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ABSTRACT. — In this paper, we present an existence result of weak solu-
tions for a three-dimensional problem of fluid-plate interaction in which
we take into account the non linearity of the continuity equation. This non
linearity does not allow, as is usually the case, to neglect the variations of
the domain which leads us to study a problem defined on a time depen-

dent domain.
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RESUME. — Dans ce papier, nous présentons un résultat d’existence de
solutions faibles pour un probléeme de couplage fluide-plaque tridimen-
sionnel dans lequel nous prenons en compte la non linéarité de I'équation
de continuité. Cette non linéarité ne nous permet pas, comme c'est géné-
ralement le cas, de faire I'hypothése de petites perturbations et de négli-
ger les variations du domaine ce qui nous conduit & étudier un probléme
défini sur un domaine dépendant du temps.
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1. INTRODUCTION

We study a three-dimensional fluid-structure interaction problem in
which the structure is a plate occupying a part of the fluid domain
boundary. This problem has been already analyzed in a previous study
[4] in a two dimensional situation. This first work already pointed out
an important difficulty. Indeed, under conditions of weak disturbances,
it is classically assumed that the fluid occupies a fixed domin
Nevertheless, in the more general case, when we consider the non
linearity of the continuity equation, this assumption leads to some
difficulties. Principally, we are unable to obtain a priori estimates and to
show that the problem is well posed. In order to avoid this difficulty, we
must take into account the displacements of the structure in the geometry
of the fluid.

We setQ, = 2, x 10, T[ where 2, is an open subset d&? which
physically represents the plate at rest,= I', x]10, T[ whererl, is a part
of the fluid boundary assumed to be fixet), = U, 10 7 I5(¢) x {t} where
I,(t) is the deformation of the plate at time£2, and I, are assumed
to be sufficiently smooth. We define %, Q = Urejo.rp 20 x {t} with
2, = Uxegp]u(x, 1), 1[ and wherex is the motion within the structure.

We setX as the lateral boundary @@. We defines2, (respectivelys2r)
as being the interior i3 of the intersection 0® with r = 0 (respestively
t =T). The section2, = Q N {¢r = s} is continuous with respect toand
never empty, ifu is a continuous function of and:. £2, represents the
domain occupied by the fluid at= s.

We notew, p and p, the velocity, the pressure and the density of the
fluid. We consider the state equatign= ap” with a andy chosen in
R* . Afterwards we sefr = 1 but the results are always true fpr> 1.
Moreover,p is the reference average value of density arahdé are the
so-called Lamé viscosity coefficients. The problem associated with the
fluid is the following

_ov ) .
PE—(M—F%‘)AU—%‘VC“VU +aVpY =0, inQ,
ap di .

(f) E + IV(UIO) = 0’ Y 2 0’ in Q1
curlv An=0, on X,
v.n, =0, onX,,
v(t =0) =vp(x), p(t =0) = po(x) =0, in £,
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The motion of the plate is governed by the biharmonic operator. This
model can be improved with the introduction of an inertia temm%.
This term, generally neglected, is important because it permits to obtain
the continuity ofu with respect taxr andt, that is to say € C°(Q,),
which allows to affirm that2, is never empty. We not® the rigidity
of the plate,n the surfacic masg, the inertia moment ané the force
applied to the plate due to the stress tensor of the fluid. The problem
associated with the plate is

9%u 9%u

> .
mﬁ—mlAﬁ—i—DAu_f—i—a, |nQp,

S) u=Vu.n,=0, F)nan,
u(t =0) =ug(x), in £2,,
ou .
E(r=0)=u1(x), in$2,.

The unitary exterior normad, = (coSw;), COYw,), COSw3)) Of £2; on
I, is defined by

COiw)—M COiw)—M
YTV @y T Vi @y
-1
COSws) = A
with

— | = + .
dx 8x1 8)62
So, it can be written

n, = —n.cos(az)

(au ou )
n=|(—, —, =1).
dx1 0xp

We suppose that the normal velocityr, at the plate-fluid interface
is equal to the projection of the displacement velocity on the normal
direction. So, we obtain the following coupling condition

with

0
©) { vy = B_Ltt coSws3), onXxX,,
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which can be noted

ou
vn=——, O0nJx,.
at

Moreover, as @), = /(dx)2 + (du)?, thenvVe (x1, x2, u) € LY(I}),

o d 2 o l
/(~)de= /@\/1+ (EM) dx:-/@cos(wg) di
2p

I P

and in particular, for alb smooth enough, i® = ov.n,, we have

ou _

/Jv.nb dr, =— oo dx. (1.2)

Iy 2

Lastly, we assume that the force applied by the fluid to the plate can be
approximated by [2,3]

o (x1,x2,u) = —ap” + (u+ 28)divo, 1.2)

which is reasonable in the case of weak deformations and when curl
= 0 on the boundary. We will see that this modelization allows to obtain
a priori estimates.

