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ABSTRACT. — We prove the convexity of the set which is delimited by the free boundary
corresponding to a quasi-linear elliptic equation in a 2-dimensional convex domain. The methoc
relies on the study of the curvature of the level lines at the points which realize the maximum of
the normal derivative at a given level, for analytic solutions of fully nonlinear elliptic equations.
The method also provides an estimate of the gradient in terms of the minimum of the (signed
curvature of the boundary of the domain, which is not necessarily assumed to be convex.
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1. Introduction and main results

Consider a solution of the following free boundary problem

div(a(|Vul®)Vu) = f(u) inQ\ A, (1.2
O=ulpp <u <ulyg=ug iNQ\ A, 1.2)
0,u=0 O0noA, (1.3)

whereug is a given nonnegative constamt,is a closed subset of a bounded dom@in
in R? and d,u is the normal (tadA) outgoing derivative of.. This problem arises for
instance from an obstacle problem (see for instance [24]).

THEOREM 1. — Assume that(0), f(0) > 0 and thatg — a(g), u +— f(u) are
increasing functions of clas€! and C° respectively. If2 C R? is convex and ifi is
a solution of(1.1)—(1.3) then A is also convex.

This theorem has been proved in the special case whered /' are constants by
Friedman and Phillips [13] in two dimensions, and then extended to any dimension by
Kawohl [19]. Similar results were also proved (in any dimensions)afes 1, f =0
anda,u = const= A > 0 in place ofd,u = 0 by Caffarelli and Spruck [7]. The exterior
problem inQ = R?\ O with O convex and: = 1 has been studied far> 0 by Kawohl
[22] and Hamilton [14], and fok = 0 by Kawohl [21]. Let us also mention two related
results on convex rings [7,8] and, for general questions on the convexity of the level sets
[20]. We can also quote a recent paper by Caffarelli and Salazar [6] for the equatior
Au + cu = 0 and results by Henrot and Shahgholian [15-17] (which rely on a lower
bound on the gradient), but for which the extension to general quasilinear operator:
has not yet be done. Concerning estimates on the curvature and the use of the Fréct
formula, one may refer to [25] (in the case of the Laplace operator). The results of this
article were announced in [10].

We will prove Theorem 1 in a much more general framework, except that we will deal
only with analytic solutions for reasons that will be made clear later. We will assume

duu=A(K)>0 O0naA, (1.4)

where is a function of the curvatur& of d A. Here we denote by andt the normal
and tangent unit vectors to a level set, so {hah) is a direct orthonormal basis ®?,
andn = i, if Vu # 0. In this case, the curvature is defined Ky= =i, We shall
consider the analytic solutions of the fully nonlinear elliptic equation

F(Dyyut, Dect, Dyeut, [Vul,u) =0 inQ\ A, (1.5)

where F is an analytic function. The vectorsand r are well defined ifVu # 0. For
the equation to make sense in case of a patch of zero gradient, we therefore require tl
following conditions.

(AO) Compatibility conditionwe assume the existence of a functiBrsuch that

F(a,b,c,0,u)=F(a+b,ab— ?, u) Va,b,c,u.
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(A1) Nonzero gradient condition
Vt € (0,up], IxeQ\A, ulkx)=t, Vu(x)z#0.
Letus definex = (F)}, . B=(F)p_.o ¥ =(F)p, us
a(x) = aihnel‘Ra(a, b,0, |Vu(x)|,u(x)) and B(x) :a??;‘Rﬁ(a, b,0, |Vu(x)|, u(x)).
(A2) Ellipticity conditions:

. _ . — . 2
infe >0, infp>0, |Qf(4oz,3—y)>0,

whereX is the set of the points which realize the maximum of the gradient on
their level line:

X={xeQ\ A |Vukx)|= yrgga\)li IVu(y)|}.

u(y)=u(x)

(A3) Condition on the free boundary: we assume that is analytic and that the
map K — A(K) is analytic nonincreasing. Moreoveri{K) =0 ondA, then
we assume thaf (0,0, 0,0,0) < 0 and that the vector field = lgzl and the
curvaturek are continuous up toA.
These assumptions cover the case of Eq. (1.1) but also of quasilinear elliptic equation
like the mean curvature equation

v ) = (. 1V
——— | = f(u,|Vu
V14| Vul|?
as well as fully nonlinear equations like the Monge—Ampére equation
det(D%u) = f(u, |Vu|) > 0.
From now on, we assume thatis an analytic solution of Eq. (1.5) a2 \ A (with
eventuallyA = 7).

Notations — We shall noteB, (x) the ball of centex and radius- > 0. For simplicity,
we will use the same notation for a curve and its image.= 0} is the set{x €
Q\ A: F(x) =0}, 0,u = o - Vu the derivative ofu along the unit vecto and
D,,u := (0, D?uc). Since the tangent and normal unit vectoerand v depend on,
9. (3:u) # D..u in general, and one has to use #réchet formula

o.n=Kr, 0.7 =—Kn, (1.6)
an = pt, 0,T = —pn, 2.7)

wherek = ﬁD”u is the curvature of the level line and= ﬁDmu.
Forr > 0, let
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M={xeQ ux)=t}, m@) = m?>4Vu(y) ,
yer!
and X'={xeT": |Vu)|=m@)}.

With a straightforward abuse of notations, we define

K@) = inf 2% )
'_yeX’ |Vu| Y

The following result is the core of our method.

THEOREM 2. — Under AssumptionfA0)—(A1)—-(A2), consider an analytic solution
u of Eg. (1.5). With the above notations; is continuous and differentiable outside a
countable closed set ifD, 1) such that

d
j-“(md_’:l,m[(,o,m,t> =0 forr e (0,up) ae, (1.8)
dK K?
@2 (1.9)
dt m

where the inequality has to be understood in the sense of distributions.

