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INTRODUCTION

Let f be a positive smooth function defined in thedimensional
sphereS” and let Xo:S” — R"™! be a parametrization of a smooth,
uniformly convex hypersurfac#fy. In this paper we are concerned with
the motion of the convex hypersurfackqr) satisfying the equation

g KO,
dt fw)

with X(p,0) = Xo(p). Here for eachr X(-,r) parametrizesM (t),
K(v(p,1)) is the Gauss curvature @ff(r) andv(p, t) is the unit outer
normal atX (p,t). Notice that by strict convexity the Gauss curvature
can be regarded as a function of the normal. Recall that a uniformly
convex hypersurface is a hypersurface with positive Gaussian curvature
and hence it is stricly convex.

Our study on (0.1) is motivated by the search for a variational proof
of the classical Minkowski problem in the smooth category. Recall that
for a convex hypersurface the inverse of its Gauss map induces a Borel
measure on the unit sphere called the area measure of the hypersurface.
Naturally one asks when a given Borel measurg’dis the area measure
of some convex hypersurface. This problem was formulated and solved
by Minkowski [13] for polytopes in 1897 by a variational argument. Later
he extended his result to cover all Borel measures which are of the form
1/f do where f is continuous ando is the standard Lebsegue measure
on S" [14]. The regularity of the convex hypersurface realizing the area
measure was not considered by Minkowski. Thus it led to the Minkowski
problem in the smooth category, namely, when is a positive, smooth
function in §" the Gauss curvature of a smooth convex hypersurface?
There are two approaches for this problem. On one hand, the method of
continuity was used by Lewy [12], Miranda [15], Nirenberg [16], and
Cheng and Yau [3]. On the other hand, a regularity theory was developed
for the generalized solution (see Pogorelov [17]).

Let M be a convex hypersurface aid M) its enclosed volume. We
have

(0.1)

1 H (x)
Cn+ 1sn K (x)

V(M) do(x),

where H and K are respectively the support function and Gauss
curvature ofM. When expressed in the smooth category, Minkowski's
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original proof is to show that the solution is the convex hypersurface
which minimizes the functionall H (x)/f (x)do (x) over all convex
hypersurfaces of the same enclosed volume. In view of this we may
consider the functional

J(M)=—V(M)+/Eda.
g f

It is not hard to see that (0.1) is a negative gradient flowJfoBy a
careful study of this flow, we shall give another proof of the Minkowski
problem in the smooth category.

THEOREM A. —Let Xy be a smooth uniformly convex hypersurface.
For 6 > 0, consider(0.1) subject to
X (-, 0) = 6X,. (0.2)

There exist®* > 0 such that the flowX (-, #) beginning att* X, tends to
a smooth uniformly convex hypersurfaké in the sense that

X(, 1) —&t— X*,

smoothly ag — oo wheref is uniquely determined by

X .
—do(x)=0, i=1...,n+1
/ e f(x)
Srl
Furthermore, the Gauss curvature &f, when regarded as a function of
the normal, is equal t@~ f (x).

THEOREM B. —Letf* be as in Theorem. If 6 € (0, 6*), the solution
of (0.1), (0.2)shrinks to a point in finite time. # € (6*, o0), the solution
expands to infinity asgoes to infinity. In the latter case, the hypersurface
X (-,1)/r(t) wherer(t) is the inner radius ofX (-, ) converges to a unit
sphere uniformly.

As a direct consequence of Theorem A we have

COROLLARY (Minkowski problem). -A positive, smooth functiog
in §” is the Gauss curvature of a uniformly convex hypersurface if and
only if it satisfies

Xi . -
S[f(x)da(x)_o, i=1...,n+1
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Theorems A and B will be proved in the following sections by an
approach similar to that used in [4], namely, by introducing the support
function of X (-, #) and reducing (0.1) to a single parabolic equation of
Monge—-Ampére type for its support function. In Section 1 we collect
some facts on the support function of a convex hypersurface. In Section 2
a priori estimates for the support function, in particular upper and lower
bounds for the second derivatives, will be derived. They are used in
Section 3 to establish Theorems A and B.

