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ABSTRACT. — In this paper, we consider mixed problems with a
timelike boundary derivative (or a Dirichlet) condition for semilinear
wave equations with exponential nonlinearities in a quarter plane. The
case when the boundary vector field is tangent to the characteristic which
leaves the domain in the future is also considered. We show that solutions
either are global or blow up on @! curve which is spacelike except
at the point where it meets the boundary; at that point, it is tangent to

the characteristic which leaves the domain in the future.
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RESUME. — Dans cet article, nous considérons des probléemes mixtes
avec une condition au bord de type temps (ou de Dirichlet) pour des
équations d’ondes semi-linéaires a non-linéarités exponentielles dans un
guart de plan. Le cas ou le champ de vecteurs au bord est tangent a la
caractéristique qui quitte le domaine dans le futur est aussi considéré.
Nous montrons que les solutions soit sont globales, soit explosent (au
moins hors du bord) sur une courlig qui est orientée d’espace sauf
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au point ou elle rencontre le bord; en ce point, elle est tangente a
la caractéristique qui quitte le domaine dans le futur.
© 2000 L'Association Publications de 1 Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Mots Clés:Equations d’ondes semi-linéaires, Problémes mixtes, Explosion des
solutions

1. INTRODUCTION

This paper is a continuation of [3] in which a study was made of
the blow-up curve of solutions of mixed problems in a quarter plane
for semilinear wave equations with exponential nonlinearities, when the
boundary vector field is spacelike. In that case, results similar to those
of Caffarelli and Friedman [1,2] were obtained: it was proved in [3]
that non global solutions blow up on@' spacelike curve. When the
boundary vector field is tangent to the characteristic which leaves the
domain in the future, weaker results were obtained in [3]. In the present
paper, we consider the case when the boundary vector field is constant
and either timelike or tangent to the characteristic which leaves the
domain in the future; we also consider the case of a Dirichlet boundary
condition. The blow-up method of [1,2], adapted in [3], does not seem
to be easily applicable in the present situation. We impose conditions
on the nonlinearities which are more restrictive than those of [3]. By a
completely different method based on conservation laws, we show that
non global solutions still blow up (in a sense which will be made clear)
on aC? curve which is now spacelike except at the meeting point with the
boundary where it is characteristic (actually tangent to the characteristic
which leaves the domain in the future).

Our paper is organized as follows. In Section 2 we recall some results
of [3] and state our new results precisely. In Section 3, we show that a
certain result of [3] is impossible if the boundary vector field is timelike.
Asymptotic expansions are obtained in Section 4, and the proofs are
completed in Section 5. In order to avoid interruptions in a number
of proofs, some useful results on mixed problems and on fundamental
systems of solutions of ordinary differential equations are collected in
two appendices at the end of the paper: in particular, some estimates from
[3] are recalled in the first appendix.
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2. STATEMENT OF THE RESULTS

We consider the following mixed problem for (real-valued) functions
u of (x,1):

Ou=F(u) ifx>0and:t>0, (2.1)
u, +vyu, =0 ifx=0andr >0, (2.2)
u=1vo and u,=v; if x>0andr=0, (2.3)

where(d =32 — 92 and y # 1, |y| > 1 (the casely| < 1 has been
considered in [3]). We introduce the compatibility conditions

¥6(0) + ¥ ¥1(0) =0, (2.4)
¥1(0) + ¥ (¥ (0) + F (0(0))) =0, (2.5)
Yo (0) + y 97 (0) =0. (2.6)

The following result is well known. A proof has been given in the
appendix of [3]. We writeRT = {s e R,s > 0}, RT = {s € R, s > 0}.

THEOREM 2.1. —

(1) If FeC'R),y #1, ; € C>J(RT) for j =0,1, and if (2.4),
(2.5) are satisfied, there exists an open neighborh@bdf {0} x
R+ in (R+)? such that(2.1), (2.2), (2.3has exactly one solution
u e CU).

(2) If furthermore F € C2(R), ¥; € C3~/(R¥) for j =0, 1 and(2.6)
holds, then the conclusion ¢f) still holds with some: € C3(U).

(3) If furthermore F € L*(R) in (1) or (2), one can takd/ = (R+)2.

If y =1, Theorem 2.1 is already false whén= 0. In [1,2], Caffarelli
and Friedman have studied the blow-up of solutions of Cauchy problems
for equations of type (2.1), whe#f' («) is bounded below orR and
behaves likeu”, p > 1, asu — +o0. In [3] we have assumed thdt
satisfies the following conditions.

F e Cz(R) and for someCy, Cy1, Ca, p, A > 0, the following holds:
(1) F3>-Co ifzeR;
(2) e”*F(z) > A asz— +oo; (2.7)
(B) C1<e”*F'(z)<C, ifz>0islarge;
4) |F'(z)| <Ce* ifz>0.
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Under the assumption (2.7), we have considered in [3] the Cauchy
problem

Ou=F(u) ifxeRandr>0, (2.8)
u=ug and u,=u; if xeRandr=0, (2.9)
whereu; € C37/(R) (andu; is real-valued),j = 0, 1. We have proved:

THEOREM 2.2 (cf. [3]). — Assume thaf2.7) holds. Then there exist
(1) ¢:R —]10, +00] such thatp(R) C R* or ¢(R) = {400},
(2) u e C3(2), where2 = {(x,1) e R%,0< 1 < ¢(x)}, such thatu is
a solution 0f(2.8), (2.9)in 2,
with the following propertiesif ¢(R) C R*, theng € C1(R), |¢'(x)| <1
forall x e R, andu(y,s) - +ooif s < @(y) and (v, s) — (x, ¢(x)) for
somex € R.

The next two theorems have also been proved in [3].

THEOREM 2.3. — Assume tha2.4), (2.5), (2.6), (2.7hold and that
|¥| < 1. Then there exist

(1) ¢:R*+ —10, +00] such thaip(R+) c R* or (R*) = {+00},

(2) u € C3(£2), where2 = {(x,1) € (R*)?, t < ¢(x)}, such thatu is

a solution of(2.1), (2.2), (2.3)f (x, 1) € £2,

with the following propertiesif ¢(RT) c R*, theng € C1(RY), |¢’(x)|
< 1forall x e R, ¢'(0) =y and u(y,s) - +oo if s < ¢(y) and
(y,5) = (x, p(x)) for somex € R.

THEOREM 2.4. — Assume tha2.4), (2.5), (2.6), (2.7hold and that
y = —1. Then there exist

(1) ¢:R+ —10, +00] such thaip(RT) c R* or (RT) = {+00},

(2) u e C3(2), where2 ={(x,1) € (R")?,t < ¢(x)} such thatu is a

solution of(2.1), (2.2), (2.3)f (x, 1) € £2,

with the following propertiesif o(R*) C RT, theng € C1(RY), u(y, s)
— +o0 if s < @(y) and (y,s) — (x,¢(x)) for somex € R+, and
for each R > 0, one can findd €10, 1[ such that—1 < ¢'(x) < 0 if
O<x <R.

To improve the results of [3] whep = —1, and to study the cases
when|y| > 1 or the Dirichlet boundary condition, we shall have to use a
different method and make more restrictive assumptions on



P. GODIN / Ann. Inst. Henri Poincaré 17 (2000) 779-815 783

We shall consider the following additional assumptionfowith A, p
asin (2.7)):

1
One can findC > 0, < = such thaf F(z) — Ae”*| < Ce”*
2 (2.10)

if z>0.

Then we have the following result, which is similar to Theorem 2.3.

THEOREM 2.5. — Let all assumptions of Theore.4 hold, and
assume moreover thg®.10) is satisfied. Then we have the following
additional conclusionif ¢(R*) c R*, theng € C}(R*) andg’(0) = —1.

For the sequel, and also to compare Theorem 2.5 with Theorem 2.8
below, it will be convenient to reformulate (2.10) in the following way:

If ¢ € C?(R¥) satisfies the equatiogl = pF — F',
1 (2.11)
there exisiC > 0, < > such thatg(z)| < Ce”* if z > 0.

Indeed, if (2.10) holds, integration of the relati@i(z) = p(F () —
Ae’) — (F(t) — Ae™) over [0, z] yields (2.11) (with a largewr if
a < 0). And if (2.11) holds, integration of the relatioe™?'(F +
2)(1) = —pePg(r) over [0, z] shows that lim., .., € P*F(z) exists,
and integration of the same relation oyer+oo[ then yields (2.10) (with
someA € R).

The following simple theorem shows that wheép| > 1 and the
solution blows up on aC! curver = ¢(x), we cannot expect to have
¢'(0) =y asin Theorems 2.3 and 2.5.

THEOREM 2.6. — Assume that > 0, that V is an open neighbor-
hood ofxg in RF, thatg:V — R* and that2 = {(x,) e V x R*,t <
@(x)} is open. Assume thalu = F () in £2, whereu € C3(2) and F is
bounded below oR and bounded above on every half lihe oo, a[, a €
R. Assume thalu(y, s)| — +oco ass < ¢(y) and (y, s) — (xg, ¢(x0)).
Then

(1) one can find a sequendg) with x; — xo and ¢(xx) — @(xg) <

Xk — X0,

(2) if furthermorex, > 0, one can find a sequencg,) with 0 < y, =

xo andg(xo) — @(yk) = —xo + -
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Remark2.1. — Theorem 2.6 is applicable #(u) = €. However
its conclusions are false if(u) = u?, p € 2N\ {0}, as the function
u(x,t) =a(t —yx —1)~7 (wherea e R anda?* =g(qg + 1)(1 — y?),
qg= ﬁ) shows. If y >1, this function is a solution of a problem of type
(2.1), (2.2), 2.3)when &t <yx+1,x>0.

