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1. INTRODUCTION

The purpose of this paper is to produce evidence of chaotic dynamics
in the equation

U@ty + W (t,ut)) =h() 1)

through the existence of heteroclinic type solutions. In W) stands for

%, and the functionsv andh satisfy the following assumptions:

(H1) W eC?R x R;R) is 1-periodic int and S-periodic inu,
(H2) heC(R;R)is 1-periodic and satisfieg /(1) dr = 0.

Assumptions (H1) and (H2), which we will use throughout the
paper without further repetition, are satisfied by the periodically forced
pendulum equatioti + sinu = h(zr), whereh has mean value zero. We
believe that the applicability of our results to this classical mechanical
model is one of the points of interest of the present work.

In order to describe our results, 1€z, u) = W(t,u) — h(t)u and let
L(u) = %L‘tz — V(t,u) be the Lagrangian associated to (1). It is well
known that equation (1) admits, under assumptions (H1) and (H2), an
ordered family of 1-periodic solutions which can be obtained as global
minimizers of the action functional

1
f(u)= /L(u) dt

0

over the spaceE; of 1-periodic, H. functions. Letuo and u; be
two consecutiveminimizers (see Definition 2.1). We are interested in
solutionsg of (1) which are asymptotic to prescribed stated:ig, u1}
whenr tends to+oo. To simplify notation, we will writeg(—o0) =

uo instead of lim_ _.(g(t) — ug(¢)) = 0 for example, and similar
expressions at-oo. A solution is called homoclinic if it is asymptotic to
the same state atoo and+oco, and heteroclinic if the asymptotic states
are different.

The search for homoclinic or heteroclinic solutions is a classical
subject, which has been deeply studied by the use of geometrical methods
(see, e.g., [23)]); in this context, the results are generally of a perturbative
nature. Starting from an integrable system, one analyzes the dynamics of
a new system obtained aswmall perturbation of the former.

A second class of methods, global in nature, is provided by the Aubry—
Mather theory of monotone twist maps. This is a rich and well developed
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theory that deals with discrete dynamical systems and that has more than
one point in common with our approach. We refer the reader to [12] and
to the detailed references therein and, as an introduction to the theory, to
the paper [4].

More recently, a global approach based on purely variational argu-
ments has been shown to be useful in proving existence and multiplicity
of homoclinic solutions for certain classes of problems. In what follows,
we reserve the term “variational approach” to the latter class of methods,
although also the Aubry—Mather theory makes use of variational type ar-
guments.

The use of the variational approach is often convenient because it does
not require the system to be a small perturbation of a simpler one, needs
in general only mild nondegeneracy conditions, and is powerful enough
to detect the principal features of chaotic dynamics. This approach has
been very extensively applied, starting from the late eighties, to problems
of Duffing kind with various types of time dependence (see [5,9,10,14,
19,20,22], and references therein for an introduction to the subject). The
object of these papers is to produce evidence of chaotic dynamics by the
construction omultibumptype homoclinic orbits. In this type of problem
the solutions are homoclinic to a rest point of the system.

A rather striking characteristic of the variational approach is that only
a few papers are devoted to the study of homoclinic or heteroclinic
solutions toperiodic orbits, a reference model in this case being the
forced pendulum equation. This is possibly due to the lack of a simple
functional formulation for such problems, which, by their very nature,
force one to work with nonintegrable functions. The major contribution
to the removal of this obstacle is the work [16] by P.H. Rabinowitz,
where the author managed to construct a functiohgtee (2)) whose
minimizers are the desired solutions, opening in this way the road to
a global approach. In the papers [17,18,13,8,1], which followed [16],
existence and multiplicity of heteroclinics, homoclinics and more general
multibump and chaotic solutions were obtained both for scalar problems
and for systems. The common feature of all these papers, and the idea that
led Rabinowitz to construct the functiond| is the use of aeversibility
assumption: it is required that the potenfiabe an even function of time.

The purpose of our work is to show that for scalar problems one can
drop the reversibility assumption and obtain the same type of results as
in the reversible case.

The main difficulty one has to face when working without reversibility
assumptions is to show that the functioaktill makes sense and is fit
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to obtain the desired results. After the construction of the functional, the
typical way to prove existence of multibump and chaotic trajectories can
be roughly synthesized in the following scheme.

First, one usually needs some nondegeneracy assumption on the
asymptotic statesy andu;. This means for example thay andu, are
required to be nondegenerate as minimizers, or at least isolated; these
assumptions have been used in [15] and [16—18] respectively. Then, the
first basic types of heteroclinic solutions can be found; in our problem
these are an orbiy that connectsug to u; (namely go(—o0) = ug
and go(+00) = u41) and an orbitg; that connects:; to ug. The basic
nature ofgg andgq; is their appearance as minimizers of the functiahal
over suitable classes of functions. These orbits are then used as building
blocks for more complicated types of solutions, in the spirit of the
shadowing lemma; they give rise to multibump type orbits, which are
solutions that oscillate between the staiggndu, a prescribed number
of times and are asymptotic to the required states@t. In order to
do this, one needs a further nondegeneracy condition on the structure of
the basic heteroclinic solutions. This assumption takes the place of the
transversality condition in the perturbative approach and prevents, for
example, the problem from being autonomous. Finally, a rather careful
analysis is needed in order to obtain estimates independent of the number
of bumps, so that one can pass to the limit and obtain solutions with
infinitely many bumps, which display the chaotic nature of the dynamics.

With respect to this general scheme our work is also characterized, in
addition to the removal of the reversibility assumption, by the following
features.

The nondegeneracy conditions epandu; are replaced with the re-
guirement thatig andu, be consecutive. We work throughout the paper
in the order intervalug, u1]; this weakens the classical assumptions and
shows that our results are in general valid for variational problems pos-
sessing two global minimizers, without assumptions on the space peri-
odicity of the potential. On the other hand, the existence of consecutive
minimizers isnecessaryn order to obtain multibump solutions (see [8]).

Next, the nondegeneracy condition on the structure of basic heteroclin-
ics is a suitable modification of the one introduced in [8] for the scalar
reversible case (and later adapted in [18] to reversible systems). Roughly
it says that the sets of orbits connectingto u, andu, to ug must be dis-
connected (seéx) at the beginning of Section 4). This assumption is then
compared to the standard nondegeneracy hypotheses in the perturbative
approach. We prove that whegp andu, are hyperbolic (which we never
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require), our condition is equivalent to the fact that the stable manifold of
ug (respectivelyu;) and the unstable manifold @f; (respectivelyug) do
not coincide.

Below we state our main results; in their statements, when we label
with an index, that index must be read mod 2.

THEOREM 1.1 (Multibump solutions). —Assumeu, and u; are
consecutive minimizers and |ét) hold. Then for everys > 0 small
enough there exisis = m(8) € N such that for every sequencg;);cz C
Z such thatp; 1 — p; > 4m and for everyj, k € Z with j < k, there exists
a classical solutiory of (1) satisfying

uo(t) < q(t) <ui(r)y forallreR,

q(—o0) =uj, q(+00) = uj41,

and, foralli = j, ...k,
lq(pi —m) —u;(pi —m)| <8 and |g(p; +m) —ujs1(p; +m)| <36.

THEOREM 1.2 (co-bump solutions). Under the same assumptions
as in Theoren..1, for everys > 0 small enough there exists = m(3) €
N such that for every sequen¢e;);cz C Z such thatp;,1 — p; > 4m,
there exists a classical solutignof (1) satisfying

uo(t) < q(t) <ui(r)y forallreR,
and
lg(pi —m) —u;(pi —m)| <8 and |q(p; +m) —uir1(pi +m)| <38

foralli eZ.