Motion of convex hypersurfaces driven by functions of Gauss curva-
ture of the form

0X b, K)
—=®(, K)v
ot

has been studied by several authors including Andrews [1], Chou [4],
Chow [7], Frey [8], Gerhardt [10] and Urbas [18]. Wh@h= —K°,

o > 0, it was proved in [7] thatV (z) exists and shrinks to a point in
finite time. Moreover, it becomes asymptotically round wheis equal

to 1/n. In [1] it was shown thaiV (r) becomes an asymptotic ellipsoid
wheno is equal to X(n + 2). Expanding flows rather than contracting
ones were studied in [10] and [18]. For a class of curvature functions
including @ = K~/ it was proved thatV (r) expands to infinity like

a sphere in infinite time. In all these resutbsis independent of. For
anisotropic flows very little is known. We mention the works Andrew [2],
Chou and Zhu [6], and Gage and Li [9].

1. THE SUPPORT FUNCTION
In this section we collect some basic facts concerning a convex
hypersurface and its support function. Details can be found in Cheng and
Yau [3] and Pogorelov [17].
Let M be a closed convex hypersurfaceRfi™2. Its support function
H is defined ons” by
H(x)=supx - p: pe M},

wherex - p is the inner product ilR"*+1. We extendH to a homogenuous
function of degree 1 ilR"*1. So H is convex and satisfies

SUp|VH| <sup|H|, (1.1)
sn sn
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since it is the supremum of linear functions.Mf is strictly convex, that
is, for eachx in S” there is a unique poinp on M whose unit outer
normal isx, H is differentiable ak and

oH

= b
axi

pi i=1...,n+1

Thus the map — p(x) gives a parametrization @ff by its normal. In
fact, it is nothing but the inverse of the Gauss map.

Geometric quantities o can now be expressed throudh. Let
e1, ..., e, be an orthonormal frame fields ¢fi. By a direct computation
one sees that the principal radii of curvaturepdt) are precisely the
covariant differentiation with respect ta@,. In particular, the Gauss
curvature afp(x) is given by

K(x) =1/ det(VyV H 4+ H8,p). (1.2)

When H is viewed as a homogeneous function oRé&r?, the principal
radii of curvature off are also equal to the non-zero eigenvalues of the
Hessian matrixo2H /0x;0x;); j=1.. _.n+1-

Now we can reduce the problem (0.1), (0.2) to an initial value problem
for the support function. In fact, let (x, t) be the support function of
M (t). By definition we have

0X oH
X - E(p(x), 1) = —W(x, 1).

From (0.1) and (0.2) it follows thail satisfies

83—};] =logde(VsV,H + Héup) f, (1.3)
H(x,0) =60 Hy(x), (1.4)

whereH, is the support function fod4y. Conversely, ifX (-, t) is a family
of convex hypersurfaces determined by a solution of (1.3) and (1.4), itis
not hard to see thaX (-, t) does solve (0.1) and (0.2). See, for instance,
[4] for details. Notice from (1.3)H (x, r) must determine a uniformly
convex hypersurface.

Eg. (1.3) has a variational structure. Consider the enclosed volume of
a uniformly convex hypersurfac¥,
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H(x)
n+1l/) Kx)
SVL

_ 1
T n+1

V(M) = do (x)

/ H det(VyV, H + Hb,p) do.
SVL

RegardingVas a functional on support functions, we find that the first
variation ofV is

SV (H)h = / hdet(VyVyH + Hé,p) do,
Sll

whereh is any smooth function. Let’'s consider the functiodatiefined
on all uniformly convex hypersurfaces

J(H) = —V(H) +/5do,
g !

where f is positive. WhenH is a solution of (1.3),

d 11 0H
EJ(H(’ t)) = _S[ {det(vﬂvaH + H&xﬁ) - ?] ydO’
=— /i(eﬂf —1)H, do
f
sn
<0 (1.5)

Hence (1.3) is a negative gradient flow fdr (1.5) will be used in
the proof of Theorem A. This variational approach to the problem of
prescribed Gauss curvature was first adopted in Chou [5].

To obtain apriori estimates for the higher derivatives far it is
convenient to express Eqg. (1.3) locally in the Euclidean space. Thus let
u(y, t) be the restriction o (x, ¢) to the hypersurface,,1 = —1, i.e.,
u(y,t) = H(y,—1,t). Thenu is convex inR" and we have

n+2
detV2u(y, 1) = (1+ |y|2)_ 5 det(Vg Vo H + Hyp) (x, 1)

and

ou oH
—(y, 1) =4/1 2 (x,t
at(y )=/ 1+ [yl a7 (x,1)
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for x = (y, —1)//1+ |y|%. Extendf to be a homogenuous function of
degree 0 irR"**. We get

Ju 2 n
o= \/1+ |yl2logdetv?u +g(y), yeR", (1.6)

where

+2
e = /14 P [”Tlog<1+|y|2>+logf<y,—1> .

