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ABSTRACT. – The following reaction-diffusion system in spatially non-homogeneous almost-
periodic media is considered in a bounded domain�⊂ R

3:

∂tu=Aεu− f (u)+ g, u|∂� = 0. (1)

Hereu= (u1, . . . , uk) is an unknown vector-valued function,f is a given nonlinear interaction
function and the second order elliptic operatorAε has the following structure:

(Aεu)
l =

3∑
i,j=1

∂xi (a
l
ij (ε

−1x)∂xj u
l(x)), ε� 1, l = 1,2,3,

wherealij (y) are given almost-periodic functions. We prove that, under natural assumptions on
the nonlinear termf (u), the longtime behavior of solutions of (1) can be described in terms of the
global attractorAε of the associated dynamical system and that the attractorsAε, 0< ε < ε0 � 1,
converge to the attractorA0 of the homogenized problem (1) asε → 0. Moreover, in the
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particular case of periodic media, we give explicit estimates for the distance between the non-
homogenizedAε and the homogenizedA0 attractors in terms of the parameterε.

1991 MSC:35L30; 35B40; 35B45

RÉSUMÉ. – Nous considérons le systéme de réaction-diffusion suivant dans un milieu non
homogéne presque périodique en espace dans un domaine borné�⊂ R3 :

∂tu=Aεu− f (u)+ g, u|∂� = 0. (1)

Ici, u = (u1, . . . , uk) est une fonction vectorielle inconnue,f est une fonction d’interaction
nonlinéaire donnée et l’opérateur elliptique du second ordreAε a la structure suivante :

(Aεu)
l =

3∑
i,j=1

∂xi (a
l
ij (ε

−1x)∂xj u
l(x)), ε� 1, l = 1,2,3,

oú lesalij (y) sont des fonctions presque périodiques données. Nous prouvons que, sous des
hypothéses naturelles sur le term nonlinéairef (u), le comportement asymptotique des solutions
de (1) peut etre décrit par l’attracteur globalAε du systéme dynamique associé et que les
attracteursAε, 0< ε < ε0 � 1, convergent vers l’attracteurA0 du probléme homogénéisé de
(1) lorsqueε → 0. De pluis, dans le cas particulier d’un milieu périodique, nous donnons des
estimations explicites de la distance entre les attracteur non homogénéisésAε et l’attracteur
homogénéiséA0 en fonction du paramétreε.

0. Introduction

We consider the reaction-diffusion system

{
∂tu=Aεu− f (u)+ g, x ∈�,

u|t=0 = u0, u|∂� = 0
(0.1)

in a bounded domain� � R
3 with a sufficiently smooth boundary. Hereu =

u(t, x) = (u1, . . . , uk) is an unknown vector-valued function, the functionsf (u) =
(f 1(u), . . . , f k(u)) andg = g(x)= (g1, . . . , gk) are given and the second order elliptic
differential operatorAε has the following form:

Aεu := diag
(
A1
εu

1, . . . ,Ak
εu

k
)

(0.2)

with

Al
εu

l :=
3∑

i,j=1

∂xi
(
alij
(
ε−1x

)
∂xj u

l(x)
)
, ε� 1, (0.3)

where the functionsalij (y), y ∈ R
3 are assumed to be symmetric (alij (y) ≡ alji(y)) and

almost-periodic with respect toy ∈ R
3 (i.e. alij ∈ AP(R3) see e.g. [10]) for every fixed
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indexesi, j, l and the uniform ellipticity condition

∑
i,j

alij (y)ξiξj � ν|ξ |2, y, ξ ∈ R
3, (0.4)

is also assumed (with the appropriateν > 0) to be valid for every operatorAl
ε.

We impose to the nonlinear termf the following regularity conditions

{
1. f ∈C1(Rk,Rk),

2. |f (u)| � C(1+ |u|p), (0.5)

for a certainp � 1, and the following anisotropic dissipativity condition: there are the
exponentspi � 2(p− 1), i = 1, . . . , k, such that

k∑
i=1

fi(v)v
i|vi|pi � −C, for all v ∈ R

k (0.6)

which generalizes the standard isotropic one (pi = 0) and from the ours point of view is
more adopted to study the problems of type (0.1) with diagonal leading partAε.

For example, ifk = 2, u= (v,w) the anisotropic dissipativity assumption is satisfied
for the following non-linearities:

f (u)=
(
v3 − αv− βw

w− γ v

)
, or f (u)=

(
v3 −w

w− v3

)
, α,β, γ ∈ R.

Note that the first example (which corresponds to the Fitz–Nagumo equation see [8])
satisfies the standard isotropic dissipativity assumption as well; the second nonlinearity
satisfies the relationf 1(u) + f 2(u) = 0 (which is natural for chemical kinetics) and
evidently does not satisfy the isotropic dissipativity condition (see the end of Section 2
for the further examples).

It is assumed also that the external forceg ∈ L2(�), the initial dateu0 ∈L∞(�), and
the solutionu(t) of problem (0.1) is defined to be a function

u ∈ L∞([0, T ] ×�
)∩L2([0, T ],W 1,2

0 (�)
)∩C

([0, T ],L2(�)
)

(0.7)

which satisfies Eq. (0.1) in the sense of distributions. (Here and below, we denote by
Wl,p the Sobolev space of functions whose derivatives up to orderl inclusively belong
toLp and‖ · ‖l,p := ‖ · ‖Wl,p .)

The problems of type (0.1) has been intensively studied by many authors. The
longtime behaviour of solutions of (0.1) forfixedε > 0 are considered under the various
assumptions on the nonlinear termf and the operatorAε =A in [1,6,13].

The homogenization problems for individual solutions of linear and nonlinear elliptic
or parabolic equations of the form (0.1) has been investigated in [2,5,7,20] (see also the
references therein).

The longtime behaviour of solutions of RDE and even hyperbolic equations in the non-
homogenized periodic media with asymptotic degeneracy has been studied in [3,12].
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In the present paper, we study the case where we have a system of reaction-diffusion
equations (0.1) in the non-homogenized almost-periodic media. (For simplicity, we
restrict ourselves to consider only the most relevant from the applications point of view
3-dimensional case, but the applied methods work after the minor changings for an
arbitrary space dimensionn.)

It is proved that, under assumptions (0.2)–(0.6), problem (0.1) possesses a global
attractorAε in the phase spaceu0 ∈ # = L∞(�), for every fixedε > 0. Moreover,
these attractors are occured to be uniformly bounded with respect toε → 0 in the
spaceC2β(�) of Hölder continuous functions with an appropriate Holder exponent
1> 2β > 0: ∥∥Aε

∥∥
C2β(�)

� C for ε � ε0. (0.8)

In order to study the behaviour of attractorsAε when ε → 0, we introduce the
homogenized problem for equation (0.1)

{
∂tu=A0u− f (u)+ g,

u|∂� = 0, u|t=0 = u0,
(0.9)

where A0 = diag{A1
0, . . . ,A

k
0} and the elliptic operatorsAl

0 are constructed by the
standard formulae of the almost-periodic homogenization theory (see e.g. [20]).

It is proved that this limit problem also possesses the attractorA0 in the phase space
u0 ∈ # and the family of attractorsAε tends to the limit attractorA0 in the following
sense:

distC2β′ (�)
(
Aε,A0)→ 0 whenε→ 0. (0.10)

Here the Hölder exponent 0< 2β ′ < 2β < 1 and distV denotes the non-symmetric
Hausdorff distance between subsets of the spaceV :

distV (X,Y ) := sup
x∈X

inf
y∈Y ‖x − y‖V . (0.11)

Thus, the attractorsAε, ε ∈ [0, ε0], are occured to be upper-semicontinious atε = 0 in
the spaceC2β ′

(�).
In order to illustrate the obtained results, we give a more detailed consideration of the

case where the coefficientsalij are assumed to be periodic. In this case, imposing some
additional requirements on the structure of the limit attractorA0 and using the method
of asymptotic expansions, we give the explicit estimate of the error of approximation
of the non-homogenized attractors of (0.1) by the attractorA0 of the homogenized
equation (0.9). Namely, assume in addition that the limit attractor is exponential, i.e.
there is a positive numberν > 0 and the functionQ such that, for every bounded subset
B ⊂#, the following is true:

distL2(�)

(
S0
t B,A0)�Q

(‖B‖#)e−νt , (0.12)

whereS0
t is a semigroup in# generated by the limit equation (0.9).
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THEOREM. – Let the coefficientsalij be periodic and smooth enough and let the limit
attractorA0 be exponential. Then

distC(�)
(
Aε,A0)�Cεκ, (0.13)

where the constantC and exponent0< κ < 1 can be calculated explicitly.

It is worth to emphasize also that the exponential rate of convergence (0.12) has been
already established for some classes of equations (0.9). For instance, let the nonlinear
termf (u) be potential, i.e.

f (u)=∇uF (u), F ∈C2(
R
k,R

)
(0.14)

which is always true in a scalar casek = 1. Then, Eq. (0.9) evidently possesses the
global Lyapunov function and, consequently, for genericg’s (for which equation (0.9)
has a finite number of equilibria and all of them are hyperbolic), the attractorA0 is
regular and exponential (see [1,15]). Therefore, due to the theorem, the estimate (0.13)
is valid in this case.

