
Ann. Inst. Henri Poincaré, Analyse non linéaire 17, 6 (2000) 753–777

Fluid-structure interaction:
analysis of a 3-D compressible model

by

Fabien FLORI1, Pierre ORENGA2

URA CNRS 2053, University of Corsica, Grossetti, B.P. 52, 20250 Corte, France

Manuscript received 6 January 2000

ABSTRACT. – In this paper, we present an existence result of weak solu-
tions for a three-dimensional problem of fluid-plate interaction in which
we take into account the non linearity of the continuity equation. This non
linearity does not allow, as is usually the case, to neglect the variations of
the domain which leads us to study a problem defined on a time depen-
dent domain.
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RÉSUMÉ. – Dans ce papier, nous présentons un résultat d’existence de
solutions faibles pour un problème de couplage fluide-plaque tridimen-
sionnel dans lequel nous prenons en compte la non linéarité de l’équation
de continuité. Cette non linéarité ne nous permet pas, comme c’est géné-
ralement le cas, de faire l’hypothèse de petites perturbations et de négli-
ger les variations du domaine ce qui nous conduit à étudier un problème
défini sur un domaine dépendant du temps.
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1. INTRODUCTION

We study a three-dimensional fluid-structure interaction problem in
which the structure is a plate occupying a part of the fluid domain
boundary. This problem has been already analyzed in a previous study
[4] in a two dimensional situation. This first work already pointed out
an important difficulty. Indeed, under conditions of weak disturbances,
it is classically assumed that the fluid occupies a fixed domainΩ .
Nevertheless, in the more general case, when we consider the non
linearity of the continuity equation, this assumption leads to some
difficulties. Principally, we are unable to obtain a priori estimates and to
show that the problem is well posed. In order to avoid this difficulty, we
must take into account the displacements of the structure in the geometry
of the fluid.

We setQp = Ωp×]0, T [ whereΩp is an open subset ofR2 which
physically represents the plate at rest,Σa = Γa×]0, T [ whereΓa is a part
of the fluid boundary assumed to be fixed,Σb =⋃t∈]0,T [ Γb(t)×{t}where
Γb(t) is the deformation of the plate at timet . Ωp andΓa are assumed
to be sufficiently smooth. We define inR4, Q = ⋃t∈]0,T [Ωt × {t} with
Ωt = ⋃x∈Ωp ]u(x, t),1[ and whereu is the motion within the structure.
We setΣ as the lateral boundary ofQ. We defineΩ0 (respectivelyΩT )
as being the interior inR3 of the intersection of̄Qwith t = 0 (respestively
t = T ). The sectionΩs =Q∩ {t = s} is continuous with respect tos and
never empty, ifu is a continuous function ofx and t . Ωs represents the
domain occupied by the fluid att = s.

We notev, p andρ, the velocity, the pressure and the density of the
fluid. We consider the state equationp = aργ with a andγ chosen in
R∗+. Afterwards we setγ = 1 but the results are always true forγ > 1.
Moreover,ρ̄ is the reference average value of density andµ andξ are the
so-called Lamé viscosity coefficients. The problem associated with the
fluid is the following

(F)



ρ̄
∂v

∂t
− (µ+ ξ)1v − ξ∇ divv + a∇ργ = 0, in Q,

∂ρ

∂t
+ div(vρ)= 0, ρ > 0, in Q,

curlv ∧ n= 0, onΣ ,
v.na = 0, onΣa,
v(t = 0)= v0(x), ρ(t = 0)= ρ0(x)> 0, in Ω0,
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The motion of the plate is governed by the biharmonic operator. This
model can be improved with the introduction of an inertia term−1∂2u

∂t2
.

This term, generally neglected, is important because it permits to obtain
the continuity ofu with respect tox and t , that is to sayu ∈ C0(Q̄p),
which allows to affirm thatΩt is never empty. We noteD the rigidity
of the plate,m the surfacic mass,I the inertia moment and̄σ the force
applied to the plate due to the stress tensor of the fluid. The problem
associated with the plate is

(S)



m
∂2u

∂t2
−mI1∂

2u

∂t2
+D12u= f + σ̄ , in Qp,

u=∇u.np = 0, on∂Qp,
u(t = 0)= u0(x), in Ωp,
∂u

∂t
(t = 0)= u1(x), in Ωp.

The unitary exterior normalnb = (cos(ω1),cos(ω2),cos(ω3)) ofΩt on
Γb is defined by

cos(ω1)= ∂u/∂x1√
1+ (du/dx̄)2

, cos(ω2)= ∂u/∂x2√
1+ (du/dx̄)2

,

cos(ω3)= −1√
1+ (du/dx̄)2

,

with (
du

dx̄

)2

=
(
∂u

∂x1

)2

+
(
∂u

∂x2

)2

.

So, it can be written

nb =−n.cos(ω3)

with

n=
(
∂u

∂x1
,
∂u

∂x2
, −1

)
.

We suppose that the normal velocityv.nb at the plate-fluid interface
is equal to the projection of the displacement velocity on the normal
direction. So, we obtain the following coupling condition

(C)
{
v.nb = ∂u

∂t
cos(ω3), onΣb,
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which can be noted

v.n=−∂u
∂t
, onΣb.

Moreover, as dΓb =
√
(dx̄)2+ (du)2, then∀Θ(x1, x2, u) ∈L1(Γb),

∫
Γb

Θ dΓb =
∫
Ωp

Θ

√
1+

(
du

dx̄

)2

dx̄ =−
∫
Ωp

Θ
1

cos(ω3)
dx̄

and in particular, for allσ smooth enough, ifΘ = σv.nb, we have∫
Γb

σv.nb dΓb =−
∫
Ωp

σ
∂u

∂t
dx̄. (1.1)

Lastly, we assume that the force applied by the fluid to the plate can be
approximated by [2,3]

σ̄ (x1, x2, u)=−aργ + (µ+ 2ξ)divv, (1.2)

which is reasonable in the case of weak deformations and when curlv∧n
= 0 on the boundary. We will see that this modelization allows to obtain
a priori estimates.

Afterwards, with the exception ofµ andξ , we take all the constants
to be 1 (the caseγ = 1 is mathematically the most critical) and we study
the problem(P)= {(F), (S), (C)}.

Remark1.1. – If we do not take into account the variation of the
domain occupied by the fluid, thenΩt =Ω0 and the conservation of the
mass is not verified since∫

Ωt

ρ(t)−
∫
Ω0

ρ0=−
∫
Σb

ρv.nb dΣb 6= 0.

