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ABSTRACT. – We prove the convexity of the set which is delimited by the free boundary
corresponding to a quasi-linear elliptic equation in a 2-dimensional convex domain. The method
relies on the study of the curvature of the level lines at the points which realize the maximum of
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1. Introduction and main results

Consider a solution of the following free boundary problem

div
(
a
(|∇u|2)∇u)= f (u) in � \�, (1.1)

0= u|∂� < u < u|∂� = u0 in � \�, (1.2)

∂nu= 0 on∂�, (1.3)

whereu0 is a given nonnegative constant,� is a closed subset of a bounded domain�

in R
2 and∂nu is the normal (to∂�) outgoing derivative ofu. This problem arises for

instance from an obstacle problem (see for instance [24]).

THEOREM 1. – Assume thata(0), f (0) > 0 and that q �→ a(q), u �→ f (u) are
increasing functions of classC1 andC0 respectively. If� ⊂ R

2 is convex and ifu is
a solution of(1.1)–(1.3), then� is also convex.

This theorem has been proved in the special case wherea andf are constants by
Friedman and Phillips [13] in two dimensions, and then extended to any dimension by
Kawohl [19]. Similar results were also proved (in any dimensions) fora ≡ 1, f ≡ 0
and∂nu= const= λ > 0 in place of∂nu= 0 by Caffarelli and Spruck [7]. The exterior
problem in�= R

2\O with O convex anda ≡ 1 has been studied forλ > 0 by Kawohl
[22] and Hamilton [14], and forλ= 0 by Kawohl [21]. Let us also mention two related
results on convex rings [7,8] and, for general questions on the convexity of the level sets,
[20]. We can also quote a recent paper by Caffarelli and Salazar [6] for the equation
�u + cu = 0 and results by Henrot and Shahgholian [15–17] (which rely on a lower
bound on the gradient), but for which the extension to general quasilinear operators
has not yet be done. Concerning estimates on the curvature and the use of the Fréchet
formula, one may refer to [25] (in the case of the Laplace operator). The results of this
article were announced in [10].

We will prove Theorem 1 in a much more general framework, except that we will deal
only with analytic solutions for reasons that will be made clear later. We will assume

∂nu= λ(K)� 0 on∂�, (1.4)

whereλ is a function of the curvatureK of ∂�. Here we denote byn andτ the normal
and tangent unit vectors to a level set, so that(τ, n) is a direct orthonormal basis inR2,
andn = ∇u

|∇u| , if ∇u 
= 0. In this case, the curvature is defined byK = Dττu
|∇u| . We shall

consider the analytic solutions of the fully nonlinear elliptic equation

F
(
Dnnu,Dττu,Dnτu, |∇u|, u)= 0 in� \�, (1.5)

whereF is an analytic function. The vectorsn andτ are well defined if∇u 
= 0. For
the equation to make sense in case of a patch of zero gradient, we therefore require the
following conditions.

(A0) Compatibility condition: we assume the existence of a functionF such that

F(a, b, c,0, u)=F
(
a + b, ab− c2, u

) ∀a, b, c, u.
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(A1) Nonzero gradient condition:

∀t ∈ (0, u0], ∃x ∈� \�, u(x)= t, ∇u(x) 
= 0.

Let us defineα = (F )′Dnnu
, β = (F )′Dττ u

, γ = (F )′Dnτ u
,

α(x)= inf
a,b∈R

α
(
a, b,0, |∇u(x)|, u(x)) and β(x)= inf

a,b∈R

β
(
a, b,0, |∇u(x)|, u(x)).

(A2) Ellipticity conditions:

inf
X
α > 0, inf

X
β > 0, inf

X

(
4αβ − γ 2)� 0,

whereX is the set of the points which realize the maximum of the gradient on
their level line:

X= {x ∈� \�: |∇u(x)| = max
y∈�\�
u(y)=u(x)

|∇u(y)|}.

(A3) Condition on the free boundary: we assume that∂� is analytic and that the
mapK �→ λ(K) is analytic nonincreasing. Moreover ifλ(K) ≡ 0 on ∂�, then
we assume thatF(0,0,0,0,0) < 0 and that the vector fieldn = ∇u

|∇u| and the
curvatureK are continuous up to∂�.

These assumptions cover the case of Eq. (1.1) but also of quasilinear elliptic equations
like the mean curvature equation

div
( ∇u√

1+ |∇u|2
)

= f
(
u, |∇u|)

as well as fully nonlinear equations like the Monge–Ampère equation

det
(
D2u

)= f
(
u, |∇u|)> 0.

From now on, we assume thatu is an analytic solution of Eq. (1.5) on� \� (with
eventually�= ∅).

Notations. – We shall noteBr(x) the ball of centerx and radiusr > 0. For simplicity,
we will use the same notation for a curve and its image.{F = 0} is the set{x ∈
� \ �: F(x) = 0}, ∂σu = σ · ∇u the derivative ofu along the unit vectorσ and
Dσσu := (σ,D2uσ). Since the tangent and normal unit vectorsτ andν depend onx,
∂τ (∂τu) 
=Dττu in general, and one has to use theFréchet formula

∂τn=Kτ, ∂τ τ = −Kn, (1.6)

∂nn= ρτ, ∂nτ = −ρn, (1.7)

whereK = 1
|∇u|Dττu is the curvature of the level line andρ = 1

|∇u|Dnτu.
For t > 0, let
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$t = {x ∈�: u(x)= t}, m(t)= max
y∈$t

∣∣∇u(y)∣∣,
and Xt = {x ∈ $t : ∣∣∇u(x)∣∣=m(t)

}
.

With a straightforward abuse of notations, we define

K(t) := inf
y∈Xt

Dττu

|∇u| (y).

The following result is the core of our method.

THEOREM 2. – Under Assumptions(A0)–(A1)–(A2), consider an analytic solution
u of Eq. (1.5). With the above notations,m is continuous and differentiable outside a
countable closed set in(0, u0) such that

F
(
m
dm

dt
,mK,0,m, t

)
= 0 for t ∈ (0, u0) a.e., (1.8)

dK

dt
� −K2

m
, (1.9)

where the inequality has to be understood in the sense of distributions.

Remark1. – The method used in the proof of Theorem 2 has the following features.
(i) In higher dimensions, we can formally get a similar system for the mean curva-

ture of the level sets and the maximal value of the gradient (see Appendix A.2).
(ii) In the case of a radially symmetric solution (when� is a ball), inequality (1.9)

becomes an equality (see Appendix A.1). The result of Theorem 2 can therefore
be compared with results based on rearrangement techniques, like the ones
obtained by G. Talenti in another context [30].

