
Ann. Inst. Henri Poincaré, Analyse non linéaire 17, 6 (2000) 779–815

The blow-up curve of solutions of mixed problems
for semilinear wave equations with exponential

nonlinearities in one space dimension, II
by

Paul GODIN1

Université Libre de Bruxelles, Département de Mathématiques, Campus Plaine CP 214,
Boulevard du Triomphe, B-1050 Bruxelles, Belgium

Manuscript received 28 February 2000

ABSTRACT. – In this paper, we consider mixed problems with a
timelike boundary derivative (or a Dirichlet) condition for semilinear
wave equations with exponential nonlinearities in a quarter plane. The
case when the boundary vector field is tangent to the characteristic which
leaves the domain in the future is also considered. We show that solutions
either are global or blow up on aC1 curve which is spacelike except
at the point where it meets the boundary; at that point, it is tangent to
the characteristic which leaves the domain in the future.
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RÉSUMÉ. – Dans cet article, nous considérons des problèmes mixtes
avec une condition au bord de type temps (ou de Dirichlet) pour des
équations d’ondes semi-linéaires à non-linéarités exponentielles dans un
quart de plan. Le cas où le champ de vecteurs au bord est tangent à la
caractéristique qui quitte le domaine dans le futur est aussi considéré.
Nous montrons que les solutions soit sont globales, soit explosent (au
moins hors du bord) sur une courbeC1 qui est orientée d’espace sauf
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au point où elle rencontre le bord ; en ce point, elle est tangente à
la caractéristique qui quitte le domaine dans le futur.

Mots Clés:Équations d’ondes semi-linéaires, Problèmes mixtes, Explosion des
solutions

1. INTRODUCTION

This paper is a continuation of [3] in which a study was made of
the blow-up curve of solutions of mixed problems in a quarter plane
for semilinear wave equations with exponential nonlinearities, when the
boundary vector field is spacelike. In that case, results similar to those
of Caffarelli and Friedman [1,2] were obtained: it was proved in [3]
that non global solutions blow up on aC1 spacelike curve. When the
boundary vector field is tangent to the characteristic which leaves the
domain in the future, weaker results were obtained in [3]. In the present
paper, we consider the case when the boundary vector field is constant
and either timelike or tangent to the characteristic which leaves the
domain in the future; we also consider the case of a Dirichlet boundary
condition. The blow-up method of [1,2], adapted in [3], does not seem
to be easily applicable in the present situation. We impose conditions
on the nonlinearities which are more restrictive than those of [3]. By a
completely different method based on conservation laws, we show that
non global solutions still blow up (in a sense which will be made clear)
on aC1 curve which is now spacelike except at the meeting point with the
boundary where it is characteristic (actually tangent to the characteristic
which leaves the domain in the future).

Our paper is organized as follows. In Section 2 we recall some results
of [3] and state our new results precisely. In Section 3, we show that a
certain result of [3] is impossible if the boundary vector field is timelike.
Asymptotic expansions are obtained in Section 4, and the proofs are
completed in Section 5. In order to avoid interruptions in a number
of proofs, some useful results on mixed problems and on fundamental
systems of solutions of ordinary differential equations are collected in
two appendices at the end of the paper: in particular, some estimates from
[3] are recalled in the first appendix.
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2. STATEMENT OF THE RESULTS

We consider the following mixed problem for (real-valued) functions
u of (x, t):

�u= F(u) if x > 0 andt > 0, (2.1)

ux + γ ut = 0 if x = 0 andt > 0, (2.2)

u=ψ0 and ut =ψ1 if x > 0 andt = 0, (2.3)

where� = ∂2
t − ∂2

x and γ 6= 1, |γ | > 1 (the case|γ | < 1 has been
considered in [3]). We introduce the compatibility conditions

ψ ′0(0)+ γψ1(0)= 0, (2.4)

ψ ′1(0)+ γ
(
ψ ′′0 (0)+F

(
ψ0(0)

))= 0, (2.5)

ψ
′′′
0 (0)+ γψ ′′1 (0)= 0. (2.6)

The following result is well known. A proof has been given in the
appendix of [3]. We writeR+ = {s ∈R, s > 0}, R+ = {s ∈R, s > 0}.

THEOREM 2.1. –
(1) If F ∈ C1(R), γ 6= 1, ψj ∈ C2−j (R+) for j = 0,1, and if (2.4),

(2.5) are satisfied, there exists an open neighborhoodU of {0} ×
R+ in (R+)2 such that(2.1), (2.2), (2.3)has exactly one solution
u ∈C2(U).

(2) If furthermoreF ∈ C2(R), ψj ∈ C3−j (R+) for j = 0,1 and (2.6)
holds, then the conclusion of(1) still holds with someu ∈C3(U).

(3) If furthermoreF ∈L∞(R) in (1) or (2), one can takeU = (R+)2.

If γ = 1, Theorem 2.1 is already false whenF ≡ 0. In [1,2], Caffarelli
and Friedman have studied the blow-up of solutions of Cauchy problems
for equations of type (2.1), whenF(u) is bounded below onR and
behaves likeup, p > 1, asu→+∞. In [3] we have assumed thatF
satisfies the following conditions.

F ∈C2(R) and for someC0,C1,C2,p,A> 0, the following holds:

(1) F(z)>−C0 if z ∈R;
(2) e−pzF (z)→A asz→+∞; (2.7)

(3) C16 e−pzF ′(z)6 C2 if z > 0 is large;

(4) |F ′′(z)|6C2epz if z > 0.
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Under the assumption (2.7), we have considered in [3] the Cauchy
problem

�u= F(u) if x ∈R andt > 0, (2.8)

u= u0 and ut = u1 if x ∈R andt = 0, (2.9)

whereuj ∈C3−j (R) (anduj is real-valued),j = 0,1. We have proved:

THEOREM 2.2 (cf. [3]). – Assume that(2.7)holds. Then there exist
(1) ϕ :R→]0,+∞] such thatϕ(R)⊂R+ or ϕ(R)= {+∞},
(2) u ∈C3(Ω), whereΩ = {(x, t) ∈ R2,06 t < ϕ(x)}, such thatu is

a solution of(2.8), (2.9)in Ω ,
with the following properties: if ϕ(R)⊂R+, thenϕ ∈C1(R), |ϕ′(x)|< 1
for all x ∈R, andu(y, s)→+∞ if s < ϕ(y) and (y, s)→ (x, ϕ(x)) for
somex ∈R.

The next two theorems have also been proved in [3].

THEOREM 2.3. – Assume that(2.4), (2.5), (2.6), (2.7)hold and that
|γ |< 1. Then there exist

(1) ϕ :R+ →]0,+∞] such thatϕ(R+)⊂R+ or ϕ(R+)= {+∞},
(2) u ∈ C3(Ω), whereΩ = {(x, t) ∈ (R+)2, t < ϕ(x)}, such thatu is

a solution of(2.1), (2.2), (2.3)if (x, t) ∈Ω ,
with the following properties: if ϕ(R+)⊂ R+, thenϕ ∈ C1(R+), |ϕ′(x)|
< 1 for all x ∈ R+, ϕ′(0) = γ and u(y, s) → +∞ if s < ϕ(y) and
(y, s)→ (x, ϕ(x)) for somex ∈R+.

THEOREM 2.4. – Assume that(2.4), (2.5), (2.6), (2.7)hold and that
γ =−1. Then there exist

(1) ϕ :R+ →]0,+∞] such thatϕ(R+)⊂R+ or ϕ(R+)= {+∞},
(2) u ∈C3(Ω), whereΩ = {(x, t) ∈ (R+)2, t < ϕ(x)} such thatu is a

solution of(2.1), (2.2), (2.3)if (x, t) ∈Ω ,
with the following properties: if ϕ(R+)⊂ R+, thenϕ ∈ C1(R+), u(y, s)
→ +∞ if s < ϕ(y) and (y, s) → (x, ϕ(x)) for somex ∈ R+, and
for eachR > 0, one can findθ ∈]0,1[ such that−1 < ϕ′(x) < θ if
0< x <R.

To improve the results of [3] whenγ = −1, and to study the cases
when|γ |> 1 or the Dirichlet boundary condition, we shall have to use a
different method and make more restrictive assumptions onF .
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We shall consider the following additional assumption onF (withA,p
as in (2.7)):

One can findC > 0, α <
1

2
such that

∣∣F(z)−Aepz
∣∣6Ceαpz

if z> 0.
(2.10)

Then we have the following result, which is similar to Theorem 2.3.

THEOREM 2.5. – Let all assumptions of Theorem2.4 hold, and
assume moreover that(2.10) is satisfied. Then we have the following
additional conclusion: if ϕ(R+)⊂R+, thenϕ ∈C1(R+) andϕ′(0)=−1.

For the sequel, and also to compare Theorem 2.5 with Theorem 2.8
below, it will be convenient to reformulate (2.10) in the following way:

If g ∈C2(R+) satisfies the equationg′ = pF − F ′,
there existC > 0, α <

1

2
such that|g(z)|6Ceαpz if z> 0.

(2.11)

Indeed, if (2.10) holds, integration of the relationg′(t) = p(F(t) −
Aept ) − (F (t) − Aept )′ over [0, z] yields (2.11) (with a largerα if
α 6 0). And if (2.11) holds, integration of the relation(e−pt (F +
g)(t))′ = −pe−ptg(t) over [0, z] shows that limz→+∞ e−pzF (z) exists,
and integration of the same relation over[z,+∞[ then yields (2.10) (with
someA ∈R).

The following simple theorem shows that when|γ | > 1 and the
solution blows up on aC1 curve t = ϕ(x), we cannot expect to have
ϕ′(0)= γ as in Theorems 2.3 and 2.5.

THEOREM 2.6. – Assume thatx0 > 0, that V is an open neighbor-
hood ofx0 in R+, that ϕ :V → R+ and thatΩ = {(x, t) ∈ V × R+, t <
ϕ(x)} is open. Assume that�u= F(u) in Ω , whereu ∈C2(Ω) andF is
bounded below onR and bounded above on every half line]−∞, a[, a ∈
R. Assume that|u(y, s)| → +∞ as s < ϕ(y) and (y, s)→ (x0, ϕ(x0)).
Then

(1) one can find a sequence(xk) with xk
>→ x0 andϕ(xk)− ϕ(x0) 6

xk − x0;
(2) if furthermorex0 > 0, one can find a sequence(yk) with 0< yk

<→
x0 andϕ(x0)− ϕ(yk)>−x0+ yk .
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Remark2.1. – Theorem 2.6 is applicable ifF(u) = eu. However
its conclusions are false ifF(u) = up, p ∈ 2N \ {0}, as the function
u(x, t) = a(t − γ x − 1)−q (wherea ∈ R andap−1 = q(q + 1)(1− γ 2),
q = 2

p−1) shows. If γ >1, this function is a solution of a problem of type
(2.1), (2.2), (2.3) when 0< t < γ x + 1, x > 0.