By settingΩt =⋃x∈Ωp ]u(x, t),1[ as the domain occupied by the fluid,
we respect the assumption of conservation of mass. Indeed, by integrating
the equation of continuity onΩt , we find∫

Ωt

∂ρ

∂t
=−

∫
Γb

v.nbρ dΓb,
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moreover, by using the Leibniz’s formula, we obtain

∫
Ωt

∂ρ

∂t
=
∫
Ωp

1∫
u(x,t)

∂ρ

∂t
= d

dt

∫
Ωt

ρ +
∫
Ωp

∂u

∂t
ρ dx̄,

and finally

d

dt

∫
Ωt

ρ =−
∫
Ωp

∂u

∂t
ρ dx̄ −

∫
Γb

v.nbρ dΓb,

which, using (1.1), leads us toddt
∫
Ωt
ρ = 0. This condition is physically

correct and permits us to obtain a first estimate onρ in L∞(0, T ;L1(Ωt))

if ρ0 ∈L1(Ω0).

Remark1.2. – Afterwards, the definition ofΩt and the modelization
of the stress applied by the fluid to the plate allow to obtain the
conservation of energy for the coupled system.

Remark1.3. – The definition of the domain leads us to work with
functional spaces defined over a family of domains dependent on time.
In a previous work [4], we demonstrated that these spaces conserve the
properties of the classical functional spaces.

Remark1.4. –Γb can be defined by the mapu :Ωp 7→ Γb. If u(x, t) is
continuous, then the boundaryΓa ∪ Γb of Ωt is continuous. Thus, asv.n
is defined onΓb and∂u/∂t onΩp, we can assume that the functionv.n
is defined onΩp.

We show the existence of a weak solution for the coupled problem(P)
defined above. First, we present the estimates of energy associated with
the system and we give a meaning to the trace of the stress terms. This
allows us to pass to the limit in the plate equation. Finally, we construct
approached solutions which satisfy thea priori estimates.

2. AN EXISTENCE RESULT

We give now the conditions which are sufficient to show the existence
of a weak solution for the problem(P). Let Θ ∈ ]0,1[, ε < 1 and
the functionsf ∈ L1(0, T ;H−1(Ωp)), u0 ∈ H 2

0 (Ωp), u1 ∈ H 1
0 (Ωp),

v0 ∈ L2(Ω0), ρ0 ∈ L1(Ω0), ρ0 logρ0 ∈ L1(Ω0) satisfying the following
condition
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Υ = 2 meas(Ωt)+ (1− ε)‖u1‖2H1
0 (Ωp)
+‖1u0‖2L2(Ωp)

++‖v0‖2L2(Ω0)

+ 2
∫
Ω0

ρ0 logρ0+ 2

ε
‖f ‖2L1(0,T ;H−1(Ωp))

< (1− ε)Θ2
(
µ+ ξ
C1

)2

, (2.1)

whereC1 is a constant introduced below. If (2.1) is verified, then we have
the following result

THEOREM 2.1. –There exists a solution(u, v, ρ) of the above prob-
lem (P) satisfying: u ∈W 1,∞(0, T ;H 1

0 (Ωp)) ∩ L∞(0, T ;H 2
0 (Ωp)), v ∈

L∞(0, T ;L2(Ωt)) ∩ L2(0, T ;H 1(Ωt)) and ρ ∈ L∞(0, T ;L1(Ωt)) ∩
L3/2(Q) in such a way that the plate equation, the momentum and the
continuity equations are respectively solved inH−1(0, T ;H−2(Ωp)),
L3/2(0, T ;W−1,3/2(Ωt)) andL12/11(0, T ;W−1,1(Ωt)).

PROOF OF THEOREM 2.1

Step 1. A first a priori estimate

Let (u, v, ρ) be a solution of(P), by multiplying the equation(S)1 by
∂u/∂t and by multiplying the equation(F)1 by v, we obtain successively

1

2

d

dt

(∥∥∥∥∂u∂t
∥∥∥∥2

H1
0 (Ωp)

+ ‖1u‖2L2(Ωp)

)

=
∫
Ωp

(−ρ + (µ+ 2ξ)div v
)∂u
∂t
+
∫
Ωp

f
∂u

∂t
, (2.2)

1

2

∫
Ωt

∂v2

∂t
+ (µ+ ξ)‖v‖2H1(Ωt )

+ ξ‖div v‖2L2(Ωt )

=
∫
Ωt

ρ divv +
∫
Γb

(−ρ + (µ+ 2ξ)div v
)
v.nb. (2.3)

Let us first recall that in Eq. (2.3), the domainΩt depends on time,
therefore:

1

2

∫
Ωt

∂v2

∂t
= 1

2

1∫
u(t)

∫
Ωp

∂v2

∂t
= 1

2

d

dt
‖v‖2L2(Ωt )

+ 1

2

∫
Ωp

v2∂u

∂t
. (2.4)
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Moreover, still in Eq. (2.3), we remark that formally∫
Ωt

ρ divv=−
∫
Ωt

∇ρ
ρ
(vρ)+

∫
Γb

ρv.nb

=
∫
Ωt

logρ div(vρ)+
∫
Γb

(ρ − ρ logρ)v.nb, (2.5)

consequently by using the continuity equation∫
Ωt

ρ div v=−
∫
Ωt

∂ρ

∂t
logρ +

∫
Γb

(ρ − ρ logρ)v.nb

=
∫
Ωt

∂

∂t
(ρ − ρ logρ)+

∫
Γb

(ρ − ρ logρ)v.nb,

and so with the Leibniz’s formula, we obtain∫
Ωt

ρ divv=− d

dt

∫
Ωt

ρ logρ +
∫
Ωp

(ρ − ρ logρ)
∂u

∂t

+
∫
Γb

(ρ − ρ logρ)v.nb. (2.6)

Thus, by using Eq. (2.4) and Eq. (2.6) in Eq. (2.3), we find

1

2

d

dt

(
‖v‖2L2(Ωt )

+ 2
∫
Ωt

ρ logρ
)
+ (µ+ ξ)‖v‖2H1(Ωt )

+ ξ‖divv‖2L2(Ωt )