Remark 1. — The method used in the proof of Theorem 2 has the following features.
() In higher dimensions, we can formally get a similar system for the mean curva-

ture of the level sets and the maximal value of the gradient (see Appendix A.2).

(ii) In the case of a radially symmetric solution (whenis a ball), inequality (1.9)
becomes an equality (see Appendix A.1). The result of Theorem 2 can therefore
be compared with results based on rearrangement techniques, like the one
obtained by G. Talenti in another context [30].

(ii) In the nonradial case, we prove a refined version of (1.9):

dK K? 1 D,
B 22l ) o (22) o)
dt m m o o X!

|Vul
As a consequence of Theorem 2, we will prove our main result.

THEOREM 3. — Under Assumption§A0)—(A3), if u is an analytic(up to the fixed
boundaryd ) solution to the free boundary proble(t.2)—(1.4) (1.5) (ncluding the
caseA = ), thenu has the following properties

(i) There exists a constai which only depends off, |A(K)|.=@a), 4o and the
minimum of the signed curvature &2 such that]| Vu || @\ a) < M.

(i) The minimum of the signed curvatureat is bigger than the minimum of the

signed curvature od<2:

infK > infK.
dA Q

As a consequence,Sif is convex, each connected componem @ also convex.
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Remark?2. — In Theorem 3, we get a global bound from below on the curvature of the
free boundary. Note thatin [29] D.G. Schaeffer proves (using a quasiconformal mapping
that for an obstacle problem of the type: = f, there exists a local bound from below
on the curvature of the free boundary.

Also notice that theL*°(2 \ A) bound is true for dimensions higher than 2 (see
Remark 1 and Appendix A.2).

The rest of this paper is organized as follows. We will show in Section 2 that
Theorem 1 is a consequence of Theorem 3. In Section 3, we prove Theorem 2 in a speci
case corresponding to the central idea of our approach, and then in full generality usin
a detailed analysis of the analytic structure of appropriate sets. With additional estimate
near the free boundary, we obtain Theorem 3 in Section 4. The appendix is devoted t
the much simpler setting of the radial case, the formal extension of our estimates tc
dimensions higher than 2 and technical results on analytic sets.

2. Proof of Theorem 1

We will start with perturbations of the level of the free boundary and considerations on
its regularity. The method essentially goes as in [2], so we shall simply give a sketch of
the proofs. Then we will prove that Theorem 1 is a consequence of Theorem 3. Before
simply notice that Egs. (1.1)—(1.3) are such that Assumptions (A0)—(A3) are satisfied.

2.1. A perturbation of the original problem (1.1)—«1.3)

Consider

I =ulsn <u <ulso=uo, (2.1)
d,u=0 O0noA,

wherea and f satisfy the assumptions of Theorem 1, and assume moreovexhaid
a, [ are analytic.

We shall say that (2.1) hamalytic solutionsf 9 A is analytic (see for instance [5]).
Throughout this section, to emphasize the role of the leyale will denote byu' the
corresponding solution and use the notatidninstead ofA.

Let us start with a perturbation result.

{div(a(|Vu|2)Vu) = f(u) inQ\A,

PROPOSITION 1. — If u’ is an analytic solution to the free boundary problé¢al)
for t =19 < ug, then there exists am > 0 such that(2.1) has analytic solutions for every
t € (to — n, to + n). Moreover the mapr— d A’ is continuouganda A’ is analytig.

Sketch of the proof of Proposition 1 From the assumption of Proposition 1, it follows
that the boundarie§Q2 and d A’ are of classC*. We can then apply Nash—Moser’s
inverse function Theorem as in [2] to prove that (2.1) has a solutiofor ¢ in a
neighbourhood ofy with a smooth free boundar§A’ € C*. We conclude with the
help of the following result on the regularity of the free boundary, due to Kinderlehrer
and Nirenberg [23]:
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LEMMA 1.— Under the previous assumptions on the analytic prob{@rh), if the
free boundaryd A’ is C* and ' is C? up to the free boundary, then the free boundary
A’ is analytic.

Actually the perturbation result also holds in a neighborhood,of

PROPOSITION 2. — There exists am > 0, such that for every in (ug — 7, ugl, the
free boundary problen(2.1) has an analytic solution. Moreover the map> dA’ is
continuougandd A’ is analytig.

Sketch of the proof of Proposition 2Fer ¢ = uo, the functionu’ = u is a solution
with A’ = Q. This problem is then degeneraterig uo. Nevertheless, as in [2], we can
apply a Nash—Moser approach in this degenerate case, which proves Proposition 2.

2.2. Proof of Theorem 1

The main advantage of the obstacle problem (1.1)—(1.3) compared to the more
general free boundary problem (1.4) is that it is known that there exists a unique weal
solution (see [28,12]), and that this solution is bounded#Wh> (see [12,11,3,1]).

As a consequence of the uniqueness, the mapu’ € W2? is continuous for every
p € (1,4+00). Moreover, from the nondegeneracy lemma (see Caffarelli [4], and for
instance [26]), we have the

LEMMA 2.— Consider a solution of problerfl.1)—(1.3) Under the assumptions of
Theorem, for everyrg € [0, uo],

lim A= A" 2.2)
te[O,L?o]
and |dA™|=0. (2.3)

Let us prove that* defined by
t* =inf{1y € (0, up): Vt € [1o, uo), (1.1)—(1.3) has an analytic solutian}

is actually 0. Because of Propositionr1,s the infimum of a nonempty set. Assume by
contradiction that* > 0. From Theorem 3, we deduce that,infK > infyq K > 0 for
t € (t*, up) and thenA’ is convex: by continuity (Lemma 2, (2.2))'" is also convex.