Remark?2.2. — The conclusions of Theorem 2.6 are falseFon) =
¢ if we consider complex-valued solutions, as the examtle ) =

2(1—y?
In (;fyle))z’ ly| > 1 shows.

We shall also consider the Dirichlet boundary condition

u=0 ifx=0andr>0, (2.12)

and introduce the corresponding compatibility conditions for (2.1), (2.3),
namely

¥o(0) =0, (2.13)
Y1(0) =0, (2.14)
Y (0) + F(0) =0, (2.15)
¥/ (0) = 0. (2.16)

The following well known result corresponds to Theorem 2.1.

THEOREM 2.7. — Theoren2.1remains true if2.2), (2.4), (2.5), (2.6)
are replaced by2.12)—(2.16)

The proof of Theorem 2.1 given in [3] can easily be modified to give a
proof of Theorem 2.7. We omit the details.

When|y| > 1 or when (2.2) is replaced by (2.12), the method of proof
of Theorem 2.3 does not seem to work. However we can still prove the
existence of a blow-up curve if we add the following rather restrictive
assumptions on the nonlinearity(u):

(1) FeL*@®R")incasey > 1,
(2) if g € C%(R) satisfies the equatiogl = pF — F' onR,
theng, g’ € L*(R) in casey > 1, andg, g’ € L*(R™") in case

y < —1 or when the boundary condition is given by (2.12)
(2.17)
We shall prove the following result.
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THEOREM 2.8. — (I)Assume thaty| > 1, and that(2.4), (2.5), (2.6),
(2.7), (2.17)hold. Then the conclusions of Theoréh8still hold with the
following modificationsif ¢(RT) Cc R*, now|¢'(x)| < 1 only if x > 0O,
@' (0)=—1, andu(y,s) - +oo if s < @(y) and (y, s) — (x, p(x)) for
somex, wherex > 0if y > landx > 0if y < —1.

(1) Assume thaf2.13), (2.14), (2.15), (2.16), (2.7), (2.1@pld. Then
the conclusions ofl) for y > 1 still hold for the problem(2.1), (2.12),
(2.3).

Remark2.3. — The function(x, t) = In(2/coslt x) satisfiedu = &
if (x,7) € R?; furthermore, for ally € R, u, + yu, =0 if x =0, and
u =0if x =In(+/2+1). Hence it may happen that= +occ in Theorems
2.2,2.3,2.4, 25,2.8.

Remark2.4. — Assume that' satisfies the assumptions of Theo-
rem 2.2 and thaF' > 0. Denote by7 the triangular domain with vertices
(a,0), (b,0), (442, b b>4), where O< a < b. It follows from the results of
[6] that one can findyg, Y1 € C*°([a, b]) such that there is no e C%(7T)
satisfying &/ u = ¢, in Ja,b[x{0} for j = 0,1 andOu = F(u) in 7.
Extendingy, ¥1 to Rt in such a way that the compatibility conditions
(2.4), (2.5), (2.6) (or (2.13), (2.14), (2.15), (2.16)) are satisfied, we ob-
tain examples for Theorems 2.3, 2.4, 2.5, 2.8 witlR+) c R*. When,
e.g.,F(u) = €', see also [7] and references given there for constructions
which yield examples for Theorem 2.3.

Remark2.5. — Replacing:(x, t) by pu((Ap)~Y?x, (Ap)~Y?t) and
F(z) by A~*F(p~—'z), we may and shall assume in the rest of the paper
thatp = A =1in (2.7), (2.10), (2.17). This will simplify a number of
expressions later on.

Remark?2.6. — In Theorem 2.2(2 is the maximal influence domain
of R x RT, containingR x {0}, in which (2.8), (2.9) has a (unique)®
solution. Likewise, in Theorems 2.3, 2.4, 2.5, 2.7, Z8is the maximal
influence domain ofR+)?, containingR+ x {0}, in which (2.1), (2.2) (or
(2.12)), (2.3) has a uniqué® solution.

3. BOUNDS FOR SOLUTIONS OF LINEAR DIRICHLET
PROBLEMS

If R>0,putDg ={(x,1) € (RY)? x+1t < R}.If (x,1) € (R*)?, write
K*(x,t) ={(y,s) e RN)?, 5 =1, t, |y — x| <[t —s|}. Finally, if (x,7) €
Dy, putKz (x,t) = K*(x,t) N Dg. Assume that/ : R+ — R™ satisfies
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[ (x1) — ¥ (x2)| < |x1 — x2| for all x1,x2 > 0 and writeld = {(x,1) €
(R+)?,t < ¥ (x)}. Assume thatt € C>(U N Dg), F € C(U N Dg), and
that the following holds:

Ou=F inUN Dg, (3.2)
u=0 ifx=0and0<t<min(y(0), R), (3.2)
u=1vo and u,=v; ifO<x<Randr=0. (3.3)

It is certainly well known and easily checked by integration [od
over K~ (x,t), and also ovelK (0,7 — x) if x < ¢, and by use of the
divergence formula, that = u; + u,, where

t+x

1
(wa+m—ww=w»+§/wmww

t—x

ui(x,t) =

NI~

if x <t,

» (3.4)

1
(Vo + 1)+ Yol = 1) + 5 / U1(y) dy

NI~

ui(x,t) =

if x>1.

1 t X+1—s
ux(x,t) = > ( / F(y,S)dy>dS
t—x X—t+s
1 t—x t—s+x
+5/< / F(y,s)dy) ds ifx<t, (3.5)
0 t

—5—X

t X+1—s
1
ux(x,t) = E/( / F(y,s)dy) ds ifx>t.
0

X—t+s
The following result immediately follows from (3.4), (3.5).

LEMMA 3.1.— If Co >0 and F > —Cq, one can findC > 0
(depending onyo, 1, R, Co, but not onF) such thaty > —C in U/ N Dk.
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4. PROOF OF THEOREM 2.6

Let us prove (1). Assume that, for some- 0, ¢(x) — @(xg) > x — xg if
x € ]xg, xo + €]. Assume that < ¢(xg) and denote byPy the triangular
domain with verticeqxg, ¢(x0)), (xo0 + &, (xg) — €), (xo0 + &, p(xg) +
g). If (x,1) € Py, denote byP the triangular domain with vertices
(x,1),(xo+&,t—x0o—&+x),(xg+¢&,t+x0+¢&—x). We have

1
u(x,t) = E(M(x0+8,t+xo+s—x)+u(x0+8,t—xo—e—i—x))
t+xo+e—x
1 ' 1r
5 / 81u(x0+8,s)ds—5//F(u)(y,s)dyds.
t—xp—&+x ﬁ

(4.1)
Since F is bounded below, it follows from (4.1) that is bounded
above inP,. But then (4.1) again shows thatis bounded below irP,.
This contradicts the fact that(x, )] — oo ast < ¢(x) and (x, ) —
(x0, ¢(x0)). This proves (1). The proof of (2) is completely similar and
may be omitted. The proof of Theorem 2.6 is complete.

5. SOME ESTIMATES OF SOLUTIONS

Our purpose is to prove the following two propositions, which will
play an important role in the proof of Theorems 2.5 and 2.8. Recall that
we assume, as we may, that=A =1 in (2.7) (2), (2.10), (2.17) (see
Remark 2.5). As before, we pudg = {(x,7) € (RT)% x +t < R} if
R > 0.

PROPOSITION 5.1. — Let F € CL(R) satisfy(2.7) (1)and(2.17)(with
g € CY(R)), and assume thag > 0, that

ue C(Dy\ {0, 1)) N ( N C3(D_T)),

0<T<to

and thatOu = F () in Dy,.
M If uy +yuy =0whenx =0and 0< 7 <1ty (Wherey # 1)
and if r = u,(0,r) is bounded whe® < ¢ < 1g, it follows that
u € C3(Dyy).
() fu=0whenx =0and0<r < tgand ifr — u,(0, ) is bounded
when0 < 7 < 1o, it follows thatu € C?(D,,).
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When, at the contrary, the function—~ (u,(0,¢),u,(0,1)) is un-
bounded when & ¢ < 7, one can obtain asymptotic expansions when
x = 0, as the next proposition shows. Henceforth we shall wiite-
0y + 0x, 0) = 0; — Oy, 2¢ = 02, 2, = 0,2.

PROPOSITION 5.2. — Let x :RT — R* be such thaty (0) = 7o > 0,
x(x) =>tg—x. PutA ={(x,1) € (RT)?, t < x(x)}. LetF € CL(R) satisfy
(2.7)(2), (2.7)(2), and assume that C3(A), Ou = F(u) in A.

() If F also satisfies(2.17) (ith g € C*(R)), if u, + yu, =0
whenx =0and0 <7 < 1o (Where|y| > 1), and if the function
t — u,(0,1) is not bounded as = o, the following estimates
hold for someC > 0 with / = min(1, ZZE) if 0< 1t < 1o

, 4-17 1 ——
1) |9/u(,1)— 1=y (=10 <Cto—0)'"7 ifj=1,2,
2 |u(0,1) — illn(to—t) <C,

1, 16y(y+1 1
© <§%_“W>m””'<y—1ﬁ (t — 10)?