Note that the estimates of the form (0.13) (for a symmetric or non-symmetric
distance) for the regular attractors of the abstract semigroups which possess the
Lyapunov functions and depend regularly on a parameterε has been obtained in [1]
(see Remark 4.3 for estimate (0.13) of the symmetric distance in our case).

These results has been recently applied in [16] for obtaining the estimates of the
form (0.13) for the reaction diffusion equations withAε ≡ ,x and spatial rapid
quasiperiodic oscilations in the subbordinated terms (i.e.f (u) := a(ε−1x)f̃ (u) or
a more general non-linearitiesf (u, ε−1x)). The analogues of these estimates for a
singular perturbed non-autonomous parabolic systems with rapidtemporaloscilations
in subbordinated terms (for instance withg = g(ε−1t, x)) has been obtained in [19].

1. Uniform a priori estimates

In this section, we derive several estimates for the solutions of Eq. (0.1) which are of
fundamental significance for our purposes.

We start with the uniform (with respect toε → 0) Lpi -estimates for the solutions
of (0.1).

THEOREM 1.1. – Let assumptions(0.2)–(0.6)be satisfied and letu be a solution of
problem(0.1). Then, the following estimate is valid:

k∑
i=1

∥∥ui(t)∥∥pi+2
0,pi+2 � C

(
k∑

i=1

∥∥ui(0)∥∥pi+2
0,pi+2

)
e−αt +C

(
1+

k∑
i=1

‖g‖pi+2
0,2

)
, (1.1)

whereC,α > 0 are independent ofε.

Proof. –Let us multiply thelth equation of (0.1) byul(t)|ul(t)|pl , integrate overx ∈�

and integrate by parts the leading termAl
ε in the following way:
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(
Al
εu

l, ul
∣∣ul∣∣pl)=−4(pl + 1)

p2
l

(∑
i,j

alij ∂xj
(∣∣ul∣∣(pl+2)/2)

, ∂xi
(∣∣ul∣∣(pl+2)/2))

�−Cν∥∥∇x

(∣∣ul∣∣(pl+2)/2)∥∥2
0,2 (1.2)

(here we have used also the uniform ellipticity (0.4)).
Taking the sum of all obtained inequalities and taking into the account the dissipativity

assumption (0.6), we obtain

∂t

(
k∑

i=1

∥∥ui(t)∥∥pi+2
0,pi+2

)
+Cν

k∑
i=1

∥∥∇x

(∣∣ui(t)∣∣(pi+2)/2)∥∥2
0,2

�C1 +
k∑

i=1

(
gi, ui(t)

∣∣ui(t)∣∣pi )≡C1 +Gu(t). (1.3)

Denote also

Fu(t) :=
k∑

i=1

∥∥ui(t)∥∥pi+2
0,pi+2, #u(t) :=

k∑
i=1

∥∥∇x

(∣∣ui(t)∣∣(pl+2)/2)∥∥2
0,2. (1.4)

We now note that, due to the Fridrich’s inequality,Fu(t) � C1#u(t) and, consequently,
applying the Gronwall inequality to (1.3), we derive after the standard computations that

sup
t∈[T ,T+1]

Fu(t)+
T+1∫
T

#u(t)dt

� CFu(0)e
−αT +C1 +

T+1∫
0

e−α(T+1−t )∣∣Gu(t)
∣∣dt, (1.5)

with the appropriateα > 0.
Thus, the main problem now is to estimate the integral into the right-hand side of (1.5).

To this end, we transform it to the following form which is more convenient for our
purposes:

T+1∫
0

∣∣Gu(t)
∣∣dt � C2 sup

t∈[0,T ]

(
e−α(t−T )/2

t+1∫
t

e−α(T+1−t )∣∣Gu(s)
∣∣ds
)
. (1.6)

It is essential for us that the constantC2 is independent ofT .
LetWi([t, t + 1]) :=Lpi+1([t, t + 1],L2(pi+1)(�)). Then, due to Hölder inequality

t+1∫
t

∣∣(gi, ui(s)∣∣ui(s)∣∣pi)∣∣ds �
∥∥ui∥∥pi+1

Wi([t,t+1])‖g‖0,2 � µ
∥∥ui∥∥pi+2

Wi([t,t+1]) +Cµ‖g‖pi+2
0,2 ,

(1.7)
where the constantµ can be chosen arbitrarily small. In order to estimate the first term
in the left-hand side of (1.7), we need the following interpolation result.
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LEMMA 1.1. – Let�� R
3 be smooth domain. Then

‖v‖Lq([t,t+1],L2q(�)) � C‖v‖1−θ
L∞([t,t+1],L2(�))

‖v‖θ
L2([t,t+1],W1,2(�))

, (1.8)

whereq = 7
3 andθ = 6

7 .

Proof. –Indeed, according to the standard interplolation theorem (see e.g. [14]),
inequality (1.8) is valid with exponentsq andθ satisfying the relations

1

q
= 1− θ

∞ + θ

2
; 1

2q
= 1− θ

2
+ θ

(
1

2
− 1

3

)
. (1.9)

Solving system (1.9), we obtain the exponents from the lemma. Lemma 1.1 is proved.✷
Embedding (1.8) implies, particularly, that∥∥ui∥∥pi+2

Wi([t,t+1]) �C
∥∥ui∥∥pi+2

Lq(pi+2)/2([t,t+1],Lq(pi+2)(�))

�C1

(
sup

s∈[t,t+1]

∥∥ui(s)∥∥pi+2
0,pi+2 +

t+1∫
t

∥∥∇x

(∣∣ui(s)∣∣(pi+2)/2)∥∥2
0,2 ds

)

�C2

(
sup

s∈[t,t+1]
Fu(s)+

t+1∫
t

#u(s)ds

)
(1.10)

(here we have used the evident fact thatq(pi + 2)/2= 7
6(pi + 2) > pi + 1).

Inserting this estimate to the right-hand side of (1.7) and taking a sum over the indexes
i = 1, . . . , k, we derive the estimate

t+1∫
t

∣∣Gu(s)
∣∣ds �µ

(
sup

s∈[t,t+1]
Fu(s)+

t+1∫
t

#u(s)ds

)
+Cµ

k∑
i=1

‖g‖pi+2
0,2 , (1.11)

whereµ> 0 can be chosen arbitrarily small.
Denoting the left-hand side of (1.5) byZu(T ) and inserting estimate (1.11) into the

right-hand side of (1.5), we have

Zu(T )� CFu(0)e
−αT +µ sup

t∈[0,T ]
(
e−α(T−t )/2Zu(t)

)+Cµ

(
k∑

i=1

‖g‖pi+2
0,2 + 1

)
. (1.12)

It can be easily proved (see e.g. [17]) that, forµ< 1/2, (1.12) implies the estimate

Zu(T )� C1Fu(0)e
−αT/2 +C2

(
k∑

i=1

‖g‖pi+2
0,2 + 1

)
. (1.13)

Theorem 1.1 is proved.✷
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COROLLARY 1.1. – Let the assumptions of Theorem1.1hold. Then

∥∥f (u(t))∥∥0,2 �Q
(‖u0‖0,∞

)
e−αt +Q

(‖g‖0,2
)
, (1.14)

for the appropriateα > 0 and monotonic functionQ which are independent ofε.

Indeed, (1.14) is an immediate corollary of (1.1), the second assumption of (0.5) and
our choice of the exponentspi (2p � pi + 2).

Remark1.1. – Note that estimate (1.14) (and consequently all corollaries of it which
will be formulated below) remains valid if we replace the growth restriction 2) from (0.5)
by the following one:

∣∣f (v)∣∣2 �C

(
1+

k∑
i=1

|vi |pi+2

)
. (1.15)

Having the uniform estimate (1.14) for the nonlinear termf (u) in Eq. (0.1), we can
apply the standard methods (see e.g. [1,9]) in order to obtain more convenient estimates.
Since these methods are well known, we formulate below the estimates and indicate only
the main ideas of their proofs (in order to show that they are really uniform with respect
to ε).

Firstly, taking the inner product inRk of Eq. (0.1) with the functionu(t), integrating
by x ∈ � (with the integration by parts inAε and using the uniform ellipticity
conditions), estimating the non-linear term by (1.14) and applying the Gronwall
inequality, we obtain the following estimate.

PROPOSITION 1.1. – Let the above assumptions hold. Then

∥∥u(T )∥∥2
0,2 +

T+1∫
T

∥∥u(t)∥∥2
1,2 dt �Q

(‖u0‖0,∞
)
e−αT +Q

(‖g‖0,2
)
, (1.16)

where the constantα > 0 and the monotonic functionQ (which are not the same as
in (1.14))are independent ofε.

COROLLARY 1.2. – Let the above assumptions hold. Then

∥∥u(T )∥∥2
1,2 +

T+1∫
T

∥∥Aεu(t)
∥∥2

0,2 dt +
T+1∫
T

∥∥∂tu(t)∥∥2
0,2 dt

�
(
Q
(‖u0‖0,∞

)+C‖u0‖2
1,2

)
e−αT +Q

(‖g‖0,2
)
, (1.17)

where the constantsα,C > 0 and the functionQ are independent ofε.