=−1

2

∫
Ωp

v2∂u

∂t
−
∫
Ωp

(ρ − ρ logρ)
∂u

∂t
+
∫
Γb

(ρ − ρ logρ)v.nb

+
∫
Γb

(−ρ + (µ+ 2ξ)divv
)
v.nb. (2.7)

Finally, considering that

−1

2

∫
Ωp

v2∂u

∂t
6C1

∥∥∥∥∂u∂t
∥∥∥∥
L∞(0,T ;L2(Ωp))

‖v‖2L2(0,T ;H1(Ωt ))
(2.8)

and (1.1) ∫
Γb

σv.nb dΓb =−
∫
Ωp

σ
∂u

∂t
dx̄,
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by summing Eqs. (2.2) and (2.7), we obtain the following energy estimate

2meas(Ωt)+ (1− ε)
∥∥∥∥∂u(t)∂t

∥∥∥∥2

H1
0 (Ωp)

+ ∥∥1u(t)∥∥2
L2(Ωp)

+ ∥∥v(t)∥∥2
L2(Ωt )

+ 2
∫
Ωt

ρ(t) logρ(t)+ 2
(
(µ+ ξ)−C1

∥∥∥∥∂u∂t
∥∥∥∥
L∞(0,T ;L2(Ωp))

)
× ‖v‖2L2(0,T ;H1(Ωt ))

+ 2ξ‖div v‖2L2(Q) 6 Υ, (2.9)

whereΥ is defined by Eq. (2.1) and
∫
Ωt
ρ(t) logρ(t)+meas(Ωt)> 0.

Assuming that

(µ+ ξ)−C1

∥∥∥∥∂u∂t
∥∥∥∥
L∞(0,T ;L2(Ωp))

> 0, (2.10)

we obtainu bounded inW 1,∞(0, T ;H 1
0 (Ωp)) ∩ L∞(0, T ;H 2

0 (Ωp)) ⊂
C0(Q̄p), v bounded inL∞(0, T ;L2(Ωt)) ∩ L2(0, T ;H 1(Ωt)), ρ and
ρ logρ bounded inL∞(0, T ;L1(Ωt)). We show, if the condition of
“small data” (2.1) is verified, that(2.10) is always true.

Looking at (2.9), it is clear that we can obtain estimates onu andρ if
and only if the condition (2.10) is verified for eacht , that is to say if∥∥∥∥∂u(t)∂t

∥∥∥∥
L2(Ωp)

6 µ+ ξ
C1

,

which signifies that∂u/∂t must stay in the ball ofL2(Ωp) with center 0
and radius(µ+ ξ)/C1. To prove this point, we use the assumption (2.1)
based on the data. Since∂u/∂t is continue from [0,T] inL2(Ωp) and∥∥∥∥∂u(0)∂t

∥∥∥∥
L2(Ωp)

= ‖u1‖L2(Ωp) 6Θ
µ+ ξ
C1

,

then there existst ′ < T such that∥∥∥∥∂u(t ′)∂t

∥∥∥∥
L2(Ωp)

6Θµ+ ξ
C1

.

By settingt1 as the smaller time such that,∥∥∥∥∂u(t1)∂t

∥∥∥∥
L2(Ωp)

=Θµ+ ξ
C1

,
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estimate (2.9) written at timet1 leads us to

(1− ε)Θ2
(
µ+ ξ
C1

)2

6 Υ < (1− ε)Θ2
(
µ+ ξ
C1

)2

,

which contradicts the assumption (2.1). Therefore,∂u(t)/∂t stays in the
stability ball whatevert ∈ [0, T ].

Remark2.1. – If u is bounded inW 1,∞(0, T ; H 1
0 (Ωp)) ∩ L∞(0, T ;

H 2
0 (Ωp)) then ∂u

∂t
cos(ω3) is bounded inL∞(0, T ;W 1,2q/(4+q)(Ωp)) with

46 q <∞. Indeed,

∂ cos(ω3)

∂xi
= 2

(
2∑
j=1

∂u

∂xj

∂2u

∂xi∂xj

)
× 1

(1+ ( du
dx̄ )

2)
,

then

∂ cos(ω3)

∂xi
∈ L∞(0, T ;H 1

0 (Ωp)
)×L∞(0, T ;L2(Ωp)

)×L∞(Q)
⊂L∞(0, T ;L2q/(2+q)(Ωp)

)
,

thus

∂u

∂t
cos(ω3)

∈L∞(0, T ;H 1
0 (Ωp)

)×L∞(Q)∩L∞(0, T ;W 1,2q/(2+q)(Ωp)
)

⊂ L∞(0, T ;W 1,2q/(4+q)(Ωp)
)
.

Step 2. Weak formulation

The problem is solved in a weak meaning. In particular, let us
specify the weak formulation associated to the fluid. We homogenize the
momentum equation by settingv = w + w̄ wherew̄ = ∇h̄ and h̄ is the
solution of

(R)



∂h̄

∂t
− (µ+ 2ξ)1h̄= 0, in Q,

∇h̄.na = 0, onΣa,

∇h̄.nb = ∂u
∂t

cos(ω3) ∈ L∞(0, T ;W 1,2q/(4+q)(Ωp)), onΣb.

h(t = 0)= h0(x) ∈H 1(Ω0), ρ(t = 0)= ρ0(x)> 0, in Ω0,
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In fact, afterwards,∂u
∂t

cos(ω3) is fixed and we solve the problem by
using a fixed point method. Thus, we obtain the following homogeneous
problem

(F ′)



∂w

∂t
− (µ+ ξ)1w− ξ∇ divw+∇ρ = 0, in Q,

∂ρ

∂t
+ div(wρ)=−div(w̄ρ), ρ > 0, in Q,

curlw ∧ ni = 0, i ∈ {a;b}, onΣ ,
w.ni = 0, i ∈ {a;b}, onΣ,
w(t = 0)= v0(x)−∇h̄0(x), ρ(t = 0)= ρ0(x)> 0, in Ω0,

which is solved in a weak meaning. If we setW = {φ ∈H 1(Ωt), φ.n= 0
on Γ } and a(w,φ) = (divw,divφ)+ (curlw,curlφ) where(. , .) is the
scalar product inL2(Ωt), the problem is:

Findw ∈ L2(0, T ;W)∩L∞(0, T ;L2(Ωt)) andρ ∈L3/2(Q)∩L∞(0,
T ; L1(Ωt)) satisfying



T∫
0

〈
∂w

∂t
, φ

〉
W ′,W
+ (µ+ ξ)

T∫
0

a(w,φ)+ ξ
T∫

0

(divw,divφ)

+
T∫

0

(ρ,divφ)= 0, ∀φ ∈ L3(0, T ;W ∩W 1,3(Ωt)),

∂ρ

∂t
+ div(wρ)=−div(w̄ρ), in L12/11(0, T ;W−1,1(Ωt)),

w(t = 0)= v0(x)−∇h̄0(x), ρ(t = 0)= ρ0(x)> 0, in Ω0.