Remark2.2. – The conclusions of Theorem 2.6 are false forF(u)=
eu if we consider complex-valued solutions, as the exampleu(x, t) =
ln 2(1−γ 2)

(t−γ x−1)2 , |γ |> 1 shows.

We shall also consider the Dirichlet boundary condition

u= 0 if x = 0 andt > 0, (2.12)

and introduce the corresponding compatibility conditions for (2.1), (2.3),
namely

ψ0(0)= 0, (2.13)

ψ1(0)= 0, (2.14)

ψ ′′0 (0)+F(0)= 0, (2.15)

ψ ′′1 (0)= 0. (2.16)

The following well known result corresponds to Theorem 2.1.

THEOREM 2.7. – Theorem2.1 remains true if(2.2), (2.4), (2.5), (2.6)
are replaced by(2.12)–(2.16).

The proof of Theorem 2.1 given in [3] can easily be modified to give a
proof of Theorem 2.7. We omit the details.

When|γ |> 1 or when (2.2) is replaced by (2.12), the method of proof
of Theorem 2.3 does not seem to work. However we can still prove the
existence of a blow-up curve if we add the following rather restrictive
assumptions on the nonlinearityF(u):

(1) F ∈L∞(R−) in caseγ > 1;
(2) if g ∈C2(R) satisfies the equationg′ = pF −F ′ onR,

theng, g′ ∈L∞(R) in caseγ > 1, andg, g′ ∈ L∞(R+) in case

γ <−1 or when the boundary condition is given by (2.12).

(2.17)
We shall prove the following result.
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THEOREM 2.8. – (I)Assume that|γ |> 1, and that(2.4), (2.5), (2.6),
(2.7), (2.17)hold. Then the conclusions of Theorem2.3still hold with the
following modifications: if ϕ(R+) ⊂ R+, now |ϕ′(x)| < 1 only if x > 0,
ϕ′(0) = −1, andu(y, s)→+∞ if s < ϕ(y) and (y, s)→ (x, ϕ(x)) for
somex, wherex > 0 if γ > 1 andx > 0 if γ <−1.

(II) Assume that(2.13), (2.14), (2.15), (2.16), (2.7), (2.17)hold. Then
the conclusions of(I) for γ > 1 still hold for the problem(2.1), (2.12),
(2.3).

Remark2.3. – The functionu(x, t)= ln(2/cosh2 x) satisfies�u= eu

if (x, t) ∈ R2; furthermore, for allγ ∈ R, ux + γ ut = 0 if x = 0, and
u= 0 if x = ln(

√
2+1). Hence it may happen thatϕ ≡+∞ in Theorems

2.2, 2.3, 2.4, 2.5, 2.8.

Remark2.4. – Assume thatF satisfies the assumptions of Theo-
rem 2.2 and thatF > 0. Denote byT the triangular domain with vertices
(a,0), (b,0),

(
a+b

2 ,
b−a

2

)
, where 0< a < b. It follows from the results of

[6] that one can findψ0,ψ1 ∈ C∞([a, b]) such that there is nou ∈C2(T )
satisfying ∂jt u = ψj in ]a, b[×{0} for j = 0,1 and�u = F(u) in T .
Extendingψ0,ψ1 to R+ in such a way that the compatibility conditions
(2.4), (2.5), (2.6) (or (2.13), (2.14), (2.15), (2.16)) are satisfied, we ob-
tain examples for Theorems 2.3, 2.4, 2.5, 2.8 withϕ(R+)⊂ R+. When,
e.g.,F(u)= eu, see also [7] and references given there for constructions
which yield examples for Theorem 2.3.

Remark2.5. – Replacingu(x, t) by pu((Ap)−1/2x, (Ap)−1/2t) and
F(z) by A−1F(p−1z), we may and shall assume in the rest of the paper
that p = A = 1 in (2.7), (2.10), (2.17). This will simplify a number of
expressions later on.

Remark2.6. – In Theorem 2.2,Ω is the maximal influence domain
of R× R+, containingR× {0}, in which (2.8), (2.9) has a (unique)C3

solution. Likewise, in Theorems 2.3, 2.4, 2.5, 2.7, 2.8,Ω is the maximal
influence domain of(R+)2, containingR+×{0}, in which (2.1), (2.2) (or
(2.12)), (2.3) has a uniqueC3 solution.

3. BOUNDS FOR SOLUTIONS OF LINEAR DIRICHLET
PROBLEMS

If R > 0, putDR = {(x, t) ∈ (R+)2, x+ t < R}. If (x, t) ∈ (R+)2, write
K±(x, t)= {(y, s) ∈ (R+)2, s ≷ t , |y − x| < |t − s|}. Finally, if (x, t) ∈
DR, putK+R (x, t)=K+(x, t) ∩DR . Assume thatψ :R+ →R+ satisfies
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|ψ(x1) − ψ(x2)| 6 |x1 − x2| for all x1, x2 > 0 and writeU = {(x, t) ∈
(R+)2, t < ψ(x)}. Assume thatu ∈ C2(U ∩DR), F ∈ C(U ∩DR), and
that the following holds:

�u= F in U ∩DR, (3.1)

u= 0 if x = 0 and 0< t <min
(
ψ(0),R

)
, (3.2)

u=ψ0 and ut =ψ1 if 0 < x <R andt = 0. (3.3)

It is certainly well known and easily checked by integration of�u
overK−(x, t), and also overK−(0, t − x) if x < t , and by use of the
divergence formula, thatu= u1+ u2, where

u1(x, t)= 1

2

(
ψ0(t + x)−ψ0(t − x))+ 1

2

t+x∫
t−x

ψ1(y) dy

if x < t,

u1(x, t)= 1

2

(
ψ0(x + t)+ψ0(x − t))+ 1

2

x+t∫
x−t

ψ1(y) dy

if x > t.

(3.4)

u2(x, t) = 1

2

t∫
t−x

( x+t−s∫
x−t+s

F (y, s)dy

)
ds

+ 1

2

t−x∫
0

( t−s+x∫
t−s−x

F (y, s) dy

)
ds if x < t,

u2(x, t) = 1

2

t∫
0

( x+t−s∫
x−t+s

F (y, s) dy

)
ds if x > t.

(3.5)

The following result immediately follows from (3.4), (3.5).

LEMMA 3.1. – If C0 > 0 and F > −C0, one can findC > 0
(depending onψ0,ψ1,R,C0, but not onF ) such thatu>−C in U ∩DR.
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4. PROOF OF THEOREM 2.6

Let us prove (1). Assume that, for someε > 0,ϕ(x)−ϕ(x0) > x−x0 if
x ∈]x0, x0+ ε]. Assume thatε < ϕ(x0) and denote byP0 the triangular
domain with vertices(x0, ϕ(x0)), (x0 + ε,ϕ(x0) − ε), (x0 + ε,ϕ(x0) +
ε). If (x, t) ∈ P0, denote byP the triangular domain with vertices
(x, t), (x0+ ε, t − x0− ε+ x), (x0+ ε, t + x0+ ε− x). We have

u(x, t) = 1

2

(
u(x0+ ε, t + x0+ ε− x)+ u(x0+ ε, t − x0− ε+ x))
− 1

2

t+x0+ε−x∫
t−x0−ε+x

∂1u(x0+ ε, s) ds − 1

2

∫∫
P

F(u)(y, s) dy ds.

(4.1)
Since F is bounded below, it follows from (4.1) thatu is bounded
above inP0. But then (4.1) again shows thatu is bounded below inP0.
This contradicts the fact that|u(x, t)| → ∞ as t < ϕ(x) and (x, t)→
(x0, ϕ(x0)). This proves (1). The proof of (2) is completely similar and
may be omitted. The proof of Theorem 2.6 is complete.

5. SOME ESTIMATES OF SOLUTIONS

Our purpose is to prove the following two propositions, which will
play an important role in the proof of Theorems 2.5 and 2.8. Recall that
we assume, as we may, thatp = A = 1 in (2.7) (2), (2.10), (2.17) (see
Remark 2.5). As before, we putDR = {(x, t) ∈ (R+)2, x + t < R} if
R > 0.

PROPOSITION 5.1. – LetF ∈ C1(R) satisfy(2.7) (1)and(2.17)(with
g ∈ C1(R)), and assume thatt0> 0, that

u ∈ C2(Dt0 \ {(0, t0)}
)∩( ⋂

0<T<t0

C3(DT )

)
,

and that�u= F(u) in Dt0.
(I) If ux + γ ut = 0 when x = 0 and 0 6 t < t0 (where γ 6= 1)

and if t 7→ ut (0, t) is bounded when06 t < t0, it follows that
u ∈C2(Dt0).

(II) If u= 0 whenx = 0 and06 t < t0 and if t 7→ ux(0, t) is bounded
when06 t < t0, it follows thatu ∈C2(Dt0).
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When, at the contrary, the functiont 7→ (ux(0, t), ut (0, t)) is un-
bounded when 06 t < t0, one can obtain asymptotic expansions when
x = 0, as the next proposition shows. Henceforth we shall write∂ξ =
∂t + ∂x , ∂η = ∂t − ∂x , zξ = ∂ξz, zη = ∂ηz.

PROPOSITION 5.2. – Let χ :R+ → R+ be such thatχ(0) = t0 > 0,
χ(x)> t0−x. PutΛ= {(x, t) ∈ (R+)2, t < χ(x)}. LetF ∈C1(R) satisfy
(2.7)(1), (2.7)(2), and assume thatu ∈ C3(Λ), �u= F(u) in Λ.

(I) If F also satisfies(2.17) (with g ∈ C1(R)), if ux + γ ut = 0
whenx = 0 and 06 t < t0 (where|γ | > 1), and if the function
t 7→ ut(0, t) is not bounded ast

<→ t0, the following estimates
hold for someC > 0 with l =min(1,2γ+1

γ−1) if 06 t < t0:

(1)
∣∣∣∣∂jt u(0, t)− 4(−1)j

1− γ
1

(t − t0)j
∣∣∣∣6 C(t0− t)l−j if j = 1,2,

(2)
∣∣∣∣u(0, t)− 4

γ − 1
ln(t0− t)

∣∣∣∣6 C,
(3)

∣∣∣∣(1

2
u2
η − uηη

)
(0, t)− 16γ (γ + 1)

(γ − 1)2
1

(t − t0)2
∣∣∣∣

6C(t0− t)l−2.