(iii) In the nonradial case, we prove a refined version of (1.9):

dK

dt
� −K2

m
− 1

m

(
2

√
β

α
− |γ |

α

)
· min
Xt

∣∣∣∣∂τ
(
Dττu

|∇u|
)∣∣∣∣. (1.10)

As a consequence of Theorem 2, we will prove our main result.

THEOREM 3. – Under Assumptions(A0)–(A3), if u is an analytic(up to the fixed
boundary∂�) solution to the free boundary problem(1.2)–(1.4), (1.5) (including the
case�= ∅), thenu has the following properties:

(i) There exists a constantM which only depends onF , |λ(K)|L∞(∂�), u0 and the
minimum of the signed curvature of∂� such that‖∇u‖L∞(�\�) �M.

(ii) The minimum of the signed curvature of∂� is bigger than the minimum of the
signed curvature of∂�:

inf
∂�
K � inf

∂�
K.

As a consequence, if� is convex, each connected component of� is also convex.
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Remark2. – In Theorem 3, we get a global bound from below on the curvature of the
free boundary. Note that in [29] D.G. Schaeffer proves (using a quasiconformal mapping)
that for an obstacle problem of the type�u= f , there exists a local bound from below
on the curvature of the free boundary.

Also notice that theL∞(� \ �) bound is true for dimensions higher than 2 (see
Remark 1 and Appendix A.2).

The rest of this paper is organized as follows. We will show in Section 2 that
Theorem 1 is a consequence of Theorem 3. In Section 3, we prove Theorem 2 in a special
case corresponding to the central idea of our approach, and then in full generality using
a detailed analysis of the analytic structure of appropriate sets. With additional estimates
near the free boundary, we obtain Theorem 3 in Section 4. The appendix is devoted to
the much simpler setting of the radial case, the formal extension of our estimates to
dimensions higher than 2 and technical results on analytic sets.

2. Proof of Theorem 1

We will start with perturbations of the level of the free boundary and considerations on
its regularity. The method essentially goes as in [2], so we shall simply give a sketch of
the proofs. Then we will prove that Theorem 1 is a consequence of Theorem 3. Before,
simply notice that Eqs. (1.1)–(1.3) are such that Assumptions (A0)–(A3) are satisfied.

2.1. A perturbation of the original problem (1.1)–(1.3)

Consider 


div(a(|∇u|2)∇u)= f (u) in �\�,
t = u|∂� < u < u|∂� = u0,

∂nu= 0 on∂�,
(2.1)

wherea andf satisfy the assumptions of Theorem 1, and assume moreover that∂� and
a,f are analytic.

We shall say that (2.1) hasanalytic solutionsif ∂� is analytic (see for instance [5]).
Throughout this section, to emphasize the role of the level,t , we will denote byut the
corresponding solution and use the notation�t instead of�.

Let us start with a perturbation result.

PROPOSITION 1. – If ut0 is an analytic solution to the free boundary problem(2.1)
for t = t0 <u0, then there exists anη > 0 such that(2.1)has analytic solutions for every
t ∈ (t0 − η, t0 + η). Moreover the mapt �→ ∂�t is continuous(and∂�t is analytic).

Sketch of the proof of Proposition 1. –From the assumption of Proposition 1, it follows
that the boundaries∂� and ∂�t are of classC∞. We can then apply Nash–Moser’s
inverse function Theorem as in [2] to prove that (2.1) has a solutionut for t in a
neighbourhood oft0 with a smooth free boundary∂�t ∈ C∞. We conclude with the
help of the following result on the regularity of the free boundary, due to Kinderlehrer
and Nirenberg [23]:
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LEMMA 1. – Under the previous assumptions on the analytic problem(2.1), if the
free boundary∂�t is C1 andut is C2 up to the free boundary, then the free boundary
∂�t is analytic.

Actually the perturbation result also holds in a neighborhood ofu0.

PROPOSITION 2. – There exists anη > 0, such that for everyt in (u0 − η,u0], the
free boundary problem(2.1) has an analytic solution. Moreover the mapt �→ ∂�t is
continuous(and∂�t is analytic).

Sketch of the proof of Proposition 2. –For t = u0, the functionut ≡ u0 is a solution
with �t =�. This problem is then degenerate int = u0. Nevertheless, as in [2], we can
apply a Nash–Moser approach in this degenerate case, which proves Proposition 2.✷
2.2. Proof of Theorem 1

The main advantage of the obstacle problem (1.1)–(1.3) compared to the more
general free boundary problem (1.4) is that it is known that there exists a unique weak
solution (see [28,12]), and that this solution is bounded inW 2,∞ (see [12,11,3,1]).
As a consequence of the uniqueness, the mapt �→ ut ∈ W 2,p is continuous for every
p ∈ (1,+∞). Moreover, from the nondegeneracy lemma (see Caffarelli [4], and for
instance [26]), we have the

LEMMA 2. – Consider a solution of problem(1.1)–(1.3). Under the assumptions of
Theorem1, for everyt0 ∈ [0, u0],

lim
t→t0

t∈[0,u0]
�t =�t0 (2.2)

and
∣∣∂�t0

∣∣= 0. (2.3)

Let us prove thatt∗ defined by

t∗ = inf
{
t0 ∈ (0, u0): ∀t ∈ [t0, u0), (1.1)–(1.3) has an analytic solutionut

}
is actually 0. Because of Proposition 1,t∗ is the infimum of a nonempty set. Assume by
contradiction thatt∗ > 0. From Theorem 3, we deduce that inf∂�t K � inf∂� K � 0 for
t ∈ (t∗, u0) and then�t is convex: by continuity (Lemma 2, (2.2)),�t∗ is also convex.

(1) Case Int(�t∗)= ∅: |�t∗| = |∂�t∗| = 0 from Lemma 2, (2.3). In this case there is
no free boundary, i.e. the solutionut satisfies the Euler–Lagrange equation (1.1) of the
energy

E(u)=
∫
�

(
1

2
A
(|∇u|2)+G(u)

)
dx

without constraints, whereA′ = a, G′ = f . The uniqueness of the weak solution to the
free boundary problem consequently implies thatut

∗ = u, and because we assumed that
min� u= 0, we gett∗ = 0, a contradiction.

(2) Case Int(�t∗) 
= ∅: we use the following result, due to Caffarelli [4].
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LEMMA 3. –Under the previous assumptions on the obstacle problem(1.1)–(1.3), if
the coincidence set�t is convex and if Int(�t) 
= ∅, then∂�t is C1 andut is C2 up to
the free boundary∂�t .

Lemma 1 therefore implies that the free boundary is analytic. Finallyut
∗

is an analytic
solution, and Proposition 1 gives a contradition with the definition oft∗.

This proves Theorem 1 in the context of analytic solutions. Now because the solution
is the limit of an approximating sequence of analytic solutions of a regularized problem,
the result holds as well ifa andf are only of classC1 andC0 respectively. This ends
the proof of Theorem 1.