In addition to these results, one could also work in a space of periodic
functions to obtain the existence of infinitely many periodic orbits with
large periods. This requires only minor modifications of our arguments,
and we will not deepen this point; we refer the reader to [11] for a similar
construction in a different setting.

The above results show that some of the principal features of chaotic
dynamics are embodied in Eqg. (1); that is, one has sensitive dependence
from the initial conditions, existence of infinitely many periodic orbits
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with diverging periods, and existence of an uncountable number of
bounded, nonperiodic trajectories.

The nature of our methods also shows that the set of forcing terms
h for which (1) displays the described features is open in the space of
continuous periodic functions with mean value zero.

As final remark, we point out that through the multibump structure
obtained by Theorem 1.1 one can easily show the Poincaré map
associated to (1) has positive topological entropy.

The main drawback of our method is that it relies deeply on the order
structure ofR, so that for the time being, it does not seem to extend to
systemsSomeproblems of existence of heteroclinics to periodic motions
for systems in the nonreversible (nonperturbative) case can be however
solved with the methods of [12].

This paper is structured as follows: Section 2 contains the estimates
needed for the definition and the use of the functiohdh Section 3, we
prove the existence of the basic heteroclinic solutions. The multibump
construction and the main results are given in Section 4. Finally, the
comparison with the classical results in the hyperbolic case is the object
of Section 5.

Notation. We use the symbold.” and H! to denote the spaces
L?(0,1) and H(0, 1), endowed with their usual norms. The symbols
L andH}, stand forL$.(R; R) and H: .(R; R).

If up andu, are l-periodic (continuous) functions such thgtr) <
u1(¢) for all r, we say that: € [ug, uq] if

uo(t) <u(t) <ui(t) Vtedomu).
WheneverE is a set of continuous functions we will write € E N
(1o, u1] to mean that: € E anduo(r) < u(r) <u1(t) Vi € dom(u).
2. FUNCTIONAL SETTING AND ESTIMATES

This section is devoted to the study of the the main properties of
the functional that we will use to construct homoclinic solutions. These
properties require a number of estimates on the action of both periodic
and nonperiodic functions.

To begin with we define, for € N, the space ofi-periodic functions

E,={ueH! (R;R)/u(t +n)=u(t) a.e},
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the Lagrangiarl (u) = %uz— V (t,u), the action functional ove# (0, 1)

1

fw>=/Lwnm

0
and we set
¢, = min f (u).
Eq

By classical arguments, the valug is attained at an ordered family of
functions. Itis a family because of the spatial periodicity of the potential
W, and it is ordered since two absolute minimizers cannot cross (see
[21)).

DEFINITION 2.1. — We say thalig, u; € E, are consecutive minimiz-
ers of the periodic problem associated to Eb).if

(1) f (o) = f(ur) =c,,

(2) uo(t) <uq(r) forall r € [0, 1],

(3) ue ExNug,uil and f(u) =c, implyu € {ug, u1}.

Note thatup andu; need not be isolated if;: there might be other
minimizers accumulating tag from below or tou; from above. The
existence of consecutive minimizers is thus a weaker condition than
the isolatedness of minimizers and actually in [8] it is shown that this
condition is necessary for the existence of multibump solutions. From
now on we will always assume that two consecutive minimizgrand
u, are given.

We now recall the definition of the functional. For k € Z and
q € H} (R; R) N [uo, u1] we set

k+1
cmw=/L@M—%
k

and we define (formally, for the moment) a functiodahs

J@) =Y a@. 2)

keZ

This functional has been introduced by P.H. Rabinowitz in [16] in
the context of time-reversible equations, and has been later used in
[17,18,8,1] to deal again with reversible problems. The reversibility
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assumption implies that each(g) is nonnegative, so that the series is
well defined (convergent or divergent+4ao), see [16]. The functional
has been used in the quoted papers to prove existence of multibump type
solutions, both for scalar problems and for systems. The argument used
is minimization over suitable classes of functions.

In the present work there is no reversibility assumption, and this means
that the terms, (¢) can be negative. It is therefore not clegpriori if J
is bounded from below or even well defined (the series might in principle
be undetermined). One of the purposes of this paper is to show that for
scalar problems the functional is still the right tool to use to prove
existence of multibump and chaotic trajectories.

In order to carry out our program we need a series of estimates, which
we now describe. We first recall the following equality.

LEMMA 2.2.— For everyn € N,

n

min/L(u)dt:ncp )

uek, .

0

and the minimum is attained atperiodic functiongthe minimizers off
over E1).

Proof. —Equality (3) is perhaps well-known. Since we don’t know a
precise reference we outline here a simple proof..Lee a minimizer
over E, (the existence of such function is straightforward); then, since
the problem is 1-periodic, the functian(z) = u(¢ + 1) is a minimizer as
well. But sincex andv have the same mean value and they cannot cross
(by regularity arguments and unigueness in the Cauchy problem), it must
beu(r + 1) = u(z) for all ¢, which proves the statementd

This result shows in particular that if € E, N [ug, u1] satisfies
Jo L(u)dt =nc,, thenu € {uo, u1}, sinceug andu; are consecutive.

In many parts of this paper we will need a way to measure the distance
of a function from a set of periodic minimizers. For computational
reasons we will use the notion of distance described in the following
definition.

DEFINITION 2.3. — We denote by\ the (closed set of 1-periodic
minimizers off and byl the set{uq, u;}. We also set

M) ={u@)/ue M} and U®@) ={u@)/ucld}.
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If v is a continuous function defined on a compactisete define as its
distance fromM the number

: (4)

d(v, M) = maxmin lo(r) — u(r)

and likewise for its distance frof.

Remark2.4. —

(i) Notice that it may resuli (v, M) = 0 and ve/M; this happens if
v lies in a continuum of minimizers.

(i) One of the reasons for measuring in this way the distance is the
following immediate consequence of the definition i, 1) > §,
there is a point* whereboth |v(t*) — ug(t*)| > 6 and |v(t*) —
ur(r*)| = 4.

The next proposition defines a constant that we will use repeatedly.

PROPOSITION 2.5. — For every$ > 0O there exists(8§) > 0 such that
forall n e N

n

inf{/L(v)dt—ncp/veEn,ﬁ(v,M)>8}2,0(8). (5)
0

Moreover, ifv € E, satisfies
dist(v(k), M(k)) =8 forallk=1,...,n—1, (6)

then

n

/L(v) dt —nc, = np (). )
0

Proof. —Call p (68, n) the left-hand-side of (5). Then(s, n) > 0 for all
n € N as one easily checks by standard compactness properties and the
application of Lemma 2.2 (see [16] for a similar argument). We now show
that p(8,n) > p(8,1), so that (5) holds withp (8) := p(8, 1) uniformly
inn.

We proceed by induction om. If n = 1 the inequality is trivial.
We assume therefore that(s,n — 1) > p(8,1) and we show that
p(8,n) > p(8,1). To see this, lev € E,, verify d(v, M) > § and define
g:[0,n—1] - Rasg(t) =v(t+1) —v(¢). The functiong is continuous
and vanishes at some € [0,n — 1], for otherwise we would have
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v(k + 1) > v(k) (or the reversed inequality) for al =0, ...,n — 1,
which contradicts the periodicity af. We have therefore a pointwhere
v(t) = v(r + 1). It is not restrictive (by shifting time, if necessary) to
assume that € (0,n — 1). Letv, be the 1-periodic extension ofj; .1
and let

v(1) if + €0, ],

Up-1(1) = { v(r+1) ifrelr,n—1]

tpen v1 € Eq, v,_1 € E,_1 and at least one betweéhvl, M) >$§ and
d(v,_1, M) > § is true. Noticing that

n—1 n

0/L(v)dt=o/L(v,,1)a’t—|—n/1 L(vy)dt,

we see that by the inductive assumption,

n

/L(v) dt>(mn—1Dc,+p6,1) +c, =nc,+p(,1).
0

Since this inequality holds for all € E,, such that?(v, M) > §, we have
thatp(s,n) > p(8, 1).