(1) Case IntA”) =@: |A"| =|dA" | =0 from Lemma 2, (2.3). In this case there is
no free boundary, i.e. the solutior satisfies the Euler—Lagrange equation (1.1) of the
energy

Ew) =SZ<%A(|VM|2) + G(u)) dx

without constraints, wherd’ = a, G’ = f. The uniqueness of the weak solution to the
free boundary problem consequently implies thfat= u, and because we assumed that
ming u = 0, we getr* = 0, a contradiction.

(2) Case IntA"") # @: we use the following result, due to Caffarelli [4].
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LEMMA 3. —Under the previous assumptions on the obstacle prolflet)—(1.3) if
the coincidence sek’ is convex and if INtA’) # @, thend A’ is C* and u’ is C? up to
the free boundarg A’.

Lemma 1 therefore implies that the free boundary is analytic. Finallis an analytic
solution, and Proposition 1 gives a contradition with the definitiort of

This proves Theorem 1 in the context of analytic solutions. Now because the solutior
is the limit of an approximating sequence of analytic solutions of a regularized problem,
the result holds as well i and f are only of clas<! and C° respectively. This ends
the proof of Theorem 1.

Remark4. — This last argument of approximation applies when existence and
uniqueness results can be proved, which is true for the obstacle problem of Theorem
but is not known for more general problems (1.2)—(1.4), (1.5).

Also notice that the convexity of the free boundary holds for any solution which can
be seen as the limit of analytic solutions of aproximating problems. This is a method to
get an existence result of solutions with convex free boundaries (see for instance [25] i
the case of the Laplace operator).

3. Proof of Theorem 2

First we shall assume that locallyinX’ (which is the set of the points of the level line
I'" of u which realize the maximum diVu|) is supported in an analytic curve— x’
such thatr = u(x"). The justification of such an assumption will be given in the next
subsection.

3.1. Proof of Theorem 2in a particular case
Let x’ be a point where the maximum of the gradient is reached on a levdlline
F (1) := 8. (31 Vul?) L =0,
G (1) := 92(5IVul?) = <O.

According to the definition of the normal and tangent unit vectoend z, we get, at
x =x!,

F(t)=|Vu|Dyeu and G (1) = (3;|Vul) Dyett 4 | Vuu| 3 (D).

With the definitionm (z) := |Vu(x")| > 0 by (Al), this can be rewritten as

{ E(t) = Dyeu(x') =0,
60) = mar (Dnru)|x=x’ < 0

Equation form: deriving the identityu (x") = ¢ with respect ta, which can certainly
be done at least if— x' is an analytic curve, we get

dx’_l

n.— =—,
dt m



910 J. DOLBEAULT, R. MONNEAU / Ann. I. H. Poincaré — AN 19 (2002) 903-926

so thatm2 = £ (1|Vu(x")|?) = Vu(x') - D%u - = = D,,u(x"). Using the curvature
K = ?v’fffv we may writeD,.u =m K, and Eq. (1 5) at = x' gives Eq. (1.8).

Inequation forK: we compute”;—’f = %anK + ho. K, whereh =t - %_ To get an
expression oh, we deriveg with respect ta:

0= jt( (r)) 1an(Dmu>+haf(Dmu>.

Because of the Fréchet formula (1.6) and (1.7), and using the fadbthatx’) =0, we
have

9 K =9, (Test) = ﬁDmu
[ i) 2
8nl< = an(?vfzj ) = |Vu| 8 (Dnru) ([I)Vul| ) )

an(Dnru) = Dnnru-
To evaluateD,,,.u, we derive Eq. (1.5) with respect to

aDyyut + BDrrrtt +y 0. (Dypeut) = 0.

If G # 0, putting these expressions all together, we get

dK K2+y<a,1(>+,3 (8K)21+6
. = T - —m T = R
dt m a\ m o G md

and an optimization o < 0 gives

dK K2 1
_g___—<2,/§ IJ/|>|a K|. 3.1)
dt m m o o

If G =0, then itis easy to see thatK =0 and”il—’t< = —%2. In any case, (3.1) is true,
which proves inequality (1.9).

3.2. Proof of Theorem 2in the general case

We will introduce analytic functions relevant to our problem and then give the proof
of Theorem 2 in this framework. Here is the technical part of the proof, for which we
shall distinguish two cases.

Let us recall that a point’ belongs toX’ if and only if u(x") =t and |Vu(x")| =
MaXyeq: u(y=r} | Vu(y)|. This implies that

d
E(|Vu|2/2)|x:xt =0. (3.2)

Now let us define 0| Vu| > 0} the analytic function:

d
F(x)= E(wz/z)u
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(with the notations of Section 3.F,(r) = F(x") =0). LetX = U, (0. X'- From (3.2),
we know thatX c {F = 0} is an analytic set, if we defingnalytic setsas sets where
analytic functions vanish.

CaseA: F = 0: this is the simplest case (see Appendix A.1 for details).

LEMMA 4. - If F =0, thenQ is a disk andu is radially symmetric.

Proof. —If F =0, then|Vu| = const=m(¢) on each level lind"’ = {u =r}. Lety be
a smooth curve such thaty (r)) = ¢. Because her& = Q \ A, any such curve can be
seen as a curve— x’ used in the previous subsection. As a consequence we have

d
f(m—m,mK,O,m,t> =0
dt

whereK = K (y (t)). From Assumption (A2), we deduce th&it= K () onT"'. Because
Q is bounded, the level lines afare circles.

Moreoverd,n = m1D,,ut = 0. This implies that ifx; € 92 and Yy, IS the integral
curve of the vector field such thau(y,, (¢)) =t andy,, (o) = x1, then %n(yxl(t)) =0:

Yo () =x1+ (t —ugn(x1) and u(y, @) =t.

