/2<[z 1+1], L9 (Q))
t+1
i 2 i i 2)/2 2
<c1( sup 185+ 1900 )
selt,t+1] f
t+1
< C2< sup F,(s)+ [ D,(5) ds) (1.10)
selt,t+1] f

(here we have used the evident fact thgt; +2)/2=Z(p; +2) > p; +1).
Inserting this estimate to the right-hand side of (1.7) and taking a sum over the indexe:
i=1,...,k, we derive the estimate

t+1 +1
/yGu(s)yds<M< sup F,(s)+ [ ®u(s) ds> +C, anng';z, (1.11)

[t,r+1] i=1

t t

whereu > 0 can be chosen arbitrarily small.
Denoting the left-hand side of (1.5) %, (T) and inserting estimate (1.11) into the
right-hand side of (1.5), we have

Z.(T) < CF, (0" +u sup (e"~"2Z,(1)) + C, (Z lglloz” + 1>. (1.12)
te[0,T]
It can be easily proved (see e.g. [17]) that, fiokx 1/2, (1.12) implies the estimate
Z,T) < C1F, (O)e“"T/2+Cz<ZIIgII”'+2 ) (1.13)
i=1

Theorem 1.1 is proved. O
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COROLLARY 1.1. — Let the assumptions of Theordni hold. Then

£ ((®) o2 < Q(lluollo,c) €™ + Q(llgllo2), (1.14)

for the appropriater > 0 and monotonic functio® which are independent et

Indeed, (1.14) is an immediate corollary of (1.1), the second assumption of (0.5) anc
our choice of the exponenis (2p < p; + 2).

Remark1.1. — Note that estimate (1.14) (and consequently all corollaries of it which
will be formulated below) remains valid if we replace the growth restriction 2) from (0.5)
by the following one:

k
Ff < c<1+z |v"|f’i+2>. (1.15)
i=1

Having the uniform estimate (1.14) for the nonlinear tefitx) in Eq. (0.1), we can
apply the standard methods (see e.g. [1,9]) in order to obtain more convenient estimate
Since these methods are well known, we formulate below the estimates and indicate onl
the main ideas of their proofs (in order to show that they are really uniform with respect
toe).

Firstly, taking the inner product iR* of Eq. (0.1) with the function:(z), integrating
by x € @ (with the integration by parts iM, and using the uniform ellipticity
conditions), estimating the non-linear term by (1.14) and applying the Gronwall
inequality, we obtain the following estimate.

PrROPOSITION 1.1. — Let the above assumptions hold. Then

T+1
|u(T)|[5 5 + / )]} 50 < O(lluollo)e™” + O(lighoz),  (1.16)
T

where the constarnk > 0 and the monotonic functio® (which are not the same as
in (1.14))are independent of.

COROLLARY 1.2. — Let the above assumptions hold. Then

T+1 T+1

a o+ [ Jaulodi+ [ Jauo]f o
T T

< (Q(lluollo,oc) + Clluolliz)e‘” + O(ligllo,2)s (1.17)
where the constantg, C > 0 and the functionQ are independent of.

Proof. —Indeed, taking the scalar productli of Eq. (0.1) with the functiom, u(r),
integrating by parts the terrgd,u, A.u) and using the fact that! are symmetric, we
obtain the inequality

3, <Za§j du' (1), ajul(z)> + (Acd (1), Ac' @) + ) (a0 (1), 0;u (1))

i.j.l ij.l
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gz (a B (1), dju (f) )+ C(| f (u@®)) H02+||g||02) (1.18)
ij.l
Recall now that the coefﬁmenta’ (y) are assumed to be almost-periodic and,

consequently, uniformly bounded RF Therefore, the first term in the right-hand side
of (1.18) can be estimated t(ya||u(t)||i2 where the constant, is independent of.
Inserting now estimate (1.14) into the right-hand side of (1.18), applying the Gronwall
inequality and using (1.16) for estimating the integral of #é2-norm, we derive
estimate (1.17), but without the norm &f: in the left-hand side:

T+1

(D)3, + /||Agu(r>||§,2dz< (Q(lluollo.) + Clinol3 )& + O(ligllo.2)-
T

(1.19)

The estimate for the time derivativgu can be easily obtained now from equation (0.1)
and from estimates (1.14) and (1.19). Corollary 1.2 is proved.

Analogously, taking the inner product of (0.1) with the functiot{ ! (z), we derive
in a standard way the following version of the smoothing property.

COROLLARY 1.3. — Let the above assumptions hold. Then
T+1 T+1

o+ [ oG+ [ Au]d
T T

T+1

< T(Q(lluollo,oo)e_” + 0(ligllo.2)), (1.20)

wherea > 0 and Q are independent af > 0.

COROLLARY 1.4.— Let the previous assumptions be valid. Then, the following
estimate holds:

[(D)]]g.00 < C(lluollo,c0)€™ + Q(liglloz2), (1.21)

where the monotonic functiof and the constant > 0 are independent af. Moreover,
there is a positive humbes > 0 (independent o) such that, for evenr” > 1, the
solutionsu(t) of (0.1) belong to the spac€??#([T, T + 1] x Q) of Holder continuous
functions with Hoélder constantg and 28 with respect to the variables and x
correspondingly(se€[9]) and the following estimate is valid

el cos qrr411x02) < O1(lluollo.o)€®" + 01(lgllo2), T =1, (1.22)

where the constant and the functionQ; are independent of.
Proof. —Indeed, let us consider tlith equation of (0.1)

du' — ALu' = fl(u(®)) + g' :== ' (@) (1.23)

Applying the maximum principle for solutions from class (0.7) of this equation (see [9,
Theorem 3.7.1]), we obtain that, foe [0, T']
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H“l(t)Ho,oo < C(HuéHO,oo + thHLOC([O,T],LZ(Q)))
< C”gHO,Z + CHf(u)HLOO([O’T]’LZ(Q))’ (124)
where the constart depends only on th&>-norm ofafj and on the uniform ellipticity

constant (0.4) (and is independentsf
Inserting estimate (1.14) into the rigth-hand side of (1.24), we deduce that

[u(®)]]g.00 < Q(lluollo.0) + Q(lIgllo2)- (1.25)

Note, however, that estimate (1.25) is not dissipative with respect to the initial
conditionsug. In order to obtain the dissipative one, we fix> 1 and consider the
functionv'(r) = (t — T + D)u!(¢) which evidently satisfies the equation

v — AV = O+ T+ W)+ —T+Dg :=hl),

(1.26)
vW(T —1)=0.