Note that the plate equation is solved in the following meaning

∂2u

∂t2
−1∂

2u

∂t2
+12u= f − ρ + (µ+ 2ξ)div v ∈H−1(0, T ;H−2(Ωp)

)
.

Step 3. An additional estimate onρ

The estimates obtained onρ in the “step 1” are not sufficient to pass
to the limit in the continuity equation in the three-dimensional situation.
We show below how to obtain the estimateρ bounded inL3/2(Q) which
is sufficient to pass to the limit.



F. FLORI, P. ORENGA / Ann. Inst. Henri Poincaré 17 (2000) 753–777 763

Let w1 andw2 be the unique functions satisfyingw = w1+ w2 with
divw2= 0 and rotw1= 0. We note that this notation leads us to

∂w1

∂t
− (µ+ 2ξ)∇(divw1)+∇ρ =−∂w̄

∂t
− (µ+ 2ξ)∇(div w̄)= 0,

∂w2

∂t
−µRot(rotw2)= 0,

with rotw2= 0 andw1.n= 0 on Σ. Moreover, we havew1=∇h where
h satisfies

∂h

∂t
− (µ+ 2ξ)1h+ ρ =

∫
Ω0

−ρ0+ 1

meas(Ωt)

∫
Ωp

h
∂u

∂t

= α(t) ∈L∞(0, T ). (2.12)

We also have (formally at least)

∂
√
ρ

∂t
+ div

(√
ρv
)− 1

2
div(v)

√
ρ = 0. (2.13)

We multiply (2.13) byh and we integrate onQ, we obtain∫
Q

∂
√
ρ

∂t
h− 1

2

∫
Q

(∇h)2√ρ − 1

4

∫
Q

1h2√ρ −
∫
Q

w̄∇h√ρ

− 1

2

∫
Q

div(w̄)h
√
ρ +

∫
Σ

v.nh
√
ρ = 0, (2.14)

moreover (2.12) gives us

∫
Q

∂h

∂t

√
ρ − (µ+ ξ)

∫
Q

1h
√
ρ +

∫
Q

ρ3/2=
T∫

0

α(t)

∫
Ωt

√
ρ. (2.15)

Thus, by summing (2.14)–(2.15) and by using Leibniz’s formula, the
terms on the boundary are cancelled thanks to the condition (1.1) and we
obtain the following equation

‖ρ‖3/2
L3/2(Q)

= 1

2

∫
Q

(∇h)2√ρ + 1

4

∫
Q

1h2√ρ +
∫
Q

w̄∇h√ρ

+ 1

2

∫
Q

div(w̄)h
√
ρ −

∫
Ωt

h
√
ρ +

∫
Ω0

h0
√
ρδ0
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+ (µ+ ξ)
∫
Q

1h
√
ρ +

T∫
0

α(t)

∫
Ωt

√
ρ. (2.16)

In order to estimate the right hand side term of (2.16) let us recall thath

is bounded inL∞(0, T ;H 1(Ωt))∩L2(0, T ;H 2(Ωt)) which by using the
harmonic mean, leads us toh bounded inL4((0, T ;W 1,3(Ωt)). In addi-
tion,H 2(Ωt) is an algebra thereforeh2 is bounded inL1(0, T ;H 2(Ωt)).
Lastly, let us recall that

√
ρ is bounded inL∞(0, T ;L2(Ωt)) since ac-

cording to Remark 1.1,ρ is bounded inL∞(0, T ;L1(Ωt)). Therefore,
the different terms are estimated as follows

1

2

∫
Q

(∇h)2√ρ 6Cε‖∇h‖3L4
t (L

3
x)
+ ε‖ρ‖3/2

L3/2(Q)
6C+ ε‖ρ‖3/2

L3/2(Q)
,

(2.17)∫
Ωt

h
√
ρ 6C‖h‖L2(Q)

∥∥√ρ∥∥
L2(Q)

6C, (2.18)

1

4

∫
Ωt

1h2√ρ 6C∥∥1h2∥∥
L1
t (L

2
x)

∥∥√ρ∥∥
L∞t (L2

x)
6C, (2.19)

∫
Q

w̄∇h√ρ 6C‖w̄‖
L

12/5
t (L3

x)
‖∇h‖L4

t (L
3
x)
‖ρ‖1/2

L32(Q)

6Cε‖w̄‖3/2
L

12/5
t (L3

x)
‖∇h‖3/2

L4
t (L

3
x)
+ ε‖ρ‖3/2

L3/2(Q)

6C‖w̄‖3/2
L

12/5
t (L3

x)
+ ε‖ρ‖3/2

L3/2(Q)
, (2.20)

∫
Q

div w̄h
√
ρ 6C‖div w̄‖

L
3/2
t (L2

x)
‖h‖L∞t (L6

x)

∥∥ρ∥∥1/2
L3/2(Q)

6Cε‖div w̄‖3/2
L

3/2
t (L2

x)
‖h‖3/2

L∞t (L6
x)
+ ε‖ρ‖3/2

L3/2(Q)

6C‖div w̄‖3/2
L

3/2
t (L2

x)
+ ε‖ρ‖3/2

L3/2(Q)
, (2.21)

(µ+ ξ)
∫
Q

1h
√
ρ 6C‖1h‖L2(Q)

∥∥√ρ∥∥
L2(Q)

6C, (2.22)
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T∫
0

α(t)

∫
Q

√
ρ 6C

∥∥α(t)∥∥
L1(0,T )

∥∥√ρ∥∥
L∞t (L1

x)
6C. (2.23)

Finally, by using (2.17)–(2.23) in (2.16), we obtain

(1− 3ε)‖ρ‖3/2
L3/2(Q)

6C
(
1+ ‖w̄‖3/2

L
12/5
t (L3

x)
+ ‖div w̄‖3/2

L
3/2
t (L2

x)