Afterwards, with the exception gf andé, we take all the constants
to be 1 (the casg = 1 is mathematically the most critical) and we study
the problem(P) = {(F), (S), (C)}.

Remark1.1. — If we do not take into account the variation of the
domain occupied by the fluid, thel@, = 25 and the conservation of the
mass is not verified since

/P(l)—//?o=—/,0v-”bd2b#0-
24 20 p

By setting2, = Uxegp]u(x, t), 1[ as the domain occupied by the fluid,
we respect the assumption of conservation of mass. Indeed, by integrating
the equation of continuity o,, we find

0
—'O=—/v.nb,0de,

24 Iy
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moreover, by using the Leibniz’s formula, we obtain

1
" ap C[ Op d/‘ ou
— = - = —pdx,
/ar / ot dr p+. 3tp

2, 2p u(x,t) 24 2,

and finally

d n n a n
_/ =— —updi—/v.nbpdfb,
dr

§2; -Qp Iy
which, using (1.1), leads us t§ fgt o = 0. This condition is physically
correct and permits us to obtain a first estimateam L>°(0, T; L1(£2,))
if poe LY(£20).

Remark1.2. — Afterwards, the definition o2, and the modelization
of the stress applied by the fluid to the plate allow to obtain the
conservation of energy for the coupled system.

Remark1.3. — The definition of the domain leads us to work with
functional spaces defined over a family of domains dependent on time.
In a previous work [4], we demonstrated that these spaces conserve the
properties of the classical functional spaces.

Remark1.4. I, can be defined by the mag 2, — I,. If u(x, 1) is
continuous, then the boundafy, U I';, of 2, is continuous. Thus, asn
is defined onl, anddu /0t on §2,,, we can assume that the functiom
is defined on2,,.

We show the existence of a weak solution for the coupled prol/ém
defined above. First, we present the estimates of energy associated with
the system and we give a meaning to the trace of the stress terms. This
allows us to pass to the limit in the plate equation. Finally, we construct
approached solutions which satisfy th@riori estimates.

2. AN EXISTENCE RESULT

We give now the conditions which are sufficient to show the existence
of a weak solution for the probleniP). Let ® € 10,1[, ¢ < 1 and
the functions f € L0, T; H1(£2,)), uo € HZ(R2,), u1 € H3($2,),
vo € L2(20), po € L*(£20), pologpo € L1(£20) satisfying the following
condition
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2 2 2
T=2 meaﬁ.Q[) + (1 - 8)||M1||H&(Qp) + ||Au0”L2(Qp) + +||v0”L2(_QO)

. 2
+2/ polog po + g”f”il(o,T;H*l(Qp))
2
uw+é
1- @2<—> :
<( 8) (Cl

whereC; is a constant introduced below. If (2.1) is verified, then we have
the following result

2.1)

THEOREM 2.1. —There exists a solutiofu, v, p) of the above prob-
lem (P) satisfying u € W3 (0, T; H}(£2,)) N L®(0, T; H3(£2,)), v €
L>(0, T: L?%(£2,)) N L%, T; HY(£2,)) and p € L*(0, T; L*(£2,)) N
L%¥2(Q) in such a way that the plate equation, the momentum and the
continuity equations are respectively solved (0, T; H=%(£2,)),
L32(0, T; W=%2(82,)) and L*2140, T; w=1(82))).

PROOF OF THEOREM 2.1

Step 1. A first a priori estimate

Let (u, v, p) be a solution of P), by multiplying the equationsS), by
du/dt and by multiplying the equatio@F), by v, we obtain successively

1 d( du ||®
2 dt at H&(_Qp)

3 5
/ o (et 2ydve) St [ 2 2.2)

2p

2
+ ||Au||L2(Qp)>

, / Gt O, + AV o2

/plev—i—/ —p+ (n+28)divo)v.n,. (2.3)

o

Let us first recall that in Eq. (2.3), the domafpy depends on time,
therefore:

1
9?1 aw? 1d 1/ ,0u
— == — =z T 2.4
2) o 2// at 2dr“v"L2“2')+29/v ot 24)
) P

2
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Moreover, still in Eq. (2.3), we remark that formally

\Y
/pdin:—/—'O(v,o)—l—/,ov.nb
P 4

2 2

=/|Og,o div(vp) + /(,0 — plogp)v.ny, (2.5)
iy

consequently by using the continuity equation
. 0
/plev:—/a—'(;logp +/(,0 — plogp)v.n,
2 2 Iy

0
= / E(p —plogp) + /(p — plogp)v.ny,
2 I
and so with the Leibniz’s formula, we obtain

/ div d lo +/( lo )au
v—__ — _
P q | °'ogr p—plogp) =

2 2 2,

+/(,0 — plogp)v.n,. (2.6)