(II) If F also satisfies(2.17) (with g ∈ C1(R)), if u = 0 whenx = 0
and 06 t < t0, and if the functiont 7→ ux(0, t) is not bounded
as t

<→ t0, then the following estimates hold for someC > 0 if
06 t < t0:

(1)
∣∣∣∣∂jt ∂xu(0, t)− 4

(t0− t)j+1

∣∣∣∣6 C

(t0− t)j ,

(2)
∣∣∣∣(12u2

η − uηη)(0, t)−
16

(t − t0)2
∣∣∣∣6 C

t0− t .

(III) If F also satisfies(2.10), if ux−ut = 0 whenx = 0 and06 t < t0
and if the functiont 7→ ut (0, t) is not bounded ast

<→ t0, the
following estimates hold for someC > 0 if 06 t < t0< t + 1

2e:

(1)
∣∣∣∣u(0, t)− ln

8

(t − t0)2 + ln ln
1

(t − t0)2
∣∣∣∣6 CW(t),

(2)
∣∣∣∣ut (0, t)− 2

t0− t
∣∣∣∣6 C

t0− t W(t),
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(3)
∣∣∣∣(1

2
u2
η − uηη

)
(0, t)+ 4

(t − t0)2 ln(t0− t)
∣∣∣∣

6 C

(t0− t)2
W(t)

| ln(t0− t)| ,

whereW(t)= ln | ln(t0−t )|
| ln(t0−t )| .

A crucial role will be played in this section by two simple conservation
laws which we are going to derive now. Assume thatD is an open subset
of (R+)2 and thatu ∈ C3(D). Let g ∈ C1(R) be such thatg′ = F − F ′.
Then it is readily verified that the following conservation laws hold:

∂η

(
1

2
u2
ξ − uξξ

)
= ∂ξ(g(u)), (5.1)

∂ξ

(
1

2
u2
η − uηη

)
= ∂η(g(u)). (5.2)

In the proof of Propositions 5.1 and 5.2, we shall use (5.1); (5.2) will
be used later on. Let us integrate (5.1) over the triangular domainDT

with vertices(0,0), (T ,0), (0, T ),0< T < t0. Put

E(T )=
T∫

0

(
1

2
u2
ξ − uξξ − g(u)

)
(x,0) dx, F = F + g.

If ux + γ ut = 0 on{0} × [0, T ], we obtain

T∫
0

(
(1− γ )2

2
u2
t − 2(1− γ )utt +F(u)

)
(0, t) dt

= 2

T∫
0

g(u)(s, T − s) ds +E(T ). (5.3)

If u= 0 on {0} × [0, T ] instead, we obtain

T∫
0

(
1

2
u2
x−2utx

)
(0, t) dt+F(0)= 2

T∫
0

g(u)(s, T −s) ds+E(T ). (5.4)

Proof of Proposition 5.1(I). –We shall first show that

the functiont 7→ utt (0, t) belongs toL∞([0, t0[). (5.5)
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Applying ∂T to (5.3), we see that it is enough to show that the function

T 7→ ∂T

( T∫
0

g(u) (s, T − s) ds
)

belongs toL∞([0, t0[), which in turn will be a consequence of the fact
that

∂αu ∈ L∞(T ) if |α| = 1, (5.6)

whereT is the triangular domain with vertices(0,0), ( t02 ,
t0
2 ), (0, t0). Let

us check (5.6). If we multiply the equation−utt +uxx +F(u)= 0 by ux ,
we obtain that

∂t(−utux)+∂x
(
u2
t + u2

x

2
+F(u)

)
= 0.

Integrating this last relation over the triangular domainT̃ with vertices
(x, t), (0, t + x), (0, t − x) and using the divergence formula, we obtain
that ∣∣∣∣∣

x∫
0

F(u)
(
s, t ± (x − s)) ds∣∣∣∣∣6 C.

Now

uξ (x, t)= uξ (0, t + x)−
x∫

0

F(u)(s, t + x − s) ds

and

uη(x, t)= uη(0, t − x)+
x∫

0

F(u)(s, t − x + s) ds.

Furthermore, it follows from (2.17) thatg(u) > −C in T . This is clear
if γ > 1, and follows with the help of Lemma A.1 of Appendix A if
γ < 1. HenceF(u) 6 F(u) + C, and (5.6) follows. Hence (5.5) holds.
Now denote byU the solution of the Cauchy problem�U = 0 in T ,
∂jxU = ∂jx u whenx = 0, 0< t < t0, andj = 0,1. Then of course

u(x, t)=U(x, t)− 1

2

∫∫
T̃

F(u)(y, s) dy ds,
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so it follows with the help of (5.6) that∂αu ∈L∞(T ) if |α|6 2. Actually
we have that

the functiont 7→ utt(0, t) belongs toC([0, t0]). (5.7)

Indeed, if|α| = 1, the functiont 7→ ∂αu(0, t) belongs toC([0, t0]) since
the functiont 7→ ∂t∂

αu(0, t) belongs toL∞([0, t0[). Now the function

T 7→ ∂T

( T∫
0

g(u)(s, T − s) ds
)

is Lipschitz continuous on[0, t0[ since∂αu ∈ L∞(T ) if |α| 6 2. Then
(5.7) follows easily if we apply∂T to (5.3). Using (5.7) and the relations
ux + γ ut = 0 if x = 0, uxx = utt − F(u), we obtain that the function
t 7→ ∂αu(0, t) belongs toC([0, t0]) if |α| 6 2. Proposition 5.1(I) now
follows from standard results corresponding to Theorem 2.1(1) for the
Cauchy problem for the equation�u= F(u) in T with Cauchy data on
{0} × [0, t0]. 2

Proof of Proposition 5.1(II). –Arguing as for (I), but with (5.3)
replaced by (5.4) and Lemma A.1 of Appendix A replaced by Lemma
3.1, we obtain again that the functiont 7→ ∂αu(0, t) belongs toC([0, t0])
if |α|6 2; and we can then conclude as in (I).2

Proof of Proposition 5.2(I). –Assume first thatγ > 1. Sinceg ∈
L∞(R), it follows from (5.3) that

the functiont 7→ 2(γ − 1)ut (0, t)+
t∫

0

(
(γ − 1)2

2
u2
s

+ F(u)
)
(0, s) ds belongs toL∞([0, t0[).

(5.8)

SinceF is bounded below, it follows from (5.8) thatut (and sou) are
bounded above ifx = 0 and 06 t < t0, so thatF(u)(0, t) ∈ L∞([0, t0[).
Hence it follows from (5.8) that

the functiont 7→ ut(0, t)+ γ − 1

4

t∫
0

u2
s (0, s) ds

belongs toL∞([0, t0[).
(5.9)
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Since the functiont 7→ ut (0, t) does not belong toL∞([0, t0[), it follows
from (5.9) that one can find a sequence(tk) such thattk ↗ t0 and
ut(0, tk)↘−∞. On the other hand it follows from (5.9) thatut (0, t ′2)6
ut(0, t ′1)+C if t ′1< t ′2< t0; henceut (0, t)→−∞ ast

<→ t0. Put

ζ(t)=
(
γ − 1

4

)2 t∫
0

u2
s (0, s) ds.

It follows from (5.9) that
√
ζ ′ − ζ ∈ L∞([0, t0[). Sinceζ ′(t)→+∞ as

t
<→ t0, we therefore obtain thatζ(t)→+∞ ast

<→ t0 and so(ζ−C0)
26

ζ ′ 6 (ζ +C0)
2 for someC0> 0 if t is close tot0. Hence∣∣∣∣ζ(t)− 1

t0− t
∣∣∣∣6 C0,

so using (5.9) we obtain that∣∣∣∣ut (0, t)− 4

γ − 1

1

t − t0
∣∣∣∣6 C. (5.10)

Integrating (5.10) with respect tot yields∣∣∣∣u(0, t)− 4

γ − 1
ln(t0− t)

∣∣∣∣6 C. (5.11)

Differentiating (5.3) with respect toT yields(
(1− γ )2

2
u2
t − 2(1− γ )utt +F(u)

)
(0, T )

= 2

T∫
0

∂T
(
g(u)(s, T − s))ds + 2g(u)(T ,0)+E′(T ).

(5.12)

Now we have that∣∣∣∣∣
T∫

0

∂T
(
g(u)(s, T − s)) ds∣∣∣∣∣6 C

t0− T · (5.13)

Actually, it follows from (5.10), (5.11) that
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T∫

0

(
u2
t + u2

x

2
+F(u)

)
(0, t) dt

∣∣∣∣∣
6 8(1+ γ 2)

(γ − 1)2
1

t0− T +C
(| ln(t0− T )| + 1

)
. (5.14)

Hence if we integrate the identity

∂t(−utux)+ ∂x
(
u2
t + u2

x

2
+F(u)

)
= 0

over the triangular domain with vertices(0,0), (T ,0), (0, T ) and use the
divergence formula, we easily obtain that

T∫
0

F(u)(s, T − s) ds 6 8(1+ γ 2)

(γ − 1)2
1

t0− T +C
(| ln(t0−T )|+1

)
. (5.15)

Now uξ (x, T − x) = uξ (T ,0) + ∫ Tx F (u)(s, T − s) ds if 0 6 x 6 T ,
and

∫ T
x F (u)(s, T − s) ds 6

∫ T
0 F(u)(s, T − s) ds +C since F(u) >

−C0. Henceuξ (x, T − x) is bounded above by the right-hand side of
(5.15) (with a largerC). Therefore if we write∂t(g(u)) = 1

2∂ξ (g(u))+
1
2∂η(g(u)), (5.13) follows easily. From (5.12), (5.10), (5.11), (5.13), we
easily obtain that∣∣∣∣utt (0, t)− 4

1− γ
1

(t − t0)2
∣∣∣∣6 C

t0− t · (5.16)

Since ux = −γ ut when x = 0 and 06 t < t0, it follows then that
uηη = 2(1+ γ )utt − F(u). A simple computation using (5.10), (5.11),
(5.16) gives that∣∣∣∣(1

2
u2
η − uηη

)
(0, t)− 16γ (γ + 1)

(γ − 1)2
1

(t − t0)2
∣∣∣∣6 C

t0− t · (5.17)

This proves Proposition 5.2(I) ifγ > 1.
Assume now thatγ < −1. Let Dt0 be the triangular domain with

vertices(0,0), (t0,0), (0, t0). Sinceγ <−1, it follows from Lemma A.1
of Appendix A thatu > −C in Dt0. Sinceg ∈ L∞(R+), it follows that
(5.8) still holds, from which we obtain that
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ut (0, t)= 1− γ
4

t∫
0

u2
s (0, s) ds

+ 1

2(1− γ )
t∫

0

F(u)(0, s) ds +G(t), (5.18)

whereG ∈L∞([0, t0[)∩C2([0, t0[). Since the functiont 7→ ut (0, t) does
not belong toL∞([0, t0[), it follows from (5.18) that one can find a
sequence(tk) such thattk ↗ t0 andut (0, tk)↗+∞. (5.18) shows that
ut(0, t ′2) > ut (0, t ′1) − C if t ′1 < t ′2 < t0; thereforeut (0, t) → +∞ as
t
<→ t0. Put Ĝ(t)=− ∫ t0t G(s) ds, 06 t < t0, U(t) = u(0, t) − Ĝ(t).