Because this is true for every poing in the circle 92, we see that the circleB’
have the same centap. In particular the solution is radial on the annulf2s\ A =

B1/k o) (x0) \ Byk©(x0). O
CaseB: F = 0: we begin with a statement that will be proved in Appendix A.3.

LEMMA 5. — For everye > 0, for m(1) = sup,_,, |Vul, letw, be defined by
we={x€Q e <u(x) <ug—e, |Vux)| >em(u(x))}.

Then there exists an open getvhich is a finite union of balls such that

N
{F=0Nw; Cw:=|]JB,(x;) C{|Vu| >0}.
i=1

Moreover the sef,, := {F = 0} N w has the following property

ki
Vie[lLN], 3keN, F,NB, (x)={x}U ( U y;'>, (3.3
j=1

where y} are analytic open curves with; as origin such that in a neighborhood
of a singular pointx;, either %(u ) y}) = 0 or (up to change the parametrizatipn
%(u oy;) > 0. Heres is the curvilinear coordinate.

As a consequence of the lemma we get that foramsy0 small enoughX N{e < u <
up — €} is contained inF,, which has an analytic structure given by (3.3).
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We are now going to prove that (1.8) and (1.9), which have been established in the
case of an analytic curve, are also valid in the general framework.

Let us assume that > 0 is fixed in all what follows. Denote by the generic
curve defined in Lemma 5 and It} be the set of points on the curvessuch that
L(uoy)#0ands(uoy)l, - = 0. Because the curves and the functior: are
analytic, we deduce that there are only a finite numieof such pointsx;. Let G and
Go be the sets of curves such that% (u o y) > 0 andu(y) = const respectively. Then

{F=0lNw=GUGoU {xi}ici<n U {x hici<n'

We can rewrite the discret sei(x;) }1<i<n U{u(x) }1ci<n U{u(y)}, eg, @s anincreasing
finite sequence of critical values;, € (¢,upo —¢), k =1,2,..., M. Let G, be the set of
curvesy € G which range ity <u <t ,}. Thenon(z/, tf, ,) we have:

m(t) = sup|Vu(y(1))|.

yeGx

Because each map— |Vu(y(¢))| is analytic, we deduce from Proposition 4 that
this supremum is analytic except maybe on a discre{zget + with pi, pi €

I’k_ <n<py

ZU {—o0} U {+00}, which has no accumulation point (¢, #, ;). Only ¢/ andz/, , are
possible accumulation points. In particular there exigtse G, such that

m(t) = |[Vu(y,, )] on e, tkns1)-

Then the proof of Theorem 2, given above in the special case wtieiesupported in
an analytic curve — x' =y, (1), applies and gives the equations written in Theorem 2
for

K(t) = K (yy,(®) 0N (t s e ns1)-

Although the map — m(¢) is continuous, the map— K (¢) can be discontinuous in
fx.n- In Other words we can havi (y;,,_, (t.»)) # K (v4, (tk.»)). Nevertheless we have
the

LEMMA 6. — With the above notations,

K(Vtk,,, (tk,n)) g K(ytk_,l_l(tk,n)) .

We can therefore defing (# ) := K (v;,, (t.,)) and then (1.10) is true in the sense of
distribution on(# ,,—1, t n+1):

2
1’(<—K——1<2 g—m>|a,1<|, (3.4)
B B

whered. K is taken ony;, , , fort <1 , andy,, fort > ,.
Proof of Lemma 6. et us recall that for each curye= y,,_, andy =y, , we have

d
f(md—’?,mK,O,m,t> -0 (3.5)
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wherem(t) = |Vu(y (t))| andK (t) = K (y (t)). Letm™* (t) = |[Vu(y,,, ()| andm~(t) =
IVu(yy, (D). Then

mE) =mt ) + 15 - (t — tr,) + 0t — tanl),

where/* = d’”d—it(’)h:,kvn. Note that because of Assumption (A2}, — [~ has the same

sign as—K (v, (te.n)) + K (vy,_, (tk.»)). Because of

+
m(t) =supim™ (t),m™ (1)) = {Z—g; 82 EZ"_?}’[%

we deduce that" >~ and thenk (y;, , (tx.,)) < K (¥4,.,_1(tx.»)) Which ends the proof of
Lemma6. O

More generally (3.5) and (3.4) are true @}, ¢/, ,) for K defined by
K@) = inf K(x").
xteX!
We now want to prove that these equations are still true in a neighborhood of a critical
valuer;. Itis clear that (3.5) is true almost everywhere(df ,, #, ), because the map

t — m(t) is continuous. We have to prove that (3.4) is trueigin,, t;, ,) in the sense of
distributions. Le € C3°(t;_4, 1, 1), ¢ > O:

41
K. p)=- [ K
iy
=8 i1
=—m{/1<¢+/1<«;’>}
17 7 +38

7= fiy1
N H o o (=8 tlj+1
- yg}){ | —ke+ [ —ko+iKell +[K¢],;+3}
o ;48

*

SRR s

)

+ (1) lim ssjp(K(t,f +8) — K@t —9))
5—

(2o

becausep () > 0 and because of the
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LEMMA 7.— With the above notations,

limsup(K (#f +8) — K (¢ — 8)) < 0. (3.6)
§—0

Lemma 7 is a kind of generalization of Lemma 6 that will be proved in Appendix A.3.
The system (3.4)—(3.5) holds @1f_,, ", ;) and then oriz +¢, t — ¢). Taking the limit
¢ — 0, we end up with the proof of Theorem 2.

4, Proof of Theorem 3

The proof of Theorem 3 relies mainly in the fact that as 0, the setX’ accumulates
in a point ofd A which realizes the minimum of the curvature of the free boundary.