< C(tg—1)2

() If F also satisfieg2.17) (vith g € C*(R)), if u =0 whenx =0
and0 <t < 1o, and if the functiory — u, (0, r) is not bounded
ast > to, then the following estimates hold for sorie> O if

0<t <1y
. 4 C
1) |978,u(0,1) — —| < -,
W [row®D = G S oo
1 16 C
2 “u? — 0,1) — < .
()‘5% un)(0.0) = 5| <

() If F also satisfie$2.10), if u, —u, = 0whenx =0and0 <t < 1y
and if the functions — u,(0, 7) is not bounded as = 1y, the
following estimates hold for som@> 0if 0<t <o <1+ zie:

0,7) —In 8 +Inin !
u,t) —IN——— —
(t — 19)? (r — 10)?

W),

D <SCWQ@),

u,(0,t) —

3] <

fo—1t fo—1t
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1 2
3 ‘(EM,’—M,,,,>(O,I)+
- C W (1) ’
(to —1)? |In(tg — 1)|

whereW (1) = fiitenl.

A crucial role will be played in this section by two simple conservation
laws which we are going to derive now. Assume tha an open subset
of (R+)? and thatu € C3(D). Let g € C1(R) be such thag’ = F — F'.
Then it is readily verified that the following conservation laws hold:

(t —10)?In(tg — 1)

1
3, (Eug — u;;) =3 (gw)), (5.1)
1
0 (2 , u,m> =0,(g)). (5.2)
In the proof of Propositions 5.1 and 5.2, we shall use (5.1); (5.2) will

be used later on. Let us integrate (5.1) over the triangular domain
with vertices(0, 0), (T7,0), (0,7),0< T < fy. Put

T
gy
E(T):/<§M§—M§§—g(M)>(x,0)dx, F=F+g.
0

If u, +yu, =0o0n{0} x [0, T'], we obtain

T 2
/ ( A=YV 21—y, +f<u>>(o 0 di
0

T
:Z/g(u)(s,T—s)ds—i—E(T). (5.3)
0

If u=0o0n {0} x [0, T] instead, we obtain

T

/(; us ZMM)(O t)dt+F(0) = Z/g(u)(s T—s)ds+E(T). (5.4)

0

Proof of Proposition 5.1(1). We shall first show that

the functions — u,, (0, r) belongs taL.*°([0, 7[). (5.5
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Applying 97 to (5.3), we see that it is enough to show that the function

T
T — Eh(/g(u) (s,T—s)ds)
0

belongs toL*°([0, #[), which in turn will be a consequence of the fact
that

3u e L) if la|=1, (5.6)

where7 is the triangular domain with verticg®, 0), (’50, %0), (0,19). Let
us check (5.6). If we multiply the equatieru,; +u,, + F(u) =0 by u,,

we obtain that
utz + u)zc

O (—usuy)+0, (T + f(u)) =0.

Integrating this last relation over the triangular domairwith vertices
(x,1), (0,7 + x), (0,r — x) and using the divergence formula, we obtain
that

/x}"(u)(s, t+(x—s))ds|<C.
Now 0
we(x, 1) = ug (0, 1 + x) —/XF(u)(s,t—l-x —s)ds
and O

un(x,t) =u,(0,t —x) + / Fu)(s,t —x +s)ds.
0

Furthermore, it follows from (2.17) that(u) > —C in 7. This is clear
if v > 1, and follows with the help of Lemma A.1 of Appendix A if
y < 1. HenceF (u) < F(u) + C, and (5.6) follows. Hence (5.5) holds.
Now denote byU the solution of the Cauchy problemU =0 in 7,
d/U = d/u whenx =0, 0< ¢ <19, andj =0, 1. Then of course

1
ulx,t)=U(x,t) — 5// F(u)(y,s)dyds,
T
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so it follows with the help of (5.6) th&it*u € L*°(7) if |«| < 2. Actually
we have that

the functions — u,, (0, r) belongs toC ([0, #g]). (5.7)

Indeed, if|a| = 1, the functiors — 0%u(0, r) belongs toC ([0, #p]) since
the functionz — 9,0%u (0, r) belongs toL > ([0, r[). Now the function

T

T+— 8T</g(u)(s, T —s)ds>

0

is Lipschitz continuous ofi0, 7o sinced*u € L*°(7) if Ja| < 2. Then
(5.7) follows easily if we apply; to (5.3). Using (5.7) and the relations
uy, +yu; =0if x =0, u,, = u;; — F(u), we obtain that the function

t — 3%u(0, t) belongs toC ([0, 7)) if |a| < 2. Proposition 5.1(I) now
follows from standard results corresponding to Theorem 2.1(1) for the
Cauchy problem for the equatiénu = F («) in 7 with Cauchy data on

{0} x [0,10]. O

Proof of Proposition 5.1(ll). -Arguing as for (1), but with (5.3)
replaced by (5.4) and Lemma A.1 of Appendix A replaced by Lemma
3.1, we obtain again that the functior> 0*u(0, ¢) belongs taC ([0, 1o])
if || < 2; and we can then conclude as in (I)a

Proof of Proposition 5.2(1). -Assume first thaty > 1. Sinceg €
L*(R), it follows from (5.3) that

(v — 1)2

S

the functions — 2(y — Du, (0, 1) +/(
(5.8)

+ F(u)) (0, s) ds belongs tal.*° ([0, tg[).

Since F is bounded below, it follows from (5.8) that (and sou) are
bounded above if =0 and 0< 7 < 1o, SO thatF (u)(0, r) € L* ([0, %o[).
Hence it follows from (5.8) that

t

. -1
the functions — u,(0, ¢) + VT /uf(o, s)ds

5 (5.9
belongs taL>°([0, #o[).
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Since the function — u, (0, ) does not belong t&.> ([0, 7y[), it follows
from (5.9) that one can find a sequen@g) such thatr,  1p and
u,(0, 1) \y —oo. On the other hand it follows from (5.9) that(0, 75) <

u;(0,1;) 4+ C if 1] < t, < to; henceu, (0, 1) — —oo0 ast — fy. Put
2 t

HOE (VT_1> /uf(o, s)ds.
0

It follows from (5.9) that,/¢” — ¢ € L>([0, to[). Since¢’(r) — +oo as
t > 1o, we therefore obtain thai(r) — +oo ast = toand so(¢ — Cp)? <
¢ < (¢ + Cp)? for someCy > 0 if ¢ is close torp. Hence

1
‘C(f) - — s Co,

fo—t
so using (5.9) we obtain that
4 1

0,t) ——— <C. 5.10
u, (0, 1) y—11—1 C ( )

Integrating (5.10) with respect toyields
u(0,t) — In(to — t)‘ <C. (5.11)

y—1

Differentiating (5.3) with respect t@ yields

Ry
<(1 2)/) ”12 =21 —y)uy + -7:(”)) 0, 7)
T (5.12)
=2 [ 47 (85 T = ) ds + 25T, 0) + E'(D).
0
Now we have that
’ C
(e T —9) ds| < —— (5.13)
to—T

0

Actually, it follows from (5.10), (5.11) that
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T + 2
/(” +f(u)> ©.1)dr
0

8(1+J/2) 1
(J/ -2 -T

C(IIn(to—T)| +1). (5.14)

Hence if we integrate the identity

ut—i—u

0 (—ustty) + Oy ( 2

+F (u))

over the triangular domain with verticé€8, 0), (7, 0), (0, T) and use the
divergence formula, we easily obtain that

T 2
/ 8d+yH 1 C(In(to—T)| +1). (5.15)
0

Fu)(s, T—s)ds < (y—1D21—T

Now uz(x, T — x) = us(T,0) + [/ F(u)(s,T —s)ds if 0 <x < T,
and [T F(u)(s, T —s)ds < [y F(u)(s,T —s)ds+C since F(u) >
—Co. Henceug(x, T — x) is bounded above by the right-hand side of
(5.15) (with a largerC). Therefore if we writed; (g(u)) = %3§(g(u)) +
%an(g(u)), (5.13) follows easily. From (5.12), (5.10), (5.11), (5.13), we
easily obtain that

4 1
1—y (t —10)?

C

u; (0, 1) — X . t'
0—

(5.16)

Sinceu, = —yu, whenx =0 and 0< t < 1g, it follows then that
upy, = 2(1+ y)u,, — F(u). A simple computation using (5.10), (5.11),
(5.16) gives that

1, 16y(y+1 1
‘(E”"_”"">(°”)_ (=12 (t—19)?

C
< .
fo—t

(5.17)

This proves Proposition 5.2(1) if > 1.