From (5.18) it follows after differentiation with respect tot that

U ′′ = 1− γ
4

(U ′ +G)2+ 1

2(1− γ )F (U + Ĝ). (5.19)

NowU ′(t) > 0 for t ∈ [t1, t0[ if t1 is close tot0. Putm= lim
t
<→t0U(t), so

m ∈]U(t1),+∞]. Let U : ]U(t1),m[→]t1, t0[ be the inverse function of
U , and writeZ =U ′ ◦ U , G =G ◦ U , Ĝ = Ĝ ◦ U . From (5.19) it follows
that

(ZZ′)(s)= 1− γ
4

(
Z(s)+ G(s))2+ 1

2(1− γ )F
(
s + Ĝ(s)) (5.20)

if s ∈]U(t1),m[, so if we putζ(s)= Z2(s), we obtain that

ζ ′(s)= 1− γ
2

(√
ζ(s)+ G(s))2+ 1

1− γ F
(
s + Ĝ(s)) (5.21)

if s ∈]U(t1),m[. If m<+∞, it follows from (5.21) thatζ ′ 6 C(ζ + 1)
for someC > 0; henceζ is bounded above ass

<→m, which contradicts
the fact thatut (0, t)→ +∞ as t

<→ t0. Hencem = +∞. Let us now
check that

for someB > 0,
∣∣ζ(s)−Be

1−γ
2 s
∣∣6 Ce(

1−γ
2 −ω)s (5.22)

if ω=−max( γ−1
4 ,

γ+1
2 ) and s is large. If we integrate the identity

d
ds
(e−s(F + g)(s))=−e−sg(s) over [t, θ], t > 0, and letθ →+∞, we

obtain thatF(t) = et + ψ(t), whereψ(t) =−g(t)+ ∫∞t et−sg(s) ds. If

we putM(s) = 1
1−γ eĜ(s), N(s) = 1−γ

2 G
2(s)+ 1

1−γ ψ(s + Ĝ(s)), H(s) =
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e
γ−1

2 sζ(s), (5.21) gives

H ′ = (1− γ )Ge
γ−1

4 s
√
H +Me

γ+1
2 s +Ne

γ−1
2 s (5.23)

if s > U(t1), so that|H ′| 6 Ce−ωs
√
H + 1 if s > U(t1), with ω as in

(5.22). From this last bound on|H ′|, it readily follows, sinceω > 0,
that the limit lims→+∞H(s) exists; let us call itB. Of courseB > 0.
We are going to show thatB > 0. Since|H ′(s)| 6 Ce−ωs for s large,
(5.22) will follow at once. For simplicity, puta = 1−γ

4 , b=−1+γ
2 , so

thatb = 2a − 1> 0. CallR(s) the right-hand side of (5.23). Define the
sequence(ak) by a1= a, ak+1= a + ak

2 . Notice thatak+1> ak + 1 if and
only if b > ak+1. Assume thatB = 0. Denote byCj, C̃j various strictly
positive constants. We are going to show by induction that

b> aj and|H(s)|6 Cje−aj s for s large, if j ∈N \ {0}. (5.24)

From (5.24) it will follow thatb > a + j − 1 for all j ∈ N \ {0}. This
contradiction of course will imply thatB > 0. Now if b < a, then
R(s) > 0 for s large, which contradicts the fact thatB = 0. Henceb> a,
so|R(s)|6 C̃1e−as for s large, and therefore|H(s)|6 C1e−as for s large
sinceB = 0. Hence (5.24) follows forj = 1. Assume that (5.24) has been
proved if j 6 k, and let us show that it still holds ifj = k + 1. Assume
thatb < ak+1. Since|H(s)|6Cke−aks for s large, it follows thatR(s) > 0
for s large, which contradicts the fact thatB = 0. Henceb > ak+1. But
then|R(s)|6 C̃k+1e−ak+1s for s large, so|H(s)|6Ck+1e−ak+1s for s large
sinceB = 0. Hence (5.24) holds ifj = k+1. Therefore we conclude that
B must be> 0, and this completes the proof of (5.22).

Now (5.22) implies that|eγ−1
4 sZ(s)−√B|6 Ce−ωs if s > U(t1),

hence ∣∣eγ−1
4 U(t)U ′(t)−√B∣∣6Ce−ωU(t) if t ∈]t1, t0[. (5.25)

Integrating (5.25), we obtain that

∣∣∣∣eγ−1
4 U(t)− 1− γ

4

√
B(t0− t)

∣∣∣∣6 C
t0∫
t

e−ωU(s) ds if t ∈]t1, t0[. (5.26)

This implies that ∣∣∣∣U(t)− 4

γ − 1
ln(t0− t)

∣∣∣∣6 C, (5.27)
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so e−ωU(t) 6C(t0− t)l , with l as in the statement of Proposition 5.2 and
therefore (5.26) can be improved to∣∣∣∣eγ−1

4 U(t)− 1− γ
4

√
B(t0− t)

∣∣∣∣6 C(t0− t)1+l
which, together with (5.25), then implies that∣∣∣∣ut (0, t)− 4

1− γ
1

t0− t
∣∣∣∣6C(t0− t)−1+l . (5.28)

Also (5.27) yields ∣∣∣∣u(0, t)− 4

γ − 1
ln(t0− t)

∣∣∣∣6 C. (5.29)

Let us check that (5.13) still holds. Actually, it follows from (5.28),
(5.29) that (5.14) and (5.15) still hold (with| ln(t0 − T )| + 1 replaced
by (t0− T )−1+l in the right-hand side if−3< γ <−1). Reasoning as in
the case whereγ > 1, we easily conclude that (5.13) still holds. Since it
is clear that (5.12) also holds, it follows that∣∣∣∣utt (0, t)− 4

1− γ
1

(t − t0)2
∣∣∣∣6C(t0− t)l−2.

Arguing as for (5.17), we easily obtain that Proposition 5.2(I) (3) holds if
γ <−1. This completes the proof of Proposition 5.2(I).2

Proof of Proposition 5.2(II). –As before, letDt0 be the triangular
domain with vertices(0,0), (t0,0), (0, t0). It follows from Lemma 3.1
thatu>−C in Dt0, so that (5.4) implies that the functiont 7→ ux(0, t)−
1
4

∫ t
0 u

2
x(0, s) ds belongs toL∞([0, t0[). If we then argue as for (5.10)

(with obvious modifications), we obtain that∣∣∣∣ux(0, t)− 4

t0− t
∣∣∣∣6C. (5.30)

(5.14) and (5.15) still hold with1+γ 2

(γ−1)2 replaced by 1 in the right-hand
side. It follows that (5.13) still holds, so if we differentiate (5.4) with
respect toT , we obtain that∣∣∣∣utx(0, t)− 4

(t − t0)2
∣∣∣∣6 C

t0− t . (5.31)
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Proposition 5.2(II) follows at once from (5.30) and (5.31).2
Proof of Proposition 5.2(III). –Lemma A.2(3) of Appendix A shows

thatut (0, t)→+∞ ast
<→ t0. (5.3) gives that

ut(0, t)= 1

2

t∫
0

u2
s (0, s) ds +

1

4

t∫
0

F(u)(0, s) ds +G(t)

if 0 6 t < t0, where

G(t)= ut(0,0)− 1

4
E(t)+ 1

4

t∫
0

g(u)(0, s) ds − 1

2

t∫
0

g(u)(s, t − s) ds.

Using (2.11), Lemma A.2(2) of Appendix A, Lemma A.1 of Appendix A,
we obtain that|g(u)(y, s)|6 C(t0− y − s)−2α if y + s < t0, whence

|G(t)|6C(t0− t)−2α if 0 6 t < t0. (5.32)

DefineĜ,U,U ,Z,G, Ĝ,ψ,M,N,H as in Proposition 5.2(I), but withγ
replaced by(−1). Notice that

U ′(t)= ut(0, t)−G(t)= 1

2

t∫
0

u2
s (0, s) ds +

1

4

t∫
0

F(u)(0, s) ds,

and that it follows from Lemma A.2(1) of Appendix A that∫ t
0 F(u)(0, s) ds → +∞ as t

<→ t0. Hence in particular there exists
t1 ∈ [0, t0[ such thatU ′(t) > 0 if t > t1 and soU is well defined on
]U(t1),+∞[ sinceU ′(t)→+∞ if t

<→ t0. (5.23) can be written

H ′ = 2Ge−s/2
√
H +P if s > U(t1), (5.33)

whereP(s)→ 1
2 ass→+∞. By Lemma 4.1 of [3] and (5.32), it follows

that |G(s)| 6 Ce2αs if s > U(t1). If α > 0, let k ∈ N \ {0} be such that
(2α)k < 1

2 6 (2α)k−1. We are going to show that

|G(s)|6Ce(2α)
j s if s > U(t1), j ∈N andj 6 k. (5.34)

Since we already know that (5.34) holds forj 6 1, it is enough to show
that if |G(s)| 6 Ceβs for s > U(t1), whereβ = (2α)j for somej ∈ N
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with j 6 k − 1, then |G(s)| 6 Ce2αβs for s > U(t1). To achieve this,
observe that (5.33) implies thatH ′ 6 C

√
H + 1e(β− 1

2 )s for s > U(t1),
whenceH(s) 6 Ce(2β−1)s and thereforeU ′(U(s)) 6 Ceβs , from which
it follows that eβU(t) > C(t0 − t)−1. By (5.32), it follows that|G(s)| 6
C(t0 − U(s))−2α 6 Ce2αβs if s > U(t1), from which (5.34) follows. If
α > 0, putτ = (2α)k with k as in (5.34); ifα = 0, putτ = 0. So we have

|G(s)|6C1eτs if s > U(t1). (5.35)

Let K(s,H) = 2G(s)e−s/2
√
H + P(s) be the right-hand side of (5.33).