)
,

where w̄ = ∇h̄ and with h̄ the solution of problem(R) in which
∂u
∂t

cos(ω3) ∈L∞(0, T ;W 1,2q/(4+q)(Ωp))with 06 q <∞. Consequently,
w̄ ∈L∞(0, T ;L2(Ωt))∩L2(0, T ;H 1(Ωt))⊂ L4(0, T ;L3(Ωt)) and thus

‖ρ‖L3/2(Q) 6K. (2.24)

Step 4. Passage to the limit

Let (uµ, vµ, ρµ) be a sequence of approached solutions satisfying the
estimates (2.9) and (2.24). We can extract a subsequence which is still
noted(uµ, vµ, ρµ) such that

uµ
weak∗−→ û in L∞

(
0, T ;H 1

0 (Ωp)
)
,

uµ
weak∗−→ û in W 1,∞(0, T ;H 2

0 (Ωp)
)
,

ρµ
weak−→ ρ̂ in L3/2(Q),

vµ
weak∗−→ v̂ in L∞

(
0, T ;L2(Ωt)

)
,

vµ
weak−→ v̂ in L2(0, T ;H 1(Ωt)

)
.

The passage to the limit presents three points on which we want to
insist: the passage to the limit in the continuity equation and the ones
concerning respectively the terms of the stress in the plate equation and
the coupling condition.

In order to pass to the limit in the continuity equation, we need to check
that Aubin’s theorem is always true for a the spacesLp(0, T ;X(t)). The
others difficulties can be solved by an adaptation of the demonstration
given in [6] or [7].

We considerΘn a bounded sequence inLp0(0, T ;Hm0(Ωt)) such that
∂Θn/∂t is bounded inLp1(0, T ;H−m1(Ωt)) with 1< p0,p1 <∞ and
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m0>m1> 0. We extend the sequenceΘn by using the extension operator
of Hm0+1(Q) in Hm0+1(R4). We note that the support of the functions is
contained in a compact ofR4 if Q is compact. LetΘ̄n be the extension of
Θn, we noteΩ ′ =⋃t∈]0,T [Ωt , thenΘ̄n is bounded inLp0(0, T ;Hm0(Ω ′)
and∂Θ̄n/∂t is bounded inLp1(0, T ;H−m1(Ω ′)) (see for example [5]).
This result is sufficient to apply Aubin’s compactness lemma.

Concerning the equation of the structure, the main difficulty is the
passage to the limit in the trace terms. We note that

∇{(µ+ 2ξ)div(w1+ w̄)− ρ}= ∂w1

∂t
+ ∂w̄
∂t
∈H−1(0, T ;H 1(Ωt)

)
,

hence,γ ((µ+ 2ξ)div v− ρ) ∈H−1(0, T ;H 3/2(Γ )) and

γ
{
ρµ− (µ+ 2ξ)div vµ

}→Θ in H−1(0, T ;H 3/2(Γ )
)

weakly,

(2.25)

which allows us to give a meaning to the trace of the sum(ρ − (µ +
2ξ)divv). In order to give a meaning to each term of this sum, we define
Ξµ andΞ as the vectors

Ξµ =


ρµ
ρµv1µ

ρµv2µ

ρµv3µ

 and Ξ =


ρ

ρv1

ρv2

ρv3

 .
We obtainΞµ ∈ L1(Q)4 and divx,t Ξµ = 0= ∂ρµ/∂t + div(ρµvµ) ∈

L1(Q), thereforeΞµ ∈ L1
div(Q) = {φ ∈ L1(Q)4,divφ ∈ L1(Q)} and

thanks to the passage to the limit in the equation of continuity, we have
Ξµ→Ξ in L1

div(Q)-weak. Thus, according to the continuity of the trace
application [1], we haveγ (Ξµ)→ γ (Ξ) in (W 1,∞(∂Q))′ weakly and in
particular

γ (ρµ)→ γ (ρ) in
(
W 1,∞(∂Q)

)′
weakly. (2.26)

Finally, from (2.25) and (2.26), we obtain

γ (divvµ)→ γ (divv) in D′(∂Q). (2.27)

To pass to the limit in the coupling condition, we use the fact that
u is bounded inW 1,∞(0, T ;H 1

0 (Ωp)) ∩ L∞(0, T ;H 2
0 (Ωp)). Indeed, we
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deduce of this estimate that

∂ cos(ω3)

∂t
= 2

(
2∑
j=1

∂u

∂xj

∂2u

∂t∂xj

)
× 1

(1+ (du/dx̄)2)

is bounded inL∞(0, T ;L2−ε(Ωp) and the bound of∂u
∂t

cos(ω3) in L1(Q)

permits us to show that∂u
∂t

cos(ω3) converges in the sense of distributions
onΩp × (0, T ) ([6] Chapter 5, Lemma 5.1).

Step 5. Construction of approached solutions

In order to construct some approached solutions which satisfy thea
priori estimates, we use a fixed point technique. More precisely, we first
solve the fluid equations by settingv.n = ∂g/∂t ∈ H 1(0, T ;H 1(Ωp)),
then we solve the plate equation. We show that we can define a mapΠ

such that

Π :v.nb = ∂g
∂t
∈H 1(0, T ;H 1(Ωp)

)
7→ ∂u

∂t
cos(ω3) ∈H 1(0, T ;H 1(Ωp)

)
,

and Π satisfies the criteria of the Kakutani’s fixed point theorem
which permits us to demonstrate thatΠ admits a fixed point∂g/∂t ∈
H 1(0, T ;H 1(Ωp)) such that the coupling condition is satisfied

v.nb = ∂g
∂t
= ∂u
∂t

cos(ω3) ∈H 1(0, T ;H 1(Ωp)
)
.

We detail this point below (see also [3] and [4]).

5.1 Resolution of the fluid equations

(a) Homogenization of the fluid equation. First of all, we homog-
enize the momentum equation. With this aim in view, we setv = w+ w̄
wherew̄ =∇h̄ with h̄ the solution to the following problem

(R)


−1h̄(t)= F(t) ∈H 1(0, T ;L∞(Ωt)), in Q,

∇h̄.na = 0, onΣa,

∇h̄.nb = ∂g
∂t
∈H 1(0, T ;H 1(Ωp)), onΣb.
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whereF(t) is such that
∫
Ωt
F (t) + ∫Γb ∂g/∂t = 0. Thusw̄ ∈ H 1(0, T ;

H 3/2(Ωt)) and divw̄ = 1h̄ ∈ H 1(0, T ;L∞(Ωt)), moreover for allt we
have the estimate

∥∥div w̄(t)
∥∥2
H1/2(Ωt )

6C
(∥∥F(t)∥∥2

L∞(Ωt ) +
∥∥∥∥∂g∂t (t)

∥∥∥∥2

H1(Ωp)

)
.