Proof. –Indeed, taking the scalar product inR
k of Eq. (0.1) with the functionAεu(t),

integrating by parts the term(∂tu,Aεu) and using the fact thatAl
ε are symmetric, we

obtain the inequality

∂t

(∑
i,j,l

alij ∂iu
l(t), ∂ju

l(t)

)
+ (Aεu

l(t),Aεu
l(t)
)+∑

i,j,l

(
alij ∂iu

l(t), ∂ju
l(t)
)
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�
∑
i,j,l

(
alij ∂iu

l(t), ∂ju
l(t)
)+C

(∥∥f (u(t))∥∥2
0,2 +‖g‖2

0,2

)
. (1.18)

Recall now that the coefficientsalij (y) are assumed to be almost-periodic and,
consequently, uniformly bounded inR3. Therefore, the first term in the right-hand side
of (1.18) can be estimated byCa‖u(t)‖2

1,2 where the constantCa is independent ofε.
Inserting now estimate (1.14) into the right-hand side of (1.18), applying the Gronwall
inequality and using (1.16) for estimating the integral of theW 1,2-norm, we derive
estimate (1.17), but without the norm of∂tu in the left-hand side:

∥∥u(T )∥∥2
1,2 +

T+1∫
T

∥∥Aεu(t)
∥∥2

0,2 dt �
(
Q
(‖u0‖0,∞

)+C‖u0‖2
1,2

)
e−αt +Q

(‖g‖0,2
)
.

(1.19)

The estimate for the time derivative∂tu can be easily obtained now from equation (0.1)
and from estimates (1.14) and (1.19). Corollary 1.2 is proved.✷

Analogously, taking the inner product of (0.1) with the functiontAl
εu

l(t), we derive
in a standard way the following version of the smoothing property.

COROLLARY 1.3. – Let the above assumptions hold. Then

∥∥u(T )∥∥2
1,2 +

T+1∫
T

∥∥∂tu(t)∥∥2
0,2 dt +

T+1∫
T

∥∥Aεu(t)
∥∥2

0,2 dt

� T + 1

T

(
Q
(‖u0‖0,∞

)
e−αT +Q

(‖g‖0,2
))
, (1.20)

whereα > 0 andQ are independent ofε > 0.

COROLLARY 1.4. – Let the previous assumptions be valid. Then, the following
estimate holds: ∥∥u(t)∥∥0,∞ �Q

(‖u0‖0,∞
)
e−αt +Q

(‖g‖0,2
)
, (1.21)

where the monotonic functionQ and the constantα > 0 are independent ofε. Moreover,
there is a positive numberβ > 0 (independent ofε) such that, for everyT � 1, the
solutionsu(t) of (0.1)belong to the spaceCβ,2β([T ,T + 1] ×�) of Hölder continuous
functions with Hölder constantsβ and 2β with respect to the variablest and x

correspondingly(see[9]) and the following estimate is valid:

‖u‖Cβ,2β ([T ,T+1]×�) �Q1
(‖u0‖0,∞

)
e−αT +Q1

(‖g‖0,2
)
, T � 1, (1.22)

where the constantα and the functionQ1 are independent ofε.

Proof. –Indeed, let us consider thelth equation of (0.1)

∂tu
l −Al

εu
l = f l

(
u(t)

)+ gl := hl(t). (1.23)

Applying the maximum principle for solutions from class (0.7) of this equation (see [9,
Theorem 3.7.1]), we obtain that, fort ∈ [0, T ]
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∥∥ul(t)∥∥0,∞ �C
(∥∥ul0∥∥0,∞ + ∥∥hl∥∥

L∞([0,T ],L2(�))

)
�C‖g‖0,2 +C

∥∥f (u)∥∥
L∞([0,T ],L2(�))

, (1.24)

where the constantC depends only on theL∞-norm ofalij and on the uniform ellipticity
constant (0.4) (and is independent ofε).

Inserting estimate (1.14) into the rigth-hand side of (1.24), we deduce that

∥∥u(t)∥∥0,∞ �Q
(‖u0‖0,∞

)+Q
(‖g‖0,2

)
. (1.25)

Note, however, that estimate (1.25) is not dissipative with respect to the initial
conditionsu0. In order to obtain the dissipative one, we fixT � 1 and consider the
functionvl(t)= (t − T + 1)ul(t) which evidently satisfies the equation

∂tv
l −Aεvl = ul(t)+ (t − T + 1)f l(u)+ (t − T + 1)gl := hlT (t),

vl(T − 1)= 0.
(1.26)

It is proved in [9, Theorem 3.10.1] that there is a positive Hölder constantβ > 0 such
that ∥∥vl∥∥

Cβ,2β ([T ,T+1]×�) �C
∥∥hlT ∥∥L∞([T−1,T+1],L2(�))

�C‖g‖0,2 +C‖u‖L∞([T−1,T+1],L2(�))

+C
∥∥f (u)∥∥

L∞([T−1,T+1],L2(�))
. (1.27)

Moreover, the constantsβ > 0 andC are independent ofε.
Inserting estimate (1.14) and (1.16) into the right-hand side of (1.27), we derive the

following estimate:

‖u‖Cβ,2β ([T ,T+1]×�) �C1‖v‖Cβ,2β ([T ,T+1]×�)
�Q

(‖u0‖0,∞
)
e−αT +Q

(‖g‖0,2
)

(1.28)

which holds forT � 1. Estimates (1.21) and (1.22) are immediate corollaries of (1.25)
and (1.28). Corollary 1.4 is proved.✷

We now derive some estimates for the time derivative∂tu(t) for the solutions of (0.1).
To this end, we differentiate Eq. (0.1) with respect tot and denoteθ(t)= ∂tu(t). Then,
we obtain the equation

∂tθ(t)=Aεθ(t)− f ′(u(t))θ(t). (1.29)

Recall thatf ∈ C1, consequently (1.21) implies that

∥∥f ′(u(t))∥∥0,∞ �Q1
(‖u0‖0,∞

)
e−αt +Q1

(‖g‖0,2
)

(1.30)

and, therefore, Eq. (1.29) also can be treated as the linear one.
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COROLLARY 1.5. – Let t � 1. Then

∥∥∂tu(t)∥∥0,2 �Q
(‖u0‖0,∞

)
e−αt +Q

(‖g‖0,2
)
, (1.31)

where the constantα > 0 and the functionQ is independent ofε.

Proof. –According to the smoothing property (1.20), we have

T+1∫
T

∥∥θ(t)∥∥2
0,2 dt �Q

(‖u0‖0,∞
)
e−αT +Q

(‖g‖0,2
)
, (1.32)

for T � 1/2. Taking the inner product inRk of Eq. (1.29) with (t − 1/2)θ(t) and
integrating overx ∈ �, we obtain using the integration by parts, and the uniform
ellipticity assumption (0.4), that

∂t
(
(t − 1/2)

∥∥θ(t)∥∥2
0,2

)+ ν
(
(t − 1/2)

∥∥θ(t)∥∥2
0,2

)
� C

∥∥θ(t)∥∥2
0,2 +C1(t − 1/2)

∥∥f ′(u(t)
∥∥

0,∞
∥∥θ(t)∥∥2

0,2. (1.33)

Applying now the Gronwall inequality (starting with the time momentt = 1/2) to
estimate (1.33) and estimating the right-hand side of it by (1.32) and (1.30), we derive
after the standard computatins the following estimate fort � 1/2:

∥∥θ(t)∥∥2
0,2 � t + 1

t − 1/2

(
Q
(‖u0‖0,∞

)
e−αt +Q

(‖g‖0,2
))
. (1.34)

Restricting in (1.34)t � 1, we obtain estimate (1.31). Corollary 1.5 is proved.✷
Having estimate (1.31) for the time derivativeθ = ∂tu of the solutions of (1.29) and

arguing as in the proof of the estimate (1.22), we can proof the following result.

COROLLARY 1.6. – Let the above assumptions hold and letu(t) be a solution of
equation(0.1). Then, there is the exponentβ > 0 such that∂tu ∈Cβ,2β([T ,T +1]×�),
for T � 2, and the following estimate is valid:

‖∂tu‖Cβ,2β ([T ,T+1]×�) �Q
(‖u0‖0,∞

)
e−αT +Q

(‖g‖0,2
)
, T � 2, (1.35)

where the exponentsβ,α > 0 and the functionQ are independent ofε.

We summarize the obtained results in the following theorem.

THEOREM 1.2. – Let assumptions(0.2)–(0.6) hold. Then, for every fixedε > 0,
problem (0.1) possesses a unique(in the class(0.7)) solution u(t) and the following
uniform (with respect toε) estimate is valid:

∥∥u(T )∥∥2
0,∞ +

T+1∫
T

∥∥u(t)∥∥2
1,2 dt �Q

(‖u0‖0,∞
)
e−αT +Q

(‖g‖0,2
)
, (1.36)

whereα > 0 andQ are independent ofε.
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Moreover, the following smoothing property is valid: if T � 2 then, the function
u ∈C1+β,2β([T ,T + 1] ×�) and

∥∥u(T )∥∥2
1,2 +‖u‖2

C1+β,2β ([T ,T+1]×�) +
T+1∫
T

∥∥Aεu(t)
∥∥2

0,2 dt

�Q
(‖u0‖0,∞

)
e−αT +Q

(‖g‖0,2
)
, (1.37)

where the exponentsα,β > 0 and the functionQ are independent ofε.