It is proved in [9, Theorem 3.10.1] that there is a positive Holder congtantO such
that

I
CHhT HLOO([T—l,TJrl],LZ(Q))

Cliglloz + Cllull poo r—1.7411.L2(2)

+ CHf(“)HLOO([T—l,T+1],L2(Q))' (1.27)
Moreover, the constani® > 0 andC are independent a&f.

Inserting estimate (1.14) and (1.16) into the right-hand side of (1.27), we derive the
following estimate:

H v Hcﬁ-Zﬁ([T,T+1] )

NN

||u||Cﬁv2ﬂ([T,T+1]><Q) < C1||v||Cﬁv2ﬁ([T,T+1]><Q)
—aT
< O(lluollo,c)€™*" + Q(llgllo,2) (1.28)

which holds for7 > 1. Estimates (1.21) and (1.22) are immediate corollaries of (1.25)
and (1.28). Corollary 1.4 is proved.O

We now derive some estimates for the time derivadivar) for the solutions of (0.1).
To this end, we differentiate Eq. (0.1) with respect @nd denot& (+) = d,u(¢). Then,
we obtain the equation

3,0(1) = A0() — f (u())60(2). (1.29)
Recall thatf € C?, consequently (1.21) implies that
1" (@®)]o.0 < Qa(lluollo.o) €™ + Qa(ligllo2) (1.30)

and, therefore, Eq. (1.29) also can be treated as the linear one.
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COROLLARY 1.5.—Letr > 1. Then

[8:u(0)]]g, < Q(llucllo.cc)e™ + Q(llgllo2), (1.31)

where the constant > 0 and the functionQ is independent of.
Proof. —According to the smoothing property (1.20), we have

T+1

/meﬁgh<gwwmmmﬂT+mem@, (1.32)
T

for T > 1/2. Taking the inner product ifR* of Eq. (1.29) with(r — 1/2)6(¢) and
integrating overx € Q, we obtain using the integration by parts, and the uniform
ellipticity assumption (0.4), that

(= 17200 [5,) +v(( = 1/2[60)]|5.)

<C[00 o0+ C2lt = 1/2)|| ' @® g0 |00 5. (1.33)

Applying now the Gronwall inequality (starting with the time moment 1/2) to
estimate (1.33) and estimating the right-hand side of it by (1.32) and (1.30), we derive
after the standard computatins the following estimate forl/2:

r+1

2
< T
10®]o, < [—1/2

(O (lluollo,o) €™ 4+ Q(llgllo,2))- (1.34)

Restricting in (1.34) > 1, we obtain estimate (1.31). Corollary 1.5 is provedi

Having estimate (1.31) for the time derivati®e= d,u of the solutions of (1.29) and
arguing as in the proof of the estimate (1.22), we can proof the following result.

COROLLARY 1.6.— Let the above assumptions hold and d€t) be a solution of
equation(0.1). Then, there is the exponefit- 0 such that,u € C#28([T, T + 1] x Q),
for T > 2, and the following estimate is valid

10l cp.26 17, T411x ) < O(luollo.co) € + Q(llglo2), T =2, (1.35)

where the exponenfs « > 0 and the functionQ are independent of.
We summarize the obtained results in the following theorem.

THEOREM 1.2. — Let assumptiong0.2)—(0.6) hold. Then, for every fixed > O,
problem (0.1) possesses a unique the class(0.7)) solution () and the following
uniform (with respect te) estimate is valid

T+1

Hwﬁﬁm+/WmM;wéQWMh@€”+QWﬂm% (1.36)
T

wherea > 0 and Q are independent of.
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Moreover, the following smoothing property is valid 7 > 2 then, the function
ueCHPA(T, T +1] x Q) and

T+1
[T o+ NaBsanzar, oy + [ A0k
T

< O(lluolloo)€" + Q(llgllo.2). (1.37)
where the exponents 8 > 0 and the functionQ are independent of.

Proof. —Indeed, estimates (1.36) and (1.37) has been obtained in Corollaries 1.1-1.€
The uniqueness of a solution in the class (0.7) is evident. The existence of a solutiol
can be deduced from a priori estimates (1.36) and (1.37) by standard arguments (e.
for the smooth initial data,, and smooth coefficients!, the existence of a solution
can be obtained by Leray—Schauder principle as in [9], the existence of a solution
general situation can be obtained approximating the initial datnd the coefficients
al; by smooth ones}j anda;;" and then passing to the limit— o). Theorem 1.2 is
proved. O

Remark1.2. — As it has been already mentioned in Remark 1.1, the result of the
theorem remains valid if the condition (0.5)(2) is replaced by (1.15).

2. Theattractors

In the previous section, we have proved that, for every fixed0 and everyug
® .= L*>°(Q2), problem (0.1) possesses a unique solutign € ® and, consequently, the
semigroup

S5 — P, Stug:=u(t), (2.1)

whereu(t) is a solution of (0.1), is correctly defined.

In this section, we prove that, for every > 0, semigroup (2.1) generated by
equation (0.1) possesses an attragtdin the phase space and obtain several uniform
(with respect toe > 0) estimates for these attractors which will be used in the next
sections in order to study the homogenization lienit- 0. Moreover, in order to clarify
the anisotropic dissipativity assumption (0.6), we give a number of examples of the right-
hand sidesf which admit the above theory.

For the convenience of the reader, we recall shortly the definition of the attractor anc
its basic properties (see e.g. [1,6,13] for the detailed exposition).

DEFINITION 2.1.—LetS!:® — & be a semigroup, acting in a B-spade Then, a
setA® is defined to be the attractor fdi if the following is true:

(1) The set4? is compact ind.

(2) The setA? is strictly invariant, i.e.S? A° = A°.