Thus, by using Eq. (2.4) and Eq. (2.6) in Eq. (2.3), we find
1d

s (10, + 2/p 095 ) + e+ §) 01510, + NV 2,

1/ ,0
=—5 2 . /(p pIOQp)—+/(p plogp)v.ny
+/(—p+(u+2§)din)v.nb. (2.7)

Finally, considering that

1 2814
2 el 112207 (2.8)
2J o1 At llmorisag,y —OTED
p
and (1.1)

/ov.nb de:—/og—I;d)E,

I 2p



760 F. FLORI, P. ORENGA / Ann. Inst. Henri Poincaré 17 (2000) 753-777

by summing Egs. (2.2) and (2.7), we obtain the following energy estimate
2

du(r) 2 2
2mease,) + (1 g>’ Hau®) P, + 00|,
ot H&(Qp) P i
u
+2 [ p01ogp®) +2((u+6) - Caf 2
ot L®(0,T;L2(82)))
2
X ||v||%2(Q,T;H1(_Qt)) + 2§||din||iz(Q) < Ts (29)

where? is defined by Eq. (2.1) an.q?r o) logp () + meass2,) > 0.
Assuming that

u

(n+8)—C4 o7

>0, (2.10)
L°(0,T;L3(£2p))

we obtainu bounded inW1>(0, T; H}(£2,)) N L>®(0, T; H(£2,)) C
C%Q,), v bounded iNL>(0, T; L3(£2,)) N L?(0, T; HX(£2,)), p and
plogp bounded inL>(0, T; L1(£2,)). We show, if the condition of
“small data” (2.1) is verified, that2.10) is always true.

Looking at (2.9), it is clear that we can obtain estimates @md p if
and only if the condition (2.10) is verified for eachthat is to say if

which signifies thabu/dt must stay in the ball of.2(£2,,) with center 0
and radiug i + £)/C;. To prove this point, we use the assumption (2.1)
based on the data. Sinée/d: is continue from [0,T]inL?(s2,) and

du(t)
ot

chtE
~X )
e, G

du(0) n+§
= <O—,
‘ ot e, lurllzca,) Cy
then there exists < T such that
‘ du(t’) <6 w+é .
ot Lz(‘QP) C]_
By settingr; as the smaller time such that,
lau(tl) :@M‘i‘f’
L2, C1
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estimate (2.9) written at time leads us to

pEE

M+S)2
C, ’

2
> <T<(1—e)(~)2< c.

1- e)@2<
which contradicts the assumption (2.1). Therefduey) /9t stays in the
stability ball whatever € [0, T].

Remark2.1. — If u is bounded inW'>(0, T'; Hg(s2,)) N L>(0, T;
HE($2,)) then 2 cogws) is bounded inL> (0, T; Wh2/4+9) (02 ,)) with
4 < g < oo. Indeed,

dcosws) _, 2 du 9% 1
- = _ X s
ax; = 0x; dx;0x; (1+ (L)2)

then
d cojw3)

8xl~

€ L™(0,T; Hy(£2,)) x L=(0, T; L3(£2,)) x L™(Q)
C L>(0, T; L#/@T9(82,)),
thus
2—1; CoYw3)
e L™(0,T; Hy(£2,)) x L¥(Q)NL™®(0, T; Wh2/@t0) (0 y)
C L™(0, T; Wh2/4H9 ().
Step 2. Weak formulation

The problem is solved in a weak meaning. In particular, let us
specify the weak formulation associated to the fluid. We homogenize the
momentum equation by setting= w + w wherew = Vi and# is the
solution of

oh - .
5~ (n+26)80h =0, in 0,
R) { Vhna=0, onx,,

)
Vh.ng, = a—bt’ Cos(wg) € L0, T; WH21/4+0)( ) on,.
h(t =0) = ho(x) € H(820), p(t =0) = po(x) =0, in £,
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In fact, afterwards,a—‘; coqws3) is fixed and we solve the problem by
using a fixed point method. Thus, we obtain the following homogeneous
problem

a . .
a—l;)—(u+$)Aw—$VdIVw+Vp:0, in 0,
ap . . .

) idid - >0, :

(F) 5 + div(wp) div(wp), p =0 in Q

curlw An; =0, i € {a; b}, onx,
w.n; =0, i €{a; b}, . onJx,
w(t = 0) =vo(x) — Vho(x), p(t =0) = po(x) >0, in £y,

which is solved in a weak meaning. If we $€t= {¢ € H(£2,),¢.n =0
on '} and dw, ¢) = (divw, dive) + (curlw, curlg) where(.,.) is the
scalar product ir.?(£2,), the problem is:

Findw e L?(0, T; W) N L>(0, T; L?(£2,)) andp € L¥?(Q) N L>(0,
T: L*(£2,)) satisfying

T T T
Jw ) .
0/<¥,¢>WCW+(u+S)0/a(w,¢)+§0/(dIVw,d|v¢)

T
+ /(,0, divg) =0, V¢ e L300, T; Wnw3(2,)),
0

3_,0
at
w(t = 0) = vo(x) — Vho(x), p(t =0) = po(x) >0, in 2.