Let us show that ∣∣K(s,H(s))∣∣6 C if s >U(t1). (5.36)

To achieve this, putλ= 1
2 − τ , where τ is as in (5.35), and define

E = {s > U(t1), √H(σ)e−λσ 6 C2 if σ ∈ [U(t1), s]} whereC2 will be
chosen later. IfC2 is large, thenE 6= ∅. E is closed, and let us show that
E is open. TakingC1 large enough, we may assume that|P | 6 C1 so if
s ∈ E , it follows that |K(σ,H(σ ))|6 2C1C2+ C1 if σ ∈ [U(t1), s]. But
then (5.33) implies thatH(s) 6 (2C1C2 + C1)(s − U(t1))+H(U(t1)),
which is6 C2

2
2 e2λs if H(U(t1))6 C2

2
2 e2λU(t1) andC2 is large enough. Then

s + δ ∈ E if δ > 0 is small, which shows thatE is open. But then
E = [U(t1),+∞[, from which (5.36) follows at once. Now (5.33) and
(5.36) imply that|H(s)| 6 Cs if s is large; together with (5.35), this
implies thatK(s,H(s))→ 1

2 as s→+∞. It follows that H(s)
s
→ 1

2 as
s→+∞, so finally

e−
1
2U(t)

(
U(t)

)−1/2
U ′(t)→ 2−1/2 ast

<→ t0.

Hence if we putΨ (s)=−∫∞s e−σ/2σ−1/2dσ , we obtain that

U(t)=Ψ −1(2−1/2(t0− t)(1+L(t))), (5.37)

whereL ∈ C3([0, t0[) and L(t)−→
t
<→t0 0. But we have the following

estimate forΨ −1:∣∣∣∣Ψ−1(θ)− ln
4

θ2
+ ln ln

1

θ2

∣∣∣∣6C ln ln 1
θ2

ln 1
θ2

, (5.38)
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if θ < 0 is close to 0. Let us check (5.38). To achieve this, put first
f (s)= e−s/2s−1/2. We shall first check that∣∣∣∣f −1

(
−θ

2

)
− ln

4

θ2
+ ln ln

1

θ2

∣∣∣∣6C ln ln 1
θ2

ln 1
θ2

, (5.39)

if θ < 0 is close to 0. Indeed, definea : [1,+∞[→ [1,+∞[ : s 7→ s+ ln s.
Putb = a−1. Thenb′ = b

b+1 < 1 andb(1) = 1. Henceb(y) = y + R(y)
with R(y) < 0 if y > 1. Actually we have for someC1,C2> 0:

C1
lny

y
6 b(y)− y + lny 6 C2

lny

y
(5.40)

if y is large. Indeed it is easily checked that ln(1 + z) > αz if
α > 1 and 1

α
− 1< z < 0, whereas ln(1 + z) < z then. Using this

with z = R(y)/y and the fact thatR(y) + ln(y + R(y)) = 0, we
obtain (5.40), from which (5.39) follows easily. We can now prove
(5.38). Integrating by parts, we obtain thatΨ (s) = −2e−s/2s−1/2(1 +
J (s)), whereJ (s) = −1

2

∫∞
0 e−ρs/2(ρ + 1)−3/2dρ. Writing ]0,+∞[=

]0,1[∪ [1,+∞[ and decomposingJ (s) accordingly, we readily obtain
that |J (s)|6 Cs−1. Since

Ψ −1(θ)= f −1
(
− θ

2(1+ J (Ψ−1(θ)))

)
,

(5.38) follows from (5.39) after some simple computations. From (5.37)
and (5.38) it follows that, ift < t0 andt is close tot0,

U(t)= ln
8

(t − t0)2 − ln ln
2

(t − t0)2 +R(t), (5.41)

with R(t)→ 0 as t
<→ t0. (5.41) implies in particular that|t − t0| 6

Ce−U(t)/2(U(t))−1/2. On the other hand, it follows from (5.32) that
|M(s)− 1

2|6 C(t0− U(s))1−2α , whence |M(s) − 1
2| 6 Ce(α−

1
2 )ssα−

1
2 .

Sinceτ > α and since|H(s)|6 Cs for larges, it follows from (5.33) that
|H ′(s)− 1

2|6Ce−λss1/2 when s > U(t1), whereλ= 1
2 − τ as before.

Hence|H(s)− s
2|6 C whens > U(t1). It follows that∣∣e− 1

2U(t)
(
U(t)

)−1/2
U ′(t)− 2−1/2∣∣6 C(U(t))−1

, (5.42)

if t < t0 and t is close tot0. Using (5.41) we may bound the right-hand
side of (5.42) above byC/ln 1

t0−t if t < t0 andt is close tot0. It follows
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in particular that|Ψ (U(t))− 2−1/2(t − t0)| 6 C(t0− t)/ln 1
t0−t if t < t0

andt is close tot0, so from (5.38) we obtain that the functionR of (5.41)
satisfies

|R(t)|6 C ln ln 1
t0−t

ln 1
t0−t

,

if t < t0 and t is close tot0. The estimate (1) of Proposition 5.2(III)
follows at once. Using (5.42), we easily find then that

∣∣∣∣U ′(t)− 2

t0− t
∣∣∣∣6 C

t0− t
ln ln 1

t0−t
ln 1

t0−t
,

if t < t0 and t is close tot0, and the estimate (2) of Proposition 5.2(III)
follows immediately if we make use of (5.32).

Since uη(0, t) = 0 anduηη(0, t) = −F(u)(0, t), and since|F(s) −
es| 6 Ceαs for s large, the estimate (3) of Proposition 5.2(III) follows
from the estimate (1). The proof of Proposition 5.2 is complete.2

6. MORE ON SOLUTIONS AND PROOF OF THEOREMS 2.5
AND 2.8

To prove Theorems 2.5 and 2.8 we shall need additional properties
of solutions to�u = F(u) satisfying boundary conditions whenx = 0.
Assume thata > 0 and thatχ : [0, a] → R+ belongs toC([0, a]) ∩
C1(]0, a]) and satisfiesχ(0) = t0, −1 < χ ′(x) 6 1 if x ∈]0, a]. Put
Λ= {(x, t) ∈ (R+)2, t < χ(x), x + t 6 a + χ(a)}. Let F be as in (2.7),
and assume thatu ∈ C3(Λ) and that�u= F(u) in Λ. Also assume that
either (1)F also satisfies (2.17),ux+γ ut = 0 when x= 0 and 06 t < t0,
where |γ | > 1, or (2) F also satisfies (2.17),u = 0 whenx = 0 and
06 t < t0, else (3)F also satisfies (2.10),ux − ut = 0 when x= 0 and
06 t < t0. We shall need the next two propositions in order to prove
Theorems 2.5 and 2.8.

PROPOSITION 6.1. – Assume that for allx ∈]0, a], the following
holds: |χ ′(x)| < 1 and u(y, s) → +∞ as (y, s) ∈ Λ and (y, s) →
(x,χ(x)). Also assume that the functiont 7→ ux(0, t) does not belong
toL∞([0, t0[). Thenχ ′(x)→−1 asx

>→ 0.

PROPOSITION 6.2. – Assume thatχ(x) = x + t0 for all x ∈]0, a].
Then the functiont 7→ ux(0, t) belongs toL∞([0, t0[).
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We start with some preparations for the proof of Propositions 6.1
and 6.2. We shall put as beforeξ = x+t

2 , η= t−x
2 , and alsoX = ξ − t0

2 ,
Y = η− t0

2 . Sinceχ ′(x) >−1 if x > 0, the curvet = χ(x), 06 x 6 a, is
given byY = J (X), 06 X 6 b, whereb= (a + χ(a)− t0)/2. We may
and shall assume thata is so small thatJ (X) > − t0

2 if 0 6 X 6 b. We
shall have to consider the following two cases:

case(1) (the case of Proposition 6.1)|χ ′(x)|< 1 if 0< x 6 a, so that
J (X) < 0 if 0<X 6 b;

case(2) (the case of Proposition 6.2)χ(x) = x + t0 if 0 < x 6 a, so
thatJ (X)= 0 if 0<X 6 b.

DefineD = {(X,Y ) ∈ R2, 06 X 6 b, − t0
2 6 Y < J(X)} in case (1)

andD = {(X,Y )∈R2, − t0
2 6X6 b,− t0

2 6 Y < 0} in case (2).
In case (2), we shall denote byu∗ a C3 extension ofu to {(x, t) ∈

R2, 06 x + t 6 t0 + 2b, 06 t < x + t0}. If γ < −1 or if the Dirichlet
condition is satisfied, we may and shall assume thatu∗ is bounded; this
is possible since Lemmas A.1 (of Appendix A) and 3.1 show thatu is
bounded below if 06 x 6 −t + t0 + 2b and 06 t < x + t0. In case
(1), we just putu∗ = u. Define a functionK on D by the relation
K(X,Y )= ∫ x0 g(u∗)(s, t − x + s) ds. Put Q(X) = X if − t0

2 6X 6 0,
Q(X) = J (X) if 0 6 X 6 b (so thatQ(X) = 0 if 0 6 X 6 b in case
(2)). Finally define the functionL on D by the relationL(X,Y ) =
− ∫Q(X)Y K(X, Ỹ ) dỸ . Because of (5.2), one can findH1 ∈ C2(Λ) such
that ∂ξH1 = g(u) and ∂ηH1 = 1

2u
2
η − uηη in Λ. Hence ifH2(ξ, η) =

H1(x, t) andK2(ξ, η)=K(X,Y ), we obtain thatH2(ξ, η)=H2(η, η)+
K2(ξ, η) if (ξ − η, ξ + η) ∈ Λ and (ξ − t0

2 , η− t0
2 ) ∈D. If we putw =

e−u/2 in Λ, we have

2
wηη

w
= 1

2
u2
η − uηη = ∂ηH1. (6.1)

Putw̃(X,Y )=w(x, t), Z = w̃e−L/2. We obtain from (6.1) that

∂2
YZ+K∂YZ +MZ = 0

if (X− Y,X+ Y + t0) ∈Λ and(X,Y ) ∈D,
(6.2)

whereM(X,Y )=−1
2∂Y (H2(Y + t0

2 , Y + t0
2 ))+ 1

4K
2(X,Y ). Notice that

∂Y (H2(Y + t0
2 , Y + t0

2 ))= (g(u)+ 1
2u

2
η − uηη)(0,2Y + t0).