2. APRIORI ESTIMATION

First of all we note that the unigqueness of solution to (1.3), (1.4)
follows from the following comparison principle which is a direct
consequence of the maximum principle.

LEMMA 2.1.—Fori =1,2, let f; be two positiveC?-functions ons”
and H; C%-solutions of

OH
= log det( VgV, + Hup) f;.

Suppose that;(x, 0) < Hx(x,0) and f1(x) < fa(x) on S". ThenH; <
H> for all t > 0and H; < H, unlessH; = H>.

In the following we shall always assunfé € C*?(S" x [0, T)) is a
solution of (1.3), (1.4). LeR () andr(r) be the outer and inner radii of
the hypersurfac« (-, ) determined byH (x, ) respectively. We set

Ro=sup{R(1): 1 €[0,T1}

and
ro=inf{r(t): r € [0, T1}.

We shall estimate the principal radii of curvaturesf., r) from both
side in terms of 5, Ry, and initial data.

LEMMA 2.2.—Letr and R be the inner and outer radii of a uniformly
convex hypersurfac& respectively. Then there exists a dimensional
constantC such that

R2
—< Csup{R(x,§): x,§ € 8"},
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whereR (x, &) is the principal radius of curvature of at the point with
normal x and along the directior.

Proof. —For any giverr > 0, let
=inf{H(x) + H(—x): x € S"}.

Then X is pinched between two parallel hyperplanes with distaince
Suppose the infimum is attained at= (1,0, ..., 0). By convexity we
can choose a direction perpendicular to theaxis, say, ther;-axis such
that

1
H(,1,0,...,00+ H(0,-1,0,...,0) > ER'
Let F be the projection oK on the planez=---=x,,1 =0. ThenF is

a convex set and its diameter is larger t%ﬂh By a proper choice of the
origin we may assume’ is contained in{—4 < x; < h} and {0, i%R}
belongs toF. By projection we see that the supremum of the principal
radii of curvatures of the boundary &f cannot exceed that & .

Let E be the ellipse given by

x% x3
" (Rj167

where b is chosen so thak C F anddE N dF is non-empty. Then
h/4 < b < h/2 providedR > r. For any (x1,x2) € 0E N dF, since
(0,+%R) € F, we have|i;| > b/2. Hence|x,| < +/3R/32. Simple
computation shows that the principal radius of curvature of the boundary
of F at (1, x») is larger thank?/8%h. Hence by noticing < r we obtain

R? R?
— < C— < CSupR(x, &). 0
r b X.E

LEMMA 2.3. —Suppose that(r), b(t) € C1([0, T]) and a(t) < b(t)
for all . Then there exists(r) € C*1([0, T']) such that

Q) a(®) —2M < h(r) < b(t) + 2M;

2) sup{'h(’ﬁi fz(’z” 1,12 € [0, T]} < 2maxsup b'(1), sup (—a' (1))},

whereM = sup (b(t) — a(r)).

Proof. -We defineh(r) step by step. Letg = 0, andhg = (a(0) +
b(0))/2.Forj > 1, let
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ti=sup{t € (tj-1,T): a(t) = hj_1— M, b(t) <hj_1+ M,
Vi€ (tj-1,7)},

1
h;= E(a(tj) +b(t})),
and

hj—hj_1
h(t)=h;-1+ 7t(t_t‘/_l) forz e (tj_1,1;).
i —1j-1

Thenh(r) is the desired function. O
Now we give an upper estimate for the principal radii of curvature.
LEMMA 2.4, —For any y € (1, 2] there exists a constar@,, which
may depend on initial data, such that

sup{ He: (x, 1): & tangential toS" } < C, (1+ D),

whereD = sup(d(t): t € [0, T]} andd(z) is the diameter ok (-, ).