+div(wp) = —div(wp), in L*¥10, T; w1(2,)),

Note that the plate equation is solved in the following meaning

9%u d%u 2 : ~1 -2
W—AWJFA u=f—p+@u+28)divve H (0, T; H%(£2,)).

Step 3. An additional estimate ono

The estimates obtained gnin the “step 1” are not sufficient to pass
to the limit in the continuity equation in the three-dimensional situation.
We show below how to obtain the estimatéounded inZ%?(Q) which
is sufficient to pass to the limit.
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Let w; andw, be the unique functions satisfying = w1 + w, with
divw, = 0 and rotw; = 0. We note that this notation leads us to

0 ow

S = (A 2V + Vo = =5 — (14 26)V(diviD) =
0
% — uRot(rotwy) =

with rotw, = 0 andw.n = 0 on X. Moreover, we havev; = Vh where
h satisfies

oh " 1 ou
on_ Al b —— [
ar ~ Wt Akt p= / Pt meas | Mo
90 2,
—a(t) e L0, T). (2.12)

We also have (formally at least)

% +div(/pv) — %div(v)ﬁzo. (2.13)

We multiply (2.13) bykz and we integrate o, we obtain

op, 1 _ 1, _
[ = [omrve-g [aieve- [wvns
o o 0 o
1. _ "
—EQ/duv(w>hﬁ+E/v.nhﬁ=o, (2.14)

moreover (2.12) gives us

/a (M+S)/Ahf+/ 3/2—/a<r>/f (2.15)

Thus, by summing (2.14)—(2.15) and by using Leibniz’s formula, the
terms on the boundary are cancelled thanks to the condition (1.1) and we
obtain the following equation

: 1 )
o132, = /(Vh)2ﬁ+Z/Ah2ﬁ+ /thﬁ
0 0 0
1, : :
+5/duv(w>hﬁ—/hﬁ+/hom
0 20

2
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+(u+§)/Ahﬁ+/Ta(t)/ﬁ. (2.16)
o 0 £

In order to estimate the right hand side term of (2.16) let us recalhthat
is bounded inL>(0, T; H*(£2,)) N L?(0, T; H?(£2,)) which by using the
harmonic mean, leads us kobounded inZ*((0, T; W*3(£2,)). In addi-
tion, H?(£2,) is an algebra therefor& is bounded inL1(0, T; H2(£2,)).
Lastly, let us recall that/p is bounded inL*>(0, T’; L?(£2,)) since ac-
cording to Remark 1.1p is bounded inL>(0, T; L*(£2,)). Therefore,
the different terms are estimated as follows

1 3/2 3/2
5 [(TAVB < CIVRIs 5, + el ol gy < C + ellpl ey
o
(2.17)
[ 1P <Clllizig)|IvAllzg) < €. (2.18)
2
1
7 [ A1E < CI8 a IVEllpn < € (229)
2
- — 1/2
[ VR 5 < Cllil o3, 1Vl 3y I o
0]
_3/2 3/2 3/2
< Cus“Ltlzﬁ(Lf) ”Vh“L;‘(L§) + 8||,0||L3/2(Q)
— 13/2 3/2
g(C”w”LtlZ/S(LE) +8”’0”L3/2(Q)’ (220)
. o 12
[ dvih /5 < CIAV bl 5z, s 10152,
9]
L 32 3/2 3/2
STV DIz 112 o +l0152 g,
- - 13/2 3/2

SCIAV D], o +ello1 7520 (2.21)

(u+8) [ 815 < Cldliz) [Vl 12ig) < C: (2.22)
o
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T

[ [ VP <Cle®lyon|valypw <€ @29
0

0
Finally, by using (2.17)—(2.23) in (2.16), we obtain

3/2 - 13/2 . _.3/2
(1=3e)llpll 520y < CLH+ DI 125, o) + IV DI ),

where w = VA and with i the solution of problem(R) in which
3 cogws) € L™(0, T; Wh21/4+0) (2 )) with 0 < ¢ < co. Consequently,

we L0, T; L2(£2,))NL%0, T; HY(2,)) c L*0, T; L3(£2,)) and thus
lollL32¢0) < K. (2.24)
Step 4. Passage to the limit

Let (u,,v,, p.) be a sequence of approached solutions satisfying the
estimates (2.9) and (2.24). We can extract a subsequence which is still
noted(u,, v,, p,) such that

weaks A

uy =50 in L=(0, T; HE(82,)),

weaks A

u, — u in Wl‘oo(o, T; H()Z(Qp)),

weak

pu—>p in L¥%(Q),

weaks A

v, =D inL™®(0, T; L3(£2))),

v, 225 in L2(0, T; HY(%2,)).