Proof. –Indeed, estimates (1.36) and (1.37) has been obtained in Corollaries 1.1–1.6.
The uniqueness of a solution in the class (0.7) is evident. The existence of a solution
can be deduced from a priori estimates (1.36) and (1.37) by standard arguments (e.g.
for the smooth initial datau0 and smooth coefficientsalij the existence of a solution
can be obtained by Leray–Schauder principle as in [9], the existence of a solutionu in
general situation can be obtained approximating the initial datau0 and the coefficients
alij by smooth onesun0 andal,(n)ij and then passing to the limitn→∞). Theorem 1.2 is
proved. ✷

Remark1.2. – As it has been already mentioned in Remark 1.1, the result of the
theorem remains valid if the condition (0.5)(2) is replaced by (1.15).

2. The attractors

In the previous section, we have proved that, for every fixedε > 0 and everyu0 ∈
# := L∞(�), problem (0.1) possesses a unique solutionu(t) ∈# and, consequently, the
semigroup

Sεt :#→#, Sεt u0 := u(t), (2.1)

whereu(t) is a solution of (0.1), is correctly defined.
In this section, we prove that, for everyε > 0, semigroup (2.1) generated by

equation (0.1) possesses an attractorAε in the phase space# and obtain several uniform
(with respect toε > 0) estimates for these attractors which will be used in the next
sections in order to study the homogenization limitε→ 0. Moreover, in order to clarify
the anisotropic dissipativity assumption (0.6), we give a number of examples of the right-
hand sidesf which admit the above theory.

For the convenience of the reader, we recall shortly the definition of the attractor and
its basic properties (see e.g. [1,6,13] for the detailed exposition).

DEFINITION 2.1. – Let Sεt :#→# be a semigroup, acting in a B-space#. Then, a
setAε is defined to be the attractor forSεt if the following is true:

(1) The setAε is compact in#.
(2) The setAε is strictly invariant, i.e.Sεt Aε =Aε.
(3) The setAε is an attracting set for the semigroupSεt , i.e. for every open

neighbourhoodO(Aε) of the setAε in # and for every bounded subsetB ⊂#, there is
T = T (O,B) such that

Sεt B ⊂O
(
Aε
)
, if t � T . (2.2)
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Remark2.1. – The third condition of the previous definition is equivalent to the
following: for every bounded subsetB ⊂#

lim
t→∞dist#

(
Sεt B,Aε

)= 0, (2.3)

where dist# means the nonsymmetric Hausdorff distance, i.e.

dist#(V,W) := sup
v∈V

inf
w∈W ‖v −w‖#. (2.4)

It is also known (see e.g. [1]) that, if the attractorAε exists then it is generated by all
complete bounded trajectories of the semigroupSεt , i.e.

Aε = {u0 ∈#: ∃u ∈ L∞(R,#), u(0)= u0; Sεt u(s)= u(t + s), ∀s ∈ R, t ∈ R+
}
.

(2.5)

The following proposition gives the sufficient conditions for the existence of the
attractor.

PROPOSITION 2.1 [1]. – Let Sεt :#→ # be an abstract semigroup in the space#
which satisfies the following conditions:

(1) The semigroupSεt possesses a compact attracting setK in # (in the sence of
punkt(3)) of Definition2.1).

(2) The operatorsSεt :# → # have closed grafs, for every fixedt � 0 (as usual, it
means that the set{(u0, S

ε
t u0): u0 ∈#} is closed in#×#).

Then, it possesses an attractor inAε in # andAε ⊂K .

We are now in position to state the main result of this section.

THEOREM 2.1. – Let the assumptions of Theorem1.2 hold. Then, for everyε > 0,
semigroup(2.1) generated by equation(0.1) possesses an attractorAε in the phase
space# := L∞(�) which admits the following description:

Aε =Kε|t=0, (2.6)

whereKε is a collection of all bounded(with respect tot ∈ R) solutionsû(t) of the
equation

∂t û(t)=Aεû(t)− f
(
û(t)

)+ g, t ∈ R, û|∂� = 0. (2.7)

Proof. –Let us verify the assumptions of Proposition 2.1. Indeed, it follows from
estimate (1.37) that the ballKR of radiusR in the space#β := C2β(�) is an attracting
set for semigroup (2.1) ifR is large enough (namely ifR > Q(‖g‖0,2)). Since the
embedding#β ⊂ # is compact then the setKR is the (pre)compact attracting set for
semigroup (2.1). Taking its closure in#, we construct the compact attracting set forSεt .
Thus, the first assumption of Proposition 2.1 is verified.

Let us verify the second one. Recall, that we should prove that ifun0 → u0 in # and
un(T ) := SεT u0 → v in # thenv = u(T ) := SεT u0.

We first note that the operatorSεT is uniformly Liptshitz continuous with respect to the
L2-norm on every bounded subsetB in #. Indeed, letu1

0, u
2
0 ∈ B be an arbitrary initial
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data,ui(t) be the corresponding solutions of problem (0.1) andw(t) = u1(t) − u2(t).
Then, this function satisfies the equation

∂tw=Aεw− l(t)w, w|t=0 = u1
0 − u0

2, w|∂� = 0, (2.8)

where l(t) := ∫ 1
0 f

′(su1(t) + (1 − s)u2(t))ds. It follows from estimate (1.21) that
‖ui(t)‖0,∞ � CB where the constantCB depends only on the norm‖B‖# and,
consequently ∥∥l(t)∥∥0,∞ �C1(B). (2.9)

Taking the inner product inRk with the functionw(t), integrating overx ∈�, estimating
l(t) by (2.9) and applying the Gronwall inequality, we derive the estimate

∥∥u1(T )− u2(T )
∥∥2

0,2 � CeKT
∥∥u1(0)− u2(0)

∥∥2
0,2, (2.10)

where the constantsC andK depend only on‖B‖#.
HavingL2-Lipschitz continuity (2.10), we immediately conclude thatSεT has a closed

graph in#. Indeed, letun0 → u0 in # andun(T )→ v in #. Then, according to (2.10)
un(T )→ u(T ) in L2(�) and, consequently,v = u(T ).

Thus, all assumptions of Proposition 2.1 are verified for semigroup (2.1) generated by
Eq. (0.1) and, therefore, this semigroup possesses an attractorAε. Description (2.6) is
an immediate corollary of the formula (2.5). Theorem 2.1 is proved.✷

The following corollary is of fundamental significance for our study the homogeniza-
tion limit (lim ε→0Aε) in the next sections.

COROLLARY 2.1. – The attractorsAε ∈#β ∩W
1,2
0 (�) and uniformly bounded with

respect toε > 0 in this space:

∥∥Aε
∥∥

1,2 +
∥∥Aε

∥∥
C2β(�)

�Q
(‖g‖0,2

)
. (2.11)

Here the exponentβ > 0 and the functionQ are independent ofε.
Moreover, letû(t) ∈Kε be a bounded solution of Eq.(2.7). Then

‖û‖2
C1+β,2β([T ,T+1]×�) +

∥∥û(T )∥∥2
1,2 +

T+1∫
T

∥∥Aεû(t)
∥∥2

0,2 dt �Q
(‖g‖0,2

)
, (2.12)

where the functionQ is independent ofε, û, andT ∈ R.

Indeed, the first estimate is an immediate corollary of the second one together with
representation (2.6) and estimate (2.12) can be easily derived from estimate (1.37) and
from the fact that‖û(t)‖0,∞ remains bounded whent →−∞.

Recall that we have proved the attractor’s existence Theorem 2.1 under anisotropic
dissipativity assumption (0.6) on the nonlinear termf which looks a little unusual. In
conclusion of this section, we discuss this assumption and give a number of examples
where it is satisfied.
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We first note that, in a scalar casek = 1, we need only the following natural
assumption on the nonlinear termf : there isRf <∞ such that

sgnvf (v)� 0 if |v|>Rf (2.13)

(which as known is essential in order to obtain the global existence of solutions of (0.1)).
Note also that, in this case, the polynomial growth restriction (0.5)(2) is also can be
removed due to the maximum principle.

Consider now the case of systems (k � 2). The usual (for the attractor’s industry)
assumptions for the nonlinearityf are the following:




1. f (u).u�−C +C1|u|p+1,

2. |f (u)| � C(1+ |u|p), p < pc,

3. |f ′(u)| �C(1+ |u|p−1)

(2.14)

(see e.g. [1,13]) which involve thegrowth restrictionsp < pc. Unfortunately, the limit
exponentpc in assumptions (2.14) is too restrictive (pc = 1+ 4/n= 7/3< 3 (see [1]))
and, consequently, even the cubic nonlinearities are out of the consideration).