To prove the second part we again proceed by induction=fl there
is nothing to prove; we therefore assume that (7) is truezfer1 and
we prove it forn. To do this takev in E, satisfying (6) and repeat
the above argument to construet and v,_;. Notice now that when
dist(v(k), M(k)) > § for all k =1,...,n — 1, thenboth v, and v,_,
satisfy (6) in E; and E,_1, respectively. Therefore, by the inductive
assumption,

n—1 n

0/L(v)dt=o/L(v,,1)dt+n/l L(vy)dt

Zzm—Dc,+(n—1)p0E) +c,+p0),
and the proof is complete.O
We now turn to estimates on nonperiodic functions. The one provided
by the following proposition will play a central role in the rest of the

paper. Before stating it we observe that Proposition 2.5 holds also for
8§ = 0. In this case, of course, we obtaii0) = 0.
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PROPOSITION 2.6. — There exists a positive constafitsuch that for
gveryé > 0 and for everyn € N, if g € HY(0,n) N [uo, u1] satisfies
d(g,U) > 4§, then

n

/L(q)dt—ncp>p(6>—é|q(n>—q<0>!. (®)
0

Proof. —If d(q,U) > 8, there is a point* € [0, n] where u,(t*) —
q(t*) = 8 andq(t*) — uo(t*) > 5. We assume that < [5, n], the other

case being symmetric.
Definev: [0, 1] — R asv(t) = (1 — 2t)(¢(n) — ¢(0)) and set

_Jaw +v@) ifrelo 3],
gD(I)_{q(z) if £ €[4, n];

thengy € E,,, becaus& (0) = ¢ (n). Notice that
d(g, M) = min |p(r*) —u(t*)| =6
ueM

sinceug(*) < o (t*) < u1(¢*). Applying Proposition 2.5 te yields

n

[L@ar—ne, >0 ©)
0
We now evaluate
n 1/2 n
/L((p)dt:/L(q vwdi+ [ Lg)d
0 0 1/2
1 1/2 1/2
=5 / 4% +0° +240] dt — /[V(t, q+v)—V(t,q)dr
0 0
1/2 n
— / Vit q)dt —I—/L(q)dt
0 1/2
n 1/2 1/2 1/2

1 A~ A~
</L(q)dt+M/|v|dt+§/1')2dt+/c}i)dt,
0 0 0 0
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where we have denoted 3¢ the Lipschitz constant df .
A direct evaluation of the last three integrals shows that there is a
constantC such that

n n

/L((p)dtg /L(q)dt+é|q(n>—q<0>r.
0 0

Combining this with the above estimate shows that

n

/L(q)dr —ne, > p(8) — Clgm) — q(0)].
0
which is the desired bound.o

The previous estimate has a very important consequence on the
behavior of the functional .

PROPOSITION 2.7. — There existsh € R such that for allg €
H (R;R) N [ug,us] and alln € N,

n—1 n
> a@= [ L@dt—nc,>b. (10)
k=0 0

Proof. —Notice that for allg as in the statement there resublign) —
q(0)] < maxu; — minug. Applying Proposition 2.6 witld = 0 yields

n—1 n
Zak(q) = /L(q) dt —nc, > —C(maxu; — minug) =: b,
k=0 0

which is the desired estimated

It is convenient to retain from the preceding proposition that

n—1
lim inf k; ar(q) = b (11)

forall g € HY N [uo, usl.

Remark 2.8. — We cannot hope, in general, to obtain a better estimate
with b > 0. This is due to the fact that in the nonreversible case there
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generally exist functions € H(0, 1) such thatf (v) — ¢, < 0. Actually,
if b were positive or zero, the whole problem we are dealing with could
be tackled with the easier arguments from the reversible case.

We now begin the study of the behavior of the functiosal
LEMMA 2.9.—Forall ¢ € HY_ N [uo, u1l,

n—1
if limsup > aw(q) =+oo, thenJ(q) =+oo,

n—+00 k=—n

in the sense that the seridgq) is well defined and diverges tpoo.
Proof. —Suppose on the contrary that

n—1
liminf Z ar(q) =h <+
k=—n

n—-+00

( is finite by (11)) and choose a numbgf > A + 1 — 2b, whereb is
the (negative) constant defined in the previous propositioni letH be
two positive integers such that

h—1 H-1
Salgp=M and > alg) <r+1;
k=—h k=—H
then we have
—h—1 H-1 H-1 h—1
Yoa@+ Y al@) =Y alg)— > alg) <A+1—M <2b,
k=—H k=h k=—H k=—h

which contradicts Proposition 2.7.0
We can now prove that the functionalis well defined.

PROPOSITION 2.10. — The functionalJ is well defined fromH},. N
[uo, u1] to RU {+00} (either the series converges or it divergesttoo).
Moreover, ifg € HY N [ug, u1] andJ(q) < +oo, theng(£oo) € U.

Proof. —We first prove the second part, namely thalyifdoes not
converge toug Or u; ast — oo, then J(g) = +oo0. We work with
t — +4o00. This assumption implies that there exist a number 0 and
two divergent sequencés € N and¢; € [k;, k;41) such that

lg(kjr1) —q(k;)| =0(1) asj— +oo



686 E. BOSETTO, E. SERRA/ Ann. Inst. Henri Poincaré 17 (2000) 673-709

and
dist(q(z;). U(;)) =8 forall j €N.

Relabeling, if necessary, we can assume fp@t; 1) — g (k;)| < %) for

all j € N, whereC is the constant provided by Proposition 2.6. Applying
this proposition in everyk;, k1] we obtain

ki 1

j+1— R 1

> al@) 2 p@) = Clatkjsa) —qkp| > 5p(@).
k=k;

Now, recalling Proposition 2.7, we obtain, for alE N,

kn—1 -1 n—1kj+1—1
> ak(q>>b+zak(q>—b+z Y a@)=b+ p<8>
k=—ky, k=ko j=0 k=k;

which shows that
n—1

lim sup > aq) =
k=—n

and by Lemma 2.9 we conclude thAty) = +o0. This proves the second
part of the Proposition.

To complete the proof it is necessary to show thias well defined
(convergent or divergent te-oo) also wheng tends toug or u; as
t — +o00. To see this, assume for definiteness thaends toug and
to u; whenr tends to—oo and+oo respectively (the other cases being
analogous).

Working indirectly, suppose that

= liminf Z ax(q) <lim sup Z ar(q) =

k=—n k=—n

and notice that we can assune < +o0, otherwise, by Lemma 2.9,
J(g) = +o00, and there is nothing left to prove; alsoz b by (11).

Letn;, m; be two divergent sequences of positive integers such that
for all j there resultss; +1<m; <n;;1 —1and

mj—l l’lj—l

lim a =1 and lim a =A
i wkzz_;,. «(@) Mook;j e(@)
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Now asj — oo we have

—nj—1 mj—1 mj—1 nj—1
Sooap+ D a@)= Y alg)— Y alq)
k=—m k=n k:—mj k=—n;

<A—A4+0(01) <

12)

On the other hand, as— oo, g(—m;) andg(—n;) tend touy(0), while
g(m ;) andg(n;) tend tou1(0). Therefore, by Proposition 2.6, gs— oo
we have

> alg) = —Clg(—n)) — qg(—m))| = o(1)

mj—l

and likewise for » ~ a;(q)

k=n;

which contradict (12). This shows that= A, and the proof is com-
plete. O

In the next sections we will need the following estimate of the level of
functions having the same behaviordato.

PROPOSITION 2.11. — Assumeg € H}. N [ug, u1l, ¢ ¢ U, verifies
q(F00) = ug or g(+£o00) =uy. ThenJ(g) > 0.