We solve the problem(R) with the Galerkin method by using a basis
sufficiently smooth (for example a basis ofH 5(Q)). The act of working
onQ allows us to circumvent the difficulties linked to the variations of
the domainΩt . We then solve the fluid equations by settingw = v − w̄.
Thus, we obtain the homogeneous problem(F ′).

(b) Regularisation of the homogeneous problem. We solve the
homogeneous momentum equation by using an elliptical smoothing
technique. Furthermore, we make aL2-regularization of the continuity
equation which is necessary to construct solutions satisfying (2.13). We
therefore must solve the following problem

(F ′δε)



−ε ∂
2wε

∂t2
+ ∂wε

∂t
− (µ+ ξ)1wε

− ξ∇ divwε +∇ρδ =∇F̄ , in Q,

∇hε.n= 0, onΣ ,

curlwε = 0, onΣ ,
∂wε

∂t
= 0, onΣ ,

wε(t = 0)→w0 as{δ, ε}→ 0, in L2(Ω0),
∂wε(0)

∂t
= 0, inΩ0,

∂wε(T )

∂t
= 0, in ΩT ,

∂ρδ

∂t
+ div(ρδwε)+ div(ρδw̄)+ δρ2

δ = 0, ρδ > 0, in Q,

ρδ(0)→ ρ0 as{δ, ε}→ 0, in L1(Ω0),

ρδ(0) logρδ(0)→ ρ0 logρ0 as{δ, ε}→ 0, in L1(Ω0),

where

∇F̄ = ∂w̄
∂t
− (µ+ ξ)1w̄− ξ∇ div w̄ ∈L2(0, T ;H−1/2(Ωt)

)
.
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The elliptical regularization of the momentum equation allows us to
work in an openQ of R4 and to circumvent the difficulties due to the free
boundary. Moreover, we will demonstrate that the regularization of the
continuity equation justifies Eq. (2.13). Indeed (2.13) has been written
formally and we will see that this regularisation permits to construct
solutions verifying (2.13). The term∇F̄ does not introduce difficulties
and we can set∇F = 0 without loss of generality.

Remark2.2. – To pass to the limit, we must consider a hierarchical
procedure. Indeed, we first pass to the limit onε which allows us to
obtain the problem(F ′δ) which only depends onδ. We then show that
the solution of this problem satisfies the estimate (2.24) independently of
δ which allows us to pass to the limit.

We now prove that the solutions of the problem(F ′δε) satisfy the
estimates (2.9) and (2.24).

(c) Weak formulation and a priori estimates. We introduceX, a
space defined by{φ ∈ L2(0, T ;W); ∂φ/∂t ∈ L2(Q)} whereW is given
by {φ ∈ H 1(Ωt);φ.n = 0 on Γ } endowed of the norm ofH 1(Ωt). We
endowX of the norm

‖φ‖X = ‖φ‖L2(0,T ;W) +
∥∥∥∥∂φ∂t

∥∥∥∥
L2(Q)

.

We set
a(wε,φ)=

∫
Q

divwε divφ +
∫
Q

curlwε curlφ,

and we search, for a fixed value ofε > 0, a solutionwε ∈X satisfying

ε

∫
Q

∂wε

∂t

∂φ

∂t
+
∫
Q

∂wε

∂t
φ + (µ+ ξ)a(wε,φ)+ ξ

∫
Q

divwε,

divφ =
∫
Q

ρδ divφ, ∀φ ∈X,

with wε(0)→w0 in L2(Ω0) and

∂ρδ

∂t
+ div(ρδwε)+ div(ρδw̄)+ δρ2

δ = 0,

ρδ > 0, in L1(0, T ;W−1,1(Ωt)),

ρδ(0)→ ρ0, in L1(Ω0),

ρδ(0) logρδ(0)→ ρ0 logρ0, in L1(Ω0).



770 F. FLORI, P. ORENGA / Ann. Inst. Henri Poincaré 17 (2000) 753–777

If (wε, ρδ) is a solution to this problem, then asε→ 0

wε is bounded inL2(0, T ;W),

ρδ is bounded inL∞
(
0, T ;L1(Ωt)

)∩L2(Q),

∂wε

∂t
is bounded inL2(0, T ;W ′),

√
ε
∂wε

∂t
is bounded inL2(Q).

Indeed, we have

ε

∥∥∥∥∂wε∂t
∥∥∥∥2

L2(Q)

+ 1

2
‖wε‖2L∞(0,T ;L2(Ωt ))

+ (µ+ ξ)‖wε‖2L2(0,T ;W)

+ ξ‖divwε‖2L2(Q) 6C0+
∫
Q

ρδ divwε − 1

2

∫
Qp

w2
ε

∂u

∂t
,

however

1

2

∫
Qp

w2
ε

∂g

∂t
6C1

∥∥∥∥∂u∂t
∥∥∥∥
L∞(0,T ;L2(Ωp))

‖wε‖2L2(0,T ;W),

and ∫
Q

ρδ divwε =−
∫
Ωt

ρδ(t) logρδ(t)+
∫
Ω0

ρδ(0) logρδ(0)

− δ
∫
Q

ρ2
δ logρδ −

∫
Q

ρδ div w̄

6C3−
∫
Ωt

ρδ(t) logρδ(t)− δ
∫
Q

ρ2
δ logρδ

+‖ρδ‖L1(Q)‖div w̄‖L∞(Q).
Finally, asρ is bounded inL1(Q) and divw̄ in L∞(Q), we obtain

ε

∥∥∥∥∂wε∂t
∥∥∥∥2

L2(Q)

+ 1

2
g‖wε‖2L∞(0,T ;L2(Ωt ))

+
(
(µ+ ξ)−C1

∥∥∥∥∂u∂t
∥∥∥∥
L∞(0,T ;L2(Ωp))

)
‖wε‖2L2(0,T ;W)
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+ ξ‖divwε‖2L2(Q) +
∫
Ωt

ρδ(t) logρδ(t)+ δ
∫
Q

ρ2
δ logρδ 6C4,

and the result follows ifµ andξ are chosen sufficiently large.