Assume now thaty < —1. Let D,, be the triangular domain with
vertices(0, 0), (zp, 0), (0, #p). Sincey < —1, it follows from Lemma A.1
of Appendix A thatu > —C in D,,. Sinceg € L>*(R"), it follows that
(5.8) still holds, from which we obtain that
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[
1
u, (0, t)_Ty u; (O,s)ds

0

1
+m0/F(u)(0, s)ds +G(1), (5.18)

whereG € L* ([0, to]) N C3([0, [). Since the functiom — u, (0, r) does
not belong toL*°([0, #[), it follows from (5.18) that one can find a
sequencer,) such thaty, 7 to andu, (0, 1) /' +oo. (5.18) shows that
u;(0,13) > u,(0,17) — C if 11 < té < 1o; thereforeu,(0,1) — 400 as

t > 1. Put G(t) =— G(s)ds <t<tg, U) =u(0,1) — G(t)
From (5.18) it follows after dlfferentlatlon with respecttohat

1- )
U’ = TV(U’ 1G24+ FU+6). (5.19)

1
2(1-vy)
Now U’ (r) > 0 fort e [1q, 1o[ if 11 IS close torg. Putm = Iimt;t0 U(t), so
m €U (1), +o0]. LetU 1 JU (t1), m[— ]t1, fol be the inverse function of
U,andwriteZ=U"oUd,G=Gold,G =G olU. From (5.19) it follows
that

1- A
(2Z)(5) = = (2(5) + 9() " + F(s+6(») (5.20)

21-y)

if s €1U(t1), m[, so if we putz(s) = Z2(s), we obtain that

1
¢'(s) = (\/g“(s + g(s)) + —yF(s + g(s)) (5.21)

if s €]U(t), m[. If m < 400, it follows from (5.21) thatt’ < C(¢ + 1)
for someC > 0; hencet is bounded above as— m, which contradicts
the fact thatu,(0,7) — +oo ast = to. Hencem = +o0. Let us now
check that

1—y 1—y
forsomeB >0, |[¢(s) — Bez *| < Cez " (5.22)

if w:—max(yg J’*1) and s is large. If we integrate the identity
%(e—‘Y(F + g)(s))=—€e"*g(s) over[r,0], t > 0, and letd — +o0, we
obtain thatF (1) = € + ¥ (1), wherey (1) = —g(t) + [ € 5g(s)ds. If
we putM(s) = £, N(s) = 352G2%(s) + v (s +G(5)), H(s) =
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e%‘vg(s), (5.21) gives
H' =(1—y)GeT*VH + Me'T* + Ne'T* (5.23)

if s >U(t), so that|H'| < Ce ““y/H+1if s> U(ty), with w as in
(5.22). From this last bound oyf’|, it readily follows, sincew > O,
that the limit lim,_, ., H(s) exists; let us call itB. Of courseB > 0.
We are going to show tha® > 0. Since|H'(s)| < Ce ** for s large,
(5.22) will follow at once. For simplicity, put = 2, b = 12, so
thatb = 2a — 1 > 0. Call R(s) the right-hand side of (5.23). Define the
sequencéa;) by a1 = a, ar 1 = a + %. Notice thalg;1 > a; + 1 ifand
only if b > a;,1. Assume that3 = 0. Denote byC;, C; various strictly
positive constants. We are going to show by induction that

b>ajand|H(s)| < Cje " forslarge if j e N\ {0}. (5.24)

From (5.24) it will follow thatb > a + j — 1 for all j € N\ {0}. This
contradiction of course will imply thaB > 0. Now if b < a, then
R(s) > 0 for s large, which contradicts the fact that= 0. Henceb > «,
SO|R(s)| < C,e7 for s large, and thereforgH (s)| < C,e~* for s large
sinceB = 0. Hence (5.24) follows foj = 1. Assume that (5.24) has been
proved if j < k, and let us show that it still holds jf = k + 1. Assume
thatb < a;,1. Since|H (s)| < Cre " for s large, it follows thatR (s) > 0
for s large, which contradicts the fact th&t= 0. Henceb > a;,,. But
then|R(s)| < Cyy1e7%+ for s large, sA H (s)| < Cy 1€ %+ for s large
sinceB = 0. Hence (5.24) holds if = k + 1. Therefore we conclude that
B must be> 0, and this completes the proof of (5.22).

Now (5.22) implies thatje’s*Z(s) — vB| < Ce if s > U(n),
hence

]e%U(I)U’(t) —VB|<CeVD if teln, 1ol (5.25)

Integrating (5.25), we obtain that
el U0 _ yf(to—t)‘ “”U“)ds if £ €, t0[. (5.26)

This implies that

‘U(t)— 4 In(to—t)lgC, (5.27)
y—1
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so €YD L C(ty — 1)!, with [ as in the statement of Proposition 5.2 and
therefore (5.26) can be improved to

_ 1—
eV _ Ty«/E(to - t)‘ < Cltg— 1)+

which, together with (5.25), then implies that

4 1
M,(O, [)—Etoj’ gC([o—[)ilJrl. (528)

Also (5.27) yields

u(0,1) —

In(ro — t)‘ <C. (5.29)
y—1

Let us check that (5.13) still holds. Actually, it follows from (5.28),
(5.29) that (5.14) and (5.15) still hold (withn(zo — T')| + 1 replaced
by (to — T)~*' in the right-hand side i3 < y < —1). Reasoning as in
the case wherg > 1, we easily conclude that (5.13) still holds. Since it
is clear that (5.12) also holds, it follows that

4
1—y (t —19)?

Arguing as for (5.17), we easily obtain that Proposition 5.2(1) (3) holds if
y < —1. This completes the proof of Proposition 5.2(1)o

u, (0,1) — <C(tg—1)2

Proof of Proposition 5.2(ll). -As before, letD,, be the triangular
domain with verticeq0, 0), (ro, 0, (0, 1p). It follows from Lemma 3.1
thatu > —C in D,,, so that (5.4) implies that the function- u, (0, 1) —

% Jou?(0,5)ds belongs toL> ([0, fo[). If we then argue as for (5.10)
(with obvious modifications), we obtain that

4
fo—1t

u,(0,1t) —

‘ <C. (5.30)

(5.14) and (5.15) still hold with()lf_—’ij2 replaced by 1 in the right-hand
side. It follows that (5.13) still holds, so if we differentiate (5.4) with
respect tdl', we obtain that

4
(t — 10)?

C

M[x(o,t)— gl’o—[

(5.31)
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Proposition 5.2(11) follows at once from (5.30) and (5.31)1

Proof of Proposition 5.2(lll). temma A.2(3) of Appendix A shows
thatu, (0, ) — 400 ast — fo. (5.3) gives that

t

u (0, 1) = %/uf(o, 5)ds + i—Ll/F(u)(O, s)ds + G(1)
0 0

if 0 <t <19, where
t t
1 1 1
G0 =1,0,0)~ ZE() + Z/g(u)(o, 9ds - /g(u)(s, t — 5)ds.
0 0

Using (2.11), Lemma A.2(2) of Appendix A, Lemma A.1 of Appendix A,
we obtain thatg(u)(y, s)| < C(to— y — s) "2 if y + 5 < 19, whence

IG(H)| < Cltg—1)"%* if0 <1 <to. (5.32)

DefineG, U, U, Z, G, Q ¥, M, N, H as in Proposition 5.2(1), but with
replaced by(—1). Notice that

t t

U'(t) =u,(0,1) —G(t)::—zl/uf(o, s)ds + %/F(u)(o, s)ds,
0 0

and that it follows from Lemma A.2(1) of Appendix A that
[y F(u)(0,5)ds — +oo ast — to. Hence in particular there exists
11 € [0, 7] such thatU’(r) > 0 if t > 1, and sol/ is well defined on
1U (t1), 4+o0[ sincelU’(t) — +o0 if 1 > 1o. (5.23) can be written

H =2Ge2JH+P ifs>U(n), (5.33)

whereP (s) — 3 ass — +oco. By Lemma 4.1 of [3] and (5.32), it follows
that |G(s)| < CE if s > U(ty). If « > 0, letk e N\ {0} be such that
(20)% < 1 < (2a)*~1. We are going to show that

IG(s)| < Ce®s if s> U(t), jeNandj <k. (5.34)

Since we already know that (5.34) holds oK 1, it is enough to show
that if |G(s)| < Ce® for s > U(t1), whereg = (2x)/ for somej e N
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with j < k — 1, then|G(s)| < Ce*P for s > U(t,). To achieve this,
observe that (5.33) implies thal’ < Cv/H + 1625 for s > U(n),
whenceH (s) < Ce?-Ds and thereforel’ (U (s)) < Ce*, from which
it follows that €Y > C(tg — t)~. By (5.32), it follows that|G(s)| <
C(tg — U(s))™% < CePs if s > U(ty), from which (5.34) follows. If
a >0, putt = (2)* with k as in (5.34); ifx = 0, putt = 0. So we have

1G(s)| < C1€”°  if s> U(n). (5.35)

Let K (s, H) = 2G(s)e™*/2/H + P(s) be the right-hand side of (5.33).
Let us show that

K (s,H(s))| < C ifs>U(n). (5.36)

To achieve this, put =3 1_ 7, wheret is as in (5.35), and define
={s > U(ty), H(o)e*k" < Cyif o € [U(ty), s]} whereC, will be
chosen later. IC, is large, ther€ # @. £ is closed, and let us show that

£ is open. TakingC; large enough, we may assume that < C; so if

s € &, itfollows that|K (o, H(0))| < 2C1Cy + C1 if 0 € [U(11), s]. But

then (5.33) implies thaH (s) < (2C1C2 + C1)(s — U(t1)) + H(U (1)),

which is< %gez“ if H(U (1)) < %gezw(fl) andC, is large enough. Then

s+é8efif § >0 is small, which shows thaf is open. But then
= [U (1), +oo[, from which (5.36) follows at once. Now (5.33) and

