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INTRODUCTION

Let f be a positive smooth function defined in then-dimensional
sphereSn and letX0 :Sn → Rn+1 be a parametrization of a smooth,
uniformly convex hypersurfaceM0. In this paper we are concerned with
the motion of the convex hypersurfacesM(t) satisfying the equation

∂X

∂t
=− log

K(ν)

f (ν)
ν, (0.1)

with X(p,0) = X0(p). Here for eacht X(·, t) parametrizesM(t),
K(ν(p, t)) is the Gauss curvature ofM(t) andν(p, t) is the unit outer
normal atX(p, t). Notice that by strict convexity the Gauss curvature
can be regarded as a function of the normal. Recall that a uniformly
convex hypersurface is a hypersurface with positive Gaussian curvature
and hence it is stricly convex.

Our study on (0.1) is motivated by the search for a variational proof
of the classical Minkowski problem in the smooth category. Recall that
for a convex hypersurface the inverse of its Gauss map induces a Borel
measure on the unit sphere called the area measure of the hypersurface.
Naturally one asks when a given Borel measure onSn is the area measure
of some convex hypersurface. This problem was formulated and solved
by Minkowski [13] for polytopes in 1897 by a variational argument. Later
he extended his result to cover all Borel measures which are of the form
1/f dσ wheref is continuous anddσ is the standard Lebsegue measure
on Sn [14]. The regularity of the convex hypersurface realizing the area
measure was not considered by Minkowski. Thus it led to the Minkowski
problem in the smooth category, namely, when is a positive, smooth
function in Sn the Gauss curvature of a smooth convex hypersurface?
There are two approaches for this problem. On one hand, the method of
continuity was used by Lewy [12], Miranda [15], Nirenberg [16], and
Cheng and Yau [3]. On the other hand, a regularity theory was developed
for the generalized solution (see Pogorelov [17]).

Let M be a convex hypersurface andV (M) its enclosed volume. We
have

V (M)= 1

n+ 1

∫
Sn

H(x)

K(x)
dσ (x),

where H and K are respectively the support function and Gauss
curvature ofM . When expressed in the smooth category, Minkowski’s
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original proof is to show that the solution is the convex hypersurface
which minimizes the functional

∫
H(x)/f (x) dσ (x) over all convex

hypersurfaces of the same enclosed volume. In view of this we may
consider the functional

J (M)=−V (M)+
∫
Sn

H

f
dσ.

It is not hard to see that (0.1) is a negative gradient flow forJ . By a
careful study of this flow, we shall give another proof of the Minkowski
problem in the smooth category.

THEOREM A. – Let X0 be a smooth uniformly convex hypersurface.
For θ > 0, consider(0.1)subject to

X(·,0)= θX0. (0.2)

There existsθ∗ > 0 such that the flowX(·, t) beginning atθ∗X0 tends to
a smooth uniformly convex hypersurfaceX∗ in the sense that

X(·, t)− ξ t→X∗,

smoothly ast→∞ whereξ is uniquely determined by∫
Sn

xi

eξ ·xf (x)
dσ (x)= 0, i = 1, . . . , n+ 1.

Furthermore, the Gauss curvature ofX∗, when regarded as a function of
the normal, is equal toeξ ·xf (x).

THEOREM B. – Let θ∗ be as in TheoremA. If θ ∈ (0, θ∗), the solution
of (0.1), (0.2)shrinks to a point in finite time. Ifθ ∈ (θ∗,∞), the solution
expands to infinity ast goes to infinity. In the latter case, the hypersurface
X(·, t)/r(t) wherer(t) is the inner radius ofX(·, t) converges to a unit
sphere uniformly.