(d) Passage to the limit onε and δ. The above estimates permit to
pass to the limit onε. In particular, we haveε(∂2wε/∂t

2)→ 0 in D′(Q)
and

∂w

∂t
− (µ+ ξ)1w− ξ∇ divw+∇ρδ = 0.

We have obtained a problem(F ′δ) independent ofε. We must now to
pass to the limit asδ goes to zero.

TheL2-regularization ofρδ is crucial since a difficulty arises in the
construction of solutions satisfying (2.13). We introduce a mollifier
(℘ε)ε>1 such that℘ε ∈ C∞0 (R3), Supp℘ε ⊂ B(0,1/ε), ∫ ℘ε = 1 and
℘ε > 0. We setφε = φ ∗℘ε, thus we obtain

∂ρδε

∂t
+ div(ρδεv)+ δ(ρp′δ )ε = rε, (2.28)

whererε→ 0 ([6] Chapter 2, Lemma 2.3) inLploc(Q) with 1/p = 1/2+
1/p′ andp′ = 2. We setβµ ∈ C1([0,∞)) such thatβ ′µ(t) = 1/

√
µ+ t

with 06 µ<∞, we find

∂βµ(ρδε)

∂t
+ div

(
βµ(ρδε)v

)+ div(v)
(
β ′µ(ρδε)ρδε − βµ(ρδε)

)
+ δ(ρ2

δ

)
ε
β ′µ(ρδε)= rεβ ′µ(ρδε), (2.29)

butρδ ∈L2(Q), therefore we can pass to the limit [8] with respect toε in
(2.29) , therefore

∂βµ(ρδ)

∂t
+div

(
βµ(ρδ)v

)+div(v)
(
β ′µ(ρδ)ρδ−βµ(ρδ)

)+ δρ2
δ β
′
µ(ρδ)= 0.

(2.30)
Finally, whenµ goes to 0+ in (2.30), we obtain

∂
√
ρδ

∂t
+ div

(√
ρδv
)− 1

2
div(v)

√
ρδ + δ2ρ

3/2
δ = 0. (2.31)

We emphasize that in the three-dimensional situation, theL2-regulari-
zation of the continuity equation is justified by the passage to the limit
on ε [8]. Indeed the estimate onρ in L3/2(Q) is insufficient. Therefore,
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we obtain a regularized equation (2.13) in which we can obtain the same
estimate as in (2.24) forρδ independently ofδ. We have just an additional
term to estimate

δ

2

∫
Q

ρ
3/2
δ h6 δ

2
‖ρδ‖3/2L2(Q)

‖h‖L4(Q) 6
3δ4/3

8
‖ρδ‖2L2(Q)+

1

4
‖h‖4L4(Q)

6C+ 3δ4/3

8
‖ρδ‖2L2(Q). (2.32)

Finally, since ∫
Ωt

ρδ(t)+ δ‖ρδ‖2L2(Q) =
∫
Ω0

ρδ06C,

we find

(1− 3ε)‖ρδ‖3/2L3/2(Q)
+ δ

(
1− 3δ1/3

8

)
‖ρδ‖2L2(Q)

6C
(
1+ ∥∥w‖3/2

L
12/5
t (L3

x)
+ ‖div w̄‖3/2

L
3/2
t (L2

x)

)
,

thus

‖ρδ‖L3/2(Q) 6K, (2.33)

whereK is an independent constant ofδ and

ρδ is bounded inL3/2(Q).

Consequently,(δ/2)ρ3/2
δ −→ 0 in D′(Q) asδ goes to 0+ and

∂
√
ρ

∂t
+ div

(√
ρv
)− 1

2
div(v)

√
ρ = 0.

Below, we use a fixed point method to construct a solution of the
regularized problem.

(e) Construction of approached solutions. In this paragraph, to
simplify the presentation, we suppress the indexesε and δ. We note
{w1, . . . ,wi, . . .}, a basis ofX = {φ ∈ H 1(Q),φ.n = 0} verifying wi ∈
H 5(Q). We defineXn, the set of the combinations of the firstn functions
of this basis. We introduce the following approached problem: findwn =
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j=1 aiwi(x, t) ∈Xn andρn ∈ C1(Q̄) verifying

(F ′1)



ε

∫
Q

∂wn

∂t

∂φ

∂t
+
∫
Q

∂wn

∂t
φ + (µ+ ξ)a(wn,φ)

+ ξ
∫
Q

divwn, divφ =
∫
Q

ρn divφ, ∀φ ∈Xn,

wn(t = 0)= v0n − w̄0→w0, in L2(Ω0),

and

(F ′2)



∂ρn

∂t
+ div(wnρn)+ div(w̄nρn)+ δρ2

n = 0, in C0(Q̄),

ρn(t = 0)= ρ0n(x) > 0∈ C1
c (Ω̄0),

ρ0n→ ρ0> 0, in L1(Ω0),

ρ0n logρ0n→ ρ0 logρ0 in L1(Ω0),

w̄n→ w̄, in C2(Q̄).

This problem is solved by using a fixed point method and we show that
it admits a solution such that(wn, ρn) ∈Xn ×C1(Q̄) andρn > 0.

We begin by settingwn =w∗n in (F ′2) wherew∗n is a given function in
Xn. The characteristics method is well adapted to solve(F ′2). Indeed, to
obtain an estimate onρn logρn, the continuity equation must be exactly
verified. We then introduceT1, the map which atw∗n ∈ Xn associates
ρn ∈ L∞(0, T ;L2(Ωt)) the solution of the problem(F ′2) and the map
T2, which atρn ∈L∞(0, T ;L2(Ωt)) associateswn ∈Xn a solution of the
problem(F ′1) which is solved with the Galerkin method. We then define
the mapT = T2 ◦ T1 and we will show thatT satisfies the necessary
hypothesis to apply Kakutani’s fixed point theorem.

We solve(F ′2) by using the characteristics method in the following
way. The curvest 7→ (X(x, t), t) are termed the characteristics of origin
x. There is two types of characteristics, those originating from a pointx

inΩ0 and, since we take the plate motions into account, those originating
from a point of the boundary and which remain on the boundary. If we
setρ0n > 0, thenρn > 0 ∀t and we have

d logρn
dt

+ divvn + δρn = 0,
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moreover, by using the decompositionwn =w1n+w2n =∇hn+Curlqn,
we obtain

ρn = ε ∂
2hn

∂t2
− ∂hn
∂t
+ (µ+ 2ξ)divw1n + αε(t),

where

αε(t)=
∫
Ω0

ρ0n− ε
∫
Ωp

∂hn

∂t

∂un

∂t
∈L1(0, T ).