Proof. —~Assume for definiteness that(xo0) = uo. Sincegq # uo,
there areng € N and § > 0 such thatd(q—n..),U) > é§ and |g(n) —
g(—n)| < %g) for all n > no. Then, by Proposition 2.6,

n—1 . 1
> @@= p®) = Clam) —g(=m| > 5p ()

k=—n

for all n > ng. This shows thatf (g) > 0. O
We now establish a property that we will use in a while.

PROPOSITION 2.12. — The sublevels of/ in HY N [ug,u;] are
bounded inH},.

Proof. —Let K € R and letq € H}, N [uo, us] satisfy J(q) < K;
clearly ||gl|.~r®) is bounded independently ef. Applying Proposi-
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tion 2.7 we see that for everwye Z,

K>1T(qg)=a,(q@)+ > aq)+ Y arq) >a.(q) + 2b;

k<n k>n

therefore, recalling the definition af, (¢),

1
) —_.
EHq”LZ(n,n-&-l) <K_2b+cp+ [rer[lgi(] |V(t,x)| =Y.
x€[minug, maxu1]

This means thaﬂqniz(_nm < 4ny, which is the desired bound.o

We close the section with the definition of some “cut-off” operators.
To do this we first recall a “gluing lemma” from [8], to which we refer
for its proof.

LEMMA 2.13. — There exist positive constardsand C; such that for
all § € [0, £], there existsv € H*(0, 1) N [uo, u1] such that

w(0) = uo(0),
w(1) =uo(1) +4,
lao(w)| < C18.

Remark2.14. — One can of course also show the existence of
functionsw € H* N [ug, u1] connectinguq(0) + 8 t0 uo(1) or u1(0) to
uy(1) — 8, or uy(0) — 8 to uy (1) with the property thatag(w)| < C46.
Clearly this estimate is still true (as long &s< ) working in any
[p, p + 1], with p € Z, instead of{0, 1], and replacingsy by a,. The

name ‘w” will be reserved for this kind of functions; it is agreed that
la,(w)| < C18 for all suchw and all p.

We now define (two families of) cut—off operators frait

loc

to itself which will be used to glue a functianto ug or u;.

N [uo, u1]

DEFINITION 2.15.—Fori =0,1, pe Z andq € H}_ N [uo, u1], we
set

q) ifr<p,
X (p)g@) = { w(t) ifrelp,p+1, and
ui(t)y ifr>p+1,
ui(t) ifr<p—1,
Xi (P)q(t) = { w) ifrelp-1p],
qgt) ift>p,
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wherew is, in the first case, a function that connegtg) to u;(p + 1)
in the spirit of Lemma2.13, whilew connectsy; (p — 1) to g(p) in the
second case.

LEMMA 2.16. —Assumey € H}_N [uo, u1] is such that/ (¢) is finite.
Let p € Z be a point wherdg(p) — u;(p)| < §, for somei =0, 1 and
somes < ¢ (this number is defined in the preceding lemniden

’J (X (»a) = > ak(q)’<015 and

k<p—1

’ X (p)q) Zak(q)’ C18.
k=p
Proof. —It follows directly from the definition of the operators and
Lemma 2.13. O

3. HETEROCLINIC SOLUTIONS

In this section we prove the existence of the simplest type of
connecting orbits, namely the heteroclinic (or one-bump) solutions
betweenug and u;. These will be used in Section 4 to construct
multibump type and chaotic trajectories.

The scheme of the proof does not differ too much from the one adopted
in [16] or [8], since the technical estimates relative to the nonreversible
case have been proved in Section 2.

To begin with we let

Io={q € H}, N uo, u1l/q(—00) = uo, g(+00) = us }

be the set of functions connecting to u; and we denote by the
analogous set of functions connectimgto uq. We also define

co=infJ and c¢y=infJ,
I) I

and we notice that these numbers are both finite (see the comment
following Proposition 2.7).
The next result establishes the existence of heteroclinic solutions.

THEOREM 3.1. — There existyg € Iy and g, € I'; such that/(go) =
co and J(g1) = c1. The functionsgg and ¢, solve the equation of
motion(1).
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Proof. —Assuming for a moment the existenceggfandg,, we remark
that the second statement of the Theorem is not trivial, since the orbits
are found byconstrainedminimization (the constraint being € [ug, u1]
in the definition of the classeg;). For this reason we should show that
go and g; do not touchug andu;. However this has been shown to be
true in the reversible case in [8] with an argument that does not depend
on reversibility and that can be repeated here without changes. We omit
therefore further details on this and we concentrate on the existence of
minimizing orbits.

We prove the existence @f. Let g, € Iy be a minimizing sequence
and leté > 0 be small. Because of the boundary conditions, for every
g, there is a unigue poin, such thatg,(z,) = ug(z,) + & andg, () <
uo(t) + & for all t < r,,. By an integer shift of the time we can achieve that
t, € [0, 1) for everyn; recall also that the value of(g,) is not altered by
integer time shifts.

The sequence, is bounded inH .. (Proposition 2.12) and therefore it
contains a subsequence (still denaggiisuch that

1

gn — qo weakly in H;, . and strongly in_;

loc*

We now show that/ (¢o) is convergent. To see this use Proposition 2.7 to
obtain that for every; € H}, N [ug, u1] for which J(g) is finite and for
everyp € N,

p—1
Sa@)=J@) = > alq) = > aq) <J(q) — 2b.
k=—p k<—p kzp

Then by weak lower semicontinuity on bounded intervals we obtain that
foreveryp e N,

p—1 p—1

Z ax(qo) < liminf Z ar(gn) < Iimninf(J(q,,) —2b) =co— 2b,
k=—p k=—p

namely that/ (go) is convergent (apply Lemma 2.9 and Proposition 2.10).
The preceding inequality also implies, via Proposition 2.10, that the limits
go(£00) exist and are ifd/. By construction we see thah(—o0) = ug,

so that we must prove thap has the right behavior atoo. Notice that

go % uo becauseyo(t*) = ug(t*) + 8 for somer* € [0, 1], by our choice

of ,,.
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We assume that(+o0) = ug and we show that this leads to a

contradiction. Let
) 1 5
e=m|n(é, — Ap( ) )
2C+C,

whereC, C; and# are the constants provided by Proposition 2.6 and
Lemma 2.13. For this choose an intege¥ > 1 wherego(N) < ug(N) +
5. By the uniform convergence af,, for all n large enough we have
qn(N) < uo(N) +e&.

Now, sinceg, (—o0) = ug for all n, we see that for all integers less
than a convenieng,,, there results

19:(P) — g2 (N)| < &.

Moreover, sincey, (t,) = ug(t,) + 8 for somet, € [0, 1) and alln, we also
have that

62(Qn|[p,1\/]’z/{) =6
for all p < p, and all largez. This means, by Proposition 2.6, that

N-1 .
> ar(gn) = p(8) — Ce,
k=p

and, this being true for app < p,,, we finally obtain

> a(g) = pB) —Ce
k<N

for every largen € N. Now, recalling Lemma 2.16, we evaluate

T (%6 (N)gn) < an(gn) + Cre = J(gn) — > a(gy) + C1e
k>N k<N

. 1
<J(gn) —p8) +Ce+ Cre=J(gn) — 50(8) <o

for n large. Sincey, (N)g, € I, this is a contradiction, and our claim is
proved.
Finally we prove that/ (go) = co. Suppose this is false; theh(qo) =

co+ o forsomes > 0. Lete < 126 and takep, € N such that

qo(—p) Suo(—p)+¢& and qo(p) = ui(p) —¢
for all integersp > p,.
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It is not restrictive to assume that also

p—1 3
> ar(qo) > co+ 20 forallp>p.. (13)
k=—p

We now choose @ > p. and we notice that since

p-1 p-1
> ar(qo) < lim inf > aw(gn).
k=—p k=—p

we can fixng such that

p—1 p—1

o
> alg) > Y alqo) —, foralln>no.
k:—p k=—p

At the same time we can also think thatis so large that
gn(—=p) Suo(—p)+2¢ and g,(p) Zui(p) —2¢
for all n > ny.