After these preliminaries, we are going to prove Proposition 6.1.
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Proof of Proposition 6.1. –First we are going to check the following:

K ∈ L∞(D). (6.3)

Indeed, if F satisfies (2.17) (and|γ | > 1 or the Dirichlet boundary
condition is satisfied), we conclude (with the help of Lemma A.1 (of
Appendix A) and of Lemma 3.1) thatg(u) is bounded if 06 t < χ(x)
and 06 x 6 t0+ 2b − t , and (6.3) is then obvious. On the other hand, if
F satisfies (2.10) andγ =−1, we can write with the help of Lemma A.2
(2) of Appendix A that

∫ x
0 |g(u)(s, t − x + s)|ds 6 C

∫ x
0 Ψ

−2α ds when
(x, t) ∈Λ, where

Ψ = χ(s)− s − t + x = (x − s)
(

1− χ(x)− χ(s)
x − s

)
+ χ(x)− t.

Since, by Theorem 2.4,χ(x)−χ(s)
x−s 6 θ < 1 if 0 6 s < x, it follows that

Ψ > (1− θ)(x − s) if 0 6 s < x and(x, t) ∈Λ, and (6.3) follows easily.
Define r(X,Y ) = e−L(X,Y ) if (X,Y ) ∈ D. It follows from (6.2) that

∂Y (r∂YZ) + rMZ = 0 in D. Using (6.3), we see that there exists
ω > 0 such that 1

r(X,Y )
> ω if (X,Y ) ∈ D. DefineS(X,Y ) = ωJ(X)−∫ J (X)

Y
dỸ

r(X,Ỹ )
when(X,Y ) ∈D. Notice for later use thatS(X,Y )6 ωY if

(X,Y ) ∈ D; indeed∂YS > ω in D andS(X,J (X)) = ωJ(X). Define
D̃ = {(X,S(X,Y )) ∈ R2, (X,Y ) ∈ D}. Put S = S(X,Y ),U(X,S) =
Z(X,Y ). It follows easily from (6.2) that

∂2
SU − q(X,S)U = 0 if (X,S) ∈ D̃, (6.4)

whereq(X,S)=−(r2M)(X,Y ). Notice that

U(X,S)→ 0 if 0<X 6 b andS
<→ ωJ(X). (6.5)

Fix x0 ∈]0, a[. Since |χ ′(x)| < 1, it follows by standard arguments
(already used in the proof of (6.1) of [3]) that, nearx0, t = χ(x) is the
blow-up curve ofu considered as a solution of a Cauchy problem for the
equation�u = F(u) with initial data on{(y,χ(x0)− δ) ∈ (R+)2, |y −
x0|6 δ + ε}, whereδ > 0 is small and ε >0 is small with respect toδ.
Put, as in section 4 of [3],uλ(x, t)= u(x0+λx,χ(x0)+λt)+2 lnλ, and
defineVτ(x, t)= ln 2(1−τ2)

(t−τx)2 , whereτ = χ ′(x0). Now, one has in particular

that ∂αuλ(1,−1)→ ∂αVτ (1,−1) if |α| 6 2 andλ
>→ 0. Actually this

follows at once from the results of Sections 4,5,6 of [3], in particular
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from the analogue of (6.3) of [3] forx0 > 0 (which corresponds to (7.4)
of [1]). Hence(

e−
1
2uλ(∂t − ∂x)uλ)(1,−1)→ (

e−
1
2Vτ (∂t − ∂x)Vτ)(1,−1) asλ

>→ 0,

that is

−2wη
(
x0+ λ,χ(x0)− λ)→(

2(1+ χ ′(x0))

1− χ ′(x0)

)1/2

asλ
>→ 0.

Hence if we put, for 0<X 6 b,

ρ(X)=−
(

1+ χ ′(X− J (X))
2(1− χ ′(X− J (X))

)1/2

,

it follows that ∂Y w̃(X,J (X) − λ)→ ρ(X) if 0 < X 6 b and λ
>→ 0.

Using this, it is not hard to check that

∂SU(X,S)→ ρ(X) if 0 <X 6 b andS
<→ ωJ(X). (6.6)

Let us complete the proof of Proposition 6.1 when either|γ |> 1 or the
Dirichlet condition is imposed. Using Proposition 5.2, we obtain that for
someC,m, ε > 0, q(X,S) > C

Y 2 > m

S2 if (X,S) ∈ D̃ and S > −ε. We
may and shall assume thatε, b are so small thatωJ(X) > −ε > − t0

2 if

06X6 b. PutD̃ε = {(X,S) ∈ D̃, S >−ε}. Let ζ(X,S) be such that

∂2
Sζ −

m

S2
ζ = 0 if (X,S) ∈ D̃ε andX > 0, (6.7)

ζ
(
X,ωJ (X)

)= 0 and ∂Sζ
(
X,ωJ (X)

)= ρ(X) if 0 <X 6 b.
(6.8)

We are going to check that

U(X,S)> ζ(X,S) if (X,S) ∈ D̃ε andX > 0 (6.9)

by adapting a standard comparison argument (used, e.g., in Theorem
9.2.1 of [5]). First we have if(X,S) ∈ D̃ε andX > 0:

(ζ ∂SU −U∂Sζ )(X,S)=−
ωJ (X)∫
S

(ζU)(X,σ )

(
q(X,σ )− m

σ 2

)
dσ,

(6.10)
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because both sides have the same first derivative with respect toS,
and are equal ifS = ωJ(X). Let us first check that(∂Sζ )(X,S) < 0 if

(X,S) ∈ D̃ε andX > 0. This is true ifS = ωJ(X), so fix X and put

EX = {S, (X,S) ∈ D̃ε, (∂Sζ )(X,σ ) < 0 for all σ ∈ [S,ωJ (X)]}. Assume

that there existsS0 with (X,S0) ∈ D̃ε and S0 /∈ EX, and letS∗ be the
largestS ∈ [S0,ωJ (X)[ such that(∂Sζ )(X,S)= 0. Sinceζ(X,J (X))=
0, we haveζ(X,S∗) > 0. But (6.7) then shows that∂2

Sζ(X,S
∗) > 0, so

S∗ is a local minimum of the functionS 7→ ζ(X,S), which contradicts
the fact that(∂Sζ )(X,S) < 0 if S ∈]S∗, J (X)]. This contradiction shows
that ζ(X,S) > 0 if (X,S) ∈ D̃ε andX > 0. LikewiseU(X,S) > 0 if
(X,S) ∈ D̃ε andX > 0, so the right-hand side of (6.10) is6 0. Hence
it follows from (6.10) that∂S(

U
ζ
) 6 0 if (X,S) ∈ D̃ε andX > 0. Since

U
ζ
(X,S)→ 1 asS

<→ ωJ(X), (6.9) follows at once.

Now (6.7), (6.8) can be solved explicitly. Putα = 1
2(1+

√
1+ 4m),

β = 1
2(1 −

√
1+ 4m). Then {|S|α, |S|β} is a fundamental system of

solutions of (6.7) and a simple computation shows that

ζ(X,S)= ρ(X)

α − β
( |S|β
ωβ−1|J (X)|β−1

− |S|α
ωα−1|J (X)|α−1

)
. (6.11)

Notice thatα > 1 and thatβ < 0. Assume that Proposition 6.1 is false, so
that one can findxk

>→ 0 with χ ′(xk)>−1+ c0 for somec0 > 0 and all
k ∈N \ {0}. PutXk = (xk + χ(xk)− t0)/2, so thatxk =Xk − J (Xk). It is
clear that there existsδ > 0 such thatρ(Xk)6−δ for all k. Now choose
S0 such that−ε < S0 < ωJ(X) if 0 6 X 6 b. Let D̃→ D : (X,S) 7→
(X,Y(X,S)) be the inverse diffeomorphism of(X,Y ) 7→ (X,S(X,Y ))
and putYk =Y(Xk, S0). It is easily checked that one can findδ1> 0 such
that Yk 6 −δ1 for all k. Passing to a subsequence if necessary, we may
and shall assume that there existsY0 ∈ [− t0

2 ,−δ1] such thatYk→ Y0. By
(6.11), we obtain thatζ(Xk, S0)→+∞, whenceU(Xk, S0)→+∞ by
(6.9). It follows thatZ(Xk,Yk)→+∞, and sow̃(Xk, Yk)→+∞. This
contradiction proves Proposition 6.1 when either|γ |> 1 or the Dirichlet
condition is imposed.

Let us now complete the proof of Proposition 6.1 whenγ = −1.
Assuming as we may thatb is small and using Proposition 5.2, we
see that one can findC,m, ε > 0 such thatq(X,S) > C(Y 2 ln 1

|Y |)
−1 >

m(S2 ln 1
|S|)
−1 and |Y | < 1, |S| < 1 if (X,S) ∈ D̃ and S > −ε. Once

more, we may and shall assume thatε, b are so small thatωJ(X) >−ε >
− t0

2 if 0 6 X 6 b, and putD̃ε = {(X,S) ∈ D̃, S > −ε}. Let ζ(X,S) be
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such that

∂2
Sζ −m

(
S2 ln

1

|S|
)−1

ζ = 0 (6.12)

if (X,S) ∈ D̃ε andX > 0, and such that (6.8) holds. Then (6.9) still
holds with the same proof. The following lemma will be used to provide
something to replace (6.11) in the present case.

LEMMA 6.1. – One can find a fundamental system{ζ1, ζ2} of solu-
tions of(6.12)such that, for−1

2 6 S < 0,

∣∣∣∣ζ j/1 (S)+ S1−j
(

ln
1

|S|
)−m∣∣∣∣6 C|S|1−j(ln

1

|S|
)−m−1

, j = 0,1,

∣∣∣∣ζ j/2 (S)+ (j − 1)
(

ln
1

|S|
)m∣∣∣∣6 C|S|−j(ln

1

|S|
)m−1

, j = 0,1.

Lemma 6.1 is proved in Appendix B. Using Lemma 6.1 and taking
(6.8) into account, we obtain that

ζ(X,S)= ρ(X)
(

ln
1

|ωJ(X)|
)m
S

(
ln

1

|S|
)−m(

1+R1(X,S)
)

− ρ(X)ωJ (X)
(

ln
1

|ωJ(X)|
)−m(

ln
1

|S|
)m

× (1+R2(X,S)
)
, (6.13)

where

|R1(X,S)| + |R2(X,S)|6 C
((

ln
1

|ωJ(X)|
)−1

+
(

ln
1

|S|
)−1

)

when(X,S) ∈ D̃ε andX> 0, S >−1
2.