ProPOSITION 3. — Under the assumptions of Theor@net x’ be a point such that

u(x')=r and |Vu(x’)]:r(n§’:1X]Vu(y)|.
u(y)=t

If x' - x%ast — 0, thenK (x') — K (x% =inf,cya K (x).
4.1. End of the proof of Theorem 3

Property (ii) of Theorem 3 follows from Theorem 2, (1.9) and Proposition 3. To prove
(), we first remark that because of Assumption (A2), we can rewrite (1.8) as

d(m?)
dt

=H(m,K,t) on(0,up),

whereH is analytic with respect tom, K, r) € [0, +00) x R x [0, ug] and decreasing
with respect taK . Because of the inequality d, it is clear thatK (r) > infyq K =: K.
Thus we get

dt
m(0) = [A(K)[L>@n).-

We can then compare with the solutiatry of

2
{ A7) rtm. Ko.t) a.e. om0, ug).

dt

2
{ M = H(WLO, Ky, l) on (0, I/lo),
m(0) = [A(K)|ro@a) + 1.

The uniqueness ohg and its local existence are clear. Using the fact that 0 on
(0, up), itis quite classical to see thatify > m on (a, b) CC (0, ug), thenmy is defined
on (a, ug) and satisfiesng > m on (a, ug). On the other hand by the continuity of

in t =0, we get thatng > m on a small interval0, ), which implies thatng > m on
[0, uo]. In conclusion, the solutiom exists on[0, ug], is unigue and is an upper bound
for m on [0, ug]. This ends the proof of Theorem 3.
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4.2. Proof of Proposition 3

First let us recall that according to Morrey [27], the solutioiis analytic up to the
free boundary) A, becausé A is analytic itself. We will now distinguish three cases.
CaseA(infyq K) > 0 and A(K) = constanton d A: according to Assumption (A3)
is assumed to be analytic nondecreasing’ inThus max, A(K) = A(infy, K) > 0 and
by continuity, Proposition 3 is true.

Case) = constant> 0 on dA: let xo € dA andy,,(t) be the integral curve of the
vector fieldn such thaty,,(0) = xo andu(y,,(t)) =t:

Yxo(1) = X0+ %n(xo) +0(t?) fort>0.

Fort > 0O close enough to O, the mag — y,, () is a diffeomorphism fronb A onto
I'" = {u =t}. Then for everyx € I'! with 7 > 0 close to 0, there exists a uniquge 9A
such thatx = y,,(¢), and|Vu(y,, ()| =1 + %D,mu(xo) + O(#?) can be inverted into

A
Dnnu(xO) = ?

(IVu(ye ()| = 1) +O().

MoreoverD,.u(yy,(t)) = O(t). Thus we get

A
F(2(Vulra®)] = ). 2K ((0). 0. 1. 1) =00).

Now for r > 0 small enough ang’ € X', letx{ € dA be defined by’ = Vi, (1)

1 1
C(Tulrg0)] = 2) = 1 SUp|Vu(rg(0) |~ 1),

XQEIA

From Assumption (A2), we can deduce that
Vxo € 0A, K (yx(0) = K (v (1)) + O().

Up to extraction of some subsequence, we can assumexghednverges to some
xy € dA ast — OF. Becausel > 0 on dA, the continuity of the curvatur& up to

the free boundand A is automatically satisfied. We then deduce by continuity that
K(xg) =infy, K, which proves Proposition 3.0

Caseir = 0o0ndA: we first remark that deriving,u (x) = 0 on 9 Awith respect to the
tangential t® A vector fieldr, we get

D,,u=0 o0noA.
As x — xg € dA, by passing to the limit in (1.5), we gét(D,,u(x0),0,0,0,0) = 0.

BecauseF(0,0,0,0,0) <0, D,,,u(xp) is the unique positive root af—~ F(s, 0,0, 0, 0).
The functionD,,,u is therefore constant ahA.
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Forx close tod A, we seth = d(x, dA) and associateg to x as follows
X = on(h) and on(h) = xo + hn(xo).

Forh small enough, the mafo, i) — y,,(h) is indeed a local diffeomorphism. In place
of n, consider the vector fieldy(x) = n(xg(x)).

h
u(yy(h)) = / D, u(xg + sng) ds
0

h
2
S
= [ d5(Dagt(50) + 5 Dyt (50) + 5 Duganst(x0) +O(5%))
0

gives
h? h® A
= EDnonou(xO) + EDnononou(XO) + O(h )

We deduce that

12
h= t1/2< 2 ) _ ! D"onono“2 + O(t3/2),
Dnonou 3 (Dnonou)

and a computation (repeated indices are summed) givesywthy, () — xo:
Vi (v ()| = |Vu(xo)|* + 2V,uDZu - y;
+ %{DijUDiku +2ViuD;jru}y;yx
+ %{GDijkuDilu + 2ViuDijiuly; iy + O(1y1%)
= (Dugno)*h® + (Diguoit) (Dugugnet)h® + O(Iy|*)

) " +0(r%).

4
= 2t (Dpgnott)* + ézs/z(Dnononom (

nOnOM

LEMMA 8. — With the above notations,
p 8 '
Dygnongtt (x0) = —Dygnott (X0) EK(XO) + o ondA wheres = F'|v,,.
Combining the above computations, we get
B b

4
(Vi (yx(h)) |2 = 2t (Dpgnott)® — 513/2 (EK(xo) + ;) (2Dne) Y2+ O(12).