As a direct consequence of Theorem A we have

COROLLARY (Minkowski problem). –A positive, smooth functionf
in Sn is the Gauss curvature of a uniformly convex hypersurface if and
only if it satisfies∫

Sn

xi

f (x)
dσ (x)= 0, i = 1, . . . , n+ 1.
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Theorems A and B will be proved in the following sections by an
approach similar to that used in [4], namely, by introducing the support
function ofX(·, t) and reducing (0.1) to a single parabolic equation of
Monge–Ampère type for its support function. In Section 1 we collect
some facts on the support function of a convex hypersurface. In Section 2
a priori estimates for the support function, in particular upper and lower
bounds for the second derivatives, will be derived. They are used in
Section 3 to establish Theorems A and B.

Motion of convex hypersurfaces driven by functions of Gauss curva-
ture of the form

∂X

∂t
=Φ(ν,K)ν

has been studied by several authors including Andrews [1], Chou [4],
Chow [7], Frey [8], Gerhardt [10] and Urbas [18]. WhenΦ = −Kσ ,
σ > 0, it was proved in [7] thatM(t) exists and shrinks to a point in
finite time. Moreover, it becomes asymptotically round whenσ is equal
to 1/n. In [1] it was shown thatM(t) becomes an asymptotic ellipsoid
whenσ is equal to 1/(n + 2). Expanding flows rather than contracting
ones were studied in [10] and [18]. For a class of curvature functions
including Φ = K−1/n it was proved thatM(t) expands to infinity like
a sphere in infinite time. In all these resultsΦ is independent ofν. For
anisotropic flows very little is known. We mention the works Andrew [2],
Chou and Zhu [6], and Gage and Li [9].

1. THE SUPPORT FUNCTION

In this section we collect some basic facts concerning a convex
hypersurface and its support function. Details can be found in Cheng and
Yau [3] and Pogorelov [17].

Let M be a closed convex hypersurface inRn+1. Its support function
H is defined onSn by

H(x)= sup{x · p: p ∈M},

wherex ·p is the inner product inRn+1. We extendH to a homogenuous
function of degree 1 inRn+1. SoH is convex and satisfies

sup
Sn
|∇H |6 sup

Sn
|H |, (1.1)
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since it is the supremum of linear functions. IfM is strictly convex, that
is, for eachx in Sn there is a unique pointp on M whose unit outer
normal isx, H is differentiable atx and

pi = ∂H
∂xi

, i = 1, . . . , n+ 1.

Thus the mapx 7→ p(x) gives a parametrization ofM by its normal. In
fact, it is nothing but the inverse of the Gauss map.

Geometric quantities ofM can now be expressed throughH . Let
e1, . . . , en be an orthonormal frame fields onSn. By a direct computation
one sees that the principal radii of curvature atp(x) are precisely the
eigenvalues of the matrix(∇β∇αH + Hδαβ),α,β=1,...,n, where∇α is the
covariant differentiation with respect toeα . In particular, the Gauss
curvature atp(x) is given by

K(x)= 1/det(∇β∇αH +Hδαβ). (1.2)

WhenH is viewed as a homogeneous function overRn+1, the principal
radii of curvature ofM are also equal to the non-zero eigenvalues of the
Hessian matrix(∂2H/∂xi∂xj )i,j=1,...,n+1.

Now we can reduce the problem (0.1), (0.2) to an initial value problem
for the support function. In fact, letH(x, t) be the support function of
M(t). By definition we have

x · ∂X
∂t

(
p(x), t

)=−∂H
∂t
(x, t).

From (0.1) and (0.2) it follows thatH satisfies

∂H

∂t
= log det(∇β∇αH +Hδαβ)f, (1.3)

H(x,0)= θH0(x), (1.4)

whereH0 is the support function forM0. Conversely, ifX(·, t) is a family
of convex hypersurfaces determined by a solution of (1.3) and (1.4), it is
not hard to see thatX(·, t) does solve (0.1) and (0.2). See, for instance,
[4] for details. Notice from (1.3)H(x, t) must determine a uniformly
convex hypersurface.