The passage to the limit presents three points on which we want to
insist: the passage to the limit in the continuity equation and the ones
concerning respectively the terms of the stress in the plate equation and
the coupling condition.

In order to pass to the limit in the continuity equation, we need to check
that Aubin’s theorem is always true for a the spatég0, T; X (¢)). The
others difficulties can be solved by an adaptation of the demonstration
given in [6] or [7].

We considem®, a bounded sequence Irf°(0, T'; H™°(£2;)) such that
00,/0t is bounded inLP1(0, T; H"1($2,)) with 1 < pg, p1 < oo and
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mo > m1 > 0. We extend the sequenék by using the extension operator
of H™t1(Q) in H™oT1(R#). We note that the support of the functions is
contained in a compact & if Q is compact. Let), be the extension of
©,, we noteR2’ =, 0.7 $2: , then®, is bounded in.7°(0, T'; H™(£2")
and 9o, /3t is bounded inL?1(0, T; H"1(£2")) (see for example [5]).
This result is sufficient to apply Aubin’s compactness lemma.
Concerning the equation of the structure, the main difficulty is the
passage to the limit in the trace terms. We note that

V{28 divws +) — p} = S 4 0 € B0, T HY@)),

hencey ((u + 2£)divv — p) e H~ X0, T; H¥?(I")) and
v{op— (u+28)dive,} — O in HX0, T; H¥*(I")) weakly,
(2.25)

which allows us to give a meaning to the trace of the gwm- (u +
2&)divv). In order to give a meaning to each term of this sum, we define
5, andZ as the vectors

Pu 1Y

— v — v
B, = Pul1u and ={°"
Pu2u pL2

PuV3u pPU3

We obtainZ, € L*(Q)* and di , &, = 0= dp, /3t + div(p,v,) €
LY(Q), therefore 8, € L}, (0) = {¢ € LY (Q)* divp € L1(Q)} and
thanks to the passage to the limit in the equation of continuity, we have
E,— Ein L}, (0)-weak. Thus, according to the continuity of the trace
application [1], we haver (&,,) — y (&) in (W1>(3Q)) weakly and in
particular

y(p) = y(p) in (WE=(30)) weakly. (2.26)
Finally, from (2.25) and (2.26), we obtain

y(divy,) — y(divv) inD'(3Q). (2.27)

To pass to the limit in the coupling condition, we use the fact that
u is bounded inW>(0, T; H3}(£2,)) N L>(0, T; HZ(£2,)). Indeed, we
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deduce of this estimate that

acos(wg)_2< 2 u 9%u ) 1

o1 S, 0103, ) (L (du/ dD)?)

is bounded inL>(0, T'; L?7(£2,) and the bound of“ cogws) in L(Q)
permits us to show th%[i coYw3) converges in the sense of distributions
on$2, x (0, T) ([6] Chapter 5, Lemma 5.1).

Step 5. Construction of approached solutions

In order to construct some approached solutions which satisfya the
priori estimates, we use a fixed point technique. More precisely, we first
solve the fluid equations by settingn = dg/dr € H(0, T; H($2,)),
then we solve the plate equation. We show that we can define alap
such that

5
M:vn, = a—f e HY(0,T: H\(2,))

d
= 8—1: coqw3) € Hl(o, T, Hl('Qp)),

and IT satisfies the criteria of the Kakutani’'s fixed point theorem
which permits us to demonstrate thidt admits a fixed poinbg/dt
HY(0, T; H(£2,)) such that the coupling condition is satisfied

a a

We detail this point below (see also [3] and [4]).
5.1 Resolution of the fluid equations

(a) Homogenization of the fluid equation. First of all, we homog-
enize the momentum equation. With this aim in view, wewsetw + w
wherew = Vh with & the solution to the following problem

—Ah(t)=F(t) e HYO, T; L*(£2,)), inQ,
(R) Vh.n, =0, onX,,

Vh.n, = 2—‘5 € HY(O, T; HY(£2,)), onx,.
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where F (1) is such thatf,, F(r) + [, 9g/dr = 0. Thusw € H*(0, T;
H¥?%(£2,)) and divio = Ah € HY0, T;L>°(£2,)), moreover for allr we
have the estimate

2
Hl(QP))

We solve the problenR) with the Galerkin method by using a basis
sufficiently smooth (for example a basis BP(Q)). The act of working
on Q allows us to circumvent the difficulties linked to the variations of
the domaing2,. We then solve the fluid equations by setting= v — w.
Thus, we obtain the homogeneous probleh).