Now, by Proposition 2.6,
Z ak(Qn) Z —268 and Zak(qn) > _26‘8

k<—p k=p
for all n > ny.

Combining this and the above estimate we see that far alhg

r—1 p—1
A A o .
J(gn) = —2Ce+ > ar(gn) —2Ce > > ar(qo) — 4~ 4Ce
k=—p k=—p
o
Zco+ 2

by (13) and our choice of. This contradicts the fact that(g,) tends to
co, and the proof is complete.

The orbitsgg andg; satisfy the following monotonicity property.
COROLLARY 3.2.-— Letgg € Iy andg; € I'; be the solutions found in
TheorenB.1. Then

go(t) < qo(t+21) and ¢q1(t) >q1(t+1) forallreR.
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Proof. —We prove the inequality concerning. To this aim, assume
that at someg € R there resultsyo(zg) > go(to + 1). Then picks, > 1y
where go(t1) < go(t1 + 1), which exists sinceyy(+00) = u;. Defining
g() = qgo(t + 1) — go(¢) On [1g, 11], We see thag must vanish at some
pointt* € [1q, 11]. Setting

— .« [ qo(®) if £ <1,
q(t)_{%(l—i-l) if £ > 1,

it is easy to check thaf (g) < J(go), Since we have taken out gf a
1-periodic function away from. This is impossible, and the inequality
is proved. O

Remark3.3. — We observe that the solutions found by means of
the preceding Theorem also verify natural boundary conditions on the
derivatives. Stating it only fogo, we have

im (go(1) = dio(1)) = 1M (go(r) —ia(1)) =0.

This can be easily proved exactly like in [8], Corollary 3.10.

Remark 3.4. — The sign ofy andc; is unknown; however we can say
thatco+ c¢1 > 0. To see this let* be a point whergg(t*) = ¢1(+*) (which
exists because of the boundary conditions) and let

o S o) i<t o Ja@@ i<,
7 (t)_{CIl(t) if e >, 2N TO=0000) s

Then, as it is readily seen)(qo) + J(q1) = J(¢7) + J(¢™"), so that
co+c1=J(g")+ J(g") > 0 because of Proposition 2.11.

Remark3.5. — The fact that one betweep andc; may be negative
affects the semicontinuity properties &f Indeed, assume for instance
thatc; < 0, lets, be the largest time wheig(z,) = ¢1(r, — n) and set

- [qo() if t <1,
q"(t)_{ql(t—n) if t >1,.

Then it is easy to see thdt(g,) = cg + ¢1 + 0(1) asn — +oo and that
g» tends weakly t@yo in H} . Therefore

J(qo) = co > co + c1 =liminf J(g,),
n

and/J is not (sequentially) weakly lower semicontinuous.
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4. MULTIBUMP-TYPE AND CHAOTIC ORBITS

The construction of multibump and chaotic solutions for Eq. (1) is
based on a shadowing-like argument in the spirit of [18,8] and [1], where
it was carried out in the reversible case. It requires a suitable adaptation of
a nondegeneracy condition which has been introduced in [8] and that we
are now going to state. First of all we describe roughly what we mean by
multibump solutions (a precise definition can be found in the statement of
the theorems). We use this term to indicate solutions that, given a number
8 > 0, are alternately “closer thati to the periodic statesg andu; on
prescribed time intervals, and are asymptotigdor u, ast — +oo. We
consider as a “bump” here the change of state of an orbit (from close to
uo to close tou,, for example). The asymptotic behavior of a multibump
solutiong is obtained by imposing the desired valueg; ¢toco) in .

We now turn to the description of the nondegeneracy condition. That
such a condition is necessary to obtain a rich structure of solutions is
evident from the fact that no multibump solution is present in autonomous
scalar problems. This is of course false for autonomous systems; see,
e.g., [6] for such a case. This condition is therefore strictly related to
the explicit time dependence in the equation and replaces the classical
assumptions on the intersection of the stable and unstable manifolds of
uo andu, that are used in the perturbative approach (see for example [23,
3]). Roughly it says that there must not be too many heteroclinics between
uo andu,. To state it precisely, let

So=1{¢(0)/q € I'n, J(¢) =co} and

S1=1{q(0)/q € I, J(q) = c1}.
These are infinite subsets of the interyal (0), 11(0)) which accumulate
at its boundary points (to see this examine the sequeng@s and

g1(k) with k € Z); if the problem is autonomous, clearlyy = S; =

(u0(0), u1(0)).
The condition we require from now on is the following.

So # (u0(0),u1(0)) and  Si # (uo(0), u1(0)). ()

In Section 5 we analyze the relationship betwégnand the classical
conditions; for our present purposes we only make use of the following
important consequence 06f).

PROPOSITION 4.1. — If (%) holds, then for every§ > 0 there exist
3; €(0,6),i =0,...,3and two positive numbersd,, A; such that
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inf{J(¢)/q € I'n, (0) = uo(0) + o, or g(0) = u1(0) — &>}
>co+ A (14)

and
inf{J(¢)/q € I't, g(0) = u1(0) — &1, or ¢(0) = uo(0) + 3}
>c1+ Asq. (15)

We will use condition(x) in the sense given by the previous proposi-
tion, namely, there are points as close as we wisiyt@) and tou(0)
through which no minimizing heteroclinic can pass. The proof of Propo-
sition 4.1 can be found in [8] or [18] in the reversible case. Since the
argument used in those papers does not depend on reversibility it can be
repeated here without changes, and therefore we omit it.

We now proceed to the first step in the construction of multibump
solutions. To this end, we begin by fixing some constants.

DEFINITION 4.2. —We set
1 .
d= 5 [In(ul(l‘) — uo(1))
and we fix a positive numbérsuch that

§ < min(é, d, —
C+2C,
wherep, é, C, and¢ are defined in Proposition.5, 2.6and Lemma.13.

Let now § be as in the previous definition, taks,...,8; as in
Proposition 4.1, and let € N. We define the sets

Xo=1{q € H}, Nluo,uil/q(—m) < uo(—m) + 8
andq(m) > uy(m) — 82}
and
X1={q € H}.N[uo, u1l/q(—=m) > us(—m) — 8
andq (m) < ug(m) + 83}.

These sets depend am, a constant which will be appropriately fixed
later. For the moment we will agree thatis large enough so thaty and
X1 contain two heteroclinic solutiong € 'y andg; € I'; respectively.
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The multibump solutions we are interested in will be found among
orbits which “look like” gluing of translates of functions Ky and X;.
The argument will once again be minimization.bbver suitable sets of
functions. The main problem is to show that the minimizers are free from
the constraint imposed as Ky and X;.

Remark4.3. — Some notation conventions are in order. From now on
we will agree that when we labe| A, u, ¢, I, X and x* with an index,
that index is considered mod 2, so that for examples ¢q if i is even,
andg, otherwise. This will simplify some formulas.

Keeping this in mind we now define some subsetngL N [ug, u1]
which we will need to construct multibump solutions.

DEFINITION 4.4.— Let P = (p;)icz C Z be a bi-infinite set of
integers such thap;.1 — p; > 4m for all i. We set, for every pair of
integers; <k,

Ir'(,k)= {q S H,}mﬂ (1o, u1l/q(—o0) :u.j,C](+OO) = Upyi1,
g +p)eX;Vi=j,....k}
and
c(j, k) At (17)

Remark4.5. — From now on we consider the setas fixed. Notice
that functions inI"(j, k) satisfy “natural” boundary conditions with
respect to the constraints. For instance, i§ even, then any € I"(j, k)
is close toug att = p; —m and it is required to be asymptotic 4@ at
—oo. Notice also the particular caséj, j) = c; (recall Remark 4.3).