(5.36) imply that|H (s)| < Cs if s is large; together with (5.35), this

implies thatK (s, H(s)) — % ass — +oo. It follows that £ — 1 as
s — 400, so finally
e‘%U(’)(U(t))*l/ZU’(t) — 2712 ast S .
Hence if we put¥ (s) = — [ €7°/?6~Y/2do, we obtain that
Ut)y=v22(to—1)(1+ L(1))), (5.37)

where L € C3([0, 1o[) and L(t)—> <, 0. But we have the following
estimate for 1
1 Inin 2

w~@) —1In i +Inin=|<C ,
62| = Ind

(5.38)
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if & <0 is close to 0. Let us check (5.38). To achieve this, put first
f(s) =e%/%2s~Y2 We shall first check that

0 4 1 Inin &

-1 92
—=)—=In—=+InlIn=|<C , 5.39
’f ( 2) gz " 62 In 2 (5:39)
if & < 0isclose to 0. Indeed, defime [1, +oo[— [1, +oo[:s — s+Ins.
Putb =at. Thend' = ﬁ <1 andb(l) = 1. Henceb(y) = y + R(y)
with R(y) < 0if y > 1. Actually we have for som€4, C, > O:

In In
C1—2 <b(y) —y+Iny < C—2 (5.40)
Yy y

if y is large. Indeed it is easily checked that(Int+ z) > az if
a>1andi-1<z<0, whereas Il + z) < z then. Using this
with z = R(y)/y and the fact thatR(y) + In(y + R(y)) = 0, we
obtain (5.40), from which (5.39) follows easily. We can now prove
(5.38). Integrating by parts, we obtain thét(s) = —2e*/2s~Y2(1 +
J(5)), where J(s) = —3 [5°e"/%(p +1)=3/2dp. Writing 10, +-c0[ =

10, 1[U[1, +o0o[ and decomposing (s) accordingly, we readily obtain
that|J (s)| < Cs~1. Since

0
1y 1
e =1 < 2(1+J(w—1(9>>>>’

(5.38) follows from (5.39) after some simple computations. From (5.37)
and (5.38) it follows that, if <ty andr is close tar,

—Inin 2 +R(1), (5.41)

U()=In 8
o (t —tg)? (t — t9)?

with R(t) — 0 ast — 1. (5.41) implies in particular thar — 7p| <
ce V2 (t))~Y2. On the other hand, it follows from (5.32) that
IM(s) — 1| < C(to — U(s))*"2, whence |M(s) — 1| < Cele 2553,
Sincer > o and sincg H (s)| < Cs for larges, it follows from (5.33) that
|H'(s) — 3| < Ce™™sY2 whens > U(t;), whereA =1 — ¢ as before.
Hence|H (s) — 5| < C whens > U (1,). It follows that

|ef%U(t)(U(l‘))_l/2U/(t) . 2*1/2’ < C(U([)>_l’ (542)

if <1t andt is close torg. Using (5.41) we may bound the right-hand
side of (5.42) above b¢'/In [0%[ if 1 < 1o andr is close tor. It follows
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in particular thatjw (U (1)) — 27Y2(t — t0)| < C(to — 1) /In - if t < 1o
andt is close tay, so from (5.38) we obtain that the functldm of (5.41)
satisfies

1

Inln =
IROI<C n T

to—t
if + <1y andt is close toz. The estimate (1) of Proposition 5.2(llI)
follows at once. Using (5.42), we easily find then that

’

2 c IninL
]U’(r) - ‘ < o
fo—1t to—t In prears
if r < 1o andt is close torg, and the estimate (2) of Proposition 5.2(lll)
follows immediately if we make use of (5.32).
Sinceu,(0,7) =0 andu,,(0,7) = —F(u)(0, ), and since|F(s) —

e'| < Ce” for s large, the estimate (3) of Proposition 5.2(1l) follows
from the estimate (1). The proof of Proposition 5.2 is completa.

6. MORE ON SOLUTIONS AND PROOF OF THEOREMS 2.5
AND 2.8

To prove Theorems 2.5 and 2.8 we shall need additional properties
of solutions to[Ju = F(u) satisfying boundary conditions when= 0.
Assume thata > 0 and thaty :[0,a] — Rt belongs toC([0,a]) N
C'(10,a]) and satisfiesy(0) = 9, —1 < x'(x) < 1 if x €]0,a]. Put
A={(x,)e Rt < x(x),x+1t<a+ x(a)}. Let F be asin (2.7),
and assume that € C3(A) and thatJu = F(u) in A. Also assume that
either (1)F also satisfies (2.17), +yu; = 0when x=0and 0< 7 < 1,
where |y| > 1, or (2) F also satisfies (2.17y = 0 whenx = 0 and
0<t <, else (3)F also satisfies (2.10), — u;, = 0 when x=0 and
0 <t < ry. We shall need the next two propositions in order to prove
Theorems 2.5 and 2.8.

PrROPOSITION 6.1. — Assume that for allk €]0, a], the following
holds |x'(x)| < 1 and u(y,s) — +o0 as (y,s) € A and (y,s) —
(x, x(x)). Also assume that the function— u, (0, t) does not belong
to L>([0, 7o[). Theny/(x) - —1asx = 0.

PROPOSITION 6.2. — Assume thaty (x) = x + 1o for all x €]0, a].
Then the functiom — u, (0, r) belongs tolL.* ([0, zo[).
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We start with some preparations for the proof of Propositions 6.1
and 6.2. We shall put as befoge= =%, n=5*, and alsoX =& — ’50
Y_n— 2. Sincey’(x) > —1if x >0, thecurva x(x),0<x<a,is
given byY J(X), 0< X < b, whereb=(a +X(a) t0)/2. We may
and shall assume thatis so small that/ (X) > -2 if 0 < X <b. We
shall have to consider the following two cases:

case(1) (the case of Proposition 6.1)'(x)| < 1if 0 < x < a, so that
J(X)<0if0< X <b;

case(2) (the case of Proposition 6.2)(x) =x + 1 if 0 < x < a, SO
thatJ(X)=0if 0 < X <b.

DefineD = {(X,Y) € RZ 0< X< b, —% <Y < J(X)}in case (1)
andD = {(X,Y) eR? -2 <X <b, -8 <Y <0} in case (2).

In case (2), we shall denote by a C3 extension ofu to {(x,¢) €
R%2,0<x+1t<1t9+2b, 0<t <x+1p). If y < —1 orif the Dirichlet
condition is satisfied, we may and shall assume itids bounded; this
is possible since Lemmas A.1 (of Appendix A) and 3.1 show that
bounded below if 0< x < —t + 19+ 2b and 0< r < x + 1. In case
(1), we just putu* = u. Define a functionkK on D by the relation
K(X,Y)= [y gu*)(s,t —x+s)ds. Put Q(X) = X if -2 <X<0,
O0X)=J(X)iIfO< X <b (sothatQ(X) =0 if 0 < X < b in case
(2)). Finally define the functlonL on D by the relationL(X,Y) =
— [P¥ K(X,Y)dY. Because of (5.2), one can firdy € C?(A) such
that 0; Hy = g(u) and 0,Hy = 3u? —u,, in A. Hence if Hy(§,n) =
Hi(x,1r) andK»(&,n) = K(X,Y), we obtain thatH»(&, n) = Ho(n, n) +
Ko, mif G—né+npedandE—2,n—29) eD. If we putw =
e /2in A, we have

w,,,,_l

2= = Sul — gy = 0y Hy. (6.1)

Putw(X,Y)=w(x,t), Z =we */?. We obtain from (6.1) that

02Z+KdyyZ+MZ=0
(6.2)
if(X—-Y,X+Y+1n)eAand(X,Y)eD,

whereM(X,Y) = — aY(Hz(Y-i- & Y+ ’0))+ %KZ(X, Y). Notice that

Iy (Ha(Y + 3,7 + ’0>> = (g(u) + 3u5 — uy,)(0,2Y + 10).
After these prellminaries, we are going to prove Proposition 6.1.
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Proof of Proposition 6.1. First we are going to check the following:
K € L®(D). (6.3)

Indeed, if F satisfies (2.17) (andy| > 1 or the Dirichlet boundary
condition is satisfied), we conclude (with the help of Lemma A.1 (of
Appendix A) and of Lemma 3.1) that(x) is bounded if 0< 1 < x (x)
and 0< x <1+ 2b — ¢, and (6.3) is then obvious. On the other hand, if
F satisfies (2.10) and = —1, we can write with the help of Lemma A.2
(2) of Appendix A that[y |g(u)(s,t — x +s)|ds < C [y ¥ ~2*ds when
(x,1) € A, where

W:X(s)—s—t+x:(x—s)<l—w>—I—X(x)—t.