g

Hdivﬂ)(t)Hi]l/z(m) S C<HF([)Hi°°(Q’) * Ha(t)

(b) Regularisation of the homogeneous problem. We solve the
homogeneous momentum equation by using an elliptical smoothing
technique. Furthermore, we makeLa-regularization of the continuity
equation which is necessary to construct solutions satisfying (2.13). We
therefore must solve the following problem

92w, + 0w, L+ E)A
—& — W,
012 ot ’
—EVdivw, + Vps = VF, inQ,
Vhe.n =0, on X,
curlw, =0, on X,
dw,
We _ 0, on X,
ot
(F,.) we(t =0) = wo as{s, e} — 0, in L2(£2o),
‘ dw, (0 .
we( ) =0, in$2q,
ot
dwe (T .
w(T) =0, in 27,
ot
3,05 . . _ 2 .
B +div(psw,) + div(psw) + 8p5 =0, ps >0, inQ,
ps(0) — po as{s, e} — 0, in L1(£20),
ps(0)log ps(0) — polog po as{s, e} — 0, in L1(£20),

where

VF = E;_If — (u+&Aw—gvdivi e L2(0, T; HY2(%2,)).



F. FLORI, P. ORENGA / Ann. Inst. Henri Poincaré 17 (2000) 753-777 769

The elliptical regularization of the momentum equation allows us to
work in an openQ of R* and to circumvent the difficulties due to the free
boundary. Moreover, we will demonstrate that the regularization of the
continuity equation justifies Eg. (2.13). Indeed (2.13) has been written
formally and we will see that this regularisation permits to construct
solutions verifying (2.13). The terW F does not introduce difficulties
and we can se¥ F = 0 without loss of generality.

Remark2.2. — To pass to the limit, we must consider a hierarchical
procedure. Indeed, we first pass to the limit onvhich allows us to
obtain the problem(F;) which only depends od. We then show that
the solution of this problem satisfies the estimate (2.24) independently of
8 which allows us to pass to the limit.

We now prove that the solutions of the probleift,) satisfy the
estimates (2.9) and (2.24).

(c) Weak formulation and a priori estimates. We introduceX, a
space defined byy € L2(0, T; W); 8¢/t € L?(Q)} whereW is given
by {¢p € H*(£2,); ¢.n =0on I'} endowed of the norm off1(£2,). We
endowX of the norm

¢
léllx = @l L20.7:w) + HE

12(0)
We set . .
a(ws,tb)=/dingdiv¢+/curstcurI¢,
0 0

and we search, for a fixed value of- 0, a solutionw, € X satisfying

dw, d¢ 0w, .
ot EJFQ/ FY, ¢+(“+5)a(ws’¢)+§Q/dlvw8,

dive = /p,S divg. Vo e X,

(@)
with w, (0) — wg in L?(£2,) and
9 . o
=% 4 div(pyw,) + dv(ps D) + 895 = 0,
ps =0, in L0, T; w=1(%2,)),
ps(0) = po, in L1(£20),

ps(0) log ps(0) — polog po, in L1(£20).
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If (w,, ps) is a solution to this problem, then as— 0

w, is bounded in.?(0, T; W),

ps is bounded inL> (0, T; L*(£2)) N L*(Q),

dw,

is bounded inL2(0, T; W),

\/E% is bounded inL?(Q).

Indeed, we have
2

&
&
ot

2 2
120 + E”wé‘”LDO(O’T;LZ(_Q[)) + (n+ g)HwenLZ(Qr;w)

1 du
; 2 ; 2
+§||dIng||L2(Q)<(C0+Q/,05dIsz—§Q/ws o
P

however

ou

2
E ”wsllLZ(Q,T;W),

L®(0,T;L2(£2))

5l Werio 1

P

and

/Ps divwgz—/pa(t) |09,05(f)+//03(0) log p5(0)
20

Q o

—5/,052|09,05—/,05diVu')
0 0

<<C3—/pa(t) |09pa(t)—8/p§|09pa
2 0
+ sl 1) DIV Lo (0.
Finally, asp is bounded inL'(Q) and diviv in L>°(Q), we obtain

Gt N S
€ 5811 Well o0 7,
31 |l120) 28 ellLoo(0,T;L2(52)))
u 2
+ (M+§:)_C1 — ||we”L2(0,T;W)
dat L®(0,T;L2(£2)))
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el + [ ps010gps(n) +5 [ pflogps < Ca
Q

and the result follows ift andé are chosen sufficiently large.

(d) Passage to the limit ore and §. The above estimates permit to
pass to the limit orz. In particular, we have(3%w,/9t%) — 0 in '(Q)
and

3 .
a—f—(u+gmw—gwww+ws=o.

We have obtained a problefFy) independent of. We must now to
pass to the limit a8 goes to zero.