We can now complete the proof of Proposition 6.1 whenγ = −1. If
this proposition was false, we could findxk

>→ 0 with χ ′(xk) >−1+ c0

for somec0 > 0 and allk ∈ N \ {0}. Arguing as in the case|γ | > 1 (or
the Dirichlet case), but with (6.11) replaced by (6.13), we again reach a
contradiction. The proof of Proposition 6.1 is complete.2

Proof of Proposition 6.2. –Assume first thatγ = −1. If the function
t 7→ ut(0, t) does not belong toL∞([0, t0[), it follows (with the notations
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of Theorem 2.4) thatϕ(0) = t0; indeedϕ(0) > t0, and if ϕ(0) > t0,
the function t 7→ ut (0, t) belongs toL∞([0, t0[). But if ϕ(0) = t0, it
follows from Theorem 2.4 thatϕ(x) 6 θx + t0 for someθ ∈]0,1[ if
x 6 a and thatu(y, s)→+∞ if s < ϕ(y) and(y, s)→ (x, ϕ(x)). But
this contradicts the fact thatχ(x) = x + t0 in the definition ofΛ. This
contradiction proves Proposition 6.2 whenγ =−1.

Assume now that|γ |> 1 and that the functiont 7→ ux(0, t) does not
belong toL∞([0, t0[). Notice that (6.3) still holds in the present case;
indeed (2.17) implies that the function(x, t) 7→ g(u∗)(x, t) is bounded if
( x+t−t02 , t−x−t02 ) ∈D.

We shall use the following result, which is proved in Appendix B.

LEMMA 6.2. – (6.2)has a fundamental system of solutions{Z1(X,Y ),
Z2(X,Y )} which belong toC1({(X,Y ) ∈ R2, − t0

2 6 X 6 b,−ε 6 Y <
0}) for someε > 0, and such that

∣∣∂jYZ1(X,Y )+ (−1)j+1(1+ σ )j |Y |1+σ−j ∣∣6 C|Y |1+σ+l−j ,
j = 0,1,

∣∣∂jYZ2(X,Y )− σ j |Y |−σ−j
∣∣6C|Y |−σ+l−j , j = 0,1,

(6.14)

whereσ = γ+1
γ−1 and l =min(1,2σ ).

Put as beforẽw(X,Y )= e−u(x,t)/2. It follows from Proposition 5.2 that

w̃(X,X)= |X|1−σf1(X) and

∂Y w̃(X,X)= σ |X|−σf1(X)+ f2(X), if − t0
2
<X< 0,

(6.15)

where, for someC1,C > 0, C1 6 f1(X)6 C and |f2(X)| 6 C|X|l−σ if
− t0

2 <X < 0. Recall thatZ = w̃e−L/2, and∂jYL(X,X)= 0 if − t0
2 <X <

0 in particular ifj = 0,1. On the other hand, we may writeZ(X,Y )=∑
16k62Ak(X)Zk(X,Y ), and so

∑
16k62Ak(X)∂

j
YZk(X,X) = ∂jY w̃(X,

X) if j = 0,1. It then follows from (6.15) and from Lemma 6.2 that,
in particular,A2(X) = −f1(X)X + f3(X), where |f3(X)| 6 C|X|1+l .
Hence A2(0) = 0, and sinceA2 ∈ C1 near 0, we haveA′2(0) =
lim

X
<→0

A2(X)

X
. Therefore lim

X
<→0
f1(X) exists; sincef1(X)> C1, we also

have lim
X
<→0
f1(X)> C1. HenceA′2(0) < 0, and thereforeA2(X0) < 0 if

X0 > 0 is close to 0. Since (6.3) still holds in the present situation, it
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follows thatw̃(X0, Y )→−∞ asY
<→ 0, which is of course impossible.

This contradiction proves Proposition 6.2 when|γ |> 1.
Finally let us prove Proposition 6.2 when the boundary condition is the

Dirichlet condition. The proof is identical with that of the case|γ |> 1,
with now σ = 1, l = 1, f1(X)≡ 1; actually (5.30) can be used to prove
the analogue of (6.15) for∂Y w̃(X,X) since Lemma 6.2 still holds with
the same proof for these values ofσ, l. The proof of Proposition 6.2 is
complete. 2

We can now prove Theorem 2.5.

Proof of Theorem 2.5. –Assume thatϕ(R+) ⊂ R+ and putt0 = ϕ(0).
It follows from Theorem 2.4 that the functiont 7→ ut (0, t) does not
belong toL∞([0, t0[). Proposition 6.1 (withχ = ϕ) then implies that
ϕ′(x)→−1 asx

>→ 0. This implies Theorem 2.5.2
We now prove Theorem 2.8 with the help of Proposition 6.1. Until the

end of this section, we shall suppose that the assumptions of Theorem 2.8
are satisfied.

If (x, t) ∈ (R+)2, letK−(x, t)= {(y, s) ∈ (R+)2, s < t , |y− s|< t− s}
be the backward characteristic cone with vertex(x, t), limited to (R+)2
(cf. Section 3). Recall that ifU is an open subset of(R+)2, one says
that U is an influence domain if(x, t) ∈ U implies thatK−(x, t) ⊂ U .
The unionU∗ of all influence domains where a uniqueC3 solution of
(2.1), (2.2) (or (2.12)), (2.3) exists is the largest influence domain with
such a property. Ifx > 0, one can findt > 0 such that{x} × [0, t] ⊂ U∗.
Putψ(x)= sup{t > 0, {x} × [0, t] ⊂ U∗}. If ψ 6≡ +∞, thenψ is always
<+∞ and|ψ(x1)−ψ(x2)|6 |x1− x2| for all x1, x2> 0; in that case we
shall putΣ = {(x, t) ∈ (R+)2, t = ψ(x)}. Actually, with the notations
introduced in Section 2, we haveU∗ = Ω , ψ = ϕ, as will follow from
Proposition 6.3 under the assumptions of Theorem 2.8 (and the same
follows from Theorems 2.3 and 2.4 if−1 6 γ < 1).We shall prove
the following result, which will help us to show that Proposition 6.1 is
applicable withχ =ψ .

PROPOSITION 6.3. – Let the assumptions onF,ψ0,ψ1 and the
boundary condition be as in Theorem2.8. Assume thatψ 6≡ +∞. If
x0 > 0, there exists an open neighborhoodU of x0 in R+ such that
ψ ∈ C1(U) and |ψ ′| < 1 in U . Moreover, ifx ∈ U,u(y, s)→+∞ if
s < ψ(y) and(y, s)→ (x,ψ(x)).
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Proof of Proposition 6.3. –If P = (x1, t1) ∈ (R+)2, defineCl(P ),
Cr(P ) as in Section 6 of [3], namely writeCl(P ) = {(x, t) ∈ (R+)2,
t < t1, x − t = x1− t1}, Cr(P )= {(x, t) ∈ (R+)2, t < t1, x + t = x1+ t1}
for the backward half characteristics with positive and negative slope
through P . Notice that if P0 = (x0,ψ(x0)) ∈ Σ and if P = (x, t) ∈
C∗(P0)∩Σ , where∗ = l or r , then the closed interval with end pointsP
andP0 is contained inΣ .

First case. Assume thatC∗(P0)∩Σ = ∅ if ∗ = l and also if∗ = r . Then
the following holds:

one can find an open neighborhoodU of x0 in R+ such that

ψ ∈C1(U) and|ψ ′|< 1 inU.Moreover, if

x ∈U, u(y, s)→+∞ if s < ψ(y)

and(y, s)→ (x,ψ(x)).

(6.16)

Actually the proof of (6.16) is the same as that of (6.1) of [3], so we may
omit the details. Hence Proposition 6.3 holds if the first case occurs.

Second case. Assume that one can findP1 ∈ Cr(P0) ∩ Σ . Put
E+ = {x > x0, (x,ψ(x0) − (x − x0)) ∈ Σ}. E+ 6= ∅. Put alsox∗ =
supE+,P ∗ = (x∗,ψ(x0)− (x∗ − x0)). ThenP ∗ ∈Σ , so t (P ∗) > 0 and
ψ(x) = ψ(x0)− (x − x0) if x0 6 x 6 x∗. It is clear thatCl(P ∗) ∩Σ =
∅ = Cr(P ∗) ∩Σ , so by the first case,ψ ∈ C1 close tox∗ and |ψ ′| < 1
close tox∗. This contradiction shows that the second case is impossible.

Third case. Assume that one can findP2 ∈ Cl(P0) ∩ Σ . Put E− =
{x < x0, (x,ψ(x0)+ (x − x0)) ∈ Σ}. E− 6= ∅. Putx∗∗ = infE−,P ∗∗ =
(x∗∗,ψ(x0) + (x∗∗ − x0)). If x∗∗ > 0, one can repeat the reasoning of
the second case (withCr replaced byCl) to conclude that this situation
cannot happen. So we must havex∗∗ = 0. Let us putt0=ψ(x0)− x0, so
that ψ(x) = t0 + x if x 6 x0. Proposition 6.2 shows thatt 7→ ux(0, t)
belongs toL∞([0, t0[). Then it follows from Proposition 5.1 thatu ∈
C2(Dt0). If we put as beforew̃(X,Y )= e−u(x,t)/2,Z = w̃e−L/2, we are
going to check that

for someδ, ε > 0,Z(X,Y )> δ if 0 6X6 ε,− t0
2
6 Y < 0. (6.17)

Sinceu ∈ C(Dt0), it is clear that (6.17) holds ifX= 0. To prove (6.17), it
is therefore sufficient to show thatZX ∈ L∞([0, b]×[− t0

2 ,0[). To achieve
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this, put

y =
(
ZY

Z

)
, A=

(−K −M
1 0

)
with K,M as in (6.2). Using (6.2), we see that

yY =A(X,Y )y if 0 6X 6 b,− t0
2
6 Y < 0, (6.18)

while

y

(
X,− t0

2

)
= y0(X) if 0 6X 6 b, (6.19)

where y0 ∈ C2([0, b]). Using the fact thatu ∈ C2(Dt0), we obtain
in particular thatA,AX ∈ L∞([0, b] × [− t0

2 ,0[). But then, standard
estimates (see, e.g., Lemma 4.1, p. 54 of [4]) show thaty ∈ L∞([0, b] ×
[− t0

2 ,0[), and differentiation of (6.18) with respect toX shows thatyX ∈
L∞([0, b] × [− t0

2 ,0[). HenceZX ∈ L∞([0, b] × [− t0
2 ,0[), and (6.17)

follows. From (6.17) and from the fact thatu ∈ C(Dt0), it follows that
u is bounded above whenx + t < t0+ 2ε and t < x + t0. Now ut + ux
is bounded if 06 x 6 x0 + ψ(x0) and t = 0. Since�u = F(u) > −C0

if x + t < x0+ψ(x0) andt < x + t0, it is therefore clear thatut + ux is
bounded below ifx+ t < x0+ψ(x0) andt < x+ t0. But then we conclude
thatu is bounded below whenx + t < x0+ ψ(x0) andt < x + t0, since
we know thatu is bounded ifx = 0 and 06 t < t0. But thenu is bounded
when x + t < t0 + 2ε and t < x + t0 if ε < x0, and an application of
Theorem A.1 of Appendix A shows thatu can be extended as a solution
of (2.1), (2.2) (or (2.1), (2.12)) to a neighborhood of(0, t0) in (R+)2,
which contradicts the fact thatP ∗∗ ∈ ∂U∗. This contradiction shows that
the third case is impossible. Summing up, only the first case is possible,
and this proves Proposition 6.3.2

We can now prove Theorem 2.8.