(3) The set.A® is an attracting set for the semigroug?, i.e. for every open
neighbourhood? (A¢) of the set4¢ in ® and for every bounded subsktc &, there is
T =T(O, B) such that

SEBCO(A), ifr>T. (2.2)



M. EFENDIEV, S. ZELIK/ Ann. I. H. Poincaré — AN 19 (2002) 961-989 973

Remark?2.1. — The third condition of the previous definition is equivalent to the
following: for every bounded subs@&t C ®

lim disty (7 B, A%) =0, (2.3
where dis§ means the nonsymmetric Hausdorff distance, i.e.

disty (V, W) :=sup inEV v —w|e. (2.4)

veV WE

It is also known (see e.g. [1]) that, if the attractdf exists then it is generated by alll
complete bounded trajectories of the semigrgfipi.e.

A° ={uge ®: Ju e LR, ®), u(0) =ug; Siu(s)=u(t+s), VseR, t e R, }.
(2.5)

The following proposition gives the sufficient conditions for the existence of the
attractor.

PrRoPOSITION 2.1 [1]. — Let S7: & — @ be an abstract semigroup in the spade
which satisfies the following conditians

(1) The semigroups? possesses a compact attracting etin & (in the sence of
punkt(3)) of Definition2.1).

(2) The operatorsS; : & — @& have closed grafs, for every fixed> 0 (as usual, it
means that the sétuo, S;ug): uo € ¢} is closed in® x ).

Then, it possesses an attractor.jti in ® and A° C K.

We are now in position to state the main result of this section.

THEOREM 2.1. — Let the assumptions of Theoreh® hold. Then, for everg > 0,
semigroup(2.1) generated by equatiof0.1) possesses an attractod® in the phase
spaced := L°°(2) which admits the following description

A* = K*,—0, (2.6)

where K¢ is a collection of all boundedwith respect tor € R) solutionsii(¢) of the
equation

qu(t) =Au(t) — f(a@®)+g, teR, ilye=0. 2.7)

Proof. —Let us verify the assumptions of Proposition 2.1. Indeed, it follows from
estimate (1.37) that the balfx of radiusR in the spaceb; := C?#(Q) is an attracting
set for semigroup (2.1) iR is large enough (namely iR > Q(|lgllo.2)). Since the
embedding®s C @ is compact then the sy is the (pre)compact attracting set for
semigroup (2.1). Taking its closure i, we construct the compact attracting setS$or
Thus, the first assumption of Proposition 2.1 is verified.

Let us verify the second one. Recall, that we should prove thgf # ug in ® and
u,(T) :=S5ug— vin ® thenv =u(T) := Siuo.

We first note that the operatéf. is uniformly Liptshitz continuous with respect to the
L2-norm on every bounded subsgtin ®. Indeed, let3, u5 € B be an arbitrary initial
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data,u;(¢) be the corresponding solutions of problem (0.1) an@) = u1(¢) — u2(z).
Then, this function satisfies the equation

dw=Aw—IlOw, wlo=ug—ud, wle=0, (2.8)

where () := fol f/(sur(t) + (1 — s)up(r))ds. It follows from estimate (1.21) that
lu; () llo.co < Cp Where the constanCp depends only on the nornjB|s and,
consequently

1) ]]g.00 < C1(B). (2.9)

Taking the inner product iR* with the functionw (¢), integrating over € 2, estimating
1(¢) by (2.9) and applying the Gronwall inequality, we derive the estimate

s (T) — ua(T)|[5., < CET [[u2(0) — uz(0)|f5 5. (2.10)

where the constants and K depend only on B||¢-

Having L?-Lipschitz continuity (2.10), we immediately conclude tisathas a closed
graph in®. Indeed, leu{ — uo in ® andu,(T) — v in ®. Then, according to (2.10)
u,(T) — u(T) in L?(R) and, consequently, = u(T).

Thus, all assumptions of Proposition 2.1 are verified for semigroup (2.1) generated b
Eqg. (0.1) and, therefore, this semigroup possesses an attrétt@escription (2.6) is
an immediate corollary of the formula (2.5). Theorem 2.1 is proved.

The following corollary is of fundamental significance for our study the homogeniza-
tion limit (lim._,0.4%) in the next sections.

COROLLARY 2.1. - The attractorsA® € @5 N Wy'*(2) and uniformly bounded with
respect tae > 0in this space

[ A1 2+ 14| 2y < QlIgll0.2)- (2.11)

Here the exponerg > 0 and the functionQ are independent af.
Moreover, letii (1) € K¢ be a bounded solution of E(R.7). Then

T+1
N1 2 sz 7. rsapeqy + 1A+ / |Aca()]5,d < O(lghoz).  (2.12)
T

where the functiorQ is independent of, i, andT € R.

Indeed, the first estimate is an immediate corollary of the second one together witl
representation (2.6) and estimate (2.12) can be easily derived from estimate (1.37) ar
from the fact that|i(7) || 0,0 remains bounded when— —oo.

Recall that we have proved the attractor’'s existence Theorem 2.1 under anisotropi
dissipativity assumption (0.6) on the nonlinear tefnwhich looks a little unusual. In
conclusion of this section, we discuss this assumption and give a number of example
where it is satisfied.
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We first note that, in a scalar cage= 1, we need only the following natural
assumption on the nonlinear terfnthere isRk s < oo such that

sgnuf(v) =0 if v| > Ry (2.13)

(which as known is essential in order to obtain the global existence of solutions of (0.1)).
Note also that, in this case, the polynomial growth restriction (0.5)(2) is also can be
removed due to the maximum principle.

Consider now the case of systenmis 2). The usual (for the attractor’'s industry)
assumptions for the nonlinearity are the following:

L fu).u>—C+ CylulP*,
2.1 f| < CA+ul”), p<pe, (2.14)
30/ ) < CQAA+[ulP™)

(see e.g. [1,13]) which involve thgrowth restrictionsp < p.. Unfortunately, the limit
exponentp, in assumptions (2.14) is too restrictive.(= 1+ 4/n = 7/3 < 3 (see [1]))
and, consequently, even the cubic nonlinearities are out of the consideration).