Since, by Theorem 2.48=x5 < g < 1 if 0 < s < x, it follows that

U>1-0)(x—s)ifO<s <xand(x,t) € A, and (6.3) follows easily.
Definer(X,Y) = e &N jf (X,Y) e D. It follows from (6.2) that

dy(roayZ) + rMZ = 0 in D. Using (6.3), we see that there exists

o > 0 such that——~ (le) > wif (X,Y)eD. DefineS(X,Y) =wlJ(X) —

S0 ("Y when(X, Y) € D. Notice for later use tha§(X, Y) < oY if
(X,Y) e D indeeddyS > w in D and S(X, J(X)) = wJ(X). Define
D ={(X,8X,Y)) e R (X,Y) € D}. Put S = S(X,Y),U(X,S) =
Z(X,Y). It follows easily from (6.2) that

92U —q(X,HU =0 if (X,S) €D, (6.4)
whereg (X, S) = —(r?M)(X, Y). Notice that
UX,5)—0 if0<X<bandS > wJ(X). (6.5)

Fix xg €]0,a[. Since |x'(x)| < 1, it follows by standard arguments
(already used in the proof of (6.1) of [3]) that, ne@tr = x (x) is the
blow-up curve ofu considered as a solution of a Cauchy problem for the
equationTJu = F(u) with initial data on{(y, x (xo) — 8) € R")?, |y —

xol <8 + ¢}, wheres > 0 is small and ¢ >0 is small with respect té.
Put, as in section 4 of [3ls; (x, 1) = u(xg + Ax, x (xg) + At) +2InA, and

. 2 . .
defineV,(x, 1) =In f;l;;)g, wheret = x’'(xo). Now, one has in particular

that 9%u, (1, —1) — 8%V, (1, —=1) if |o| < 2 andx = 0. Actually this
follows at once from the results of Sections 4,5,6 of [3], in particular
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from the analogue of (6.3) of [3] farg > 0 (which corresponds to (7.4)
of [1]). Hence

(675, —00w)(L -1 — (€33, — 9 V)L, 1) asr >0,
that is

201+ x’(m)))l/z asi 3 0

—Zw,,()Co"i‘)», X (xo) — )"> - ( 1— x'(xo0)

Hence if we put, for O< X < b,

1+ )/ (X = J(X)) )1/2

X [
pLX) <Z(l—x/(X—J(X))

it follows that 9y w (X, J(X) — 1) — p(X) if 0 < X < b andr = 0.
Using this, it is not hard to check that

asU(X,S) — p(X) if0<X<bandS S wJ(X). (6.6)

Let us complete the proof of Proposition 6.1 when eithgr> 1 or the
Dirichlet condition is imposed. Using Proposition 5.2, we obtain that for
someC,m,e>0,¢(X,$) > 5 > % if (X,S)eD andS > —¢. We
may and shall assume thatb are so small thabJ(X) > —¢ > —’50 if

0< X <b.PutD, ={(X,S) €D, S > —¢}. Letc(X, S) be such that

92 — %g —0 if(X,$)eD,andX >0, (6.7)

((X,wJ(X))=0 and a¢(X,0J(X))=p(X) if0<X<b.
(6.8)
We are going to check that

UX,$)>c(X,S) if(X,S)eD,andX >0 (6.9)
by adapting a standard comparison argument (used, e.g., in Theorem
9.2.1 of [5]). First we have itX, S) € D, andX > O:

wJ (X)

(3sU = Udst) (X, S) = — / U)X, o) <q(X, o) = %) do,

S
(6.10)
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because both sides have the same first derivative with respegt to
and are equal iff = wJ(X). Let us first check thatds¢) (X, S) < O if
(X,S) € D, and X > 0. This is true ifS = wJ (X), so fix X and put
Ex =1{S, (X, S) e D,, (85¢)(X,0) <Oforallo €[S, wJ(X)]}. Assume
that there existsSy with (X, Sp) € D, and So ¢ Ex, and letS* be the
largestsS € [So, wJ (X)[ such that(ds¢) (X, S) = 0. Sincez (X, J (X)) =
0, we havez (X, $*) > 0. But (6.7) then shows tha¢ (X, S*) > 0, so
S* is a local minimum of the functio$ — ¢(X, S), which contradicts
the fact that(ds¢) (X, §) < 0if § €]8*, J(X)]. This contradiction shows
that ¢(X, $) > 0 if (X,S) € D, and X > 0. Likewise U(X, S) > O if
(X,S) e D, and X > 0, so the right-hand side Qf (6.10) 0. Hence
it follows from (6.10) thatas(%) <0if (X,S) € D, and X > 0. Since

%(X, $) = lasS > wJ(X), (6.9) follows at once.
Now (6.7), (6.8) can be solved explicitly. Pat= %(1 + +/1+ 4m),

B = 31— VI+4m). Then{|S|*, |S|’} is a fundamental system of
solutions of (6.7) and a simple computation shows that

X S)_p(X>< s s )
T =B P I (X)FL o I (X)L

Notice thate > 1 and that8 < 0. Assume that Proposition 6.1 is false, so
that one can find, = 0 with x’(x;) > —1+ ¢o for somecg > 0 and all
k e N\ {O}. PutX, = (xx + x(xx) —109)/2, SO thaty, = X, — J(Xy). ltis
clear that there exists> 0 such thatp (X;) < —§ for all k. Now choose
So such that—s < Sp < wJ(X) if 0 < X < b. LetD — D: (X, S) —
(X, Y(X, 9)) be the inverse diffeomorphism ¢k, Y) — (X, S(X,Y))
and putY; = V(X,, So). Itis easily checked that one can fisid> 0 such
that Y, < —4; for all k. Passing to a subsequence if necessary, we may
and shall assume that there exiggs= [—’50, —481] such thatt, — Yq. By
(6.11), we obtain that (X, Sp) — 400, whenceU (X;, So) — +oo by
(6.9). It follows thatZ (X, Y;) — +o0, and sow(Xy, Y;) — +oo. This
contradiction proves Proposition 6.1 when either> 1 or the Dirichlet
condition is imposed.

Let us now complete the proof of Proposition 6.1 when= —1.
Assuming as we may thai is small and using Proposition 5.2, we

see that one can fin@, m, ¢ > 0 such thayy (X, S) > C(Y?In ﬁ)*l >

m(S2In ﬁ)—l and Y| <1,|S| < 1if (X,$) €D and S > —¢. Once
more, we may and shall assume thai are So smallthab J (X) > —& >

—%0 if 0 <X <b,and putD, = {(X,S) e D, S > —¢}. Let £(X, S) be

(6.11)
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such that

1 1

32¢ —m (Szln ﬁ> t=0 (6.12)

if (X,S) e D,andX > 0, and such that (6.8) holds. Then (6.9) still
holds with the same proof. The following lemma will be used to provide
something to replace (6.11) in the present case.

LEMMA 6.1. — One can find a fundamental systdm, ¢»} of solu-
tions of(6.12)such that, for-1 < § <0,

) 1 —m—l
<C|S|l—f(ln—) . j=01

. . 1\ "
/(8) + §¥ (In —)
51" (S) S|

S|

/(S + (-1 n < " <cs(in L " i=0,1

Lemma 6.1 is proved in Appendix B. Using Lemma 6.1 and taking
(6.8) into account, we obtain that

1 \" 1\
(X, 8)=p(X) <In IwJ(X)I) S(In m) (14 Ru(X, 9))

—p(X)wJ(X) (In = >_m (In i>m
P w0 (X)] S|
x (1+ Ro(X, S)), (6.13)

where

1 -1 1\t
|R1(X,S>|+|Rz<x,S>|<c<<mm) +('”E> )

when(X, ) € D, andX > 0,5 > —1.
We can now complete the proof of Proposition 6.1 whesa —1. If
this proposition was false, we could fing = 0 with x"(x;) > —1+ ¢
for somecg > 0 and allk € N\ {0}. Arguing as in the casp/| > 1 (or
the Dirichlet case), but with (6.11) replaced by (6.13), we again reach a
contradiction. The proof of Proposition 6.1 is complete

Proof of Proposition 6.2. Assume first thayy = —1. If the function
t — u,(0, 1) does not belong ta.*° ([0, #[), it follows (with the notations
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of Theorem 2.4) thatp(0) = ro; indeed ¢(0) > 1o, and if ¢(0) > g,
the functionr — u,(0,7) belongs toL> ([0, ro[). But if ¢(0) = 1, it
follows from Theorem 2.4 thap(x) < 6x + 1 for someéd €]0, 1] if
x < a and thatu(y, s) > +oo if s < @(y) and(y,s) — (x, ¢(x)). But
this contradicts the fact that(x) = x + o in the definition of A. This
contradiction proves Proposition 6.2 whgr= —1.

Assume now thaty| > 1 and that the function — u, (0, r) does not
belong to L*°([0, 1,[). Notice that (6.3) still holds in the present case;
indeed (2.17) implies that the functian, r) — gu*)(x, ¢) is bounded if
o

We shall use the following result, which is proved in Appendix B.

LEMMA 6.2.— (6.2has afundamental system of solutigs(X, Y),

Z>(X,Y)} which belong toC*({(X,Y) e R?, -9 < X <b,—e <Y <
0}) for somes > 0, and such that

07 Z1(X, Y) + (=) A+ o)/ |y Mo | < Cly | et
;=01 (6.14)

05 Z2(X, Y) — o/ Y[ <ClY|°H, j=0,1,

whereo = ;—j and/ = min(1, 20).

Put as beforén (X, Y) = e /2 |t follows from Proposition 5.2 that

w(X,X)=|X"°f1(X) and
} - _ o (6.15)
dy (X, X) =0 X 1(X) + o(X), i —Z <X <0,

where, for someC;, C > 0, C1 < f1(X) < C and| f2(X)| < C|X|’*“ if

—% < X <0.Recall thatZ = we /2, anddy L(X, X) =01if -2 < X <

0 in particular if j =0, 1. On the other hand, we may wr@(X Y)=
Y1k AX) Zi (X, Y), and 0321 p Ak (X)dy Zi (X, X) = 3y (X,

X) if j =0,1. It then follows from (6.15) and from Lemma 6.2 that,
in particular, A>(X) = — f1(X)X + fa(X), where| f3(X)| < C|X|*.
Hence A,(0) = 0, and sinceA, € C! near 0, we haveA,(0) =

lim, < 220 Therefore lim, - | f1(X) exists; sincef1(X) > C1, we also
have Ilmx f1(X) > Cy. HenceA’z(O) < 0, and thereforel,(Xg) < O if
Xo>01s close to 0. Since (6.3) still holds in the present situation, it
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follows thatw (X, Y) — —o0 asY = 0, which is of course impossible.
This contradiction proves Proposition 6.2 when > 1.