Remark4. – This last argument of approximation applies when existence and
uniqueness results can be proved, which is true for the obstacle problem of Theorem 1
but is not known for more general problems (1.2)–(1.4), (1.5).

Also notice that the convexity of the free boundary holds for any solution which can
be seen as the limit of analytic solutions of aproximating problems. This is a method to
get an existence result of solutions with convex free boundaries (see for instance [25] in
the case of the Laplace operator).

3. Proof of Theorem 2

First we shall assume that locally int ,Xt (which is the set of the points of the level line
$t of u which realize the maximum of|∇u|) is supported in an analytic curvet �→ xt

such thatt = u(xt ). The justification of such an assumption will be given in the next
subsection.

3.1. Proof of Theorem 2 in a particular case

Let xt be a point where the maximum of the gradient is reached on a level line$t :{
F(t) := ∂τ

(1
2|∇u|2

)|x=xt = 0,

G(t) := ∂2
τ

(1
2|∇u|2

)|x=xt � 0.

According to the definition of the normal and tangent unit vectorsn andτ , we get, at
x = xt ,

F(t)= |∇u|Dnτu and G(t)= (∂τ |∇u|)Dnτu+ |∇u|∂τ (Dnτu).

With the definitionm(t) := |∇u(xt )|> 0 by (A1), this can be rewritten as{
F
m
(t)=Dnτu(x

t )= 0,

G(t)=m∂τ (Dnτu)|x=xt � 0.

Equation form: deriving the identityu(xt )= t with respect tot , which can certainly
be done at least ift �→ xt is an analytic curve, we get

n · dx
t

dt
= 1

m
,
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so thatmdm
dt

= d
dt
(1

2|∇u(xt )|2) = ∇u(xt ) · D2u · dxt
dt

= Dnnu(x
t ). Using the curvature

K = Dττ u
|∇u| , we may writeDττu=mK , and Eq. (1.5) atx = xt gives Eq. (1.8).

Inequation forK : we computedK
dt

= 1
m
∂nK + h∂τK , whereh = τ · dxt

dt
. To get an

expression ofh, we deriveF
m

with respect tot :

0= d

dt

(
F

m
(t)

)
= 1

m
∂n(Dnτu)+ h∂τ (Dnτu).

Because of the Fréchet formula (1.6) and (1.7), and using the fact thatDnτu(x
t )= 0, we

have 

∂τK := ∂τ

(
Dττ u
|∇u|

)= 1
|∇u|Dτττu,

∂nK := ∂n
(
Dττ u
|∇u|

)= 1
|∇u|∂τ (Dnτu)− (Dττ u

|∇u|
)2
,

∂n(Dnτu)=Dnnτu.

To evaluateDnnτu, we derive Eq. (1.5) with respect toτ :

αDnnτu+ βDτττu+ γ ∂τ(Dnτu)= 0.

If G 
= 0, putting these expressions all together, we get

dK

dt
= −K2

m
+ γ

α

(
∂τK

m

)
+ β

α
m(∂τK)

2 1

G
+ G

m3
,

and an optimization onG< 0 gives

dK

dt
� −K2

m
− 1

m

(
2

√
β

α
− |γ |

α

)
|∂τK|. (3.1)

If G = 0, then it is easy to see that∂τK = 0 and dK
dt

= −K2

m
. In any case, (3.1) is true,

which proves inequality (1.9).

3.2. Proof of Theorem 2 in the general case

We will introduce analytic functions relevant to our problem and then give the proof
of Theorem 2 in this framework. Here is the technical part of the proof, for which we
shall distinguish two cases.

Let us recall that a pointxt belongs toXt if and only if u(xt ) = t and |∇u(xt )| =
max{y∈�: u(y)=t} |∇u(y)|. This implies that

d

dτ

(|∇u|2/2)|x=xt = 0. (3.2)

Now let us define on{|∇u|> 0} the analytic function:

F(x)= d

dτ

(|∇u|2/2)|x
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(with the notations of Section 3.1,F(t)= F(xt )= 0). LetX =⋃t∈[0,u0]X
t . From (3.2),

we know thatX ⊂ {F = 0} is an analytic set, if we defineanalytic setsas sets where
analytic functions vanish.

CaseA: F ≡ 0: this is the simplest case (see Appendix A.1 for details).

LEMMA 4. – If F ≡ 0, then� is a disk andu is radially symmetric.

Proof. –If F ≡ 0, then|∇u| = const=m(t) on each level line$t = {u= t}. Let γ be
a smooth curve such thatu(γ (t))= t . Because hereX =� \�, any such curve can be
seen as a curvet �→ xt used in the previous subsection. As a consequence we have

F
(
m
dm

dt
,mK,0,m, t

)
= 0

whereK =K(γ (t)). From Assumption (A2), we deduce thatK =K(t) on$t . Because
� is bounded, the level lines ofu are circles.

Moreover∂nn =m−1Dnτuτ = 0. This implies that ifx1 ∈ ∂� andγx1 is the integral
curve of the vector fieldn such thatu(γx1(t))= t andγx1(u0)= x1, then d

dt
n(γx1(t))= 0:

γx1(t)= x1 + (t − u0)n(x1) and u
(
γx1(t)

)= t.

Because this is true for every pointx1 in the circle ∂�, we see that the circles$t

have the same centerx0. In particular the solution is radial on the annulus� \ � =
B1/K(u0)(x0) \B1/K(0)(x0). ✷

CaseB: F 
≡ 0: we begin with a statement that will be proved in Appendix A.3.

LEMMA 5. – For everyε > 0, for m(t)= sup{u=t} |∇u|, letωε be defined by

ωε = {x ∈�: ε < u(x) < u0 − ε, |∇u(x)|> εm
(
u(x)

)}
.

Then there exists an open setω which is a finite union of balls such that

{F = 0} ∩ ωε ⊂ ω :=
N⋃
i=1

Bri (xi)⊂
{|∇u|> 0

}
.

Moreover the setFω := {F = 0} ∩ ω has the following property:

∀i ∈ [1,N], ∃ki ∈ N, Fω ∩Bri (xi)= {xi} ∪
(

ki⋃
j=1

γ ij

)
, (3.3)

where γ ij are analytic open curves withxi as origin such that in a neighborhood

of a singular pointxi , either d
ds
(u ◦ γ ij ) = 0 or (up to change the parametrization)

d
ds
(u ◦ γ ij ) > 0. Heres is the curvilinear coordinate.

As a consequence of the lemma we get that for anyε > 0 small enough,X∩ {ε < u <

u0 − ε} is contained inFω which has an analytic structure given by (3.3).
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We are now going to prove that (1.8) and (1.9), which have been established in the
case of an analytic curve, are also valid in the general framework.