The L?-regularization ofps is crucial since a difficulty arises in the
construction of solutions satisfying (2.13). We introduce a mollifier
(9:)e>1 such thatp, € C5°(R?), Suppgp, C B(0,1/¢), [p. =1 and
. > 0. We setp, = ¢ * p,, thus we obtain

apSa

+ div(ps:v) + 8(p4 ) =, (2.28)

wherer, — 0 ([6] Chapter 2, Lemma 2.3) ih{,.(Q) with 1/p = 1/2+
1/p' and p’ = 2. We setp, € C*([0, 00)) such thatg) (1) = 1//u+1
with 0 < < oo, we find

3 & . i ¢
DBO1e) | v (B (s ) + AV (B, os0)osc — i)

+8(02),B.,(05) = 1B, (pse) (2.29)

but ps € L?(Q), therefore we can pass to the limit [8] with respect ia
(2.29) , therefore

)
ﬂu(pé) +div (B, (p5)v) + AV () (B), (03005 — By (p3)) + 8028, (0s) = O.

(2.30)
Finally, whenu goes to 0 in (2.30), we obtain

3*/_+d|v(fv)——d|v(v)f+ ,03/2—0. (2.31)

We emphasize that in the three-dimensional situation/.theegulari-
zation of the continuity equation is justified by the passage to the limit
on ¢ [8]. Indeed the estimate omin L%?(Q) is insufficient. Therefore,
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we obtain a regularized equation (2.13) in which we can obtain the same
estimate as in (2.24) fgrs independently 08. We have just an additional
term to estimate

§ [ 30, 0 3/ 354/3 1
> /Ps/ h < §||Pé||L/2<Q)||h||L4(Q) < T”Ps”iz(@ + Z||h||i4<Q)
0

354/3
<C+ == llmsliz ) (2.32)

Finally, since

[0+ 813120, = [ o< C.

24 20
we find
351/3
3/2
A=l +3(1- 25 VIl
3/2 - - 13/2
SCA+ [[wlies s+ VDI o),

thus

sl L32¢0) < K, (2.33)

wherel is an independent constant®and

ps is bounded inL¥?(Q).

Consequently(3/2)ps/> — 0in D'(Q) ass goes to 0 and

0 ) 1.
a—‘/f +div(/pv) — > div(v)/p =0.

Below, we use a fixed point method to construct a solution of the
regularized problem.

(e) Construction of approached solutions. In this paragraph, to
simplify the presentation, we suppress the indexeand §. We note
{wi, ..., w;,...}, abasis ofX = {¢p € H(Q), ¢.n = 0} verifying w; €
H®(Q). We defineX,,, the set of the combinations of the firstunctions
of this basis. We introduce the following approached problem:dine-
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Yi_yaiwi(x,1) € X, andp, € C*(Q) verifying

" ow, 0 " ow,
v —¢+/ 2+ (u+ E)aton, 9)
¢

Jat ot
(F2) +é§/dinn, ddib:/pndivqs, Vo € X,
o 0]
w, (t = 0) = v, — Wo — wo, in L2(£2o),
and
00n . . 2 . 0/ A
a1 + dlv(wnlon) + dlv(wnlon) + 8;0” =0, InC (Q)1
, pn(t =0) = po,(x) >0€ C}(QO)s
(F'2) Pon —> po > 0, in L1(£20),
pon 109 0o, — pol0g po in L(£20),

This problem is solved by using a fixed point method and we show that
it admits a solution such thétv,, p,) € X,, x C*(Q) andp, > 0.

We begin by settingv, = w; in (¥'2) wherew? is a given function in
X,. The characteristics method is well adapted to s@#g). Indeed, to
obtain an estimate op, log p,, the continuity equation must be exactly
verified. We then introducd?, the map which atw? € X,, associates
pn € L®(0, T; L?(£2,)) the solution of the problentF'») and the map
T», which atp, € L>(0, T; L?(£2,)) associates, € X, a solution of the
problem(F’1) which is solved with the Galerkin method. We then define
the mapT = T, o T, and we will show thatT’ satisfies the necessary
hypothesis to apply Kakutani’s fixed point theorem.

We solve(F’;) by using the characteristics method in the following
way. The curves — (X (x, 1), r) are termed the characteristics of origin
x. There is two types of characteristics, those originating from a point
in £2¢9 and, since we take the plate motions into account, those originating
from a point of the boundary and which remain on the boundary. If we
setpg, > 0, thenp, > 0 Vr and we have

dlog p,

divv, +8p, =0,
& + v, + 0p
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moreover, by using the decompositiat) = wy, + wp, = Vh, + Curlg,,
we obtain

9%h, Oh .
=tz — ==+ (1t 2) v, +a. (),
where
" oh, du, 1

1) = n — L0, T).