Eq. (1.3) has a variational structure. Consider the enclosed volume of
a uniformly convex hypersurfaceM ,
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V (M)= 1

n+ 1

∫
Sn

H(x)

K(x)
dσ (x)

= 1

n+ 1

∫
Sn

H det(∇β∇αH +Hδαβ) dσ.

RegardingV as a functional on support functions, we find that the first
variation ofV is

δV (H)h=
∫
Sn

hdet(∇β∇αH +Hδαβ) dσ,

whereh is any smooth function. Let’s consider the functionalJ defined
on all uniformly convex hypersurfaces

J (H)=−V (H)+
∫
Sn

H

f
dσ,

wheref is positive. WhenH is a solution of (1.3),

d

dt
J
(
H(·, t))=−∫

Sn

[
det(∇β∇αH +Hδαβ)− 1

f

]
∂H

∂t
dσ

=−
∫
Sn

1

f

(
eHt − 1

)
Ht dσ

6 0. (1.5)

Hence (1.3) is a negative gradient flow forJ . (1.5) will be used in
the proof of Theorem A. This variational approach to the problem of
prescribed Gauss curvature was first adopted in Chou [5].

To obtain apriori estimates for the higher derivatives forH it is
convenient to express Eq. (1.3) locally in the Euclidean space. Thus let
u(y, t) be the restriction ofH(x, t) to the hypersurfacexn+1 =−1, i.e.,
u(y, t)=H(y,−1, t). Thenu is convex inRn and we have

det∇2u(y, t)= (1+ |y|2)− n+2
2 det(∇β∇αH +Hδαβ)(x, t)

and

∂u

∂t
(y, t)=

√
1+ |y|2∂H

∂t
(x, t)
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for x = (y,−1)/
√

1+ |y|2. Extendf to be a homogenuous function of
degree 0 inRn+1. We get

∂u

∂t
=
√

1+ |y|2 log det∇2u+ g(y), y ∈Rn, (1.6)

where

g(y)=
√

1+ |y|2
[
n+ 2

2
log
(
1+ |y|2)+ logf (y,−1)

]
.

2. A PRIORI ESTIMATION

First of all we note that the uniqueness of solution to (1.3), (1.4)
follows from the following comparison principle which is a direct
consequence of the maximum principle.

LEMMA 2.1. –For i = 1,2, let fi be two positiveC2-functions onSn

andHi C2,1-solutions of

∂H

∂t
= log det(∇β∇α +Hδαβ)fi.

Suppose thatH1(x,0)6 H2(x,0) andf1(x) 6 f2(x) on Sn. ThenH16
H2 for all t > 0 andH1<H2 unlessH1≡H2.

In the following we shall always assumeH ∈ C4,2(Sn × [0, T ]) is a
solution of (1.3), (1.4). LetR(t) andr(t) be the outer and inner radii of
the hypersurfaceX(·, t) determined byH(x, t) respectively. We set

R0= sup
{
R(t): t ∈ [0, T ]}

and

r0= inf
{
r(t): t ∈ [0, T ]}.

We shall estimate the principal radii of curvatures ofX(·, t) from both
side in terms ofr−1

0 , R0, and initial data.

LEMMA 2.2. –Letr andR be the inner and outer radii of a uniformly
convex hypersurfaceX respectively. Then there exists a dimensional
constantC such that

R2

r
6C sup

{
R(x, ξ): x, ξ ∈ Sn},
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whereR(x, ξ) is the principal radius of curvature ofX at the point with
normalx and along the directionξ .

Proof. –For any givent > 0, let

h= inf
{
H(x)+H(−x): x ∈ Sn}.