Let us assume thatε > 0 is fixed in all what follows. Denote byγ the generic
curve defined in Lemma 5 and let{x′

i} be the set of points on the curvesγ such that
d
ds
(u ◦ γ ) 
≡ 0 and d

ds
(u ◦ γ )|γ (s)=x ′

i
= 0. Because the curvesγ and the functionu are

analytic, we deduce that there are only a finite numberN ′ of such pointsx′
i . Let G and

G0 be the sets of curvesγ such thatd
ds
(u ◦ γ ) > 0 andu(γ )= const respectively. Then

{F = 0} ∩ω= G ∪ G0 ∪ {xi}1�i�N ∪ {x′
i}1�i�N ′ .

We can rewrite the discret set{u(xi)}1�i�N ∪{u(x′
i)}1�i�N ′ ∪{u(γ )}γ∈G0 as an increasing

finite sequence of critical values,t∗k ∈ (ε, u0 − ε), k = 1,2, . . . ,M . Let Gk be the set of
curvesγ ∈ G which range in{t∗k < u < t∗k+1}. Then on(t∗k , t∗k+1) we have:

m(t)= sup
γ∈Gk

∣∣∇u(γ (t))∣∣.
Because each mapt �→ |∇u(γ (t))| is analytic, we deduce from Proposition 4 that
this supremum is analytic except maybe on a discret set{t∗k,n}p−

k
<n<p+

k
with p−

k , p+
k ∈

Z ∪ {−∞} ∪ {+∞}, which has no accumulation point in(t∗k , t∗k+1). Only t∗k andt∗k+1 are
possible accumulation points. In particular there existsγtk,n ∈ Gk such that

m(t)= ∣∣∇u(γtk,n(t))∣∣ on (tk,n, tk,n+1).

Then the proof of Theorem 2, given above in the special case whereXt is supported in
an analytic curvet �→ xt = γtk,n(t), applies and gives the equations written in Theorem 2
for

K(t)=K
(
γtk,n(t)

)
on (tk,n, tk,n+1).

Although the mapt �→ m(t) is continuous, the mapt �→ K(t) can be discontinuous in
tk,n. In other words we can haveK(γtk,n−1(tk,n)) 
= K(γtk,n (tk,n)). Nevertheless we have
the

LEMMA 6. – With the above notations,

K
(
γtk,n (tk,n)

)
�K

(
γtk,n−1(tk,n)

)
.

We can therefore defineK(tk,n) :=K(γtk,n (tk,n)) and then (1.10) is true in the sense of
distribution on(tk,n−1, tk,n+1):

K̇ � −K2

m
− 1

m

(
2

√
α

β
− |γ |

β

)
|∂τK|, (3.4)

where∂τK is taken onγtk,n−1 for t < tk,n andγtk,n for t > tk,n.

Proof of Lemma 6. –Let us recall that for each curveγ = γtk,n−1 andγ = γtk,n we have

F
(
m
dm

dt
,mK,0,m, t

)
= 0 (3.5)
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wherem(t)= |∇u(γ (t))| andK(t)=K(γ (t)). Letm+(t)= |∇u(γtk,n(t))| andm−(t)=
|∇u(γtk,n−1(t))|. Then

m±(t)=m(tk,n)+ l± · (t − tk,n)+ o(|t − tk,n|),

wherel± = dm±(t)
dt

|t=tk,n . Note that because of Assumption (A2),l+ − l− has the same
sign as−K(γtk,n (tk,n))+K(γtk,n−1(tk,n)). Because of

m(t)= sup
(
m+(t),m−(t)

)= {m+(t) on (tk,n, tk,n+1)

m−(t) on (tk,n−1, tk,n)

we deduce thatl+ � l− and thenK(γtk,n (tk,n))�K(γtk,n−1(tk,n)) which ends the proof of
Lemma 6. ✷

More generally (3.5) and (3.4) are true on(t∗k , t∗k+1) for K defined by

K(t)= inf
xt∈Xt

K
(
xt
)
.

We now want to prove that these equations are still true in a neighborhood of a critical
valuet∗k . It is clear that (3.5) is true almost everywhere in(t∗k−1, t

∗
k+1), because the map

t �→m(t) is continuous. We have to prove that (3.4) is true on(t∗k−1, t
∗
k+1) in the sense of

distributions. Letφ ∈ C∞
0 (t

∗
k−1, t

∗
k+1), φ � 0:

〈K̇, φ〉= −
t∗
k+1∫

t∗
k−1

Kφ̇

= − lim
δ→0

{ t∗
k
−δ∫

t∗
k−1

Kφ̇ +
t∗
k+1∫

t∗
k
+δ
Kφ̇

}

= − lim
δ→0

{ t∗
k
−δ∫

t∗
k−1

−K̇φ +
t∗
k+1∫

t∗
k
+δ

−K̇φ + [Kφ]t∗k−δt∗
k−1

+ [Kφ]t
∗
k+1
t∗
k
+δ

}

�
t∗
k+1∫

t∗
k−1

(
−K2

m
− 1

m

(
2

√
α

β
− |γ |

β

)
|∂τK|

)
φ

+ φ(t∗k ) lim sup
δ→0

(
K(t∗k + δ)−K(t∗k − δ)

)

�
〈
−K2

m
− 1

m

(
2

√
α

β
− |γ |

β

)
|∂τK|, φ

〉

becauseφ(t∗k )� 0 and because of the
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LEMMA 7. – With the above notations,

lim sup
δ→0

(
K(t∗k + δ)−K(t∗k − δ)

)
� 0. (3.6)

Lemma 7 is a kind of generalization of Lemma 6 that will be proved in Appendix A.3.
The system (3.4)–(3.5) holds on(t∗k−1, t

∗
k+1) and then on(t+ε, t̄−ε). Taking the limit

ε→ 0, we end up with the proof of Theorem 2.

4. Proof of Theorem 3

The proof of Theorem 3 relies mainly in the fact that ast → 0, the setXt accumulates
in a point of∂� which realizes the minimum of the curvature of the free boundary.

PROPOSITION 3. – Under the assumptions of Theorem3, let xt be a point such that

u
(
xt
)= t and

∣∣∇u(xt )∣∣= max
u(y)=t

∣∣∇u(y)∣∣.
If xt → x0 as t → 0, thenK(xt )−→K(x0)= infx∈∂�K(x).

4.1. End of the proof of Theorem 3

Property (ii) of Theorem 3 follows from Theorem 2, (1.9) and Proposition 3. To prove
(i), we first remark that because of Assumption (A2), we can rewrite (1.8) as

d(m2)

dt
=H(m,K, t) on (0, u0),

whereH is analytic with respect to(m,K, t) ∈ [0,+∞)× R × [0, u0] and decreasing
with respect toK . Because of the inequality onK , it is clear thatK(t)� inf∂� K =:K0.
Thus we get 


d(m2)

dt
� H(m,K0, t) a.e. on(0, u0),

m(0)= |λ(K)|L∞(∂�).