The first step in the construction of multibump solution is to show that
the levelsc(j, k) are attained.

PROPOSITION 4.6. — Let P C Z be as above and lgt< k be integers.
Then there existg;, € I'(j, k) such that/ (g;x) = c(j, k).

Proof. —It is a variant of the proof of Theorem 3.1. |f =k, the
statement follows trivially from the fact that in this case the minimizers
arego andgq;. Let thereforej < k and consider a minimizing sequence
¢, € T'(j, k) for J. Then, by Proposition 2.12, is bounded inH}? , and

therefore it possesses a subsequence, still deggteach that

¢. — qjx Weakly in H! and strongly inL{° .
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Clearly g, verifies the constraints gt; £ m for all i = j,..., k. To
prove thatg . € I"(j, k) we must show thag;; satisfies the appropriate
conditions at+oo. Before doing this we notice that as in the proof
of Theorem 3.1,J(¢) is finite, so that by Proposition 2.10, the limits
q(F+o00) exist and are iri/. We carry out the details only atoo, and
assuming that is odd (the other cases being similar) klfs odd, then
gk (px +m) <uo(px + m) + 83 and we must check that (+o00) = uo.
Arguing indirectly, we assume that, (+-00) = u; and we show that this
leads to a contradiction.

Choose an intege¥ > p; + m so that

d(CI,jk‘[pHm’N],u) > d,

which is possible sincg;,(4+00) = u1. This inequality also holds fay,,
as soon as is large enough, because bOf;. convergence. Moreover,
sinceq, € I'(j, k), there resultsy, (p) < uo(p) + 83 for all integersp
larger than some,,. This means thaly, (p) — ¢,(px + m)| < 83 for all
large p, so that the application of Proposition 2.6¢p on all intervals
[px +m, p]yields

> ai(gy) = p(d) — Cés.

iZ2pr+m
Recalling Lemma 2.16 we evaluate,ias> +oo,

J(X(;r(pk +m)CIn) < Z a; (Qn) + C183

i<pr+m

=J(g)— >, ai(g)+ C13

iZpkt+m
< J(gn) — p(d) + (C + C1)83
=c(j, k) — p(d) + (C + C1)85+ 0(1).

Sincexg (pr +m)g, € I'(j, k), this contradicts the definition ef(j, k)
(recall Definition 4.2); thereforg ; (+-00) = uo.

To complete the proof we should also check thaj ;) = c(j, k); this
can be done exactly as in the proof of Theorem 3.1, and we do not repeat
the details. O

The functionsg j; found in the previous proposition do not, in general,
solve Eq. (1). Thisis due to the constrains imposed at the ppjdig:. In
the remaining part of this section we prove that by appropriately choosing
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m, the minimizersg; are free from constraints, so that they solve the
problem in a classical sense. In order to do this, and also in order to
obtain estimates independent of the number of pgintsome care must

be taken.

DEFINITION 4.7.— We choose a positive < ¢ (¢ is defined in
Lemma2.13)such that

min(Ao, A1)

E< —,

4C, (18)

and we require from now on that the numhemsed to define® is large
enough so that the following inequalities hold

qo(2m) > u1(2m) — 81 and gqo(—2m) < uo(—2m) + 83, (19)

q1(2m) <uo(2m)+38y and gi1(—2m) > us(—2m) — 8, (20)
and
"> 2C18.
p(e)
The following proposition establishes a key inequality for the rest of

the argument. Here we only need thais chosen so that (19) and (20)
hold.

PROPOSITION 4.8. — Let j <1 < k be integers. Then

(21)

c(j,k)y<c(j,l)+cl+1k).

Proof. —~We only prove the proposition fot even, the other case
being analogous. Let;; andg;;1, be minimizers of/ overI"(j, /) and
I (1 + 1, k) respectively. We claim that it is not restrictive to assume that

qji(pryr —m) > uy(pry1 —m) — 8y, (22)

Gi+1.x(pr +m) > u1(p; +m) — 82, (23)

in the sense that we can choose minimizgfsandg; ;1 x satisfying these
requirements. Indeed, if= j, this is certainly true by taking ag; the
functiongo(- — p;): recalling the monotonicity property of Corollary 3.2,
we obtain
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qj1(pi+1 —m) =qo(pir1—m — p;) > qo(2m) > u1(2m) — &1
=ui(piyr—m) — 8

by our choice of the points i® and (19). In the same way one can check
(23) whenl = k — 1. Proving (22) when > j is more delicate.

Let g = go(- — p;). Without being too precise, we note thais close
toug at p;_1 — m and verifiesj (p;;1 — m) > u1(p;.1 —m) — 81. On the
other handg; is close tou; at p;_1 — m; if (22) is violated, then we see
thatg andg;; must cross at some € [p;_1 —m, p;1 —m]. Set

tony L Jap) if <, o [q)  ifr<r,
9 (”—{qu) s A CO=100) i

and observe that™ € I'(j, ) and satisfies (22), angl™ € I'5. Now, as it
is easily seen,

J@H <T@ +I(q) —co=J(gj)+ I (@) —co=c(j, 1),

so that we can replacg; by ¢* and get (22). In a similar way one can
prove (23) wher < k — 1.

To complete the proof we usg; andg; 1 to estimatec(j, k). Using
arguments similar to those in the first part of the proof, it is not difficult
to show thaly;; andg;;1x must cross at some € [p; — m, pj41 + m].
Setting this time

o Jau@) if r <%, o J k@) if <,
1 (t)_{511+l,k(t) ifr>1, and q" () = qji(1) if ¢ > ¥,

we see thayy~ € I'(j, k) (because it satisfies the right constraints at
pr +m and p;.1 — m by (22), (23)) and thag™(+o0) = u1, so that
J(g™*) > 0 by Proposition 2.11. From this we obtain

J(q)<J@)+J@q")=J(q)+ (@0 =c(, D) +cl+1k),

from which the desired inequality follows at oncen

We finally show that the minimizerg;;, found by Proposition 4.6
provide the solutions we seek. The last step consists in showing that the
functionsg ;. are “free from constraints”.

The next proposition completes therefore the proof of the existence of
multibump solutions.
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PROPOSITION 4.9. — Assume(x) holds and letm be fixed as in
Definition4.7. For all integersj <k, letg, € I"(j, k) be the minimizer
found in Propositior4.6. Theryg, is free from constraints, in the sense
that

uo(t) < qr(t) <us(tr) forallreR, (24)

qjk(pi —m) <uo(p; —m)+38y and
qjk(pi +m) > u1(p; +m) — 82, ieven

qjx(pi —m) > u(p; —m) —38; and
qjk(pi +m) <uo(p; +m)+ 83, iodd
forall j <i <k. In particular, thereforeg, solves Eq(1).

Proof. —The strict inequality (24) is a consequence of the minimizing
properties ofig, #1 andg j; we omit its proof, as we did in Theorem 3.1,
since the details can be found in [8]. To prove the other inequalities we
setg = g j; for notational convenience. We first show that

pi+1—m—1 .
> an(g)<2Ci8 fori=j,... k-1 (25)

h=pi+m

To see this, letw; be a function that connects(p; + m) to u; .1 (p; +
m + 1) in the spirit of Lemma 2.13, and likewise, let, be a function
that connect®; 1(p;11 —m — 1) to g(p; 1 — m). Setting

U=9q U1 in [pi+m+1’pi+l_m_1]!