Proof. —Applying Lemma 2.3 to the functions-H(—e;,t) and
H(e;, t) where+e; are the intersection points @& with the x;-axis,
i=1,...,n+ 1, we obtainp; () so that

—H(—e;,t) —2D < p;i(t) < H(ej, 1) +2D

and
Sup{m(tl) pi(2)] . ity e [0, T]}
[ty — 1o]

< 2sup H,(x,1): (x,1) € §" x [0, T1}. (2.1)
Henceforth

n+1

‘H(x, =Y pi(x;|<2D for (x,1) e S" x [0, T], (2.2)

i=1

and by (1.1)

n+1

> [Hi(x, 1) — pi|* < 4D2 (2.3)

i=1
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Let

n+1 v/2

®(x, 1) = Hee (e, 0) + |14+ > |Hix, 1) = pi()]
i=1

wherey € (1, 2]. Suppose that the supremum
sup{@(x,1): (x,1) € S" x [0, T'], & tangential taS”, |§| = 1}

is attained at the south pole= (0,...,0,—1) atr =¢ > 0 and in the
directioné = e;. For anyx on the south hemisphere, let

g<x>:<,f1_xg,_%,...,_%>.

Let u be the restriction o onx, ; = —1. Using the homogenity off
we obtain, after a direct computation,

n+1

> (Hi = pi)?(x, 1)

i=1

2

u(y, 1) + puar— Y yii (v, 1)
i=1

= (i 1) = pi))* +

i=1

and
A+yf+-+yD¥?
1435+ 47
wherey = —(x1, ..., x,)/x,+1 in R". Thus the function
A+yf+---+yD¥?
1+ y5+- 47

Hee(x, 1) = u11(y, 1)

ey, t) =u11

2:| v/2

+ {14— Z(ui —p)+ ‘M + Pny1— Z)’iui

attains its maximum aty, r) = (0, ). Without loss of generality we may
further assume that the Hessianucdit (0, 7 ) is diagonal. Hence a0, 7)
we have, for each,

0< ¢ =u11, + y [(u; — pi)(uir — piy)
+ (U + pus) Uy + payr)] QY22
O0=gp =usn+y i — pHuir Q=272
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and

0> o = upear + uan + v [udy + Wi — pduik
— (u+ purD)uk] Q22 4+ y (v = 2)(u; — p)?uf QY2

whereQ =1+ S (u; — pi)?+ (u + ppi1)? w=3if k> 1andr, =1,
andp;, =dp;/dt. On the other hand, differentiating Eq. (1.6) gives

ii
Uk = ZM Uik + 8ks

L

Upky = Zu”uiikk — Zuiiujjul-zjk + log detV2u + g,
i

i,j

where{u'/} is the inverse matrix ofu,;}. Hence a0, 7) we have
0= u"ou — o
k

kk kk
2 Z U Ugk11 — U1, + Uil
k

(¥ — 2)(ugx — pr)? }
1
" y{;u“‘{ I S0 — )2+  + pasn)?

+ (u; — pi) (Z uujg — uit) —n(u+ ppy1)
k

— U+ poy1) s + pogas) + (i — p»pi,,}Q(y—M

> ugu'* —logdetvZu — gi1+ v [(v — Duwe — (u; — pi)gi
—n(+ puy1) — U+ pur) W + ppyas)
+ (i = p)pis] Q722
To proceed further let's assumeg; > 1. By (2.2) we haveu + p, 1| <

2D and|u; — p;| < 2D. From the inequality above we therefore obtain,
in view of (2.1),

kk
U + U

<C(L+lu ) Q%2+ C(L+ u+ pusal) (L4 g + | pasasl)
<C [1+ Dlog(uy + u'*) + D supH, (x, t)} .
t<T
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From Eq. (1.3),

SUpH,(x,t) < C +log [sup{Hg'g(x, 1); x € 8", & tangential taS” }}
t<T

t<T
It follows

Urk + utk < C(l+ D |Og(ukk + ukk)).

Henceu11 < C(1+ D|log? D|). This completes the proof of the lemma.
O

By combining Lemmas 2.2 and 2.4 we deduce the following important
corollary.

LEMMA 2.5.—For any giveny € (1, 2], there existss = §(y) > 0
such that
SR2(1)
1+supg, R (1)

Next we give a positive lower bound for the principal radii of the
curvature. In view of Lemma 2.4 and Eq. (1.3) it suffices to give a lower
bound onH,.

r(t) =

LEMMA 2.6. —There exists a constaiit depending only on, rq, Ro,
f, and initial data such that

inf{H,(x,1): (x,1)€S" x[0,T]} >—C.