We can then compare with the solutionm0 of



d(m2

0)

dt
=H(m0,K0, t) on (0, u0),

m(0)= |λ(K)|L∞(∂�) + 1.

The uniqueness ofm0 and its local existence are clear. Using the fact thatm > 0 on
(0, u0), it is quite classical to see that ifm0 �m on (a, b)⊂⊂ (0, u0), thenm0 is defined
on (a, u0) and satisfiesm0 � m on (a, u0). On the other hand by the continuity ofm
in t = 0, we get thatm0 > m on a small interval[0, ε), which implies thatm0 �m on
[0, u0]. In conclusion, the solutionm0 exists on[0, u0], is unique and is an upper bound
for m on [0, u0]. This ends the proof of Theorem 3.
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4.2. Proof of Proposition 3

First let us recall that according to Morrey [27], the solutionu is analytic up to the
free boundary∂�, because∂� is analytic itself. We will now distinguish three cases.

Caseλ(inf∂� K) > 0 andλ(K) 
≡ constanton ∂�: according to Assumption (A3)λ
is assumed to be analytic nondecreasing inK . Thus max∂� λ(K)= λ(inf∂� K) > 0 and
by continuity, Proposition 3 is true.

Caseλ = constant> 0 on ∂�: let x0 ∈ ∂� and γx0(t) be the integral curve of the
vector fieldn such thatγx0(0)= x0 andu(γx0(t))= t :

γx0(t)= x0 + t

λ
n(x0)+ O

(
t2
)

for t � 0.

For t > 0 close enough to 0, the mapx0 �→ γx0(t) is a diffeomorphism from∂� onto
$t = {u= t}. Then for everyx ∈ $t with t > 0 close to 0, there exists a uniquex0 ∈ ∂�
such thatx = γx0(t), and|∇u(γx0(t)| = λ+ t

λ
Dnnu(x0)+ O(t2) can be inverted into

Dnnu(x0)= λ

t

(∣∣∇u(γx0(t)
)∣∣− λ

)+ O(t).

MoreoverDnτu(γx0(t))= O(t). Thus we get

F
(
λ

t

(∣∣∇u(γx0(t)
)∣∣− λ

)
, λK

(
γx0(t)

)
, 0, λ, t

)
= O(t).

Now for t > 0 small enough andxt ∈Xt , let xt0 ∈ ∂� be defined byxt = γxt0
(t):

1

t

(∣∣∇u(γxt0(t))∣∣− λ
)= 1

t

(
sup
x0∈∂�

∣∣∇u(γx0(t)
)∣∣− λ

)
.

From Assumption (A2), we can deduce that

∀x0 ∈ ∂�, K
(
γx0(t)

)
�K

(
γxt0
(t)
)+ O(t).

Up to extraction of some subsequence, we can assume thatxt0 converges to some
x0

0 ∈ ∂� as t → 0+. Becauseλ > 0 on ∂�, the continuity of the curvatureK up to
the free boundary∂� is automatically satisfied. We then deduce by continuity that
K(x0

0)= inf∂� K , which proves Proposition 3.✷
Caseλ≡ 0 on∂�: we first remark that deriving∂nu(x)= 0 on ∂�with respect to the

tangential to∂� vector fieldτ , we get

Dnτu= 0 on∂�.

As x → x0 ∈ ∂�, by passing to the limit in (1.5), we getF(Dnnu(x0),0,0,0,0) = 0.
BecauseF(0,0,0,0,0) < 0,Dnnu(x0) is the unique positive root ofs �→F(s,0,0,0,0).
The functionDnnu is therefore constant on∂�.
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Forx close to∂�, we seth= d(x, ∂�) and associatex0 to x as follows

x = γx0(h) and γx0(h)= x0 + hn(x0).

Forh small enough, the map(x0, h) �→ γx0(h) is indeed a local diffeomorphism. In place
of n, consider the vector fieldn0(x)= n(x0(x)).

u
(
γx0(h)

)=
h∫

0

Dn0u(x0 + sn0) ds

=
h∫

0

ds
(
Dn0u(x0)+ sDn0n0u(x0)+ s2

2
Dn0n0n0u(x0)+ O

(
s3))

gives

t = h2

2
Dn0n0u(x0)+ h3

6
Dn0n0n0u(x0)+ O

(
h4).

We deduce that

h= t1/2
(

2

Dn0n0u

)1/2

− t

3

Dn0n0n0u

(Dn0n0u)
2
+ O

(
t3/2
)
,

and a computation (repeated indices are summed) gives withy = γx0(h)− x0:
∣∣∇u(γx0(h)

)∣∣2 = ∣∣∇u(x0)
∣∣2 + 2∇iuD

2
ij u · yj

+ 1

2
{DijuDiku+ 2∇iuDijku}yjyk

+ 1

6
{6DijkuDilu+ 2∇iuDijklu}yjykyl + O

(|y|4)
= (Dn0n0u)

2h2 + (Dn0n0u)(Dn0n0n0u)h
3 + O

(|y|4)
= 2t (Dn0n0u)

2 + 4

3
t3/2(Dn0n0n0u)

(
2

Dn0n0u

)1/2

+ O
(
t2
)
.

LEMMA 8. – With the above notations,

Dn0n0n0u(x0)= −Dn0n0u(x0)

(
β

α
K(x0)+ δ

α

)
on∂� whereδ =F ′|∇u|.

Combining the above computations, we get

∣∣∇u(γx0(h)
)∣∣2 = 2t (Dn0n0u)

2 − 4

3
t3/2
(
β

α
K(x0)+ δ

α

)
(2Dn0n0u)

1/2 + O
(
t2
)
.

We see that the gradient is maximum when the curvature is minimal, which ends the
proof of Proposition 3. ✷
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Proof of Lemma 8. –First, let us recall the following relations:

∂n0n=
(
Dτn0u

|∇u|
)

· τ, ∂n0τ = −
(
Dτn0u

|∇u|
)

· n.

To computeDn0n0n0u, we derive Eq. (1.5) with respect to the fieldn0:

αDnnn0u+ βDττn0u+ γDn0(Dnτu)+ 2J + I +L= 0,

where

J = α(D·nu)∂n0n+ β(D·τ u)∂n0τ = α− β

|∇u| (Dnτu)(Dn0τ ),

I = γ
(
(Dn·u)∂n0n+ (Dτ ·u)∂n0τ

)= 0,

L=F ′|∇u| · ∂n0(Dnu)+F ′
u · ∂n0u.

To evaluate these quantities, we useDnτu= 0 on∂� and the following

LEMMA 9. – With the above notations, forh= d(x, ∂�) > 0 small, then

Dτn0u= o(h), |∇u| � Ch

for some positive constantC, andDnnτu= 0 on ∂�.