{wl in[p; +m, p; +m +1],
wy  iN[piyr—m—1, pip1 —ml],

we see that
pi+1—m—1 piy1—m—1 R
S oa@ < Y an(i) <2048,
h=p;+m h=p;+m

becausey is a minimizer; this proves (25).
Letnowl; = [p;, +m, p;y1—m]. We prove that there exists € I; N Z
such that

lg(n) —uis1(n)| <e foralli=j,....,k—1, (26)
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where ¢ is the constant introduced in Definition 4.7. First of all, we
observe thay (1) # %(ul(t) + ug(t)) for all r € I;. Indeed, if this is not

the case, theﬁ(qm,L{) > d, and, by Proposition 2.6,

pi+1—m—1

> an(q) = pd) — Clg(pira—m) —q(pi +m)| = p(d) — C8,
h=p;+m

contradicting, via (25), the choice 8fmade in (16).
Keeping in mind the inequalities thatsatisfies at the endpoints 6f,
we therefore see that

lg(t) —u;(t)| > %(ul(t) —uo(r)) forallzelr,

so thatd (g, U) = |lg — uis1llz(;,) and
dist(q(n), U(n)) = |q(n) —uiz1(n)| forallne;NZ.

Assume now that (26) is violated, so that for sog i < k — 1 there
results

dist(g(n), U(n)) =|q(n) —u;a(n)| > forallne ;,NZ. (27)

Letg = x;;1(pi +m) o X,.il(p,»H — m)q restricted to the intervdlp; +
m—1, piya—m+1]; theng(pi + m — 1) = G(piy1 —m+ 1), and, by
(27),

dist(g(n),U(n)) >¢ forallne;NZ.
Applying Proposition 2.5 tg yields

pi+1—m—1 piy1—m R
Yo ag)= D> an(@) —2C1
h=p;+m h=p;j+m—1

2 (piv1— pi —2m +2)p(e) — 2C10,
which, taken (25) into account, violates the choicenoimade in (21)
(recall also thatp; 1 — p; > 4m). We have thus proved the existence of
the pointsu; satisfying (26).
To complete the proof we first argue in the case¢ j, k. We let
qé =X (ni-1)q, ¢» = x;11(ni)g andg. = x; (ni_1) o x4 (n;)q. Notice
that

g el(,i—-1, g eli+1k and g.eTl.
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Assume now thag, and therefore, violates one of the inequalities in the
statement of the proposition. Then, by Proposition 4., > ¢; + A;.
Hence, by Proposition 4.8,

¢ +A;<J(q)<J(q) —J(q)— J(g)+4Cie
<c(j, k) —c(j,i—1) —c(i+1k)+4Cse
<c(i,i)+4C1e =c¢; +4C1e,

which contradicts the choice efin (18).

Finally, if i = j, one simply chooses a point_; so close to—oo
that |g(n;_1) —u;(n;_1)| < & (this point exists becausg(—oo) = u;)
and repeats the above argument with the only change that/iigw> 0
becausey; (00) = u ;. Obvious modifications wheh= k. The proof is
complete. O

We summarize the results obtained so far in a single theorem. In its
statement recall the “mod 2” convention (Remark 4.3).

THEOREM 4.10. — Assume:g andu; are consecutive minimizers and
let (%) hold. Then for every > 0 small enough there exists = m(5) € N
such that for every sequen¢g;);.z C Z such thatp;,, — p; > 4m and
for every j, k € Z with j <k, there exists a classical solutian of (1)
satisfying

uo(t) < q(t) <ui(r)y forallreR,

q(—00) =uj, q(+00) =upy1
and, foralli = j, ..., k,
\q(pi —m) —u;(pi —m)| <8 and
\q(pi +m) —uipa(pi +m)| <6. (28)

Remark4.11. — The theorem establishes the existence of multibump
solutions. Its statement could be made more precise, in the spirit of
the shadowing lemma, in the sense that solutipnsould be found
satisfying the inequalitylg(r) — u;11(¢)] < § in the whole intervals
[p; + m, piy1 — m]; to achieve this one must only choose a bit more
carefully the various constants used in the proof. We won't detail this
point.

A great deal of technicalities in the proof of Theorem 4.10 have
been introduced in order to obtain estimates independent of the number
of bumps. This allows us, with a classical argument, to establish the
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existence of solutions having infinitely many bumps, which give further
evidence of the chaotic nature of the dynamics associated to Eq. (1).

THEOREM 4.12. — Assume:g andu; are consecutive minimizers and
let (%) hold. Then for every > 0 small enough there exists = m(5) € N
such that for every sequen¢g;);cz C Z such thatp, ., — p; > 4m there
exists a classical solutioq of (1) satisfying

uo(t) < q(t) <ui(r) forallreR,

and

\q(pi —m) —u;(pi —m)| <8 and

\q(pi +m) —uia(pi +m)| <8 (29)
foralli e Z.

Proof. —The argument is classical. We repeat it here for completeness.
For everyN € N, let gy be a multibump solution i (—N, N); this
is found by means of Theorem 4.10. Singg is bounded InL*°(R)
independently ofN, and since eaclyy solves (1), we see thajy
is uniformly bounded inC?(R; R). Therefore, by the Ascoli-Arzela
Theorem, there is a subsequence pfconvergent irC} _(R; R) to some
g. The fact that everyy solves (1) shows thaj solves (1) as well.
Properties (29) are clearly preserved by local uniform convergence, so
thatg is the required solution. O

The previous theorem yields the existence of an uncountable number
of bounded solutions to (1). If the poings are chosen in a nonperiodic
fashion, then these solutions will not be periodic. Therefore we obtain
as a by-product the existence of an uncountable number of bounded
nonperiodic orbits. On the other hand, choosing the pgints a periodic
way produces, with a slight modification of our arguments, infinitely
many periodic solutions of (1) with arbitrarily large periods. These
solutions “shadow” multibump homoclinics in each period (see [11] for
a related result).

5. COMPARISON WITH THE CLASSICAL CONDITIONS

All the results obtained in the previous part of the paper have been
proved for consecutive minimizers and under assumption We now
wish to relate these assumptions with some classical conditions used in
the geometric and perturbative approach to homoclinics.
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In order to do this we place ourselves in a setting where the classical
conditions can be stated, namely we assume that the periodic minimizers
uo andu, are hyperbolic. In this context (as it has been known since the
time of Poincaré) the standard assumption that guarantees the existence
of chaotic features in the dynamics associated to (1) is the transversality
of the intersection of the stable and unstable manifolds relatiug &nd
u1. Condition(x) is strictly related to the intersection properties of these
manifolds. However, as it can be understood from the autonomous case, it
is only a “branch” of these manifolds that one needs to take into account;
recall also that we are not assuming thatis a space translate ab,
so that we are not in a position to pass to the quotient in the phase plane.
Moreover, we have always worked in the regiag, u1], and therefore we
are only interested in what takes place in that region. For these purposes
we now define stable and unstable manifoldsugfand 4 relative to
[uo, ual.

Let ¢ : R? - R? be the time-one map associated to Eq. (1), namely

i+ W (t,u) =h(t),
¢ (x,y) = (u(1),u(1)) ifandonly if { u(0) =x,
1w(0) = y.

The periodic minimizerao andu; give rise to fixed points op.
Recall that in presence of hyperbolicity the orhitspossess global
stable and unstable manifolds defined,ifer 0, 1, as

W) =J¢" (W) and W) =[] ¢"(Wi(u)).

n<0 n=>0

Roughly speaking, we now want to select from these manifolds the
branches such that (denoti®j the projection onto the space variable),
PyW*(u;) C [ug(0), u1(0)], and likewise forw*. This corresponds, in

the unforced pendulum equation, to selecting the separatrices lying in the
strip[—m, 7] x R.