We see that the gradient is maximum when the curvature is minimal, which ends the
proof of Proposition 3. O
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Proof of Lemma 8. First, let us recall the following relations:

Drnou Drnou
Opoht = - T, OpgT = — )
|Vu| [Vu|

To computeD,,,,q,u, We derive Eq. (1.5) with respect to the fielgt

O(Dmmou + IBDrrnou + yDno(Dnru) + 2-] + 1 + L= 07
where

a—B
J= Ol(D.nM)anol’l + ,B(D.ru)anor = W

(Dprtt) (Dpge ),
I = y((Dn.u)anon + (D, u)ano-c) =0,
L:}—/|Vu| no(D M)—I—f/ nolt
To evaluate these quantities, we ug« =0 ond A and the following

LEMMA 9. — With the above notations, fér=d(x, 9A) > 0 small, then
Diyou=0(h), |Vul>=Ch

for some positive constadt, andD,,,,u =00ndA.
As a consequence, @, we get
D, (Dysu)=0, J=0,  L=6D
o Dyonongth + BDrepgtt + 6 Dyt = 0.
To complete the proof, we have to compude,,,u. For that purpose, let us define the
functionv(x) = 9,,,u(x), which is analytic in a neighbourhood &\ and up tod A. It
is easy to check that,,v = D,,,,u onQ\A. Sincev = 0 and|Vv| = D,,y,,u = const> 0

ondA, the curvature 0B A > xq is given byK (xg) = |Tv°f°| wheretg = —nj. Itis also
easy to check that 0BA, Dy, v = Dyyryrt- TAUS Dyrpott = (Dpgnot) K 0N 9 A, Which

gives the expected equality and ends the proof of Lemma8.

nonoU

nono

Proof of Lemma 9. Periving D,,u = constant ond A with respect tor, we get:
D,,,u=00n0dA. Letus remark that

nnou

rnu()/xo(h))) rnono (Drnou) |v |

d
dh an (P
and that|Vu(y,,(h)| > Ch becauseD,,,u = constant- 0 on 9 A. Using the regularity

of D3u, we deduce thatD,,,u = o(h) for h > 0 small, which ends the proof of
Lemma9. O
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Appendix A

This last section is devoted to results and extensions that have been omitted i
Sections 1-4 to simplify the reading. First, we establish the expression of (1.8) and (1.9
in the case of a ball, which is actually much easier than the general case. The interestir
point is that the inequation for the curvatuke becomes an equality. Then we give at
a formal level the extension of the system (1.8)—(1.9) to dimensions higher than 2. The
estimate for the gradient is unchanged but the one on the curvature is replaced by ¢
estimate on the arithmetic mean curvature, which is not sufficient to prove a convexity
result for the free boundary. A rigourous justification of the computations would not be
much more difficult than in dimension 2 but is for sure extremely tedious, so we leave it
at a formal level. The last part of this appendix is devoted to results on analytic sets tha
we use in the proof of Theorem 2.

A.1. Theradial case

This method is easy to understand in the radially symmetric case. Assume tha
Q = B(0, Rp) and consider a radial solution of Eq. (1.5). We define for aay(0, uo)
the functionsk (¢) andm(t) by

1 1
tzu(—) and m(t):u’(—).
K(t) K(1)

A derivation with respect togivesK = —%2 andm = % Here( ) and( )’ respectively
denote the derivatives with respect #aand r. Eq. (1.5) is equivalent to (1.8). An
integration from 0 tasp with the initial valuesn(0) = A(K (0)) and K (ug) = Rio gives

the result of Theorem 3. A variant of this approach consists simply to get an upper boun
by considering

1
M (uo, Ko) = max mo(s) =m(t) Vte€[0,uo], Ko=— >0,
s€[0,uo] Ro

wheret — mq(¢) is the solution toF (mgnig, mgKg, 0, mg, t) = 0 with initial datum
mo(0) = A(Kp) + 1.

A.2. Higher dimensions

In this subsection, we formally extend our approach to dimensions3. The main
difference is that the curvature has to be replaced by the arithmetic mean curvature. W
will justify the derivation of this system only at a formal level by considering the generic
case.

To simplify the presentation we consider a solutioaf

d-1
]—'(Dddu,ZD,-iu,IVul,u> =0 (A.1)

i=1
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where D;; is defined as follows. Consider the level §ét_ {x € Q: ux) =t} C R4
and (whenVu(x) # 0) the unit normal vecton(x) = Vi |(x) which is orthogonal
to the hyperplandl = I1(x) tangent toI'* at x. Fori =1,2,...,d — 1, we may
diagonalize(D%u);; = Pr(D?u) Py where Py is the projection onl'[ and definer;
(i=12...,d—1) as the corresponding eigenvectors such thatr,, ..., 7y_1, Tg =
n) forms an orthonormal basis iR (the derivative along the normal to the level
hypersurface, i.e. along the directian corresponds to the index). The numbers
X = (1;, (D?u)pt;) are the eigenvalues 0D%u); and we define the off-diagonal terms
= (g, (D?u)T;) = (v;, (D?u)7y) fori =1,2,...,d, and the curvaturex; = |éu|
i=212,...,d— l) With the notationD;;u = (t;, (Dzu)rj) the Fréchet formulaare
(asin Sectlon 2— =1; - V, so that two derivatives do not necessarily commute?nd
can be dlfferent from 0):

de _ di’l )\.,’
dr, dt IVuI

= K;t; (without summationomn=1,2,...,d — 1),

d‘Ed _Z ldl/l
dtv, dn V| ©

and assuming from now on that; # K; (1<i # j <d —1),

d Mi 3
d'L'i . d'L'i 2|Vu| Ddl] Hi

=—=)Y ajtr; Wwheregj=————"— g3=——,
dt,  dn ;” TTVul(K; — K T Vu

J#i

dn, d K (uidkj + puidij) — Dijeu
dry = 2 KT ik = =g e e
J i;l k i

forl<k#i<d-1.

aija = —K;éij

As in Section 2, we denote by € I'" a point which realizes the maximum OF u|?
onTI'" and assume that— x’ is an analytic curve. By definition of , -2 s L (IVul®)(x") =

0G=12...,d—1),thus proving that, |, = 0. Becausé¢Vu|? restricted td* has
a critical point atx = x’, we may also define its Hessian as

d d d d
—(——(IVul?) ) = — v2>=:H,-,-<0,
dT,' (dfj (l ul )> de <d1’l(| ul ) (T T])

with
H = (D*(|Vul?)); — 2(Dgqu)(D?u),, and
(D2(1Vu?)) = 2((D%) )* + 21 Vu|(Dy.t)nr.