Another standard possibility is to impose the additional quasi-monotonicity assump-
tion

f ′(u)� −K (2.15)

to the nonlinear termf . In this case, the global existence and uniqueness of weak
solutions and even the existence of the attractorsAε in L2(�) can be obtained
without the growth restrictionp < pc (analogously to [1]). Moreover, in the case
whereAε = A = a,x , a ∈ L(Rk,Rk) with a + a∗ > 0, the considerable theory (which
includes theL∞-bounds for weak solutions, their smoothness, the differentiability of
the corresponding semigroup, the finite dimensionality of the attractors, etc.) can be
constructed for Eq. (0.1) with essentially weaker growth restrictionp < 1+ 4/(n− 4).
For instance, ifn= 3 andAε := a,x , the following assumptions onf

1. f ∈ C1(
R
k,Rk

)
, 2. f (u).u� −C, 3. f ′(u)� −K (2.16)

are sufficient (see [18]). But the proof of these results is essentially based on the
trick with multiplication of Eq. (0.1) by,xu and does not work in our situation
where the operatorAε has the form (0.2), (0.3). Therefore, even under the additional
assumption (2.15), we do not know how to obtain the additional regularity of weak
solutions of (0.1) (which is necessary to study the limit behaviour asε → 0 of
attractorsAε) without the growth restrictionp < pc < 7/3.

In order to remove this extremely restrictive growth condition, we suggest to use
the dissipativity assumption in a new form (0.6) which, on the one hand, is not very
restrictive (as the examples given below show) and, on the other hand, admits to obtain
theL∞-bounds of solutions of (0.1) (with the diagonal leading partAε, see (0.2)) without
the growth restrictions. We illustrate this anisotropic dissipativity assumption by several
examples.
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Assume, for the first, that the nonlinearityf possesses the following decomposition:

f (v)= f1(v)+ f2(v), wheref1(v) := diag
{
f 1

1 (v1), . . . , f
k
1 (vk)

}
(2.17)

and the functionsf i
1(v

i) satisfy the assumptions

f i
1(v

i) · vi � −Ci + αi |vi|qi+2, i = 1, . . . , k, (2.18)

for the appropriateqi � 0, αi > 0 and the functionsf2(v) satisfy the following growth
restrictions: ∣∣f i

2(v)
∣∣� C

(
1+ |v|li), i = 1, . . . , k, li � 0. (2.19)

Assume also that

li < 1+ qi, i = 1, . . . , k. (2.20)

LEMMA 2.1. – Let assumptions(2.17)–(2.20)hold. Then, for everyq � qi , i =
1, . . . , k, nonlinearity (2.17) satisfies the anisotropic dissipativity condition(0.6) with
the exponentspi = q − qi .

Proof. –Indeed, due to (2.18)

k∑
i=1

f i
1

(
vi
) · vi∣∣vi∣∣pi � −C + 1/2

k∑
i=1

αi
∣∣vi∣∣q+2 �−C + β|v|q+2. (2.21)

It follows from restrictions (2.19) and (2.20) and Hölder inequality that∣∣f i
2(v)

∣∣ · ∣∣vi∣∣ · ∣∣vi∣∣q−qi �µ
∣∣vi∣∣q+2 +Cµ

∣∣f i
2(v)

∣∣(q+2)/(qi+1)

�µ|v|q+2 +Cµ +Cµ|v|(q+2)li/(qi+1)

� 2µ|v|q+2 +C ′
µ, (2.22)

whereµ > 0 is an arbitrary positive number. Estimates (2.21) and (2.22) prove the
lemma. ✷

Remark2.2. – Note that, under the assumptions of Lemma 2.1, (0.6) is valid with
pi = q − qi where q may be arbitrary large. Consequently, for every nonlinearity
(2.17) with the polynomial rate of growth (i.e., for which (0.5)(2) is satisfied), we may
satisfy also the assumptionpi � 2(p − 1) and, therefore, Theorem 2.1 is valid for such
nonlinearities.

Example2.1. – The simplest example of such nonlinearities is the following:

f1(v)= diag
{
α1v

1∣∣v1∣∣q1
, . . . , αkv

k
∣∣vk∣∣qk}, (2.23)

with qi, αi > 0 and f2 is linearf2(v) = Lv. Then, all assumptions of Lemma 2.1 are,
obviously, satisfied and, consequently, Theorem 2.1 holds.

Example2.2. – Consider the casek = 2, v = (v1, v2) and the nonlinearity

f (v)=
(
v3

1 − αv1 − βv2

v2 − γ v1

)
, α,β, γ ∈ R, (2.24)
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which corresponds to the Fitz–Nagumo system (see [8]). We note that the assumptions
of Lemma 2.1 are violated (q2 = 0, l2 = 1, l2 = q2 + 1) here. Nevertheless, a
simple computations show that the dissipativity assumption (0.6) is valid with the
exponentsp1 = p2 = q and everyq � 0, consequently, Theorem 2.1 remains true for
nonlinearity (2.24).

Example2.3. – Consider the casek = 2 and the nonlinearity

f (v)=
(
v3

1 − αv2

v2 − βv3
1

)
, 2|α| + |β| � 3, 2|β| + |α| � 3. (2.25)

If α = β = 1 then (2.25) satisfies the equationf 1(v)+ f 2(v)= 0 which is natural from
the reaciton-diffusion point of view. Note that this nonlinearity evidently does not satisfy
the standard dissipativity assumption (f (v).v � −C). Nevertheless, the elementary
computation shows that the anisotropic dissipativity assumption is satisfied withp1 = 5
and p2 = 1. Note also that function (2.24) satisfies also condition (1.15) with these
exponents. Consequently, Theorem 2.1 holds for this nonlinearity.

Example2.4. – We conclude the section by the following ‘exotic’ example:

f (v)=
(
v3

1 − v2

v3
2 − v5

1

)
(2.26)

of two RDEs coupled by the monomv5
1 of the highest order. Nevertheless, the anisotropic

dissipativity condition is valid with the exponentsp2 = 4 andp1 = 10. Since (1.15) is
also hold for this exponents then Theorem 2.1 is valid for nonlinearity (2.26).

3. The homogenization

This section is devoted to study the behavior of the attractorsAε constructed in the
previous section whenε→ 0. The main task of the section is to prove that these attractors
tend asε→ 0 to the attractorA0 of the homogenized problem (0.9). In order to write this
homogenized system, we recall briefly some known results from the theory of almost-
periodic homogenization (see e.g. [20] for the detailed exposition).

Recall, that every almost-periodic functionw ∈ AP(R3) possesses the mean value
which can be calculated by the following formula:

〈w〉 := lim
T→∞

1

23T 3

∫
[−T ,T ]3

w(x)dx

and the following Fourier expansion

w(x)= ∑
ŵ(ξ) �=0

ŵ(ξ)ei(x,ξ), (3.1)

where the amplitudeŝw(ξ) ∈ C, ξ ∈ R
3 can be found by

ŵ(ξ) := 〈w(x)e−i(x,ξ)〉 (3.2)
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(see e.g. [10,11]). It is known that the setσ (w) := {ξ ∈ R
3, ŵ(ξ) �= 0} is not greater

than countable, therefore, the sum (3.1) has a sense. Moreover,

∑
ξ∈σ(w)

∣∣ŵ(ξ)∣∣2 <∞ (3.3)

and series (3.1) converge to the functionw in the sense of the Bezikovich norm
‖v‖2

B2(R3)
:= 〈v(x)v̄(x)〉 (see [10] for details).

As usual, we denote by Trig◦(R3) the space of allfinite trigonometric polynomials of
the form (3.1)

Trig◦(
R

3) :=
{
w(x)=

N∑
k=1

wke
i(x,ξk): N ∈ N, ξk ∈ R

3, wk ∈ C, k = 1, . . . ,N

}
.

(3.4)

Now we are ready to write the formula for the homogenized operatorA0 for
problem (0.1). To this end, we first define the functionsBl(ξ ), ξ ∈ R

3, l = 1, . . . , k,
by

Bl(ξ ) := inf
N∈Trig◦(R3)

〈∑
i,j

alij (y)
(
ξi + ∂yiN(y)

)(
ξj + ∂yjN(y)

)〉
, (3.5)

wherealij (y) has been defined in (0.3). Note, that (3.5) has a sense since the expression
inside of〈·〉 is, obviously, an almost-periodic function.

It is known (see [20]) that the functionsBl(ξ ) generate positive definite quadratic
forms with respect toξ , i.e.

Bl(ξ )=∑
i,j

ãlij ξiξj , ãlij ∈ R. (3.6)

Define now the operatorsAl
0 and the operatorA0 in the following way:

Al
0u

l :=∑
i,j

∂xj
(
ãlij ∂xiu

l
)
, A0u := diag

{
A1

0u
1, . . . ,Ak

0u
k
}
. (3.7)

This choice of the leading part of the homogenized equation for (0.1) is justified by the
following proposition.

PROPOSITION 3.1 [20]. – Let the functionsvε ∈ W
1,2
0 (�) be the solutions of the

following problem:

Al
εv

ε = h, h ∈W−1,2(�), (3.8)

where l ∈ {1, . . . , k} is fixed and the operatorAl
ε is defined by(0.3). Then,vε ⇁ v0

weakly inW 1,2
0 (�) as ε → 0 and the functionv0 ∈ W

1,2
0 (�) is a solution of the limit

problem

Al
0v

0 = h, (3.9)

where the operatorAl
0 is defined by(3.5)–(3.7).
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Let us consider the homogenized equation

{
∂tu=A0u− f (u)+ g,

u|t=0 = u0, u|∂� = 0,
(3.10)

for the non-homogeneous equation (0.1). Note that this equation satisfies all assumptions
of Theorem 2.1 (due to the fact that the formsBl(ξ ) are positive defined) and,
consequently, possesses the attractorA0 in the phase space# = L∞(�). Moreover,
estimates (1.11) and (2.12) remain valid for the limit equation (3.10).