Finally let us prove Proposition 6.2 when the boundary condition is the
Dirichlet condition. The proof is identical with that of the cdse > 1,
withnowo = 1,1 =1, f1(X) = 1; actually (5.30) can be used to prove
the analogue of (6.15) fary w(X, X) since Lemma 6.2 still holds with
the same proof for these valuesafl. The proof of Proposition 6.2 is
complete. O

We can now prove Theorem 2.5.

Proof of Theorem 2.5. Assume thaip(R+) c Rt and putrg = ¢(0).
It follows from Theorem 2.4 that the function— u,(0, ) does not
belong to L*° ([0, #[). Proposition 6.1 (withy = ¢) then implies that
¢'(x) > —1 asx = 0. This implies Theorem 2.5.00

We now prove Theorem 2.8 with the help of Proposition 6.1. Until the
end of this section, we shall suppose that the assumptions of Theorem 2.8
are satisfied.

If (x,1) e R)?, letK—(x,1) ={(y,5) € RT)%, s <t,|y—s| <t—s}
be the backward characteristic cone with vertex:), limited to (R+)?

(cf. Section 3). Recall that i is an open subset afR*)?, one says
that/ is an influence domain ifx, r) € U implies thatK—(x,t) C U.

The union/* of all influence domains where a uniq@® solution of
(2.1), (2.2) (or (2.12)), (2.3) exists is the largest influence domain with
such a property. Ik > 0, one can find > 0 such thafx} x [0, 1] C U*.
Puty (x) =supr > 0, {x} x [0, t] CU*}. If ¥ # 400, theny is always

< 400 and| ¥ (x1) — ¥ (x2)| < |x1 — x| for all x1, x, > 0; in that case we
shall putX> = {(x,1) € (R%)?, t = ¥ (x)}. Actually, with the notations
introduced in Section 2, we havé* = 2, ¥ = ¢, as will follow from
Proposition 6.3 under the assumptions of Theorem 2.8 (and the same
follows from Theorems 2.3 and 2.4 1 < y < 1).We shall prove
the following result, which will help us to show that Proposition 6.1 is
applicable withy = 1.

PROPOSITION 6.3. — Let the assumptions oIF, ¥, ¥, and the
boundary condition be as in Theoreth8. Assume that) # +oo. If
xo > 0O, there exists an open neighborhodd of xg in R* such that
v e CYHU) and |y'| < 1 in U. Moreover, ifx € U, u(y,s) — +oo if
s <y (y)and(y,s) — (x, ¥ (x)).
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Proof of Proposition 6.3. 4 P = (x1,1) € (RT)?, define C;(P),
C,(P) as in Section 6 of [3], namely writ€;(P) = {(x, ) € (R+)?,
t<t,x —t=x1—t},C,(P)={(x,1) e RH)? t <t;,x +1t=x1+1)
for the backward half characteristics with positive and negative slope
through P. Notice that if Py = (xg, ¥ (xg)) € X and if P = (x,1) €
C.(Py) N X, wherex =1 orr, then the closed interval with end poinks
and Py is contained inx.

First case. Assume thét.(Py) N X =@ if x =1 and also itk = r. Then
the following holds:

one can find an open neighborhobidof xq in R™ such that

v e CY(U) and|y’'| < 1in U. Moreover, if
(6.16)

xeU, u(y,s) — +ooif s <y (y)
and(y, s) = (x, ¥ (x)).

Actually the proof of (6.16) is the same as that of (6.1) of [3], so we may
omit the details. Hence Proposition 6.3 holds if the first case occurs.
Second case. Assume that one can fiede C,.(Py) N X. Put
Et ={x > xo, (x,¥(x0) — (x — x0)) € X}. ET # (. Put alsox* =
SUPE™, P* = (x*, ¥ (xg) — (x* — xg)). ThenP* € X, sot(P*) > 0 and
Y(x) = Y¥(xg) — (x — xp) If xo < x < x*. Itis clear thatC;(P*)N X =
9= C,(P*)N X, so by the first case) € C* close tox* and|y/| < 1
close tox*. This contradiction shows that the second case is impossible.
Third case. Assume that one can fild € C;(Py) N X. PUtE~- =
{x <x0, (x,¥(x0) + (x —x0)) € X}. E- # 0. Putx™* =inf E~, P*™ =
(x**, ¥ (x0) + (™ — x0)). If x** > 0, one can repeat the reasoning of
the second case (witf, replaced byC;) to conclude that this situation
cannot happen. So we must havé = 0. Let us putig = ¥ (xg) — xo, SO
that ¥ (x) = to + x if x < xo. Proposition 6.2 shows that— u, (0, t)
belongs toL> ([0, ro[). Then it follows from Proposition 5.1 that
C?(Dy,). If we put as beforai (X, Y)=e*®/2 7 = pe /2, we are
going to check that

f
forsomes,s >0, Z(X,Y)>$6 ingXge,—§<Y<0. (6.17)

Sinceu € C(D,,), itis clear that (6.17) holds ik = 0. To prove (6.17), it
is therefore sufficient to show that, € L>°([0, b] x [—’50, 0D). To achieve
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this, put

with K, M as in (6.2). Using (6.2), we see that

. 1
yy=AX,Y)y |f0<X§b,—§O<Y<O, (6.18)
while
I .
y(x.=2)=y00) ito<x < (6.19)

where yo € C?([0, b]). Using the fact thatu € C3(D,), we obtain
in particular thatA, Ay € L*>([0, b] x [—’50,0[). But then, standard
estimates (see, e.g., Lemma 4.1, p. 54 of [4]) show that. > ([0, b] x
[—’50, 0D, and differentiation of (6.18) with respect B shows thatyy
L*([0, b] x [—’50,0[). HenceZy e L*°([0, b] x [—%0,0[), and (6.17)
follows. From (6.17) and from the fact thate C(D,), it follows that

u is bounded above when+ ¢ < 1o+ 2¢ andr < x + tg. Now u, + u,

is bounded if 0< x < xp + V¥ (xg) andr = 0. Sinceldu = F(u) > —Cy

if x +1 <xp+ ¥(xg) andr < x + 1o, it is therefore clear that, + u, is
bounded below ik +¢ < xg+ ¥ (xg) andr < x +1o. But then we conclude
thatu is bounded below when + 7 < xg + ¥ (xg) andz < x + tg, Since
we know that: is bounded ift = 0 and 0< ¢ < 1g. But thenu is bounded
whenx +1 <+ 2¢ andt < x + 1o if ¢ < xg, and an application of
Theorem A.1 of Appendix A shows thatcan be extended as a solution
of (2.1), (2.2) (or (2.1), (2.12)) to a neighborhood @ 1p) in (RT)?,
which contradicts the fact tha** € ai/*. This contradiction shows that
the third case is impossible. Summing up, only the first case is possible,
and this proves Proposition 6.30

We can now prove Theorem 2.8.

Proof of Theorem 2.8. Proposition 6.3 immediately implies Theo-
rem 2.8 whenx > 0 if we takegp = ¢. Now assume first that the func-
tion ¢ — u,(0,7) does not belong td.*([0, t]). If we take ¢ = y,
Theorem 2.8 then follows at once from Proposition 6.1.(Ik —1,
u(0,1) — +o00 ast — 1o and ug is bounded below, sa(x,t) - +oo
if (x,r) = (0,¢(0))). If now the functions — u,(0,¢) belongs to
L>([0, 1o[), we can repeat some arguments of the proof of Proposi-
tion 6.3. It follows from Proposition 5.1 that € C?(D,,). Putting, as
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before, (X, Y) = e “®)/2 7 = {pe~t/? and using arguments simi-
lar to those which lead to (6.17), we easily conclude that for some
8,6>0,Z(X,Y)>8if0< X <eand—2 <Y < J(X), where as be-
fore Y = J(X) corresponds te = ¢(x). This contradicts the fact that
u(y,s) — +oo as(y,s) = (x, ¢(x)), if x > 0 is small. Hence the func-
tion — u, (0, r) cannot belong td.* ([0, #o[), and we have already seen
in the beginning of this proof that Theorem 2.8 then follows:

APPENDIX A

We first collect a number of useful results from [3].

LEmMmA A.1 (Lemma 3.1. of [3]). Let Dg, U be as in Sectior8.
Assume thatv € C2(U{ N Dg), F € C(UU N Dg), and that the following
holds Ow = F in U N Dg, wy + yw, =0if x=0and 0 <t <
min(y(0), R), wherey €] — oo, 1[, andw = ¥, w;, =Y if O<x < R
andz = 0. Then the following holdsf Co > Oand F > —Cy, one can find
C > 0 (depending onjg, Y1, R, Co, but not onF) such thatw > —C in
U N Dpg.

The following estimates have also been used (cf. [3]).