In the foIIowing we shall assume for simplicity that is actually negative definite. Let
us computes (S¢1 k).
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(1) With notations similar to the ones of the 2-dimensional case, we have

%(ﬁ’” —x') = (% + b(St)n + (h 4 Bst) 4+ O((51)?)

whereh = (hy, ha, ..., ha—1), B € 1(x"). With § = x'* — x',

- 1 - - -
St=u(x"™) —u(x")=8-Vu+ 5(5 - (D?u)8) +0(|6]%)

1 - 2 - 1Ddd1/l 2 2
=5t + <b|Vu| +§(h - (D?u)h) +§|W|2>(5t) +0((81)%),
1- - lDddu
d b=—=(h- (D) h)—= .
an 2( ( u)l'[ ) 2|Vu|3

(2) Using the Taylor expansmn ofVu(x' )% — |Vu(x")|?> and maximizing it
with respect toh, we geth = — = (H"Y o Py)(Dy.(|Vul?)). Since Dy;(|Vul?) =
2|Vu|Dgqju, we have

|Vul

h=—2(H" o Py)(Dyqu).
(3) We computé&_ 4=} K;:

ZK:%<ZK”> quldn<dle’>

Using the Fréchet formulas, we getat x',

dkK; 1 dkK; 1
= ——(Dyjju — DyjquK;) and — = —Dil‘jlxl.
dn [Vu| dt; [Vu|

(4) On one hand, let us remark that becatise: 0, foreachi =1,...,d — 1:
0> H;; = 2|Vu|(Dgiiu + |Vu|K? — DyquK;),

K2
o) that—lddi < ——L

v
(5) On the other hand deriving Eq. (A.1) with respectrjp we obtaina D,4u +

B> Di;ju=0,and consequentlyi—j(zl”.’: LK) = —5 ?%u and
h-Vn (Z K; ) — [Pr(Dgqu)) HTP [ Pr(Dgau)] <0

becausdd < 0. Therefore
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In view of the free boundary problem, we may simply quote that if the doRainR?

is convex, the mean curvatuElf’:‘ll K; of the free boundary at the limit of the points that
maximize the gradient, is positive. Concerning the estimates on the gradient, Theorem
could be generalized to any dimension, thus providing an estimate taking the geometr
of the domain into account. However a rigourous justification of these estimates woulc
involve a tedious discussion of the various special cases (that we discarded above t
taking appropriate assumptions), similar for the methods to the 2-dimensional case, bt
much longer. This is why we left it here at a formal level.

A.3. Resultson analytic sets

We will first state some general results on analytic sets and then prove Lemma 5 an
Lemma 7.

From [9] (Chapter 8: Etude locale des fonctions et des ensembles analytiques
Propositions 4.2.5, 7.2, 7.7 and Theorem 1.2.2) we deduce the

THEOREM 4. — For N > 1, letU be an open set &2 and F; (x1, x5),i =1,2,..., N,
be real analytic functions ofxy, x;) € U. We assume thaF; #£ 0 and F;(0) = O,
i=1,2,...,N. Then there exists positive real numbeand an integek such that

N k
(ﬂ{F,- =0}> N B,(0) = {0}U (U y,-)
j=1

i=1
for a disjoint union of analytic open curves— y;(s), s € (0, 1), with

im () = .
{ Iimlyj(s) =Xj € 0B, (0).

Moreover the same property is true for every b@ll(0) with ' < r.

This result gives a precise description of the structure of analytic sets. In our proof
of Theorem 2, we are interested in the following special situation. ;e O be an
analytic function withF1(0) = 0. Theorem 4 forN = 1 gives the existence of an open
curvey C {F1 =0} with lim,_¢y (s) = 0. Let Fy be a second analytic function such that
Fp(0) = 0 andV Fy(0) # 0. What can be said ogsr(Fo oy)? The answer to this question
is given by the

COROLLARY 1. - Consider a real analytic functiofy of the variablegx1, x,) € U,
whereU is an open set ifiR?, such thatF(0) =0andV Fy(0) #0. 1f y:(0,1) — U is
an analytic curve such thdim;_.oy (s) =0andy c {F; = 0}, where the functiorF; is
analytic with Fy # 0, then for ane > 0 small enough, on the intervaD, ¢),

(i) either<L(Fooy)=0,

(i) or 4L (Fooy)>0.

The proof of this corollary takes advantage of the following classical result.



922 J. DOLBEAULT, R. MONNEAU / Ann. I. H. Poincaré — AN 19 (2002) 903-926

PrROPOSITION 4. — Let g and i be two analytic functions defined on the interval
(—=1,2). If 0is an accumulation point of the sgte (—1,1): f(s) =g(s)},thenf =g
on(—1,1).