ThenX is pinched between two parallel hyperplanes with distanceh.
Suppose the infimum is attained atx = (1,0, . . . ,0). By convexity we
can choose a direction perpendicular to thex1-axis, say, thex2-axis such
that

H(0,1,0, . . . ,0)+H(0,−1,0, . . . ,0)> 1

2
R.

LetF be the projection ofX on the planex3= · · · = xn+1= 0. ThenF is
a convex set and its diameter is larger than1

2R. By a proper choice of the
origin we may assumeF is contained in{−h < x1 < h} and {0,±1

8R}
belongs toF . By projection we see that the supremum of the principal
radii of curvatures of the boundary ofF cannot exceed that ofX.

LetE be the ellipse given by

x2
1

b2
+ x2

2

(R/16)2
= 1

where b is chosen so thatE ⊂ F and ∂E ∩ ∂F is non-empty. Then
h/4 6 b 6 h/2 providedR � r . For any (x̄1, x̄2) ∈ ∂E ∩ ∂F , since
(0,±1

8R) ∈ F , we have |x̄1| > b/2. Hence |x̄2| 6
√

3R/32. Simple
computation shows that the principal radius of curvature of the boundary
of F at (x̄1, x̄2) is larger thanR2/83b. Hence by noticingb6 r we obtain

R2

r
6 CR

2

b
6C sup

x,ξ

R(x, ξ). 2
LEMMA 2.3. –Suppose thata(t), b(t) ∈ C1([0, T ]) and a(t) < b(t)

for all t . Then there existsh(t) ∈ C0,1([0, T ]) such that
(1) a(t)− 2M 6 h(t)6 b(t)+ 2M ;
(2) sup{ |h(t1)−h(t2)||t1−t2| : t1, t2 ∈ [0, T ]}6 2max{supt b

′(t),supt (−a′(t))},
whereM = supt (b(t)− a(t)).

Proof. –We defineh(t) step by step. Lett0 = 0, andh0 = (a(0) +
b(0))/2. Forj > 1, let
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tj = sup
{
τ ∈ (tj−1, T ): a(t)> hj−1−M, b(t)6 hj−1+M,

∀t ∈ (tj−1, τ )
}
,

hj = 1

2

(
a(tj )+ b(tj )),

and

h(t)= hj−1+ hj − hj−1

tj − tj−1
(t − tj−1) for t ∈ (tj−1, tj ).

Thenh(t) is the desired function.2
Now we give an upper estimate for the principal radii of curvature.

LEMMA 2.4. –For any γ ∈ (1,2] there exists a constantCγ , which
may depend on initial data, such that

sup
{
Hξξ(x, t): ξ tangential toSn

}
6 Cγ

(
1+Dγ

)
,

whereD = sup{d(t): t ∈ [0, T ]} andd(t) is the diameter ofX(·, t).
Proof. –Applying Lemma 2.3 to the functions−H(−ei, t) and

H(ei, t) where±ei are the intersection points ofSn with the xi-axis,
i = 1, . . . , n+ 1, we obtainpi(t) so that

−H(−ei, t)− 2D 6 pi(t)6H(ei, t)+ 2D

and

sup
{ |pi(t1)− pi(t2)|

|t1− t2| : t1, t2 ∈ [0, T ]
}

6 2sup
{
Ht(x, t): (x, t) ∈ Sn × [0, T ]}. (2.1)

Henceforth∣∣∣∣∣H(x, t)−
n+1∑
i=1

pi(t)xi

∣∣∣∣∣6 2D for (x, t) ∈ Sn × [0, T ], (2.2)

and by (1.1)

n+1∑
i=1

∣∣Hi(x, t)− pi ∣∣26 4D2. (2.3)
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Let

Φ(x, t)=Hξξ (x, t)+
[
1+

n+1∑
i=1

∣∣Hi(x, t)− pi(t)∣∣2
]γ /2

whereγ ∈ (1,2]. Suppose that the supremum

sup
{
Φ(x, t): (x, t) ∈ Sn × [0, T ], ξ tangential toSn, |ξ | = 1

}
is attained at the south polex = (0, . . . ,0,−1) at t = t̄ > 0 and in the
directionξ = e1. For anyx on the south hemisphere, let

ξ(x)=
(√

1− x2
1,−

x1x2√
1− x2

1

, . . . ,− x1xn+1√
1− x2

1

)
.