Another standard possibility is to impose the additional quasi-monotonicity assump-
tion

flw)>-K (2.15)

to the nonlinear termf. In this case, the global existence and uniqueness of weak
solutions and even the existence of the attractdfsin L?(Q2) can be obtained
without the growth restrictionp < p. (analogously to [1]). Moreover, in the case
whereA, = A =aA,, a € LR, R¥) with a + a* > 0, the considerable theory (which
includes theL*-bounds for weak solutions, their smoothness, the differentiability of
the corresponding semigroup, the finite dimensionality of the attractors, etc.) can b
constructed for Eqg. (0.1) with essentially weaker growth restricticnl + 4/(n — 4).

For instance, it = 3 andA, := aA,, the following assumptions off

1. f € CY(R*, RY), 2. fu).u>—C, 3 fl(u)>—-K (2.16)

are sufficient (see [18]). But the proof of these results is essentially based on the
trick with multiplication of Eq. (0.1) byA,u and does not work in our situation
where the operatoA, has the form (0.2), (0.3). Therefore, even under the additional
assumption (2.15), we do not know how to obtain the additional regularity of weak
solutions of (0.1) (which is necessary to study the limit behaviours as- 0 of
attractorsA®) without the growth restrictiop < p. < 7/3.

In order to remove this extremely restrictive growth condition, we suggest to use
the dissipativity assumption in a new form (0.6) which, on the one hand, is not very
restrictive (as the examples given below show) and, on the other hand, admits to obtai
the L*°-bounds of solutions of (0.1) (with the diagonal leading partsee (0.2)) without
the growth restrictions. We illustrate this anisotropic dissipativity assumption by several
examples.
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Assume, for the first, that the nonlinearifypossesses the following decomposition:

f)= fi(v) + fa(v), wherefi(v) := diag{fll(vl), o) (2.17)
and the functionsf| (v') satisfy the assumptions
A@H V' > =Ci+ o V)92, i=1,.. k, (2.18)
for the appropriate;; > 0, «; > 0 and the functiong>(v) satisfy the following growth
restrictions:
A< C@+|"), i=1...,k ;>0 (2.19)
Assume also that
li<l4¢q, i=1,..., k. (2.20)

LEMMA 2.1.— Let assumptiong2.17)—(2.20)hold. Then, for every > ¢;, i =
1, ..., k, nonlinearity (2.17) satisfies the anisotropic dissipativity conditi¢d.6) with
the exponentp, =g — ¢;.

Proof. —Indeed, due to (2.18)

End

k
STAW) T = =+ 1723 | = —C + Blul7tR (2.21)
i=1 i=1

It follows from restrictions (2.19) and (2.20) and Hélder inequality that
|f2i(v)’ . ’vi| . |Ui’q—‘h‘ < M|Ui’ + Cﬂ|f2i(v)|(4+2)/(4i+l)
< M|U|q+2 +C,+ CM|U|(q+2)li/(q;+l)
<2up*?+C), (2.22)

where u > 0 is an arbitrary positive number. Estimates (2.21) and (2.22) prove the
lemma. O

q+2

Remark?2.2. — Note that, under the assumptions of Lemma 2.1, (0.6) is valid with
pi = g — q; Whereg may be arbitrary large. Consequently, for every nonlinearity
(2.17) with the polynomial rate of growth (i.e., for which (0.5)(2) is satisfied), we may
satisfy also the assumptign > 2(p — 1) and, therefore, Theorem 2.1 is valid for such
nonlinearities.

Example2.1. — The simplest example of such nonlinearities is the following:
filv) = diag{a1v1|v1]q1, . ozkvk|vk]qk}, (2.23)
with ¢;, ; > 0 and # is linear f>(v) = Lv. Then, all assumptions of Lemma 2.1 are,
obviously, satisfied and, consequently, Theorem 2.1 holds.
Example2.2. — Consider the cage= 2, v = (vq, v2) and the nonlinearity

f(v):<”f_“”1_ﬁ”2>, @, B,y €R, (2.24)

V2 —Yyu



M. EFENDIEV, S. ZELIK/ Ann. I. H. Poincaré — AN 19 (2002) 961-989 977

which corresponds to the Fitz—Nagumo system (see [8]). We note that the assumptior
of Lemma 2.1 are violatedgf = 0, I, = 1, I, = g2 + 1) here. Nevertheless, a
simple computations show that the dissipativity assumption (0.6) is valid with the
exponentsp; = p, = g and everyg > 0, consequently, Theorem 2.1 remains true for
nonlinearity (2.24).

Example 2.3. — Consider the cage= 2 and the nonlinearity

v3 — av2

= (78%). 2al+181<3 281+l <3 (2.25)
vz — Buy

If « = B =1 then (2.25) satisfies the equatigh(v) + f2(v) = 0 which is natural from

the reaciton-diffusion point of view. Note that this nonlinearity evidently does not satisfy

the standard dissipativity assumptioff({).v > —C). Nevertheless, the elementary

computation shows that the anisotropic dissipativity assumption is satisfieghyvittb

and p, = 1. Note also that function (2.24) satisfies also condition (1.15) with these

exponents. Consequently, Theorem 2.1 holds for this nonlinearity.

Example2.4. — We conclude the section by the following ‘exotic’ example:

U3 —V

f)= ( : E) (2.26)
V3 — Vg1

of two RDEs coupled by the mononj of the highest order. Nevertheless, the anisotropic

dissipativity condition is valid with the exponengs = 4 andp; = 10. Since (1.15) is

also hold for this exponents then Theorem 2.1 is valid for nonlinearity (2.26).

3. Thehomogenization

This section is devoted to study the behavior of the attractrsonstructed in the
previous section whesnn— 0. The main task of the section is to prove that these attractors
tend ag — 0 to the attractoi4® of the homogenized problem (0.9). In order to write this
homogenized system, we recall briefly some known results from the theory of almost-
periodic homogenization (see e.g. [20] for the detailed exposition).