As a consequence, on∂�, we get

Dn0(Dnτu)= 0, J = 0, L= δDn0n0u,

αDn0n0n0u+ βDττn0u+ δDn0n0u= 0.

To complete the proof, we have to computeDττn0u. For that purpose, let us define the
functionv(x)= ∂n0(x)u(x), which is analytic in a neighbourhood of∂� and up to∂�. It
is easy to check that∂n0v =Dn0n0u on�\�. Sincev = 0 and|∇v| =Dn0n0u= const> 0

on ∂�, the curvature of∂� # x0 is given byK(x0)= Dτ0τ0v

|∇v| whereτ0 = −n⊥
0 . It is also

easy to check that on∂�, Dτ0τ0v =Dn0τ0τ0u. ThusDττn0u= (Dn0n0u)K on ∂�, which
gives the expected equality and ends the proof of Lemma 8.✷

Proof of Lemma 9. –Deriving Dnnu = constant on∂� with respect toτ , we get:
Dτnnu= 0 on∂�. Let us remark that

d

dh

(
Dτnu

(
γx0(h)

))=Dτn0n0u− (Dτn0u)
Dnn0u

|∇u| ,

and that|∇u(γx0(h)| � Ch becauseDn0n0u= constant> 0 on ∂�. Using the regularity
of D3u, we deduce thatDτn0u = o(h) for h > 0 small, which ends the proof of
Lemma 9. ✷
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Appendix A

This last section is devoted to results and extensions that have been omitted in
Sections 1–4 to simplify the reading. First, we establish the expression of (1.8) and (1.9)
in the case of a ball, which is actually much easier than the general case. The interesting
point is that the inequation for the curvatureK becomes an equality. Then we give at
a formal level the extension of the system (1.8)–(1.9) to dimensions higher than 2. The
estimate for the gradient is unchanged but the one on the curvature is replaced by an
estimate on the arithmetic mean curvature, which is not sufficient to prove a convexity
result for the free boundary. A rigourous justification of the computations would not be
much more difficult than in dimension 2 but is for sure extremely tedious, so we leave it
at a formal level. The last part of this appendix is devoted to results on analytic sets that
we use in the proof of Theorem 2.

A.1. The radial case

This method is easy to understand in the radially symmetric case. Assume that
�= B(0,R0) and consider a radial solution of Eq. (1.5). We define for anyt ∈ (0, u0)

the functionsK(t) andm(t) by

t = u

(
1

K(t)

)
and m(t)= u′

(
1

K(t)

)
.

A derivation with respect tot givesK̇ = −K2

m
andṁ= u′′

m
. Here ˙( ) and( )′ respectively

denote the derivatives with respect tot and r . Eq. (1.5) is equivalent to (1.8). An
integration from 0 tou0 with the initial valuesm(0) = λ(K(0)) andK(u0) = 1

R0
gives

the result of Theorem 3. A variant of this approach consists simply to get an upper bound
by considering

M(u0,K0)� max
s∈[0,u0]

m0(s)�m(t) ∀t ∈ [0, u0], K0 = 1

R0
> 0,

where t �→ m0(t) is the solution toF(m0ṁ0,m0K0,0,m0, t) = 0 with initial datum
m0(0)= λ(K0)+ 1.

A.2. Higher dimensions

In this subsection, we formally extend our approach to dimensionsd � 3. The main
difference is that the curvature has to be replaced by the arithmetic mean curvature. We
will justify the derivation of this system only at a formal level by considering the generic
case.

To simplify the presentation we consider a solutionu of

F
(
Dddu,

d−1∑
i=1

Diiu, |∇u|, u
)

= 0 (A.1)
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whereDii is defined as follows. Consider the level set$t = {x ∈ �: u(x) = t} ⊂ R
d

and (when∇u(x) 
= 0) the unit normal vectorn(x) = ∇u
|∇u|(x) which is orthogonal

to the hyperplane> = >(x) tangent to$t at x. For i = 1,2, . . . , d − 1, we may
diagonalize(D2u)> = P>(D

2u)P> whereP> is the projection on> and defineτi
(i = 1,2, . . . , d − 1) as the corresponding eigenvectors such that(τ1, τ2, . . . , τd−1, τd =
n) forms an orthonormal basis inRd (the derivative along the normal to the level
hypersurface, i.e. along the directionn, corresponds to the indexd). The numbers
λi = (τi, (D

2u)>τi) are the eigenvalues of(D2u)> and we define the off-diagonal terms
µi = (τd, (D

2u)τi) = (τi, (D
2u)τd) for i = 1,2, . . . , d , and the curvaturesKi = λi

|∇u|
(i = 1,2, . . . , d − 1). With the notationsDiju= (τi, (D

2u)τj ), theFréchet formulaare
(as in Section 2,d

dτi
= τi · ∇, so that two derivatives do not necessarily commute anddτi

dτi
can be different from 0):

dτd

dτi
= dn

dτi
= λi

|∇u|τi =Kiτi (without summation oni = 1,2, . . . , d − 1),

dτd

dτd
= dn

dn
=

d−1∑
i=1

Didu

|∇u| τi,

and assuming from now on thatKj 
=Ki (1 � i 
= j � d − 1),

dτi

dτd
= dτi

dn
=

d∑
j=1
j 
=i

aij τj whereaij = 2µiµj|∇u| −D3
dij u

|∇u|(Kj −Ki)
, aid = − µi

|∇u| ,

dτi

dτj
=

d∑
k=1
k 
=i

aijkτk aijk = Kj(µiδkj +µkδij )−Dijku

|∇u|(Kk −Ki)
, aijd = −Kjδij

for 1� k 
= i � d − 1.

As in Section 2, we denote byxt ∈ $t a point which realizes the maximum of|∇u|2
on$t and assume thatt �→ xt is an analytic curve. By definition ofxt , d

dτi
(|∇u|2)(xt )=

0 (i = 1,2, . . . , d − 1), thus proving thatµi |x=xt = 0. Because|∇u|2 restricted to$t has
a critical point atx = xt , we may also define its Hessian as

d

dτi

(
d

dτj

(|∇u|2))= d

dτj

(
d

dτi

(|∇u|2))=:H(τi, τj )� 0,

with

H = (D2(|∇u|2))
>

− 2(Dddu)
(
D2u

)
>

and(
D2(|∇u|2))

>
= 2

((
D2u

)
>

)2 + 2|∇u|(Dd ··u)>.