Proof of Corollary 1. -Consider an analytic functioi; defined onU such that
y C {F, = 0}. Let [ be the smallest integer such thatc ﬂlj:O{DfFl = 0} and
y ¢ {D'*'F; = 0}, where D/ F; denotes the set of all partial derivatives of total order
j: (0{*82F1} ;1 ;= We know thatFy 0, sol is finite and there existgy, j» > 0,
j1+ jo =1 such that forF; = 3{*3J2F; we have

Filoy=0 and VF)oy=0. (A.2)

Let ¢ be the unit vector field tangent to level lines&f (i.e. such thab, F = 0).
Casel: T - VFy1(0) # 0: the curvey is analytic in a neighbourhood of 0 and up to
s = 0. In particular we can chose the curvilinear abscissa a parametrization up to
s =0and
1

o= V= _|VF |<d”>
e (o] = — - _ — — - T
ds 0oy ds 0 0 ds
because = —%. We know that(”fl—‘{)l is colinear toV F1, and consequently
d |V Fo| 5
—(Fgoy)=x———(t-VF)), A.3
ds( 00¥) IVFll( 1) (A.3)

so we deduce that%(Fo oy) > 0in a neighbourhood of 0.
Case2: 7 - VF1(0)=0: if r - VF; =0 onU, then obviously(r - VFy) o y =0 and
%(Fo oy)=0.If t - VF; #£0on U, then from Theorem 4 we have

k
({F,=0yN{r - VFL=0}) N B,(0) = {0} U (U y,->

j=1

for somer > 0 small enough. In that case, either for ajlyy; # y and thenzt(r -
VFy)|, > 0: asin Case 1, Eq. (A.3), we gﬂtt%(Fo oy) > 0in a neighbourhood of 0,
or the exists somg such thaty; = y. In that caser - V F, oy =0 on a neighborhood

of 0. From (A.2) we know thatV F; o ¥)(s) # 0 except maybe in a decreasing sequence
of points (s,),en € (0, )N, Because the mag®, 1) > s — (VF; o ¥)(s) is analytic, the
only possible accumulation point of the sequet, .y is 0 according to Proposition 4.
Away from these points,, we can apply the implicit function theorem which proves that
Fooy =const=C, on (s,.1, s,). By continuity ats,,, we getC, = C,;1 = Fp(0) =0

and consequently C {Fy= 0}, %(Fo oy)=00n Q,¢) for ¢ > 0 small enough. O

We are now going to prove Lemma 5 and Lemma 7 which are used in the proof of
Theorem 2.

Proof of Lemma 5. ¥he magp — m(¢) is continuois o0, ug]. Forevery O< ¢’ < ¢
we havew, C w,. Let F,, = {F =0} Nw,. ThenF,,, is a compact set included in
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{IVu| > 0}. At every pointx, € F,, , the se{ F = 0} has the property given in Theorem 4:
for anyxo € F,, there exists an,, > 0, and a finite set of curve(sfj ) 1 such that

kxq
{F =0} N B, (x0) = {x0} U ( U V}‘°> :
j=1

BecauseF,, is compact, it can be covered by a finite numbéyof balls

N
F,, C|JB.(x)=w
i=1

where r; = % The result of Lemma 5 is then a straightforward consequence of
Corollary 1. O

Proof of Lemma 7. Fo prove (3.6), we now consider a poim§ € X'« such that
K (xo) =inf __ ;K (y). We will prove that

limsupK (z; 4+ 8) < K (xo). (A.4)

§—0t

To this end, let us consider a smooth cupgedefined forr € (¢} — n, t; + n) for some
smalln > 0, such thayy () = xo andu(yo(t)) = t. Then by definition ofn (), we have

1
g(m(t,:k +8) —m()) > (]Vu(yo(tk +8)| = |Vu(y())|) fors§>0. (A5)

Because of Assumption (A2), equatidn(D,,,u, D u, D, u, |Vu|,u) = 0 can now be
rewritten locally neaxg as

Dnnu = H(D-”M, Dnruv |VL£|, l/t)

where’H is analytic in all the variables and (locally) decreasingDp,u. With the
notationmg(¢) = |Vu(y())|,

1
lim=([Vau (ol +8)| = [Vu (o)1)
. 1
= lim — m—OH(moK(Vo(t)), D,cu(yo(r)), mo, t) dt

1
= —H(mK(xo), 0, m, t,f) form =m(t),
m

by continuity of all the quantities on the smooth cume Let us recall thain(r) =
sup,g, |Vu(y (1))| for ¢ € (¢, 1, ;). Because we restrict our study the caser;, close
to 7', we only need to consider

Fo={y e F: |Vuly@))|=m@)}.



924 J. DOLBEAULT, R. MONNEAU / Ann. I. H. Poincaré — AN 19 (2002) 903-926

Then locally fort > ¢/, we havem(t) = S IVu(y (t))| and for each curve € F;
we get similarly:

1

. 1
Jim < (Vi G +8)] = [Vu(r D)) = - H(mK (@), 0.m. 1)

for m = m(z;"). Because

1 1
5 (@ +8) —m (@) = SUQBE(W(VU/? +8)| = [Vu(y ))])
VEY,

and becausg; is finite, we have: Iirgwsup;z = sup; lims, which implies
1 . .
5|Lr2+ 5 (m(tf +8) —m(1))
1
=—H(m, inf K(y(#)),0,m,t) form=m().
m vegy

From (A.5) we deduce

H(m il’lgf*K()/(t,;k +6)),0,m, 1) = H(mK (x0), 0, m, 1),
YEY,

which gives infcg: K (v (7)) < K (xo). To conclude, we remark that

limsupK (" +68) =limsu inf K(y(t
5_>0+p (f ) H(,;)P(yeg,f,|Vu<y(z>>|:m<z> (r®))
< lim (inf K(y(@)))
k

=T yeg

= inf ( lim K(y@)))

yegy t—=@H*

= inf K(y () < K (x0),
}’egk

which is nothing else than (A.4). Similarly we get limjnfy+ K (z; —8) > K (x0), which
with (A.4) implies (3.6). This ends the proof of Lemma 70
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