The main result of this section is the following theorem.

THEOREM 3.1. – Let the assumptions of Theorem2.1hold and letA0 be the attractor
of the limit (ε = 0) problem(3.10). Then, the attractorsAε of (0.1) converge toA0 as
ε→ 0 in the following sense:

lim
ε→0

distC2β′ (�)
(
Aε,A0)= 0, (3.11)

for the appropriate sufficiently small positive exponentβ ′ > 0.

Proof. –As usual (see [1]), in order to prove upper-semicontinuity (3.11), we should
consider an arbitrary sequenceεn → 0 andu0,n ∈ Aεn and prove that it is possible to
extract from it a subsequenceu0,nk → u0 ∈A0 in #β ′ .

Let us fix an arbitrary sequenceεn → 0 and an arbitrary sequenceu0,n ∈ Aεn . Let
ûn(t) ∈ Kεn be the corresponding bounded solutions of Eq. (2.7) (withε replaced
by εn) such thatu0,n = ûn(0) (which exist due to representation (2.6)). Then, according
to (2.12)

‖ûn‖C1+β,2β ([T ,T+1]×�) �Q
(‖g‖0,2

)
, (3.12)

with the appropriateβ > 0 and the functionQ independent ofT ∈ R andn ∈ N. Let us
fix 0 <β ′ < β. Then, due to the compactness of the embedding

C1+β ′,2β ′([T ,T + 1] ×�
)
�C1+β,2β([T ,T + 1] ×�

)
,

and due to Cantor diagonal procedure, we may assume (passing to a subsequence if
necessary) that there is a functionû ∈C1+β ′,2β ′

([T ,T + 1] ×�) such that

ûn → û, ∂t ûn → ∂t û asn→∞ in the spaceCβ ′,2β ′([T ,T + 1] ×�
)
, (3.13)

for every fixedT ∈ R. Particularly,ûn(0)→ û(0) in #β ′ . Therefore, ifû ∈K0 then, due
to (2.6),u0 = û(0) ∈ A0. Thus, there remains to prove that the limit functionû(t) is
a bounded solution of the limit equation (3.10). This fact can be easily verified using
Proposition 3.1 and convergence (3.13). Indeed, let us verify that the functionul(t)

satisfies thelth equation of (3.10). Sincêu and∂t û are continuous with respect to(t, x)
it is sufficient to verify this identity for everyfixedT ∈ R. To this end, we rewrite thelth
equation of (1.2) in the form of elliptic boundary problem:

Al
εn
ûln(T )= hln(T ) := ∂t û

l
n(T )+ f l

(
û(T )

)− gl, ûl(T )|∂� = 0. (3.14)
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Note that convergence (3.13) implies that

hln(T )→ hl0(T ) := ∂t û
l(T )+ f l

(
û(T )

)− gl (3.15)

in the spaceC2β1(�).
Let vn ∈W

1,2
0 (�) be a solution of the following elliptic boundary problem:

Al
εn
vn = hl0(T ) (3.16)

Then, on the one hand

∥∥ûln(T )− vn
∥∥

1,2 � C
∥∥hln(T )− hl0(T )

∥∥−1,2 → 0, (3.17)

due to (3.15) and due to the uniform with respect toε boundedness of(Aε)
−1 :W−1,2(�)

→W
1,2
0 (�). On the other hand, due to Proposition 3.1

vn ⇁ v0, in W
1,2
0 (�) whereAl

0v0 = hl0(T ). (3.18)

Convergences (3.17) and (3.18) imply thatûl(T )= v0 and, consequently

Al
0û

l(T )= hl0(T )= ∂tu
l(T )+ f l

(
û(T )

)− gl. (3.19)

SinceT is arbitrary then the functionul(t) really satisfies thelth equation of (3.10) and,
therefore, (sincel ∈ {1, . . . , k} is arbitrary)û satisfies the homogenized equation (3.10).
Note also that the uniform estimate (3.12) and convergence (3.13) imply thatû is
bounded. Thus,̂u ∈K0. Theorem 3.1 is proved.✷

4. The case of periodic coefficients: estimates of the error

This section is devoted to a more detailed consideration of the particular case where
the coefficientsalij (y) are periodic and smooth (C2(R3)) functions inR

3, i.e it is assumed

that there are positive numbers!T = (T1, T2, T3) > 0 such that

alij
(
y + ( !T ,m))≡ alij (y), for all i, j, l and for allm ∈ Z

3, y ∈ R
3. (4.1)

In this case, using the method of asymptotic expansions (see [2,20]), we obtain the error
estimates for the approximation of the individual solutions of (0.1) by the solutions of the
homogenized problem (3.10) and based on these estimates we derive the estimates for
the distance between the global attractorsAε andA0 under some additional assumptions
on the limit attractorA0.

THEOREM 4.1. – Let the assumptions of Theorem3.1 hold and let in addition(4.1)
be also valid. Then, for everyε > 0 small enough and everyu0 ∈ # ∩ W

1,2
0 (�), the

following estimate is valid:

∥∥uε(t)− û(t)
∥∥

0,2 �Q
(‖u0‖L∞∩W1,2

0

)
ε1/3eKt, (4.2)
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where uε(t) = Sεt u0, û(t) = S0
t u0 are the solutions of problems(0.1) and (3.10)

respectively, the functionQ and the constantK =K(‖u0‖0,∞) are independent ofε.

Proof. –We first note that, since the elliptic operatorA0 has constant coefficients, we
can derive from (1.17) that

∥∥û(T )∥∥2
1,2 +

T+1∫
T

∥∥û(t)∥∥2
2,2 dt +

T+1∫
T

∥∥∂t û(t)∥∥2
0,2 dt

�Q
(‖u0‖0,∞ + ‖u0‖1,2

)+Q
(‖g‖0,2

)
, (4.3)

for the appropriate functionQ independent ofT � 0 (here we have implicitly used the
elliptic regularity estimate‖u‖2,2 � C‖A0u‖0,2).

Let us fix l ∈ {1, . . . , k}, consider thelth equation of (0.1):

∂tu
l
ε =Al

εu
l
ε − f l(uε)+ gl; ulε|t=0 = ul0 (4.4)

and introduce the correctorsNl
k(y), k = 1,2,3, as solutions of the following auxiliary

periodic problems:{∑3
i,j=1 ∂yi (a

l
ij (y)∂yjN

l
k(y))=−∑3

i=1 ∂yia
l
ik(y), y ∈ R

3,

Nl
k(y + ( !T ,m))≡Nl

k(y), m ∈ Z
3.

(4.5)

It is well-known that the periodic problems (4.5) have unique solutions (due to the
uniform ellipticity assumption (0.4)) and sincealij (y) are smooth (C2) then

∥∥Nl
k

∥∥
C1
b
(R3)

� C. (4.6)

Moreover, if the solutions of (4.5) are known then the coefficientsãlij of the limit elliptic
operatorAl

0 can be calculated by the following formulae (see e.g. [20]):

ãlij =
〈
alij (y)

〉+ 3∑
k=1

〈
alik(y)∂ykNj (y)

〉
. (4.7)

LEMMA 4.1. – Define the functions

ũlε(t) := ûl(t)+ ε

3∑
k=1

Nl
k

(
ε−1x

)
∂xk û

l(t). (4.8)

Then ∥∥Al
εũ

l
ε(t)−Al

0û
l(t)
∥∥−1,2 �Cε

∥∥ûl(t)∥∥2,2, (4.9)

where the constantC is independent ofε.

Proof. –Indeed, it is computed in [20, p. 27] that

3∑
j=1

(
alij
(
ε−1x

)
∂xj ũ

l
ε − ãlij ∂xj û

l
)= ε

3∑
j=1

∂xj
(
αlk
ij

(
ε−1x

)
∂xk û

l
)+ rilε , (4.10)
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whereαlk
ij (y) are certain periodic functions such that

αlk
ij (y)=−αlk

ji(y) (4.11)

and the remaindersrilε are

rilε := ε

3∑
k,j=1

Nl
k

(
ε−1x

)
∂2
xj xk

ûl − εαkl
ij

(
ε−1x

)
∂2
xjxk

ûl . (4.12)

Note that due to (4.11) the divergence from the first term into the right-hand side
of (4.10) equals zero and, consequently

∥∥Al
εũ

l
ε(t)−Al

0û
l(t)
∥∥−1,2 �

3∑
i=1

∥∥rilε (t)∥∥0,2 � Cε
∥∥ûl(t)∥∥2,2.