In the following, we shall assume for simplicity thatH is actually negative definite. Let
us computed

dt
(
∑d−1

i=1 Ki).
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(1) With notations similar to the ones of the 2-dimensional case, we have

1

δt

(
xt+δt − xt

)= ( 1

|∇u| + bδt

)
n+ (%h+ %Bδt)+ O

(
(δt)2

)

where%h= (h1, h2, . . . , hd−1), %B ∈>(xt ). With %δ = xt+δt − xt ,

δt = u
(
xt+δt

)− u
(
xt
)= %δ · ∇u+ 1

2

(%δ · (D2u
)%δ)+ o

(|%δ|2)
= δt +

(
b|∇u| + 1

2

(%h · (D2u
)%h)+ 1

2

Dddu

|∇u|2
)
(δt)2 + o

(
(δt)2

)
,

and b= −1

2

(%h · (D2u
)
>
%h)− 1

2

Dddu

|∇u|3 .

(2) Using the Taylor expansion of|∇u(xt+δt )|2 − |∇u(xt )|2 and maximizing it
with respect to%h, we get %h = − 1

|∇u|(H
(−1) ◦ P>)(Dd ·(|∇u|2)). SinceDdj(|∇u|2) =

2|∇u|Dddju, we have

%h= −2
(
H(−1) ◦ P>)(Ddd ·u).

(3) We compute
∑d−1

i=1 K̇i :

d−1∑
i=1

K̇i = d

dt

(
d−1∑
i=1

Ki

(
xt
))= 1

|∇u|
d

dn

(
d−1∑
i=1

Ki

)
+ %h · ∇>

(
d−1∑
i=1

Ki

)
.

Using the Fréchet formulas, we get, atx = xt ,

dKi

dn
= 1

|∇u| (Ddiiu−DdduKi) and
dKi

dτj
= 1

|∇u|Diiju.

(4) On one hand, let us remark that becauseH < 0, for eachi = 1, . . . , d − 1:

0�Hii = 2|∇u|(Ddiiu+ |∇u|K2
i −DdduKi

)
,

so that 1
|∇u|

dKi

dn
� − K2

i

|∇u| .
(5) On the other hand, deriving Eq. (A.1) with respect toτj , we obtainαDddju +

β
∑

i Diij u= 0, and consequentlyd
dτj
(
∑d−1

i=1 Ki)= − α
β

Dddj u

|∇u| and

%h · ∇>

(
d−1∑
i=1

Ki

)
= 2

α

β

[
P>(Ddd ·u)

]
H(−1)[P>(Ddd ·u)

]
� 0

becauseH < 0. Therefore

d

dt

(
d−1∑
i=1

Ki

)
� − 1

|∇u|
d−1∑
i=1

K2
i .
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In view of the free boundary problem, we may simply quote that if the domain�⊂ R
d

is convex, the mean curvature
∑d−1

i=1 Ki of the free boundary at the limit of the points that
maximize the gradient, is positive. Concerning the estimates on the gradient, Theorem 2
could be generalized to any dimension, thus providing an estimate taking the geometry
of the domain into account. However a rigourous justification of these estimates would
involve a tedious discussion of the various special cases (that we discarded above by
taking appropriate assumptions), similar for the methods to the 2-dimensional case, but
much longer. This is why we left it here at a formal level.

A.3. Results on analytic sets

We will first state some general results on analytic sets and then prove Lemma 5 and
Lemma 7.

From [9] (Chapter 8: Etude locale des fonctions et des ensembles analytiques;
Propositions 4.2.5, 7.2, 7.7 and Theorem 1.2.2) we deduce the

THEOREM 4. – ForN � 1, letU be an open set ofR2 andFi(x1, x2), i = 1,2, . . . ,N ,
be real analytic functions of(x1, x2) ∈ U . We assume thatF1 
≡ 0 and Fi(0) = 0,
i = 1,2, . . . ,N . Then there exists positive real numberr and an integerk such that

(
N⋂
i=1

{Fi = 0}
)

∩Br(0)= {0} ∪
(

k⋃
j=1

γj

)

for a disjoint union of analytic open curvess �→ γj (s), s ∈ (0,1), with

{
lim
s→0

γj(s)= 0,

lim
s→1

γj(s)= xj ∈ ∂Br(0).

Moreover the same property is true for every ballBr ′(0) with r ′ < r .

This result gives a precise description of the structure of analytic sets. In our proof
of Theorem 2, we are interested in the following special situation. LetF1 
≡ 0 be an
analytic function withF1(0)= 0. Theorem 4 forN = 1 gives the existence of an open
curveγ ⊂ {F1 = 0} with lims→0γ (s)= 0. LetF0 be a second analytic function such that
F0(0)= 0 and∇F0(0) 
= 0. What can be said ond

ds
(F0 ◦γ )? The answer to this question

is given by the

COROLLARY 1. – Consider a real analytic functionF0 of the variables(x1, x2) ∈ U ,
whereU is an open set inR2, such thatF0(0)= 0 and∇F0(0) 
= 0. If γ : (0,1)→ U is
an analytic curve such thatlims→0γ (s)= 0 andγ ⊂ {F1 = 0}, where the functionF1 is
analytic withF1 
≡ 0, then for anε > 0 small enough, on the interval(0, ε),

(i) either d
ds
(F0 ◦ γ )≡ 0,

(ii) or ± d
ds
(F0 ◦ γ ) > 0.

The proof of this corollary takes advantage of the following classical result.
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PROPOSITION 4. – Let g and h be two analytic functions defined on the interval
(−1,1). If 0 is an accumulation point of the set{s ∈ (−1,1): f (s)= g(s)}, thenf ≡ g

on (−1,1).

Proof of Corollary 1. –Consider an analytic functionF1 defined onU such that
γ ⊂ {F1 = 0}. Let l be the smallest integer such thatγ ⊂ ⋂l

j=0{DjF1 = 0} and
γ 
⊂ {Dl+1F1 = 0}, whereDjF1 denotes the set of all partial derivatives of total order
j : {∂ j11 ∂

j2
2 F1}j1+j2=j . We know thatF1 
≡ 0, so l is finite and there existsj1, j2 � 0,

j1 + j2 = l such that forF̃1 = ∂
j1
1 ∂

j2
2 F1 we have

F̃1 ◦ γ ≡ 0 and (∇F̃1) ◦ γ 
≡ 0. (A.2)

Let τ be the unit vector field tangent to level lines ofF0 (i.e. such that∂τF0 = 0).
Case1: τ · ∇F̃1(0) 
= 0: the curveγ is analytic in a neighbourhood of 0 and up to

s = 0. In particular we can chose the curvilinear abscissas as a parametrization up to
s = 0 and

d

ds
(F0 ◦ γ )= dγ

ds
· ∇F0 = −|∇F0|

(
dγ

ds

)⊥
· τ

becauseτ = − (∇F0)
⊥

|∇F0| . We know that( dγ
ds
)⊥ is colinear to∇F̃1, and consequently

d

ds
(F0 ◦ γ )= ±|∇F0|

|∇F̃1|
(τ · ∇F̃1), (A.3)

so we deduce that± d
ds
(F0 ◦ γ ) > 0 in a neighbourhood of 0.