LEMMA A.2. —Assume thaF € C1(R) satisfieq2.7)(1)and(2.7)(2)
thaty = —1, thaty; € C>7/(R*), j =0, 1, and that(2.4), (2.5)hold.
Then there exist

(@) ¢ :R+ — 10, +00] such thaip(RT) c RT or ¢(R+) = {+o0};

(b) u e C?3(2), where2 = {(x,1) € (RT)?,t < ¢(x)} such thatu is a

solution of(2.1), (2.2), (2.3)n £2.
If o(RT) c RT, denote byl(x, r) the distance frongx, r) to the graph of
¢. ForanyR > 0, there existC, § > 0 such that

1) d(x,He™D > Cctif (x,t) € 2N Dyg;

(2)  d%x,He's) L Cif (x,1) € 2N Dg;

)  wu/(x,1)>C"1In d()},,) if (x,7) € 2N Dgandd(x,1) <8.

Proof of Lemma A.2. 1) can be proved as Lemma 4.1 of [3], and (2)

as Lemma 4.2 of [3]. As for (3), it can be proved as Lemma 4.9 of [3],
but with Lemma 4.7 of [3] replaced by (1). We may omit the details!

Assume thatrg > 0 and 8 > 0. If ¢ €]0, [, put D = {(x,1) €
R, x>00<t<tg—e,x+t<tyg+p}, D= Uo<e<eo D°- IN the
proof of Proposition 6.3, we have used the following standard result.
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THEOREM A.1.— (I) Assume thaF € C%(R) and let

ue () C¥Dd)

O<e<egg

satisfy the following conditions

Ou=F@) if (x,1)eD, (A1)

u, +yu, =0 ifx=0and0 <1t <1, (A.2)

wherey # 1. If u € L*(D), one can find an open neighborhodd of
(0,10) in (RT)2 andii € C3(V) with

Di=F@) if(x,0)eV, (A.3)

i, +yiu,=0 ifx=0and(0,7) eV, (A.4)

suchthati =uin VN D.
(I) The same result holds(f.2) is replaced by

u=0 ifx=0and0<t <1, (A.5)

and(A.4) by
u=0 ifx=0and(0,r)eV. (A.6)

Proof of Theorem A.1. Representing in D by formulas of type (3.4),
(3.5), we easily conclude thate C3(D). It then suffices to find an open
neighborhoodW of (0, 7o) in {(x,t) € (R*)?, t > 1o} andu* € C3(W)
such thatdu* = F(u*) if (x,t) e W, d/u* =0/uif j=0,1, (x,t) e W
andr = o, and such thai} + yu =0 if x =0 and (0,7) € W in
case (A.2) holds, whereag =0 if x =0 and(0,¢) € W in case (A.5)
holds. But the existence d¥ andu* is standard and follows, e.g., by
the arguments of the proof of Theorem 2.1 of [3]. We may omit the de-
tails. O

APPENDIX B

Proof of Lemma 6.1. We shall use ideas and results of Chapter Xl
of [4]. Assume that (S) satisfies (6.12) Whepr% <S<0.Put-S§ =
171 (hencer > 2), ¢(S) = r7Y2v(In1), P(s) = 7 + 2. Thenv"(s) +
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P(s)v(s) =0if s >In2. Let us use a so-called Liouville transformation:
take a new variable such thatl® = PY/2(s) ando (In2) = 1, and write
z(0) = PY4(s)v(s). Then

7"(0)— (1+B(0))z(c) =0 ifo >1, (B.1)

whereBB € C*([1, +oo[) and|B(o)| < % Now (B.1) has a fundamental
system of solution$z,, z»} such that

—0

; . [S]
24/ () — ()| < C—,
o

(B.2)
; e
12/ (0) — €] < .

if o >1 andj = 0,1. Actually (B.2) follows from Corollary 9.2 of
Chapter Xl of [4] except for the fact that the right-hand sides of (B.2)
are not given there. For the sake of completeness, we very briefly give
some details. Pui(o) = € z(0), w(o) = €% v/(0), and assume in the
rest of the proof that > 1. Then we obtain with the help of (B.1) that

V(o) =€ w(o), w' (o) =€ 2 B(o)v(o). (B.3)

(B.3) can be reduced to the system of integral equations

V(o) :/ezsw(s)ds—i—v(T),
T

o

w(o) = / e > B(s) ( / ez’w(r)dr> ds (B.4)
T

T

+u(T) / e 2B(s)ds + w(T).
T

Lemma 9.1 of Chapter XlI of [4] shows that(c) has a finite limit
w(4+00) aso — +oo. We impose the conditions(7T) = 0, w(T) =

1, whereT is large; then it follows from the proof of Lemma 9.1
of Chapter XI of [4] thatw(4+00) # 0. Put v, = v/w(400), wy =
w/w(+00). The proof of Lemma 9.1 of chapter Xl of [4] now yields
that |wa(0) — 1| < C/0?, and sincevy(o) = €7 w,(o'), we easily obtain
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that|va(0) — 3€%7| < C%. If we define

v1(0) = (/ezy(vz(S))_zdS> v2(0),  wi=(wavr — 1)/vy

(cf. [4]), simple calculations show théi,, w) is a solution to (B.3) and
that|vi(o) — 1| < (% and|wi(o)| < Cej. If we putzi(o) =€ v1(0),
72(0) = 26 %v2(0), (B.2) follows easily. Now it is not hard to check that
for someCy, C, > 0, one hagC; < & ~%/2/s™ < Co if s > In2. If we use
this and define; (s) = P~Y4(s)z;(0), £;(S) = c;t™?v;(In1), j =1,2,
wherec, ¢, are suitable strictly positive constants, Lemma 6.1 follows
from (B.2) after some straightforward computationsa

Proof of Lemma 6.2. Put

2y(y +1) ( 1)1/2 B
=, A= =), Y=g,
m (y—1)2 m+4

Z(X,Y)=e""2p(X,s).

Straightforward computations using Proposition 5.2 show that, for some
50,

32v(X, s) + g1(X, 5)3,v(X,s) — (A2 + g2(X,5))v(X,s) =0 (B.5)

if —2 <X <bands >so, wheregy, g, € C* and

(X, )|+ e P lgX, 9+ 3 loxg; (X, )] < Ce
1<j<2

if —2 <X <bands > so, with I = min(l, 23%1). We shall make use of
the following result.

LEMMA B.1.-One can find a fundamental system of solutipngX,
5),v2(X,s)} of (B.5) such thatvy, v, € C*({(X,s) € R?, -2 < X <
b,s > so}) and

0/v1(X,5) — (=) e ™| < ce s j=0,1,

0/va(X, 5) —Ae | <ce s =01
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Lemma 6.2 easily follows from Lemma B.1 if we pdt(X,Y) =
e %(X,s), k=0, 1. Hence it remains to prove Lemma B.1.

Proof of Lemma B.1.Fhe proof follows the same lines as in
Lemma 6.1. Put(X, s) = €-v(X, s). (B.5) can be rewritten as

3, (€7 8,v(X, 5)) + g1(X, 5) (€7 P*B,v(X, 5)
—re (X, 5)) — g2(X, s)ey(X,s) =0. (B.6)
Put

p(X,s)= eXp(—/gl(X, G)dcr),

w(X,s)=e2p(X,s)dv(X,s). Using (B.6), we obtain
A v(X,s) = AX, )w(X,s), d,w(X,s)=eB(X,s)v(X,s),
(B.7)

where A(X,s) = 1/p(X,s), B(X,s) = p(X,s)(Ag1 + g2)(X,s). In
the rest of this proof we shall denote Wy various strictly positive
constants independent &f. Notice that| B(X, s)| < Ce™, |Ax(X, s)| +
|Bx(X,s)| + |A(X,s) — 1] < Ce™*. We may study (B.7) along the same
lines as (B.3), the only additional difficulty being the presenc& ofirst
we rewrite (B.7) as a system of integral equations

v(X,s) = / 7 AX, o) )w(X,o)do +v(X, T),

T
s o

w(X,s) = /e‘z’\"B(X,o)</e2“A(X, Mw(X, r)dr> do (B.8)

T T

+ (X, T)/e‘z’\"B(X, o)do +w(X,T).
T

Arguing as in the proof of Lemma 6.1, we easily obtain thatX, s)
has a limitw(X, +00), uniformly in X € [—%2, b], ass — +oco. More-
over, |w(X,s) — w(X, +o0)| < Ce™*. We takeT large, w(X,T) =
Lv(X,T)=0. Then|w(X,s) — 1| < 5 for all X € [-%,b] if s is
large. In a similar way, it also follows from (B.8) thaty (X, s) has
a limit x(X) ass — +o0, and that moreoveftwy (X, s) — x(X)| <
Ce™’s. Hence the functionX — w(X,+o0) belongs toC*([—%, b]).
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Put vo(X,s) = v(X, s)/w(X, +00), wa(X,s) = w(X,s)/w(X, +00),
vi(X,s) = (/77 52D doyuy(X, 5), wi(X,s) = “2A(X,5). Ar-

2
v5(X,0)
guing as in the proof of Lemma 6.1, we easily obtain the estimates

|U)2(X, S) - 1| gce*lS, |U2(X, S)— eé_i:s| g Ce(Z)L_I)S! |U1(X, S) - 1| g
ce™™, lwi(X,s)| < Ce=@+Ds from which Lemma B.1 easily fol-
lows. O
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