Let u be the restriction ofH on xn+1=−1. Using the homogenity ofH
we obtain, after a direct computation,

n+1∑
i=1

(Hi − pi)2(x, t)

=
n∑
i=1

(
ui(y, t)− pi(t))2+

∣∣∣∣∣u(y, t)+ pn+1−
n∑
i=1

yiui(y, t)

∣∣∣∣∣
2

and

Hξξ(x, t)= u11(y, t)
(1+ y2

1 + · · · + y2
n)

3/2

1+ y2
2 + · · · + y2

n

,

wherey =−(x1, . . . , xn)/xn+1 in Rn. Thus the function

ϕ(y, t)= u11
(1+ y2

1 + · · · + y2
n)

3/2

1+ y2
2 + · · · + y2

n

+
[
1+∑(ui − pi)2+

∣∣∣u+ pn+1−
∑

yiui

∣∣∣2]γ /2
attains its maximum at(y, t)= (0, t̄). Without loss of generality we may
further assume that the Hessian ofu at (0, t̄ ) is diagonal. Hence at(0, t̄ )
we have, for eachk,

06 ϕt = u11t+ γ [(ui − pi)(uit − pi,t )
+ (u+ pn+1)(ut + pn+1,t )

]
Q(γ−2)/2,

0= ϕk = u11k+ γ (ui − pi)uikQ(γ−2)/2,
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and

0> ϕkk = ukk11+ τku11+ γ [u2
kk + (ui − pi)uikk

− (u+ pn+1)ukk
]
Q(γ−2)/2+ γ (γ − 2)(ui − pi)2u2

ikQ
(γ−4)/2,

whereQ= 1+∑(ui − pi)2+ (u+ pn+1)
2, τk = 3 if k > 1 andτ1 = 1,

andpi,t = dpi/dt . On the other hand, differentiating Eq. (1.6) gives

ukt =
∑
i

uiiuiik + gk,

ukkt =
∑
i

uiiuiikk −
∑
i,j

uiiujju2
ijk + log det∇2u+ gkk,

where{uij } is the inverse matrix of{uij }. Hence at(0, t̄ ) we have

0>
∑
k

ukkϕkk − ϕt

>
∑
k

ukkukk11− u11t+ u11u
kk

+ γ
{∑

k

ukk

[
1+ (γ − 2)(uk − pk)2

1+∑(ui − pi)2+ (u+ pn+1)2

]

+ (ui − pi)
(∑

k

ukkuikk − uit
)
− n(u+ pn+1)

− (u+ pn+1)(ut + pn+1,t )+ (ui − pi)pi,t
}
Q(γ−2)/2

> u11u
kk − log det∇2u− g11+ γ [(γ − 1)ukk − (ui − pi)gi

− n(u+ pn+1)− (u+ pn+1)(ut + pn+1,t )

+ (ui − pi)pi,t ]Q(γ−2)/2.

To proceed further let’s assumeu11> 1. By (2.2) we have|u+ pn+1|6
2D and|ui − pi|6 2D. From the inequality above we therefore obtain,
in view of (2.1),

ukk + ukk
6 C

(
1+ |ut |)Q(2−γ )/2+C(1+ |u+ pn+1|)(1+ |ut | + |pn+1,t |)

6 C
[
1+D log

(
ukk + ukk)+D sup

t6T
Ht(x, t)

]
.
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From Eq. (1.3),

sup
t6T

Ht(x, t)6 C + log
[

sup
t<T

{
Hn
ξξ (x, t);x ∈ Sn, ξ tangential toSn

}]
.

It follows

ukk + ukk 6 C(1+D log
(
ukk + ukk)).