Recall, that every almost-periodic functian ¢ AP(R®) possesses the mean value
which can be calculated by the following formula:

(w) := lim - / w(x) dx

I 23713
[-7.71
and the following Fourier expansion
wx) = Y WEEND, (3.1)

w(§)#0
where the amplituded (¢) € C, £ € R can be found by

W(E) = (w(x)e ™) (3.2)
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(see e.g. [10,11]). It is known that the setw) := {& € R3, W(&) # 0} is not greater
than countable, therefore, the sum (3.1) has a sense. Moreover,

3 |b@)° <o (3.3)

Eeo(w)
and series (3.1) converge to the functianin the sense of the Bezikovich norm
||v||BZ(R3) (v(x)v(x)) (see [10] for details).

As usual, we denote by TrigR®) the space of allinite trigonometric polynomials of
the form (3.1)

N

Trig° (R%) := {w(x) => wd*W: NeN, eR® weeC, k=1,..., N}.
k=1

(3.4)

Now we are ready to write the formula for the homogenized operatgrfor
problem (0.1). To this end, we first define the functid®ig), £ e R, [ =1,... k,

by
B = inf <Za,1 W (& + 0, NOY) (€ + a},N<y>)> (3.5)

NeTrige (R3)

Whereafj (y) has been defined in (0.3). Note, that (3.5) has a sense since the expressic
inside of(-) is, obviously, an almost-periodic function.

It is known (see [20]) that the functionS!(£) generate positive definite quadratic
forms with respect tq, i.e.

B'(¢)=> aj&&;. aj; R (3.6)
)

Define now the operator} and the operatos in the following way:

Abu _Zaxj aj; O, u' ) Aou :=diag{ Agu®, ..., Afu*}. (3.7)

This choice of the leading part of the homogenized equation for (0.1) is justified by the
following proposition.

PROPOSITION 3.1 [20]. — Let the functionsy® € Wy %(2) be the solutions of the
following problem

Alvi=h, heW™3(Q), (3.8)

wherel € {1,...,k} is fixed and the operatoa! is defined by0.3). Then,v® — v°
weakly inWy?(2) ase — 0 and the function® € Wy %(2) is a solution of the limit
problem

AL® =h, (3.9)
where the operator)) is defined by3.5)—(3.7)
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Let us consider the homogenized equation

{ du = Aou — f(u) +g, (3.10)

uli—o=1uo, Ulse=0,

for the non-homogeneous equation (0.1). Note that this equation satisfies all assumptiol
of Theorem 2.1 (due to the fact that the forn#(¢) are positive defined) and,
consequently, possesses the attragtrin the phase spac® = L>*(Q). Moreover,
estimates (1.11) and (2.12) remain valid for the limit equation (3.10).

The main result of this section is the following theorem.

THEOREM 3.1. — Let the assumptions of Theor@ hold and let4° be the attractor
of the limit (¢ = 0) problem(3.10) Then, the attractors4® of (0.1) converge ta4° as
¢ — 0in the following sense

lim dist;z g, (4%, A°) = 0, (3.11)

for the appropriate sufficiently small positive exponght- 0.

Proof. —As usual (see [1]), in order to prove upper-semicontinuity (3.11), we should
consider an arbitrary sequeneg— 0 andug, € A* and prove that it is possible to
extract from it a subsequenag,, — uo € A%in dp.

Let us fix an arbitrary sequeneg — 0 and an arbitrary sequeneg, € A*. Let
u,(t) € K be the corresponding bounded solutions of Eq. (2.7) (witteplaced
by ¢,) such thatg, = u,(0) (which exist due to representation (2.6)). Then, according
to (2.12)

i ll crepze 7, 7411x2) < Q(lgllo.2). (3.12)

with the appropriatgg > 0 and the functionQ independent of’ € R andn € N. Let us
fix 0 < B’ < B. Then, due to the compactness of the embedding

CHPH (T, T +11 x Q) € C*P#(IT, T + 1] x Q),

and due to Cantor diagonal procedure, we may assume (passing to a subsequence
necessary) that there is a functiére C1+#-26'([T, T + 1] x Q) such that

i, — 4, i, — 0t asn— oointhe spac&? 2 ([T, T +1]1 xQ), (3.13)

for every fixedT € R. Particularly,ii, (0) — i(0) in @4 . Therefore, ifi KO then, due

to (2.6), ug = #(0) € A°. Thus, there remains to prove that the limit functid@) is

a bounded solution of the limit equation (3.10). This fact can be easily verified using
Proposition 3.1 and convergence (3.13). Indeed, let us verify that the function
satisfies thdth equation of (3.10). Sincg andd;u are continuous with respect to, x)

it is sufficient to verify this identity for everfixedT € R. To this end, we rewrite thith
equation of (1.2) in the form of elliptic boundary problem:

AL 0 (T) = hl(T) := 9,0, (T) + f'(a(T)) — g, @' (T)lye =0. (3.14)
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Note that convergence (3.13) implies that
L (T) = hi(T) := 8,d'(T) + f'(4(D)) — g’ (3.15)

in the spaceC?/1(Q).
Letv, € W01’2(Q) be a solution of the following elliptic boundary problem:

Al v, = ho(T) (3.16)
Then, on the one hand
85, (T) = a1, < €|, (T) = ho(T)|_y , — O, (3.17)

due to (3.15) and due to the uniform with respect tioundedness afd,)~1: W—12(Q)
— W;?(R2). On the other hand, due to Proposition 3.1

V' — vg,  in Wi 3(Q) whereAb v = hi(T). (3.18)
Convergences (3.17) and (3.18) imply th&t7) = vy and, consequently
AL (T) = hiy(T) = 3,u' (T) + f1(a(T)) — &' (3.19)

SinceT is arbitrary then the function’ (¢) really satisfies théth equation of (3.10) and,
therefore, (sincé € {1, ..., k} is arbitrary)u satisfies the homogenized equation (3.10).
Note also that the uniform estimate (3.12) and convergence (3.13) imply:tiet
bounded. Thusj € £°. Theorem 3.1 is proved. O

4. Thecase of periodic coefficients. estimates of theerror

This section is devoted to a more detailed consideration of the particular case wher
the coefficients:;; (y) are periodic and smootlc¢(R?)) functions inR®, i.e itis assumed

that there are positive numbefs= (Ty, T», T3) > 0 such that
al;(y+(T.m))=d,(y), foralli,j,IandforallmeZ? yeR® (4.1)

In this case, using the method of asymptotic expansions (see [2,20]), we obtain the errc
estimates for the approximation of the individual solutions of (0.1) by the solutions of the
homogenized problem (3.10) and based on these estimates we derive the estimates
the distance between the global attractdfsand.A° under some additional assumptions
on the limit attractor4®.