Case2: τ · ∇F̃1(0) = 0: if τ · ∇F̃1 ≡ 0 onU , then obviously(τ · ∇F̃1) ◦ γ ≡ 0 and
d
ds
(F0 ◦ γ )≡ 0. If τ · ∇F̃1 
≡ 0 on U, then from Theorem 4 we have

({F̃1 = 0} ∩ {τ · ∇F̃1 = 0})∩Br(0)= {0} ∪
(

k⋃
j=1

γj

)

for somer > 0 small enough. In that case, either for anyj , γj 
= γ and then±(τ ·
∇F̃1)|γ > 0: as in Case 1, Eq. (A.3), we get± d

ds
(F0 ◦ γ ) > 0 in a neighbourhood of 0,

or the exists somej such thatγj = γ . In that case,τ · ∇F̃1 ◦ γ ≡ 0 on a neighborhood
of 0. From (A.2) we know that(∇F̃1 ◦γ )(s) 
= 0 except maybe in a decreasing sequence
of points(sn)n∈N ∈ (0,1)N. Because the map(0,1) # s �→ (∇F̃1 ◦ γ )(s) is analytic, the
only possible accumulation point of the sequence(sn)n∈N is 0 according to Proposition 4.
Away from these pointssn, we can apply the implicit function theorem which proves that
F0 ◦ γ = const= Cn on (sn+1, sn). By continuity atsn, we getCn = Cn+1 = F0(0)= 0
and consequentlyγ ⊂ {F0 = 0}, d

ds
(F0 ◦ γ )≡ 0 on (0, ε) for ε > 0 small enough. ✷

We are now going to prove Lemma 5 and Lemma 7 which are used in the proof of
Theorem 2.

Proof of Lemma 5. –The mapt �→m(t) is continuous on[0, u0]. For every 0< ε′ < ε

we haveωε ⊂ ωε′ . Let Fωε = {F = 0} ∩ ωε. ThenFωε is a compact set included in
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{|∇u|> 0}. At every pointx0 ∈ Fωε , the set{F = 0} has the property given in Theorem 4:

for anyx0 ∈ Fωε there exists anrx0 > 0, and a finite set of curves(γ x0
j )

kx0
j=1 such that

{F = 0} ∩Brx0(x0)= {x0} ∪
( kx0⋃
j=1

γ
x0
j

)
.

BecauseFωε is compact, it can be covered by a finite number,N , of balls

Fωε ⊂
N⋃
i=1

Bri (xi)= ω,

where ri = rxi
2 . The result of Lemma 5 is then a straightforward consequence of

Corollary 1. ✷
Proof of Lemma 7. –To prove (3.6), we now consider a pointx0 ∈ Xt∗

k such that
K(x0)= inf

y∈Xt∗
k
K(y). We will prove that

lim sup
δ→0+

K(t∗k + δ)�K(x0). (A.4)

To this end, let us consider a smooth curveγ0 defined fort ∈ (t∗k − η, t∗k + η) for some
smallη > 0, such thatγ0(t

∗
k )= x0 andu(γ0(t))= t . Then by definition ofm(t), we have

1

δ

(
m(t∗k + δ)−m(t∗k )

)
� 1

δ

(∣∣∇u(γ0(t
∗
k + δ)

)∣∣− ∣∣∇u(γ0(t
∗
k )
)∣∣) for δ � 0. (A.5)

Because of Assumption (A2), equationF(Dnnu,Dττu,Dnτu, |∇u|, u)= 0 can now be
rewritten locally nearx0 as

Dnnu=H(Dττu,Dnτu, |∇u|, u)
whereH is analytic in all the variables and (locally) decreasing inDττu. With the
notationm0(t)= |∇u(γ0(t))|,

lim
δ→0+

1

δ

(∣∣∇u(γ0(t
∗
k + δ)

)∣∣− ∣∣∇u(γ0(t
∗
k )
)∣∣)

= lim
δ→0+

1

δ

t∗
k
+δ∫

t∗
k

1

m0
H
(
m0K

(
γ0(t)

)
,Dnτu

(
γ0(t)

)
,m0, t

)
dt

= 1

m
H
(
mK(x0),0,m, t

∗
k

)
for m=m(t∗k ),

by continuity of all the quantities on the smooth curveγ0. Let us recall thatm(t) =
supγ∈Gk |∇u(γ (t))| for t ∈ (t∗k , t∗k+1). Because we restrict our study the caset > t∗k , close
to t∗k , we only need to consider

F∗
k := {γ ∈Fk:

∣∣∇u(γ (t∗k ))∣∣=m(t∗k )
}
.
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Then locally fort > t∗k , we havem(t)= supγ∈G∗
k
|∇u(γ (t))| and for each curveγ ∈ F∗

k

we get similarly:

lim
δ→0+

1

δ

(∣∣∇u(γ (t∗k + δ)
)∣∣− ∣∣∇u(γ (t∗k ))∣∣)= 1

m
H
(
mK

(
γ (t∗k )

)
,0,m, t

)
for m=m(t∗k ). Because

1

δ

(
m(t∗k + δ)−m(t∗k )

)= sup
γ∈G∗

k

1

δ

(∣∣∇(γ (t∗k + δ)
)∣∣− ∣∣∇u(γ (t∗k ))∣∣)

and becauseG∗
k is finite, we have: limδ supG∗

k
= supG∗

k
limδ, which implies

lim
δ→0+

1

δ

(
m(t∗k + δ)−m(t∗k )

)
= 1

m
H
(
m, inf

γ∈G∗
k

K
(
γ (t∗k )

)
,0,m, t∗k

)
for m=m(t∗k ).

From (A.5) we deduce

H
(
m inf

γ∈G∗
k

K
(
γ (t∗k + δ)

)
,0,m, t∗k

)
�H

(
mK(x0),0,m, t

∗
k

)
,

which gives infγ∈G∗
k
K(γ (t∗k ))�K(x0). To conclude, we remark that

lim sup
δ→0+

K(t∗k + δ)= lim sup
t→(t∗

k
)+

(
inf

γ∈G∗
k
,|∇u(γ (t))|=m(t)

K
(
γ (t)

))
� lim

t→(t∗
k
)+
(

inf
γ∈G∗

k

K
(
γ (t)

))
= inf

γ∈G∗
k

(
lim

t→(t∗
k
)+
K
(
γ (t)

))
= inf

γ∈G∗
k

K
(
γ (t∗k )

)
�K(x0),

which is nothing else than (A.4). Similarly we get lim infδ→0+ K(t∗k − δ)�K(x0), which
with (A.4) implies (3.6). This ends the proof of Lemma 7.✷
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