Henceu116C(1+D| log2D|). This completes the proof of the lemma.2
By combining Lemmas 2.2 and 2.4 we deduce the following important

corollary.

LEMMA 2.5. –For any givenγ ∈ (1,2], there existsδ = δ(γ ) > 0
such that

r(t)> δR2(t)

1+ supτ6t Rγ (τ)
.

Next we give a positive lower bound for the principal radii of the
curvature. In view of Lemma 2.4 and Eq. (1.3) it suffices to give a lower
bound onHt .

LEMMA 2.6. –There exists a constantC depending only onn, r0, R0,
f , and initial data such that

inf
{
Ht(x, t): (x, t) ∈ Sn × [0, T ]}>−C.

Proof. –Let

q(t)= 1

|Sn|
∫
Sn

xH(x, t) dσ (x)

be the Steiner point ofX(·, t). Then there exists a positiveδ which
depends only onn, r0, andR0 so thatH(x, t) − q(t) · x > 2δ. Let us
consider consider the function

Ψ (x, t)= Ht(x, t)

H(x, t)− x · q(t)− δ .

Suppose the (negative) infimum ofΨ attains atx = (0, . . . ,0,−1) and
t̄ > 0. Letu be the restriction ofH to xn+1=−1 as before. Then

ψ(y, t)= ut (y, t)

u(y, t)− q(t) · (y,−1)− δ√1+ |y|2
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attains its negative minimum at(0, t̄ ). Hence

0>ψt = utt

u+ qn+1(t)− δ −
ut (ut + dqn+1/dt)

(u+ qn+1(t)− δ)2 ,

0=ψk = utk

u+ qn+1(t)− δ −
ut (uk − qk(t))

(u+ qn+1(t)− δ)2 ,

and

06ψkk = utkk

u+ qn+1(t)− δ −
utukk

(u+ qn+1(t)− δ)2
+ δut

(u+ qn+1(t)− δ)2 .

On the other hand, we differentiate (1.3) to get

utt = uijuijt .

Rotate the axes so that{uij } is diagonal at(0, t̄ ). Then

06
∑

ukkψkk −ψt

6 δut
∑
ukk − nut + ut (ut + dqn+1/dt)

(u+ qn+1− δ)2 .

Sinceut is negative at(0, t̄ ), it follows from Lemma 2.4 that∑
ukk 6 n

δ

(
1+ |ut | +

∣∣∣∣dqn+1

dt

∣∣∣∣)
6Cn

δ

(
1+ |ut | +R0

)
6Cn

δ

(
1+ log

∑
ukk +R0

)
.

We therefore conclude
∑
ukk 6 Cδ−2(1+R0)

2. Hence

ut >−C −C log
∑

ukk

>−C(1+ log(1+R0)− logr0
)

and the lemma follows. 2
Finally by comparing (1.3), (1.4) with the problem

dρ

dt
= logρnM, ρ(0)= ρ0
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whereM =max{f (x): x ∈ Sn} andρ0 is sufficiently large, we see that
H(x, t) is always bounded in any finite time interval. Furthermore, its
gradient is also bounded by (1.1). It follows from the regularity property
of fully nonlinear parabolic equations [11] that aC4+α,2+α/2-estimate
holds for H , providedH0 ∈ C4+α(Sn), 0 < α < 1. By a continuity
argument we arrive at

THEOREM 2.1. –The problem(1.3), (1.4)withH0 ∈C4+α(Sn) admits
a uniqueC4+α,2+α/2 solution in a maximal interval[0, T ∗), T ∗ 6∞.
Moreover,lim t↑T ∗ R(t) = 0 if T ∗ is finite.

Notice that the last assertion follows from Lemma 2.5.