THEOREM 4.1. — Let the assumptions of Theoré& hold and let in addition(4.1)
be also valid. Then, for every > 0 small enough and eveny, € ® N Wy'*(%2), the
following estimate is valid

e (@) = @ (®) g, < Qllutoll ryy2) ™€, (4.2)



M. EFENDIEV, S. ZELIK/ Ann. I. H. Poincaré — AN 19 (2002) 961-989 981

where u.(t) = Sfuo, 4(t) = S’up are the solutions of problem¢0.1) and (3.10)
respectively, the functio@ and the constank = K (||uo|lo.») are independent of.

Proof. —We first note that, since the elliptic operatég has constant coefficients, we
can derive from (1.17) that
T+1 T+1

Ja o+ [ a@3p0+ [ a0
T T

< Q(lluollo,co + lluollr2) + Q(llgllo,2), 4.3)

for the appropriate functio® independent of” > 0 (here we have implicitly used the
elliptic regularity estimatdu||,» < C||Aou||o.2)-
Letus fixl € {1, ..., k}, consider théth equation of (0.1):

Sy = Ay, — f'(ue) + 85 uylizo=ug (4.4)

and introduce the correctors; (y), k = 1, 2, 3, as solutions of the following auxiliary
periodic problems:

{ 3210y, (a (00, NE(y) = — 32 8yl (»),  yeRS,

A (4.5)
Ni(y+(T,m))=N.(y), meZ3

It is well-known that the periodic problems (4.5) have unique solutions (due to the
uniform ellipticity assumption (0.4)) and sinag (y) are smooth?) then

HNliHC,}(R% < C. (4.6)

Moreover, if the solutions of (4.5) are known then the coeﬁiciébtsf the limit elliptic
operatorAl can be calculated by the following formulae (see e.g. [20]):

3
k:l

LEMMA 4.1. — Define the functions

3

AL (t) =a' (1) + &> Ny(e7'x) oy i (1). (4.8)
k=1
Then
|4z (1) = Agi' (O] _y » < Cel|' ]| 2 (4.9)

where the constant is independent of.
Proof. —Indeed, it is computed in [20, p. 27] that

3 3
Z aau Z (e7tx)d, a') +ril, (4.10)

Jj=1
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whereq;# (y) are certain periodic functions such that
i (y) = —ai(y) (4.11)

and the remainderg’ are

3
rili=e Y Ni(e7x)0? i —eal] (671x)07 il (4.12)

XjXk XjXk
k,j=1

Note that due to (4.11) the divergence from the first term into the right-hand side
of (4.10) equals zero and, consequently

3
ALl (1) = Agi' ()| _y, <D [Ir 0)]]g < Cel|d' )] ..
i=1

Lemma4.1is proved. O

Note that the constructed functior& (t) do not satisfy the boundary conditions
(@) ¢ W01’2(Q)) which is inconvenient for our purposes (we are planning to multiply
equation (4.4) inL?(Q) by u'(t) — ul () and integrate by parts). In order to avoid
this difficulty, we introduce (following to [20]) the family,(x) € C3°(£2) of cut-off
functions satisfying the following conditions:

D) 0. <1, andr,(x) =1 if x € Q\0.(02), where O,(32) means the
g-neighbourhood of the bounda#y?.

(2) €|V, 1. (x)| < C for everyx €  ande > 0.

(Such family exists because the boundasyis assumed to be smooth (see [20])) and
make the following boundary correction of the functiaiisr):

3

wh() =iy (1) — (1= 1.(x)) Y Ni(e7x) it (1). (4.13)
k=1

Then, obviouslyw! (1) € Wy'?(2) (to be more precise)’. € L%([0, T], Wy'%(2))) and
the W-2-distance betweeii!, andw! is sufficiently small as the following lemma shows.

LEMMA 4.2.— Let the functionsil(r) and w'(r) be defined by4.8) and (4.13)
respectively. Then

Hﬂi _wé||1,2<Cgl/gHﬁl(t)Hz,z’ (4.14)
where the constant is independent of.
Proof. —Indeed, sinceV! (y) € C}(R3) then, due to our choice of cut-off functioms

- 2
1V (e = we) 1.2

</ISVXISIZWXIQI(I)]Z—{—(1—rg)2|VyN(s_lx)|2|Vxﬁ(t)|2+CSZIVfﬁ(t)|2dx
Q

<C / Vi (1) P de + Ce2|| i (1) - (4.15)
xe0,(09)
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Applying the Hoélder inequality to the first term in the right-hand side of (4.15) and using
the embeddingv?2 c W8, we derive that

Vil 0 dr < |0, [7d )] s < Ce¥3|a' )3 (4.16)
x€0:(0R)

(here we have used the fact that the volume of dheeighbourhood O, (d2)| < Ce
becaus«? is assumed to be smooth). Estimates (4.15) and (4.16) prove the lenmma.

Now we are ready to complete the proof of the theorem. To this end, we introduce the
functionv, (¢) := u.(t) — u(z). Then

dvl(t) = [ALul — ALA' )] — [f (ue ) — f1(a@®)], vllse=0. (4.17)

Let us take the inner product i?(2) of this equation with the function’ (r) — w’ (¢):

T T
/(3tvf:» (1 — w})) dr = /(Aiui(t) — AL (@), ul (1) — w! () o
0 0
T
[ ew) ~ @) o vl & @18)
0

Note that definitions (4.8) and (4.13) imply the estimate
! (1) = wl (1) = vl (®)]]g.p < CelJd 1)1 5- (4.19)

Consequently, estimate (1.17) and (4.3) imply the inequality
T

T
/(atvg(z), ul () — wh(r)) dr — /(a,vg(r), vl(@)) dr
0

0
T
e ( / Ha,vgowéz)
0

for a certain monotonic functio@ independent of.