Lemma 4.1 is proved. ✷
Note that the constructed functions̃ulε(t) do not satisfy the boundary conditions

(ũlε(t) /∈W
1,2
0 (�)) which is inconvenient for our purposes (we are planning to multiply

equation (4.4) inL2(�) by ũlε(t) − ulε(t) and integrate by parts). In order to avoid
this difficulty, we introduce (following to [20]) the familyτε(x) ∈ C∞

0 (�) of cut-off
functions satisfying the following conditions:

(1) 0 � τε � 1, and τε(x) ≡ 1 if x ∈ �\Oε(∂�), where Oε(∂�) means the
ε-neighbourhood of the boundary∂�.

(2) ε|∇xτε(x)| �C for everyx ∈� andε > 0.
(Such family exists because the boundary∂� is assumed to be smooth (see [20])) and

make the following boundary correction of the functionsũlε(t):

wl
ε(t) := ũlε(t)− ε

(
1− τε(x)

) 3∑
k=1

Nk

(
ε−1x

)
∂xk û

l(t). (4.13)

Then, obviously,wl
ε(t) ∈W

1,2
0 (�) (to be more precisewl

ε ∈ L2([0, T ],W 1,2
0 (�))) and

theW 1,2-distance betweeñulε andwl
ε is sufficiently small as the following lemma shows.

LEMMA 4.2. – Let the functionsũlε(t) and wl
ε(t) be defined by(4.8) and (4.13)

respectively. Then ∥∥ũlε −wl
ε

∥∥
1,2 �Cε1/3∥∥ûl (t)∥∥2,2, (4.14)

where the constantC is independent ofε.

Proof. –Indeed, sinceNl
k(y) ∈C1

b(R
3) then, due to our choice of cut-off functionsτε∥∥∇x

(
ũlε −wl

ε

)∥∥2
1,2

�
∫
�

|ε∇xτε|2
∣∣∇xû

l(t)
∣∣2 + (1− τε)

2∣∣∇yN
(
ε−1x

)∣∣2∣∣∇xû(t)
∣∣2 +Cε2∣∣∇2

x û(t)
∣∣2 dx

� C

∫
x∈Oε(∂�)

∣∣∇xû
l(t)
∣∣2 dx +Cε2∥∥ûl(t)∥∥2

2,2. (4.15)
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Applying the Hölder inequality to the first term in the right-hand side of (4.15) and using
the embeddingW 2,2 ⊂W 1,6, we derive that∫

x∈Oε(∂�)

∣∣∇xû
l(t)
∣∣2 dx �

∣∣Oε(∂�)
∣∣2/3∥∥ûl (t)∥∥2

1,6 � Cε2/3∥∥ûl(t)∥∥2
2,2 (4.16)

(here we have used the fact that the volume of theε-neighbourhood|Oε(∂�)| � Cε

because� is assumed to be smooth). Estimates (4.15) and (4.16) prove the lemma.✷
Now we are ready to complete the proof of the theorem. To this end, we introduce the

functionvε(t) := uε(t)− û(t). Then

∂tv
l
ε(t)=

[
Al
εu

l
ε −Al

0û
l(t)
]− [f l

(
uε(t)

)− f l
(
û(t)

)]
, vlε|∂� = 0. (4.17)

Let us take the inner product inL2(�) of this equation with the functionulε(t)−wl
ε(t):

T∫
0

(
∂tv

l
ε,
(
ulε −wl

ε

))
dt =

T∫
0

(
Al
εu

l
ε(t)−Al

0û
l(t), ulε(t)−wl

ε(t)
)

dt

−
T∫

0

(
f l
(
uε(t)

)− f l
(
û(t)

)
, ulε(t)−wl

ε(t)
)

dt. (4.18)

Note that definitions (4.8) and (4.13) imply the estimate

∥∥ulε(t)−wl
ε(t)− vlε(t)

∥∥
0,2 � Cε

∥∥ûl(t)∥∥1,2. (4.19)

Consequently, estimate (1.17) and (4.3) imply the inequality∣∣∣∣∣
T∫

0

(
∂tv

l
ε(t), u

l
ε(t)−wl

ε(t)
)

dt −
T∫

0

(
∂tv

l
ε(t), v

l
ε(t)

)
dt

∣∣∣∣∣
�Cε

( T∫
0

∥∥∂tvlε(t)∥∥2
0,2

)1/2( T∫
0

∥∥ûl(t)∥∥2
1,2 dt

)1/2

�Q
(‖u0‖L∞∩W1,2

)
εT , (4.20)

for a certain monotonic functionQ independent ofε.
The third term in (4.18) can be estimated analogously using the fact that we have

the uniform with respect toε L∞-estimate for the solutionsuε(t) and û(t) (due to
Corollary 1.4):∣∣∣∣∣

T∫
0

(
f l
(
uε(t)

)− f l
(
û(t)

)
, ulε(t)−wl

ε(t)
)

dt

−
T∫

0

(
f l
(
uε(t)

)− f l
(
û(t)

)
, vlε(t)

)
dt

∣∣∣∣∣�Q
(‖u0‖0,∞

)
εT , (4.21)

with the appropriateQ independent ofε.
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Thus, it remains only to estimate the most complicated second term of (4.18). We
will do so using the results of Lemmata 4.1 and 4.2 and the uniform ellipticity (with the
constantν > 0) of the operatorsAl

ε:

−(Al
εu

l
ε(t)−Al

0û
l(t), ulε −wl

ε

)
=−(Al

ε

(
ulε(t)− ũlε(t)

)
, ulε(t)−wl

ε(t)
)− (Al

εũ
l
ε(t)−Al

0û
l(t), ulε(t)−wl

ε(t)
)

� ν
∥∥ulε(t)− ũlε(t)

∥∥2
1,2 −C

∥∥ũlε(t)−wl
ε(t)

∥∥2
1,2 − ν/4

∥∥ulε(t)− ũlε(t)
∥∥2

1,2

−Cε2∥∥ûl (t)∥∥2
2,2 − ν/4

∥∥ulε(t)−wl
ε(t)

∥∥2
1,2 �−C1ε

2/3∥∥ûl(t)∥∥2
2,2. (4.22)

Intergating inequalty (4.22) overt ∈ [0, T ] and taking into the account estimate (4.3),
we have

T∫
0

(
Al
εu

l
ε(t)−A0û

l(t), ulε(t)−wl
ε(t)

)
dt �Q

(‖u0‖L∞∩W1,2

)
ε2/3T . (4.23)

Inserting estimates (4.20), (4.21) and (4.23) in relation (4.18) and taking into the account
the fact thatvlε(0)= 0, we derive the estimate:

1/2
∥∥vlε(T )∥∥2

0,2 �Q
(‖u0‖L∞∩W1,2

)
ε2/3T −

T∫
0

(
f l
(
uε(t)

)− f l
(
û(t)

)
, vlε(t)

)
dt.

(4.24)

Summing inequalities (4.24), forl = 1, . . . , k, we finally obtain

∥∥vε(T )∥∥2
0,2 � 2kQε2/3T − 2

T∫
0

(
f
(
uε(t)

)− f
(
û(t)

)
, vε(t)

)
dt. (4.25)

Recall that the functionf ∈ C1 and we have the uniform with respect toε L∞-estimates
of solutionsuε(t) and û(t). That is why, we can estimate the intergal in (4.25) in a
standard way and obtain the estimate

∥∥vε(T )∥∥2
0,2 � 2K

T∫
0

∥∥vε(t)∥∥2
0,2 dt + 2kQε2/3T , (4.26)

whereK =K(‖u0‖0,∞).
The Gronwall inequality applied to (4.26) finishes the proof of the theorem.✷
Remark4.1. – Note that, in the case where the limit solutionû(t) is smooth enough

(e.g. û ∈ C1,2(�T ), it will be so for example if in additiong ∈ Cβ(�) and the initial
valueu0 ∈ C2+β(�)), one can expect much better estimates than (4.2) (with exponent
1/2 or even 1 instead of 1/3). But, in this case, the functionQ will also depend on
‖u0‖C2+β which is not permit to apply this result for estimation the difference between
the attractors. So, keeping in mind the application of this estimate to the attractors, we
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cannot consider the initial data more regular thanC2β ∩W
1,2
0 and this was the main

difficulty in the proof of Theorem 4.1.

Now, having the error’s estimate for approximation the individual solutions of (0.1)
by the solutions of homogenized equation (3.10), we are ready to derive the analogous
error’s estimates for the (global) attractorsAε and A0. To this end, we need some
additional information about the attractorA0 of the limit equation (3.10). Namely, we
require the rate of convergence of images of bounded sets to the attractorA0 to be
exponential, i.e.

distL2(�)

(
S0
t B,A0)�Q

(‖B‖#)e−νt , (4.27)

for a certainpositiveexponentν > 0 and the appropriate functionQ.

THEOREM 4.2. – Let the assumptions of Theorem4.1hold and let the limit attractor
A0 be exponential. Then, the nonsymmetric Hausdorff distance betweenAε and A0

possesses the following estimate

distL2(�)

(
Aε,A0)� Cεκ, (4.28)

where the constantC and the exponent0< κ < 1 can be computed explicitly.