Therefore

d

dt

{
logρn+ εδ ∂hn

∂t
− δhn

}
=−div(w1n+ w̄)+ δ(µ+ 2ξ)divw1n

− δαε(t)+ δvn
(
ε
∂w1n

∂t
−w1n

)
,

and by notingK(t) the right hand side term, we find by integrating on the
characteristics curvesγs

ρn
(
X(x, t), t

)= ρ0n exp

(
δ
[
hn − h0n

]− εδ ∂hn
∂t
+

t∫
0

K(t)
)
.

Furthermore, the continuity equation gives us

d

dt
‖ρn‖2L2(Ωt )

+ δ‖ρn‖3L3(Q)
+

T∫
0

(divw∗n + div w̄n)|ρn|2= 0,

and if the functions of the basis used to solve the problems(R) and(F ′1)
are sufficiently smooth, we obtain divw∗n + div w̄n ∈ C1(Q̄) ⊂ L∞(Q).
Therefore, by using [8] we findρn ∈ C1(Q̄) and by applying Gronwall’s
lemma we have

‖ρn‖2L∞(0,T ;L2(Ωt ))
6 ‖ρ0n‖2L2(Ω0)

exp

T∫
0

∥∥div(w∗n + w̄n)
∥∥
L∞(Ωt ). (2.34)

In the same way, we have for the momentum equation

ε

∥∥∥∥∂wn∂t
∥∥∥∥2

L2(Q)

+ 1

2
‖wn‖2L∞(0,T ;L2(Ωt ))

+ (µ+ 2ξ)‖wn‖2L2(0,T ;W)
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+ ξ‖divwn‖2L2(Q) =
1

2
‖w0n‖2L2(Ω0)

+
∫
Q

ρn divwn − 1

2

∫
Qp

|wn|2∂g
∂t
,

and if ∂g/∂t satisfies the assumption (2.10), we obtain the following
estimate

‖wn‖2Xn 6C1T
2‖ρn‖2L∞(0,T ;L2(Ωt ))

. (2.35)

Finally, the inequalities (2.34) and (2.35) lead us to

‖wn‖2Xn 6C2T
2 exp‖w∗n‖Xn +C3,

whereC2 andC3 are two positive constants which depend exclusively
on the data. Then we can apply Kakutani’s theorem for which we refer
to [1]. Thus, the problemwn = T (w∗n) possesses a solution inXn. The
existence is obtained for a smallT , but is true for each value ofT thanks
to the a priori estimates.

Remark2.3. – Because of the regularization of the momentum equa-
tion, it is natural to suppose that the stress applied to the plate by the fluid
is the trace of

ρn− (µ+ 2ξ)div(w1n + w̄)+ ε ∂
2hn

∂t2
,

with div w̄ ∈L∞(0, T ;H 3/2(Ωt)) and

∇
(
ρn − (µ+ 2ξ)divw1n + ε ∂

2hn

∂t2

)
=−∂w1n

∂t
∈L2(Q),

consequently

σ = σa+σb = γ
(
ρn−(µ+2ξ)divw1n+ε ∂

2hn

∂t2

)
+γ (−(µ+2ξ)div w̄

)
has a meaning inL2(0, T ;H 1/2(Ωp))+L∞(0, T ;L2(Ωp)).
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5.2 - Resolution of the plate equation

We can now solve the problem associated to the plate:

(S)



∂2u

∂t2
− α1∂

2u

∂t2
+12uε = f − σa − σb ∈L2(Qp), in Qp,

u=∇u.np = 0, on ∂Qp,

u(t = 0)= u0(x), in H 2
0 (Ωp),

∂u

∂t
(t = 0)= u1(x), in H 1

0 (Ωp),

with this aim in view, we use the Galerkin method with a basis of
Hm

0 (Ωp) wherem is large enough. The resolution does not present any

difficulties, in particular we show that12u and1∂2u

∂t2
are bounded in

L2(Qp). Consequently,1u is bounded inH 2(Qp) which permits to
obtain a bound on cos(ω3) in H 2(Qp). So, there exists a constantK such
that ∥∥∥∥∂u∂t cos(ω3)

∥∥∥∥2

H1(0,T ;H1(Ωp))

6K
∥∥∥∥∂u∂t

∥∥∥∥2

H1(0,T ;H1(Ωp))

.

We must verify that the solution obtained satisfies the coupling
condition. To this end, we multiply the plate equation by∂2u/∂t2, then
we integrate onQp. Using the estimate onu, we find

∥∥∥∥∇ ∂2u

∂t2

∥∥∥∥2

L2(Qp))

6C
(
1+ ‖σa‖2L2(Qp)

+ ‖σb‖2L2(Qp)

)
,

in which σa is bounded inL2(Qp) andσb =1h̄, whereh̄ is the solution
to the problem(R). Thereforeσb satisfies

‖σb‖2L2(Qp)
6CT ‖div w̄‖2

L∞(0,T ;H 1
2 (Ωt ))

6CT
(

1+
∥∥∥∥∂g∂t

∥∥∥∥2

H1(0,T ;H1(Ωp))

)

and thus∥∥∥∥∂u∂t cos(ω3)

∥∥∥∥2

H1(0,T ;H1(Ωp))

6K
∥∥∥∥∇ ∂2u

∂t2

∥∥∥∥2

L2(Qp))

6C1+C2T

∥∥∥∥∂g∂t
∥∥∥∥2

H1(0,T ;H1(Ωp))

.
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This last estimate permits to define the mapΠ introduced above in
step 4:

Π :
∂g

∂t
∈H 1(0, T ;H 1(Ωp)

) 7→ ∂u

∂t
cos(ω3) ∈H 1(0, T ;H 1(Ωp)

)
.

We show [1] that for allT small enough, this map verifies the necessary
conditions to apply Kakutani’s fixed point theorem. Therefore, there
exists a fixed point such that the coupling condition is checked, namely
∂u
∂t

cos(ω3)= ∂g

∂t
= v.nb inH 1(0, T ;H 1(Ωp)). We note that, thanks to the

a priori estimates, this result can be extended for allT , which completes
the proof.
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