The third term in (4.18) can be estimated analogously using the fact that we have
the uniform with respect t@ L>°-estimate for the solutions,(z) andi(¢) (due to
Corollary 1.4):

1/2 1/2

T
(/Hﬁl(t)Hizdt) < Q(HMOHL“’OWLZ)ET’ (420)
0

T
(7 we0) = 7(@0), i)~ wlo) o
0

T

- / (f! (ue@) = £1(@®), vy () dr| < Q(lluollo,oc) €T, (4.21)
0
with the appropriate? independent of.
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Thus, it remains only to estimate the most complicated second term of (4.18). We
will do so using the results of Lemmata 4.1 and 4.2 and the uniform ellipticity (with the
constant > 0) of the operatorsi_:

— (ALl () — ALa' (1), ul — w!)
=—(AL(ul(®) — i @), ul(t) — wl(2)) — (ALil (t) — AGit! (1), ul (£) — w' (1))
> vul () = i)y, — Cllak ) = wl@)|5, = v/4ul ) = il @],
— Ce?@ (05, — v/Alul () = wh®)]3, > —Cre®i D)5 (4.22)
Intergating inequalty (4.22) overe [0, T] and taking into the account estimate (4.3),
we have

T
/(Agu;(z) — Aot (1), ul (t) — wl () dt < Q(lluollpeonwr2)e”>T. (4.23)
0

Inserting estimates (4.20), (4.21) and (4.23) in relation (4.18) and taking into the accoun
the fact that’ (0) = 0, we derive the estimate:

T

1/2]0L(T) 5., < Q(lluoll . awr2)e¥3T — / (f!(ue@®) = f1(a®)), ve(0))
0
(4.24)

Summing inequalities (4.24), fér=1, ..., k, we finally obtain
T
||v£(T)y|32 < 2kQe?PT — 2/(f(u£(t)) — £ (), ve(@)) dr. (4.25)
0

Recall that the functiory € C* and we have the uniform with respectstd.>-estimates
of solutionsu,(r) and u(z). That is why, we can estimate the intergal in (4.25) in a
standard way and obtain the estimate

T
0T, < 2K [[luno)]; 0 + 26062, (4.26)
0

whereK = K (||uoll0.00)-
The Gronwall inequality applied to (4.26) finishes the proof of the theorem.

Remark4.1. — Note that, in the case where the limit solutidin) is smooth enough
(e.g.7 € CY2(Qy), it will be so for example if in additiorg € C#(2) and the initial
valueuy € C*#(Q)), one can expect much better estimates than (4.2) (with exponent
1/2 or even 1 instead of/B). But, in this case, the functio@ will also depend on
lluoll -2+ Which is not permit to apply this result for estimation the difference between
the attractors. So, keeping in mind the application of this estimate to the attractors, wi
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cannot consider the initial data more regular thzf N Wy and this was the main
difficulty in the proof of Theorem 4.1.

Now, having the error's estimate for approximation the individual solutions of (0.1)
by the solutions of homogenized equation (3.10), we are ready to derive the analogou
error's estimates for the (global) attractad$ and .4°. To this end, we need some
additional information about the attractet® of the limit equation (3.10). Namely, we
require the rate of convergence of images of bounded sets to the attéfttor be
exponential, i.e.

dist 2, (S? B, A°) < Q(IIBllo)e™, (4.27)
for a certainpositiveexponentv > 0 and the appropriate functiof.

THEOREM 4.2. — Let the assumptions of Theoreini hold and let the limit attractor

A° be exponential. Then, the nonsymmetric Hausdorff distance betWeemd .A°
possesses the following estimate

dlStLZ(Q) (Ag, AO) < CSK, (428)

where the constanf and the exponer < « < 1 can be computed explicitly.

Proof. -The assertion of the theorem is a simple corollary of estimates (4.2)
and (4.27). Indeed, lat? € A° be an arbitrary point of the attractot®. Then, due
to (2.6), there is a complete bounded trajectaryr) € K¢ such thatu,(0) = u?.
Moreover, according to estimate (2.12)

[ (D] o) < C (4.29)

where C is independent of € R, ¢ and «?. Let us fix now an arbitranyi” € R, and
consider the solutiorii(r) of the homogenized problem (3.10) with the initial value
1(0) := u.(—T). Then, according to estimate (4.2),

ue(0) — A(T) ||, < C1™3€XT, (4.30)

where the constant§; and K depend only orC from (4.29) and on the function®
andK in (4.2) and are independentaf, T ande.
From the other side, since the attract#ft is exponential then

dist 2., (2(T), A%) < C2e™7, (4.31)

where the constanC, is also independent oag, T and ¢ (due to the uniform
estimate (4.29)). Combining estimates (4.30) and (4.31), we derive that

dist 2, (12, A°) < C16M3eXT + e (4.32)

Recall thatT > 0 is arbitrary, therefore we fix it in order to minimize the right-hand side
of (4.33), i.e. satisfying the equation

Clel/3eKT = Cze‘“T.
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Solving this equation and insertirfg= 7 (¢) in the right-hand side of (4.32), we obtain
that

dist, 2q) (2, A%) < C3e”, (4.33)

wherex = 370 Sinceu? € A is arbitrary then (4.33) implies (4.28). Theorem 4.2 is

proved. O
COROLLARY 4.1. — Let the assumptions of Theoreh2 hold. Then

diste(g) (A%, A%) < Ce, (4.34)

for the appropriate0 < k1 <k < 1.

Indeed, due to Corollary 2.1, the attractod$ and A° are uniformly bounded in
C%'(Q), B > 0 therefore, estimate (4.27) together with the appropriate interpolation
inequality implies (4.34).

Remark4.2. — Assume, in addition, that the attractaty ¢ < g, are uniformly with
respect ta exponential, i.e.
d|StL2(Q) (SfB,Ag) § Q(”B”cp)e_w, (435)

where the positive constant> 0 and the functiorQ are independent af. Then, arguing
as in the proof of Theorem 4.2, one can easily obtain the lower semicontinuity of the
attractors4® and the estimate

diStLZ(Q) (AO, Ag) < CSK (436)
and, consequently, in this case we have estimate (4.2) not only for nonsymmetric

Hausdorff distance but for the symmetric one as well.