Proof. —Let

1 n

a0 =5 [xHndow
Sn

be the Steiner point of (-,7). Then there exists a positivé which

depends only om, rg, and Ry so thatH (x,1) — g(t) - x > 25. Let us

consider consider the function

H;(x,1)

D = D —x g =3

Suppose the (negative) infimum &f attains atx = (0,...,0, —1) and
t > 0. Letu be the restriction off to x,,; = —1 as before. Then

ut(ya t)
u(y, 1) —q(t) - (y,—1) —8/1+ |y|?

Yy, 1) =
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attains its negative minimum &b, 7). Hence

PR TR 2 )
U+ gp1(t) =8  (u+que1(t) —96)
Ozlﬁk: Uk _ ut(uk_Qk(t)) -
U+gue1(t) =8  (u+qupa(t) —96)
and
Utkk UtUik
0< Y = —
T U gua() =8 U+ Guia(t) — )2
Suy

(4 guia(t) = 8)2
On the other hand, we differentiate (1.3) to get

Uy = Ltl]l/l,/,.
Rotate the axes so that'/} is diagonal at0, 7). Then
0< > u g — v
< Su, Zukk —nu; +u; (u; +dg,i1/dt)
h (U + guy1 — )2 '
Sinceu, is negative at0, 1), it follows from Lemma 2.4 that
kk qn+1
1
> ut < (—i—lu,l—i—’ 0 )
< C5(1+ |u; | + RO)
n kk
<C%(1+10g> u™ + Ro).
We therefore conclud® u** < C8§72(1+ Ry)?. Hence

u;>—C—Clog) u*
> —C(1+log(1+ Ro) — logro)

and the lemma follows. O

Finally by comparing (1.3), (1.4) with the problem

— =logp"M, 0) =
ir gp p(0)
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whereM = max{ f(x): x € §"} and pg is sufficiently large, we see that
H(x,t) is always bounded in any finite time interval. Furthermore, its
gradient is also bounded by (1.1). It follows from the regularity property
of fully nonlinear parabolic equations [11] that Gf+*2+*/%-estimate
holds for H, provided Hy € C*%(5"), 0 < a« < 1. By a continuity
argument we arrive at

THEOREM 2.1. —The problen(1.3), (1.4)with Hy € C*%(S") admits
a unique C4+%2+2/2 golution in a maximal interval0, T*), T* < cc.
Moreoverlim, 7+ R(t) = 0if T is finite.

Notice that the last assertion follows from Lemma 2.5.

3. PROOFS OF THEOREMS A AND B

We first prove Theorem A. Letn = inf f and M = supf on S". It
is readily seen that if the initial hypersurfacg, is a sphere of raduis
po > m~Y/" the solutionX (-, t) to the equation

X K
_=_|Og_v’ X(ao)=X05
ot m

remains to be spheres and the flow expands to infinity-asoo. On the
other hand, ifXq is a sphere of radius less thafir'/", the solution to

X K

— =—log— X(¢,0=X

o7 09V .0 0

is a family of spheres which shrinks to a point in finite time. Henceforth
by the comparison principle the solutigh(x, #) of (1.3), (1.4) will shrink

to a point if6 is smalll enough, and will expand to infinity ¢ > O is
large. We put

6, = sup{6 > 0: X (-, 1) shrinks to a point in finite timg

and
6* =inf{6 > 0: X (-, ) expands to infinity as— oo}.

By the results in Section 2, it is easy to see that, r) continuously
depends o@. Hence by the comparison principe < 6*.

By Lemma 2.5 we know that for ang < [6,, 6*] the inner radii of
X (-,1) have a uniform positive lower bound and the outer radii are
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unformly bound from above. Hence (1.3) is uniformly parabolic and we
haveC*t*2+%/2_pound on the solution i§”" x [0, 00).

In the following we fixd € [6,, 6*]. Let&é € R*** be the point uniquely
determined by

Xi .
——do(x)=0, i=1,...,n+1 3.1
/ e f(x) 3.1)
Sn
Write X (x, 1) = X (x,1) + & - . S0X is X translated irt /|¢| with speed
|&]. X satisfies
9x =—lo K +&
ar 97
and the corresponding support functifin= H + £ - xr satisfies

H, =logde{(V;V,H + Hé,z) +log f&~.
The enclosed volumes &f and X are equal to
V()= ! /Fldet(v VoH + Hb,p)
- n+ 1 BYa af
and is uniformly bounded. On the other hand, by (3.1)
/‘ H _/‘ H—q()- x
e
is also uniformly bounded for alt. Hence the functional/(r) =

J(H(-, 1)) is uniformly bounded. Moreover, from (1.5) it is non-
increasing. By thec4+«2+/2_regularity of H we also have that

'] <c

and

Sule’(t+f)—J’(t)|

/2 <C.