To achieve this goal we first need a simple preliminary lemma. It is
perhaps well known, but we prove it anyway due to the lack of a precise
reference. We carry out the computations only ifgr everything being
symmetric when dealing with; .

Recall thatE, is the space off{}},) n-periodic functions, and set

n-2dt_ nW,,t 2dt
ri(n) = inf Jo 0 fg (t, up)v '
veE, \{0} fo v2dt
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Since ug minimizes [y L(u)dt over E, (Lemma 2.2), we know that
A1(n) > 0 for all n; moreover, sinceg is now supposed to be hyperbolic,
A1:=A1(1) > 0 (a proof of this can be found in [2]).

LEMMA 5.1. - For all n € N there results\;(n) = A1.

Proof. —Let ¢ € E, be a positive eigenfunction corresponding to
A1(n). Theng solves

—§ — W' (t,ug)p = A (n)e; (30)

notice that, sincéV” (-, ug(+)) is 1-periodic, the functiom(- + 1) solves

(30) as well, and therefore als®t) := ¢(t) — ¢(z + 1) is a solution. Now

z has zero mean value, so that it cannot solve (30) unless it is identically
zero. This means that is 1-periodic, and thereforg;(n) must be an
eigenvalue of the 1-periodic problem. Moreover, sippde positive i1 (n)

must be the first eigenvalue, namelyn) =1;. O

The previous lemma provides a minimum of convexity necessary to
prove a uniqueness result for solutions closedo

PrRoOPOSITION 5.2. — There existg > 0 such that for every € (0, o)
there existg > 0 with the property that for alk € [ug(0), ug(0) + €], the
problem

g+ Wi (t,q)=h() in [0, +00),
q(0) =x, g(+00)=ug (31)
uo(t) < q(t) <up(t)+48 in[0,+00),

has a unique classical solution.

Proof. —-The existence ofg follows with slight modifications of
arguments used in the first part of the paper. Indeed it is enough to
minimize the functionall * (¢) = >_k>0ax(q) over the set

I ={q € Hj,.(R": R) N[uo. u11/q(0) = x, q(+00) = uo}.

This yields a functiory such that/ *(g) < +00, ¢(0) = x andg(+o0) €
U. In order to prove thag (4-00) = ug and the remaining requirements, it
is enough to show thaty () < g(t) < ug(r) + 6 for all t > 0. But this also
follows easily from arguments already used in the preceding sections, and
we do not give the details of the computations.

The proof of uniqueness is very similar to the proof of Theorem 5.4 in
[8]; we will therefore be rather sketchy at some points. Let 0 be the
eigenvalue defined above, andiet 0 be such that
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A
W/(t.a) = W'a.b)| <5
forall+ > 0 and alla, b such thafa — b| < n;
this choice is possible due to the uniform continuity Wf'. Now if

uniqueness is violated, fer = 7 there exists < o, a smallx and two
solutions of (31)g; andg,. Lettingy = ¢, — g1, we see thaty solves

4+ W(t,q1+v)—Wi(t,q1)=0 forr>0 (32)

and satisfies/ (0) = 0, ¢ (+00) = 0 and||y/|| Lo r+) < .
A standard application of the mean value Theorem (see [8]) shows that
(32) can be written

U+ Wt ug)y +at)y =0, (33)

wherela(t)| = |W'(t, g1 + 0:; ) — W/ (t, ug)| < *—21 for all + > 0, since
lg1+ 0,9 — uol <26 <.
For everyn € N define nowy,, : [0,n + 1] — R as

_ w(t) if r e [0, n]1
V’n(t)—{(nJrl—t)x/f(n) if 1 €ln,n+1

theny,(n + 1) = ¥,,(0) = 0 and therefore, by Lemma 5.1,

n+1 n+1 n+1

[izai— [ wieuzazs [ viar
0 0 0

Recalling the definition ofy,,, we see that the preceding inequality
implies that

n n

/Wdt—/ W”(t,uo)wzdt>AI/¢2dt+o(1) asn — co. (34)
0 0 0

On the other hand, multiplying (33) by and integrating ovef0, n]
yields, ast — oo,

n

/ J2di / W (t, o)y di = /'a(thw(nw(n)
0 0

0
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)\‘ n
< El/xlfzdt +o(D).
0

Comparing this and (34) shows thatras> oo,
Al
5 [war<ow,
0

which proves thaty =0, namely thatj; =¢,. O

We are now in a position to define stable and unstable manifolds
relative to[ug, u1].

Let ¢ > 0 be given by Proposition 5.2 and, for alke [uq(0), ug(0) +
¢], denote by, the unique solution to (31) also given by Proposition 5.2.
We define the local stable manifold @f relative to[ug, u1] as

Wi, (uo) = {(x, 4:(0)) € R?/x € [ug(0), uo(0) + 1}
and the stable manifold af, relative to[ug, 1] as

W (o) = | ¢" (Wi, (o).

n<0

In a similar way (using obvious variants of Proposition 5.2) one can
define the unstable manifold af, relative to[ug, u1] and the analogous
manifoldsW* («;) andW"(u1) corresponding ta;.

We now relate our assumptions with some classical conditions. In pres-
ence of hyperbolic periodic orbits it is well known that multibump solu-
tions and some features of chaotic dynamics are present provided the sta-
ble and unstable manifolds of the periodic orbits intersect transversally.
We show that conditiorix) is weaker than the transversality assumption.

THEOREM 5.3. — Let ug and u; be consecutive hyperbolic minimiz-
ers. Then

So # (u0(0), u1(0)) and Sy # (uo(0), u1(0)) (%)
if and only if

W (ug) #W*(u1) and W*(uo) # W’ (ua).
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Proof. —If (%) holds, then by Theorem 4.10 we can find a solution
q asymptotic toup both at—oco and at+oco. Then it is readily seen
that (¢(0), ¢(0)) € W*(ug); however, sinceg(—oo) = uq, there also
results that(g(0), ¢(0)) ¢ W"(u1). In the same way one proves that
(g(0), ¢(0)) belongs toW"(ug) but not to W*(u1). Working with a
solution doubly asymptotic t@4, the remaining relations can be proved
similarly. Therefore W* (ug) # W"(u1) and W"(ug) # W*(u1) both
hold.

Conversely, assume for example that there is a geint) € W* (ug) \
W'"(uq); this means that, for a convenient > 0, the point(x, y) =
¢ (x, y) belongs toWW; .(ug). We now prove that ¢ S;. Suppose this
is not the case. Then there exists a heteroclinic minimjzerl, such
that ¢(0) = x; by choosing a largem, if necessary, we can make sure
that ¢ also verifies, for allk > 0, ug(r) < g(¢) < uo(t) + 8 (this is the
guantity provided by Proposition 5.2). Then by unigueness it must be
¢(0) = y; this means thatx, y), and thereforéx, y) belongs toV" (u4),
sinceq (—o0) = u1, which contradicts the choice 6f, y). Therefore we
must havex ¢ S;. The other case is handled in a similar wayn

Remark5.4. — Theorem 5.3 shows that working with consecutive
minimizers and assuming) is in some sense more natural than using the
classical conditions. First of all in presence of hyperboli¢ityis weaker
than the usual transversality assumption. More@wgican be used, like
we did, also without hyperbolicity, when the classical condition cannot
be stated. Finally we observe that the variational characterization of the
numbersco andc; which is used to introducéx) shows that the validity
of that condition is stable under small perturbations. This allows one to
say, for example, that the set bfs for which (%) holds is open in the
space of continuous, zero mean valued periodic functions.

Remark5.5. — As a final remark we observe that a family of multi-
bump solutions like those provided by Theorem 4.10 ensures the positiv-
ity of the topological entropy for the mafp. We do not prove this state-
ment because its proof is essentially the same as those in [20] and [7].
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