3. PROOFS OF THEOREMS A AND B

We first prove Theorem A. Letm = inf f andM = supf on Sn. It
is readily seen that if the initial hypersurfaceX0 is a sphere of raduis
ρ0>m

−1/n, the solutionX(·, t) to the equation

∂X

∂t
=− log

K

m
ν, X(·,0)=X0,

remains to be spheres and the flow expands to infinity ast→∞. On the
other hand, ifX0 is a sphere of radius less thanM−1/n, the solution to

∂X

∂t
=− log

K

M
ν, X(·,0)=X0

is a family of spheres which shrinks to a point in finite time. Henceforth
by the comparison principle the solutionX(x, t) of (1.3), (1.4) will shrink
to a point if θ is smalll enough, and will expand to infinity ifθ > 0 is
large. We put

θ∗ = sup
{
θ > 0: X(·, t) shrinks to a point in finite time

}
and

θ∗ = inf
{
θ > 0: X(·, t) expands to infinity ast→∞}.

By the results in Section 2, it is easy to see thatX(·, t) continuously
depends onθ . Hence by the comparison principleθ∗ 6 θ∗.

By Lemma 2.5 we know that for anyθ ∈ [θ∗, θ∗] the inner radii of
X(·, t) have a uniform positive lower bound and the outer radii are
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unformly bound from above. Hence (1.3) is uniformly parabolic and we
haveC4+α,2+α/2-bound on the solution inSn × [0,∞).

In the following we fixθ ∈ [θ∗, θ∗]. Let ξ ∈Rn+1 be the point uniquely
determined by∫

Sn

xi

eξ ·xf (x)
dσ (x)= 0, i = 1, . . . , n+ 1. (3.1)

Write X̃(x, t)=X(x, t)+ ξ · t . SoX̃ isX translated inξ/|ξ | with speed
|ξ |. X̃ satisfies

∂X̃

∂t
=− log

K

f
ν + ξ

and the corresponding support functionH̃ =H + ξ · xt satisfies

H̃t = log det(∇β∇αH̃ + H̃ δαβ)+ logf eξ ·x.

The enclosed volumes of̃X andX are equal to

V (t)= 1

n+ 1

∫
H̃ det(∇β∇αH̃ + H̃ δαβ)

and is uniformly bounded. On the other hand, by (3.1)

∫
H̃

eξ ·xf
=
∫
H − q(t) · x

f eξ ·x

is also uniformly bounded for allt . Hence the functionalJ̃ (t) =
J (H̃ (·, t)) is uniformly bounded. Moreover, from (1.5) it is non-
increasing. By theC4+α,2+α/2-regularity ofH̃ we also have that∣∣J̃ ′(t)∣∣6 C
and

sup
|J̃ ′(t + τ)− J̃ ′(t)|

τα/2
6 C.

Therefore, we conclude that limt→∞ J̃ ′(t)= 0.
We claim thatH̃ is bounded for allt . In fact, it is sufficient to show

that
∫
x H̃
feξ ·x dσ is bounded. For, assumẽH is unbounded. Then we can
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find {tj }, tj →∞, such thatX̃(x, tj )/d(tj ), whered(tj ) is the distance
from the origin toX̃(·, tj ), converges to a point onSn. Without loss of
generality we take this point to been+1. Then the characteristic functions
of Aj = {x ∈ Sn: xn+1 > 0,H(x, tj ) > 0} andBj = {x ∈ Sn: xn+1 < 0,
H(x, tj ) < 0} converges pointwisely to the upper and lower hemispheres.
We may also assume that̃H(x, tj )/(f eξ ·xd(tj )) converges uniformly
to some functiong which is positive on the upper hemi-sphereS+.
Therefore, we have

lim
j→∞

∫
xn+1H(x, tj )

d(tj )f eξ ·x
=
∫

lim
j→∞

[
XAj∪Bj

|xn+1H(x, tj )|
d(tj )f eξ ·x

]
>
∫
S+
xn+1g(x)

> 0.