0 /Po s/ 2 e 120, 7)
20 2p
Therefore

-%{mgm+waz?—am}=—dwwm,+wy+au+2@dwwm

8wln
— S (1) +bv, | € 51 — w1, |,

and by notingK(z) the right hand side term, we find by integrating on the
characteristics curveg

oh, |
on(X(x,1),1) = pon exp<8 [y — hoy) — €68 Py + /K(r)).
0

Furthermore, the continuity equation gives us

T

d . .

5 1P NZ2e) +8lloalzag) + / (divw}; + divi,)|p|* =0,
0

and if the functions of the basis used to solve the problegR)sand(F';)
are sufficiently smooth, we obtain div + divw, € C*(Q) C L>®(Q).
Therefore, by using [8] we fing, € C*(Q) and by applying Gronwall’'s
lemma we have

T
2 2 . -
”'O"HLO"(O,T;LZ(.Q,)) < ”p()n”LZ(_QO) eXp/ Hle(w: + wl’l)HLOO(_Q[)' (234)
0

In the same way, we have for the momentum equation
2

2 2
+ E ”wn ||L00(0’T;L2(_Qt)) + (,u + 2%')”1[)” ||L2(0,T;W)

%
&
ot

L2(Q)
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. 1 . 1 og
2 _ 2 2
+€”dlvwn”LZ(Q)—EHWOnHLZ(_QO)""/pnden_5'/|wn| EY
0 0p

and if dg/0¢ satisfies the assumption (2.10), we obtain the following
estimate

2 2 2
||wn||x,, g ClT ”Pn”Loo(o’T;Lz(_Q[)). (235)

Finally, the inequalities (2.34) and (2.35) lead us to
lwall%, < C2T?expllw;llx, + Cs,

whereC, and C3 are two positive constants which depend exclusively
on the data. Then we can apply Kakutani’s theorem for which we refer
to [1]. Thus, the problemw, = T'(w}) possesses a solution ii,. The
existence is obtained for a smdl| but is true for each value @f thanks

to the a priori estimates.

Remark2.3. — Because of the regularization of the momentum equa-
tion, it is natural to suppose that the stress applied to the plate by the fluid
is the trace of

. _ 9%h,,
Pn — (0 + 28) div(wy, + w) + v

with divw € L>®(0, T; H¥?(£2,)) and

82hn) :_awl,, c 2

V(on = Gt 2 A, +

consequently

. 9%h,, o
o=0,+0p=7y (pn—(u+2§)dlvwln +8F) +y(—(n+28)divw)

has a meaning if?(0, 7; HY%(2,)) + L>(0, T; L?(£2,)).
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5.2 - Resolution of the plate equation
We can now solve the problem associated to the plate:

9%u 9%u

57 UG F AU =f—ou—0, €L5(Q)). N 0y,

u=Vu.n,=0, onagQ,,
S) S

M([ =O) =M0(.x), n HO (Qp)!

d .

a—”;a =0) = u1(x), in HY($2,),

with this aim in view, we use the Galerkin method with a basis of
Hy'($2,) wherem is large enough. The resolution does not present any
difficulties, in particular we show thah?x and A% are bounded in
L?(Q,). ConsequentlyAu is bounded inH?(Q,) which permits to
obtain a bound on cd&3) in Hz(Qp). So, there exists a constditsuch
that

2 2

u
at

<K‘

Ha”’ cosws)
— [6)]
3t 3

HL(0,T; H1($2p)) Hl(O;T;H:l(Qp))‘

We must verify that the solution obtained satisfies the coupling
condition. To this end, we multiply the plate equation dsy./d¢2, then
we integrate orQ ,. Using the estimate om, we find

2

3%u
HV < C(1+ ||o’a||%2(Qp) + ”O'bHEZ(Qp)),

ar?

L2(Qp))

in which o, is bounded in.2(Q,) ando, = Ah, wheref is the solution
to the problem'R). Therefores, satisfies

2

. g
2 -2

o < CT|divw <CZ<1+ —
|| b”LZ(Q,,) X || ”LOO(O,T;H%(QT)) X 97

Hl(O,T;Hl(.Qp)))

and thus
2 azu 2
<K V—z

9% llL20,))
2

u
— COSw3)
ot HL(O.T; HY(2,))

0
<Gy +(C2TH—g
ot

Hl(O,T; Hl(-Qp)).
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This last estimate permits to define the m@pintroduced above in
step 4:

9 0
m: 3—f e HY(0,T; HX(2,)) a—?costw@ € HY(0.T: H(£2,)).

We show [1] that for all” small enough, this map verifies the necessary
conditions to apply Kakutani's fixed point theorem. Therefore, there
exists a fixed point such that the coupling condition is checked, namely

3 cogws) = g—f =v.n, in HY(0, T; H'(£2,)). We note that, thanks to the

a priori estimates, this result can be extended fof"allvhich completes
the proof.
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