Therefore, we conclude that ljm, J'(t) =0.
We claim thatH is bounded for alk. In fact, it is sufficient to show
that fx% do is bounded. For, assunfé is unbounded. Then we can
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find {t;}, t; — oo, such thatX (x, ¢;)/d(t;), whered(t;) is the distance
from the origin toX (-, t;), converges to a point of". Without loss of
generality we take this point to ke ;. Then the characteristic functions
of Aj={xe 8" x,31>0 H(x,t;) >0} andB; = {x € §": x,11 <0,
H(x,t;) <0} converges pointwisely to the upper and lower hemispheres.
We may also assume tha?(x,tj)/(feg"‘d(tj)) converges uniformly

to some functiong which is positive on the upper hemi-sphese.
Therefore, we have

i X1 H(x, 1)) /“ { s |xn 1 H (x,1;)]
jmoo ) d(t)) fex oo [TV d () e
> [aniag)
S+
> 0.

Hence [ “;ﬂ can be arbitrarily large for large.
Now we have, by (1.5),

J(0) — J(c0) = /]J(t)]dt>//H do dt.
0 st

On the other hand, by the necessary condition for the Minkowski
problem, we have

Y N IR SO 72
0_/x12d0_/xfe§~x(l+H’+o(H’))

— [ 5+ 0(E)

as H, is uniformly small for large. Therefore,

t
‘/dt / —do)dt <C//I:It2dodt
0 s

< C(J(0) — J(0)).

Blaschke selection theorem for any sequeiliGge, ; — oo, we can
extract a subsequengs, } such that{ H (x, tj)} converges uniformly to
someH (x) on S". Clearly H is a solution ofK = f&*. To show the
convergence is actually uniform let's consider another liffitSince the
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curvature ofH’ is also given byfe&~, H and H' differ by a translation.
Let H — H' =1 - x for somel € R***. Since

di ) e 4

ast,s — 00.So/l=0andH = H'.

Finally let's showd, = 0*. First we observe that by the comparison
principle one must havél, = H*, where H, (respectivelyH*) is the
solution of K = f& ™~ starting fromé, Hy (respectivelyd* Hy). However,
consider the equation obtained by differentiating (1.3) and (1.4) in

<CJ@t)—J(s)) =0

{ %—'f = AP (VgV, H' + H'Syp),
H'(0) = Ho(x),

where (A%) is the inverse of(VgV,H + Hé,z). By the maximum
principle H'(x, t) > min Hy > 0. Thus
0=H"(") — H.(")
= lim (Hp:(-.1) = Hp, (. 1))
> (min Ho) (0" — 6.)
> 0.
So06* =6,. The proof of Theorem A is finished.

Proof of Theorem B. # remains to show that the normalized hyper-
surfaceX (-, 1) /r(t) converges to a unit sphere in case 6*. Let's de-
note the solution of (1.3), (1.4) b (-, r) and its hypersurface b¥ (-, t).
Since X is expanding, we may simply assume that it contains the ball
Bg,(0) whereR; > 1+ m~Y" atr = 0. On the other hand, we fiR, so
large thatX (-, 0) is contained inBg, (0).

Fori =1,2, let X;(-,t) be the solution of (1.3), (1.4) wherg is
replaced byn and M respectively and; (-, 0) = d B, . Clearly X; (-, ¢)
are spheres whose radij (r) satisfy

C 1+ 1n)log(l+1) < Ri(1)

<
<CL+@Q+1)log?(1+1)]

for someC > 0. Hence
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Ry(1)

Ry(1)
<loglog(l+1) +C

+C

d
7 (Re(t) = Ra(1)) <nlog

and so
Ro(t) — R1(1) < C[1+tlog log(1+1)].

Consequently lim. g % = 0. By the comparision principl& (-, r)
is pinched betweeX (-, 1) andX4(-, ). S0OX (-, t)/r(¢) must tend to the
unit sphere uniformly.
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