Hence
∫ xn+1H(x,tj )

feξ ·x can be arbitrarily large for largetj .
Now we have, by (1.5),

J̃ (0)− J̃ (∞)>
t∫

0

∣∣J̃ ′(t)∣∣dt > t∫
0

∫
Sn

H̃ 2
t dσ dt.

On the other hand, by the necessary condition for the Minkowski
problem, we have

0=
∫
x

1

K̃
dσ =

∫
x

1

f eξ ·x
(
1+ H̃t +O

(
H̃ 2
t

))
=
∫
x

1

f eξ ·x
(
H̃t +O

(
H̃ 2
t

))
asH̃t is uniformly small for larget . Therefore,∣∣∣∣∣

t∫
0

d

dt

(∫
x
H̃

f eξ ·x
dσ

)
dt

∣∣∣∣∣6C
t∫

0

∫
Sn

H̃ 2
t dσ dt

6C
(
J̃ (0)− J̃ (∞)).

Hence
∫
x H̃
feξ ·x is uniformly bounded for all time. Consequently by the

Blaschke selection theorem for any sequence{tj }, tj → ∞, we can
extract a subsequence{tjk} such that{H̃ (x, tjk )} converges uniformly to
someH(x) on Sn. ClearlyH is a solution ofK = f eξ ·x . To show the
convergence is actually uniform let’s consider another limitH ′. Since the
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curvature ofH ′ is also given byf eξ ·x , H andH ′ differ by a translation.
LetH −H ′ = l · x for somel ∈Rn+1. Since∣∣∣∣∣

t∫
s

d

dt

∫
x
H̃

f eξ ·x
dσ dt

∣∣∣∣∣6 C(J̃ (t)− J̃ (s))→ 0

ast, s→∞. Sol = 0 andH =H ′.
Finally let’s showθ∗ = θ∗. First we observe that by the comparison

principle one must haveH∗ = H ∗, whereH∗ (respectivelyH ∗) is the
solution ofK = f eξ ·x starting fromθ∗H0 (respectivelyθ∗H0). However,
consider the equation obtained by differentiating (1.3) and (1.4) inθ :{

∂H ′
∂t
=Aαβ(∇β∇αH ′ +H ′δαβ),

H ′(0)=H0(x),

where (Aαβ) is the inverse of(∇β∇αH + Hδαβ). By the maximum
principleH ′(x, t)>minH0> 0. Thus

0=H ∗(·)−H∗(·)
= lim
t→∞

(
Hθ∗(·, t)−Hθ∗(·, t)

)
> (minH0)

(
θ∗ − θ∗)

> 0.

Soθ∗ = θ∗. The proof of Theorem A is finished.

Proof of Theorem B. –It remains to show that the normalized hyper-
surfaceX(·, t)/r(t) converges to a unit sphere in caseθ > θ∗. Let’s de-
note the solution of (1.3), (1.4) byH(·, t) and its hypersurface byX(·, t).
SinceX is expanding, we may simply assume that it contains the ball
BR1(0) whereR1 > 1+m−1/n at t = 0. On the other hand, we fixR2 so
large thatX(·,0) is contained inBR2(0).

For i = 1,2, let Xi(·, t) be the solution of (1.3), (1.4) wheref is
replaced bym andM respectively andXi(·,0)= ∂BRi . ClearlyXi(·, t)
are spheres whose radiiRi(t) satisfy

C−1(1+ t) log(1+ t)6R1(t)

6R2(t)

6C
[
1+ (1+ t) log2(1+ t)]

for someC > 0. Hence
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d

dt

(
R2(t)−R1(t)

)
6 n log

R2(t)

R1(t)
+C

6 log log(1+ t)+C
and so

R2(t)−R1(t)6C
[
1+ t log log(1+ t)].

Consequently limt→0
R2(t)−R1(t)

R1(t)
= 0. By the comparision principleX(·, t)

is pinched betweenX2(·, t) andX1(·, t). SoX(·, t)/r(t) must tend to the
unit sphere uniformly.
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