Note in conclusion that there is a large class of systems of the form (0.1) for which
estimate (4.27) is known. Indeed, assume in addition that the nonlinear furfchias a
gradient structure (which is always true in a scalar ¢asel)

fu)=V,Fu). (4.37)
Then, as known (see e.g. [1]), Eg. (3.10) possesses a global Lyapunov function
L(u) = /Z&fjax[ulaxjul + 2F (u) — 2g.udx (4.38)
o bl

and, consequently, in the generic case, where we have only finite number of equilibrie
R :={z1,...,zy} for Eq. (3.10) and all of them are hyperbolic, the attractor of Eq. (3.10)
is regular i.e. consists of a finite collection of the finite dimensional unstable manifolds
M™(z;) of the equilibria pointg; € R:

N
A= [ M* () (4.39)

i=1
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(see e.g. [1] or [15]). Moreover, it is also known (see [1]), that the regular attractor
is exponential, i.e. (4.27) holds for the regular attractors. Thus, we have proved the
following theorem.

THEOREM 4.3. — Let the assumptions of Theordn2 holds and let in additiori4.37)
be satisfied and all equilibria of the homogenized equation be hyperbolic. Then, the
estimatg(4.28) holds.

Let us consider now several examples of reaction-diffusion systems arising in
mathematical physics for which the assumptions of Theorem 4.2 are fulfilled.

Example4.1. — One of the simplest examples is a Chaffee—Infante equation in the
non-homogenized almost-periodic media:

du=Agu —ul+au+gkx), ulyg=0. (4.40)

Hereu is a scalar functionk(= 1), g € L?(Q), « € R is a given constant and the operator
A, is defined via (0.3). All assumptions of Theorem 3.1 are evidently satisfied for this
equation and, consequently, (4.40) possesses a global attréttdor every s > 0.
Moreover, these attractors tend to the limit attractr of the homogenized problem
ase — 0in the sense of (3.11).

Note also that Eq. (4.40) has a gradient form ((4.37) is satisfied) and, consequently
for genericg € L?(R), the limit attractorA, is regular and exponential. Thus, in the case
of periodic media estimate (4.28) is also valid for the external fogcbslonging to a
certain open and dense setliA(Q).

Example4.2. — Consider now the following generalization of Lotka—\Volterra system:

iy = Alu; — fi(uy) — u; (g biju?) + gi(x), @a1)
uilsgo=0, i=1...,k,

whereA! are defined via (0.3);; > 0 are given nonnegative constargse L2(Q2) and
the functionsf; are assumed to satisfy the following assumptions:

1. f; e CY(R), 2. fi(v)-sgnv >0 for|v| > R,

(4.42)
3 i <C(A+v|P),
for a certain constant® > 0, C > 0 and p > 0. It is not difficult to verify that
system (4.41) satisfies all assumptions of Theorem 3.1 (particularly, the anisotropic
dissipativity condition (0.6) is valid witlp; = p, = --- = p; = ¢ for arbitraryg > 0),
consequently, the attracto®’, ¢ > 0 associated with the problems (4.41) converge as
¢ — 0 to the attractor4® of the limit homogenized problem.
Note also that, in the case where the ma{bi;;}ﬁjzl is symmetric, i.e.

bij=b; >0, i,j=1...k, (4.43)
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Eqg. (4.41) has a gradient form, therefore, in the case of periodic media, estimate (4.2¢
for the rate of convergence gf ase — 0 is valid forg; belonging to a certain open and
dense subset df2(Q) and forb,; satisfying (4.43).

Example4.3. — We conclude our consideration by the so-called FitzHugh—Nagumo
system:

(4.44)

dur = Alug — f(ur) —uz+ g1(x), u1lse=0,
dup = A2up + Suy — yuz + ga(x), uzlse =0.

Herek = 2, the operatorst’ are defined via (0.3), y > 0 are positive constants and
the nonlinearityf (v) is assumed to satisfy the fullowing assumptions:

1 feclQ), 2. f(w).v = —C + Cyv|7, 31 fw)] < C(L+v|?), (4.45)

for some positiveC, C1, ¢, p > 0. A simple checking reveals that Eq. (4.44) satisfies all
assumptions of Theorem 3.1 (particularly the anisotropic dissipativity assumption (0.6)
holds with p; = p, = r and arbitraryr > 0), consequently the attractar§ associated
with the nonhomogeneous problem (4.44) tend as0 to the attractord® of the limit
homogenized problem.

Note that Eq. (4.44) does not have a gradient structure. Nevertheless, it is shown in [4
that under the additional assumptions

1 f'(v)>—y forallveR, (4.46)

wherey is the same as in the second equation of (4.44), this problem possesses a glob
Lyapunov function in the form:

1
L(uy, up) == ||31M1||L2 + o ool = 2 Y (Aluy, uy) + %(Aiuz, 12)
2
y
+ v F(u1) +y (ug, uz) — ||v||L2 y (g1, u1) + g(gz, uz), (4.47)

where(-, -) means the inner product |D2(Q), F(u) = [o f(u)du and the terms,u,
ando,u, should be expressed from equations (4.44) (according to Theorem 1.2 all term:
in (4.47) are well posed on the attractdr). Thus, in the case of periodic media and
under the additional assumption (4.47), estimate (4.28) holds for gyvdérgm a dense

and open subset df?($2).

Remark4.3. — Itis also known that the regular attractors are structurally stable in the
sence, that representation (4.39) preserves under the small permutations of Eq. (3.1(
moreover, the uiniform exponential attraction property is also valid if the pertrubation
is small enough (see [1]). Note also that the hon-homogenized problem (0.1) can b
considered as a small pertrubation of the homogenized equation (3.10) because

H(AS)_l - (AO)_lHLZ(Q)—)Lz(Q) — 0 ase — 0

(see [20]). Therefore, one can expect that the uniform attraction property (4.35) is valic
for our case if the limit homogenized attractor is regular. Then, according to Remark 4.2
we will have the lower semicontinuity of attractas§ ase = 0 and estimate (4.28) for
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thesymmetridHausdorff distance. We will give the rigorous proof of this assertion in the
forthcoming paper.
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