Proof. –The assertion of the theorem is a simple corollary of estimates (4.2)
and (4.27). Indeed, letu0

ε ∈ Aε be an arbitrary point of the attractorAε. Then, due
to (2.6), there is a complete bounded trajectoryuε(t) ∈ Kε such thatuε(0) = u0

ε .
Moreover, according to estimate (2.12)∥∥uε(t)∥∥L∞∩W1,2(�)

� C, (4.29)

whereC is independent oft ∈ R, ε andu0
ε . Let us fix now an arbitraryT ∈ R+ and

consider the solution̂u(t) of the homogenized problem (3.10) with the initial value
û(0) := uε(−T ). Then, according to estimate (4.2),∥∥uε(0)− û(T )

∥∥
0,2 �C1ε

1/3eKT , (4.30)

where the constantsC1 andK depend only onC from (4.29) and on the functionsQ
andK in (4.2) and are independent ofu0

ε , T andε.
From the other side, since the attractorA0 is exponential then

distL2(�)

(
û(T ),A0)� C2e

−νT , (4.31)

where the constantC2 is also independent ofu0
ε , T and ε (due to the uniform

estimate (4.29)). Combining estimates (4.30) and (4.31), we derive that

distL2(�)

(
u0
ε,A0)� C1ε

1/3eKT +C2e−νT . (4.32)

Recall thatT � 0 is arbitrary, therefore we fix it in order to minimize the right-hand side
of (4.33), i.e. satisfying the equation

C1ε
1/3eKT = C2e

−νT .
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Solving this equation and insertingT = T (ε) in the right-hand side of (4.32), we obtain
that

distL2(�)

(
u0
ε,A0)�C3ε

κ, (4.33)

whereκ = ν
3(ν+κ) . Sinceu0

ε ∈Aε is arbitrary then (4.33) implies (4.28). Theorem 4.2 is
proved. ✷

COROLLARY 4.1. – Let the assumptions of Theorem4.2hold. Then

distC(�)
(
Aε,A0)�Cεκ1, (4.34)

for the appropriate0< κ1 < κ < 1.

Indeed, due to Corollary 2.1, the attractorsAε and A0 are uniformly bounded in
C2β ′

(�), β > 0 therefore, estimate (4.27) together with the appropriate interpolation
inequality implies (4.34).

Remark4.2. – Assume, in addition, that the attractorsAε, ε < ε0, are uniformly with
respect toε exponential, i.e.

distL2(�)

(
Sεt B,Aε

)
�Q

(‖B‖#)e−νt , (4.35)

where the positive constantν > 0 and the functionQ are independent ofε. Then, arguing
as in the proof of Theorem 4.2, one can easily obtain the lower semicontinuity of the
attractorsAε and the estimate

distL2(�)

(
A0,Aε

)
� Cεκ (4.36)

and, consequently, in this case we have estimate (4.2) not only for nonsymmetric
Hausdorff distance but for the symmetric one as well.

Note in conclusion that there is a large class of systems of the form (0.1) for which
estimate (4.27) is known. Indeed, assume in addition that the nonlinear functionf has a
gradient structure (which is always true in a scalar casek = 1)

f (u)=∇uF (u). (4.37)

Then, as known (see e.g. [1]), Eq. (3.10) possesses a global Lyapunov function

L(u)=
∫
�

∑
i,j,l

ãlij ∂xiu
l∂xj u

l + 2F(u)− 2g.udx (4.38)

and, consequently, in the generic case, where we have only finite number of equilibria
R := {z1, . . . , zN} for Eq. (3.10) and all of them are hyperbolic, the attractor of Eq. (3.10)
is regular i.e. consists of a finite collection of the finite dimensional unstable manifolds
M+(zi) of the equilibria pointszi ∈R:

A0 =
N⋃
i=1

M+(zi) (4.39)
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(see e.g. [1] or [15]). Moreover, it is also known (see [1]), that the regular attractor
is exponential, i.e. (4.27) holds for the regular attractors. Thus, we have proved the
following theorem.

THEOREM 4.3. – Let the assumptions of Theorem4.2holds and let in addition(4.37)
be satisfied and all equilibria of the homogenized equation be hyperbolic. Then, the
estimate(4.28)holds.

Let us consider now several examples of reaction-diffusion systems arising in
mathematical physics for which the assumptions of Theorem 4.2 are fulfilled.

Example4.1. – One of the simplest examples is a Chaffee–Infante equation in the
non-homogenized almost-periodic media:

∂tu=Aεu− u3 + αu+ g(x), u|∂� = 0. (4.40)

Hereu is a scalar function (k = 1),g ∈L2(�), α ∈ R is a given constant and the operator
Aε is defined via (0.3). All assumptions of Theorem 3.1 are evidently satisfied for this
equation and, consequently, (4.40) possesses a global attractorAε, for every ε > 0.
Moreover, these attractors tend to the limit attractorA0 of the homogenized problem
asε→ 0 in the sense of (3.11).

Note also that Eq. (4.40) has a gradient form ((4.37) is satisfied) and, consequently,
for genericg ∈ L2(�), the limit attractorA0 is regular and exponential. Thus, in the case
of periodic media estimate (4.28) is also valid for the external forcesg belonging to a
certain open and dense set inL2(�).

Example4.2. – Consider now the following generalization of Lotka–Volterra system:

{
∂tui =Ai

εui − fi(ui)− ui
(∑k

j=1bij u
2
j

)+ gi(x),

ui |∂� = 0, i = 1, . . . , k,
(4.41)

whereAi
ε are defined via (0.3),bij � 0 are given nonnegative constants,gi ∈L2(�) and

the functionsfi are assumed to satisfy the following assumptions:

1. fi ∈ C1(R), 2. fi(v) · sgnv � 0 for |v| � R,

3. |fi(v)| �C
(
1+ |v|p), (4.42)

for a certain constantsR > 0, C > 0 and p > 0. It is not difficult to verify that
system (4.41) satisfies all assumptions of Theorem 3.1 (particularly, the anisotropic
dissipativity condition (0.6) is valid withp1 = p2 = · · · = pk = q for arbitraryq > 0),
consequently, the attractorsAε, ε > 0 associated with the problems (4.41) converge as
ε→ 0 to the attractorA0 of the limit homogenized problem.

Note also that, in the case where the matrix{bij }ki,j=1 is symmetric, i.e.

bij = bji � 0, i, j = 1, . . . , k, (4.43)
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Eq. (4.41) has a gradient form, therefore, in the case of periodic media, estimate (4.28)
for the rate of convergence ofAε asε→ 0 is valid forgi belonging to a certain open and
dense subset ofL2(�) and forbij satisfying (4.43).

Example4.3. – We conclude our consideration by the so-called FitzHugh–Nagumo
system: {

∂tu1 =A1
εu1 − f (u1)− u2 + g1(x), u1|∂� = 0,

∂tu2 =A2
εu2 + δu1 − γ u2 + g2(x), u2|∂� = 0.

(4.44)

Herek = 2, the operatorsAi
ε are defined via (0.3),δ, γ > 0 are positive constants and

the nonlinearityf (v) is assumed to satisfy the fullowing assumptions:

1. f ∈ C1(�), 2. f (v).v � −C +C1|v|q+1, 3. |f (u)| � C
(
1+ |v|p), (4.45)

for some positiveC,C1, q,p > 0. A simple checking reveals that Eq. (4.44) satisfies all
assumptions of Theorem 3.1 (particularly the anisotropic dissipativity assumption (0.6)
holds withp1 = p2 = r and arbitraryr > 0), consequently the attractorsAε associated
with the nonhomogeneous problem (4.44) tend asε > 0 to the attractorA0 of the limit
homogenized problem.

Note that Eq. (4.44) does not have a gradient structure. Nevertheless, it is shown in [4]
that under the additional assumptions

1. f ′(v)� −γ for all v ∈ R, (4.46)

whereγ is the same as in the second equation of (4.44), this problem possesses a global
Lyapunov function in the form:

L(u1, u2) := 1

2
‖∂tu1‖2

L2 + 1

2δ
‖∂tu2‖2

L2 − γ

2

(
A1
εu1, u1

)+ γ

2δ

(
A2
εu2, u2

)

+ γF(u1)+ γ (u1, u2)− γ 2

2δ
‖v‖2

L2 − γ (g1, u1)+ γ

δ
(g2, u2), (4.47)

where(·, ·) means the inner product inL2(�), F(u) = ∫ u0 f (u)du and the terms∂tu1

and∂tu2 should be expressed from equations (4.44) (according to Theorem 1.2 all terms
in (4.47) are well posed on the attractorAε). Thus, in the case of periodic media and
under the additional assumption (4.47), estimate (4.28) holds for everygi from a dense
and open subset ofL2(�).

Remark4.3. – It is also known that the regular attractors are structurally stable in the
sence, that representation (4.39) preserves under the small permutations of Eq. (3.10),
moreover, the uiniform exponential attraction property is also valid if the pertrubation
is small enough (see [1]). Note also that the non-homogenized problem (0.1) can be
considered as a small pertrubation of the homogenized equation (3.10) because∥∥(Aε)

−1 − (A0)
−1∥∥

L2(�)→L2(�)
→ 0 asε→ 0

(see [20]). Therefore, one can expect that the uniform attraction property (4.35) is valid
for our case if the limit homogenized attractor is regular. Then, according to Remark 4.2
we will have the lower semicontinuity of attractorsAε asε = 0 and estimate (4.28) for
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thesymmetricHausdorff distance. We will give the rigorous proof of this assertion in the
forthcoming paper.
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