Proof of Theorem 2.8. –Proposition 6.3 immediately implies Theo-
rem 2.8 whenx > 0 if we takeϕ = ψ . Now assume first that the func-
tion t 7→ ux(0, t) does not belong toL∞([0, t0[). If we take ϕ = χ ,
Theorem 2.8 then follows at once from Proposition 6.1. (Ifγ < −1,
u(0, t)→+∞ as t

<→ t0 anduξ is bounded below, sou(x, t)→+∞
if (x, t) → (0, ϕ(0))). If now the function t 7→ ux(0, t) belongs to
L∞([0, t0[), we can repeat some arguments of the proof of Proposi-
tion 6.3. It follows from Proposition 5.1 thatu ∈ C2(Dt0). Putting, as
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before, w̃(X,Y ) = e−u(x,t)/2, Z = w̃e−L/2 and using arguments simi-
lar to those which lead to (6.17), we easily conclude that for some
δ, ε > 0, Z(X,Y )> δ if 0 6 X 6 ε and− t0

2 6 Y < J(X), where as be-
fore Y = J (X) corresponds tot = ϕ(x). This contradicts the fact that
u(y, s)→+∞ as(y, s)→ (x, ϕ(x)), if x > 0 is small. Hence the func-
tion t 7→ ux(0, t) cannot belong toL∞([0, t0[), and we have already seen
in the beginning of this proof that Theorem 2.8 then follows.2

APPENDIX A

We first collect a number of useful results from [3].

LEMMA A.1 (Lemma 3.1. of [3]). –Let DR,U be as in Section3.
Assume thatw ∈ C2(U ∩DR), F ∈ C(U ∩DR), and that the following
holds: �w = F in U ∩ DR, wx + γwt = 0 if x = 0 and 0 < t <

min(ψ(0),R), whereγ ∈] −∞,1[, andw = ψ0, wt = ψ1 if 0< x < R
andt = 0. Then the following holds: if C0> 0 andF >−C0, one can find
C > 0 (depending onψ0,ψ1,R,C0, but not onF ) such thatw >−C in
U ∩DR.

The following estimates have also been used (cf. [3]).

LEMMA A.2. –Assume thatF ∈ C1(R) satisfies(2.7)(1)and(2.7)(2),
that γ = −1, that ψj ∈ C2−j (R+), j = 0,1, and that(2.4), (2.5)hold.
Then there exist:

(a) ϕ :R+ →]0,+∞] such thatϕ(R+)⊂R+ or ϕ(R+)= {+∞};
(b) u ∈C2(Ω), whereΩ = {(x, t) ∈ (R+)2, t < ϕ(x)} such thatu is a

solution of(2.1), (2.2), (2.3)in Ω .
If ϕ(R+)⊂R+, denote byd(x, t) the distance from(x, t) to the graph of
ϕ. For anyR > 0, there existC, δ > 0 such that:

(1) d(x, t)eu(x,t) >C−1 if (x, t) ∈Ω ∩DR;
(2) d2(x, t)eu(x,t) 6 C if (x, t) ∈Ω ∩DR;
(3) ut(x, t)> C−1 ln 1

d(x,t)
if (x, t) ∈Ω ∩DR andd(x, t)6 δ.

Proof of Lemma A.2. –(1) can be proved as Lemma 4.1 of [3], and (2)
as Lemma 4.2 of [3]. As for (3), it can be proved as Lemma 4.9 of [3],
but with Lemma 4.7 of [3] replaced by (1). We may omit the details.2

Assume thatt0 > 0 and β > 0. If ε ∈]0, t0[, put Dε = {(x, t) ∈
(R+)2, x > 0,0< t < t0 − ε, x + t < t0 + β}, D = ⋃0<ε<ε0

Dε. In the
proof of Proposition 6.3, we have used the following standard result.
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THEOREM A.1. – (I) Assume thatF ∈C2(R) and let

u ∈ ⋂
0<ε<ε0

C3(Dε)

satisfy the following conditions:

�u= F(u) if (x, t) ∈D, (A.1)

ux + γ ut = 0 if x = 0 and0< t < t0, (A.2)

whereγ 6= 1. If u ∈ L∞(D), one can find an open neighborhoodV of
(0, t0) in (R+)2 and ũ ∈C3(V ) with

�ũ= F(ũ) if (x, t) ∈ V, (A.3)

ũx + γ ũt = 0 if x = 0 and(0, t) ∈ V, (A.4)

such thatũ= u in V ∩D.
(II) The same result holds if(A.2) is replaced by

u= 0 if x = 0 and0< t < t0, (A.5)

and(A.4) by

ũ= 0 if x = 0 and(0, t) ∈ V. (A.6)

Proof of Theorem A.1. –Representingu inD by formulas of type (3.4),
(3.5), we easily conclude thatu ∈ C3(D). It then suffices to find an open
neighborhoodW of (0, t0) in {(x, t) ∈ (R+)2, t > t0} andu∗ ∈ C3(W)

such that�u∗ = F(u∗) if (x, t) ∈W , ∂jt u∗ = ∂jt u if j = 0,1, (x, t) ∈W
and t = t0, and such thatu∗x + γ u∗t = 0 if x = 0 and (0, t) ∈ W in
case (A.2) holds, whereasu∗ = 0 if x = 0 and(0, t) ∈W in case (A.5)
holds. But the existence ofW andu∗ is standard and follows, e.g., by
the arguments of the proof of Theorem 2.1 of [3]. We may omit the de-
tails. 2

APPENDIX B

Proof of Lemma 6.1. –We shall use ideas and results of Chapter XI
of [4]. Assume thatζ(S) satisfies (6.12) when−1

2 6 S < 0. Put−S =
t−1 (hencet > 2), ζ(S) = t−1/2ν(ln t), P(s) = 1

4 + m
s
. Then ν′′(s) +



812 P. GODIN / Ann. Inst. Henri Poincaré 17 (2000) 779–815

P(s)ν(s)= 0 if s > ln2. Let us use a so-called Liouville transformation:
take a new variableσ such thatdσ

ds
= P 1/2(s) andσ (ln2)= 1, and write

z(σ )= P 1/4(s)ν(s). Then

z′′(σ )− (1+B(σ ))z(σ )= 0 if σ > 1, (B.1)

whereB ∈ C∞([1,+∞[) and|B(σ )|6 C

σ3 . Now (B.1) has a fundamental
system of solutions{z1, z2} such that

∣∣zj/1 (σ )− (−1)je−σ
∣∣6C e−σ

σ 2
,∣∣zj/2 (σ )− eσ

∣∣6 C eσ

σ 2
,

(B.2)

if σ > 1 and j = 0,1. Actually (B.2) follows from Corollary 9.2 of
Chapter XI of [4] except for the fact that the right-hand sides of (B.2)
are not given there. For the sake of completeness, we very briefly give
some details. Putv(σ )= eσ z(σ ),w(σ )= e−2σ v′(σ ), and assume in the
rest of the proof thatσ > 1. Then we obtain with the help of (B.1) that

v′(σ )= e2σw(σ ), w′(σ )= e−2σB(σ )v(σ ). (B.3)

(B.3) can be reduced to the system of integral equations

v(σ ) =
σ∫
T

e2sw(s) ds + v(T ),

w(σ ) =
σ∫
T

e−2sB(s)
( s∫
T

e2rw(r) dr

)
ds

+ v(T )
σ∫
T

e−2sB(s) ds +w(T ).

(B.4)

Lemma 9.1 of Chapter XI of [4] shows thatw(σ) has a finite limit
w(+∞) as σ → +∞. We impose the conditionsv(T ) = 0, w(T ) =
1, whereT is large; then it follows from the proof of Lemma 9.1
of Chapter XI of [4] thatw(+∞) 6= 0. Put v2 = v/w(+∞), w2 =
w/w(+∞). The proof of Lemma 9.1 of chapter XI of [4] now yields
that |w2(σ )− 1|6 C/σ 2, and sincev′2(σ )= e2σw2(σ ), we easily obtain
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that |v2(σ )− 1
2e2σ |6 C e2σ

σ2 . If we define

v1(σ )=
( ∞∫
σ

e2s(v2(s))
−2 ds

)
v2(σ ), w1= (w2v1− 1)/v2

(cf. [4]), simple calculations show that(v1,w1) is a solution to (B.3) and
that |v1(σ )− 1|6 C

σ2 and|w1(σ )|6 C e−2σ

σ2 . If we putz1(σ )= e−σ v1(σ ),
z2(σ )= 2e−σ v2(σ ), (B.2) follows easily. Now it is not hard to check that
for someC1,C2> 0, one hasC16 eσ−s/2/sm 6 C2 if s > ln2. If we use
this and defineνj (s)= P−1/4(s)zj (σ ), ζj (S)= cj t−1/2νj (ln t), j = 1,2,
wherec1, c2 are suitable strictly positive constants, Lemma 6.1 follows
from (B.2) after some straightforward computations.2

Proof of Lemma 6.2. –Put

m= 2γ (γ + 1)

(γ − 1)2
, λ=

(
m+ 1

4

)1/2

, −Y = e−s ,

Z(X,Y )= e−s/2ν(X, s).

Straightforward computations using Proposition 5.2 show that, for some
s0,

∂2
s ν(X, s)+ g1(X, s)∂sν(X, s)− (λ2+ g2(X, s)

)
ν(X, s)= 0 (B.5)

if − t0
2 6X6 b ands > s0, whereg1, g2 ∈C1 and

|g1(X, s)| + e(l−1)s|g2(X, s)| +
∑

16j62

|∂Xgj (X, s)|6Ce−s

if − t0
2 6X 6 b ands > s0, with l =min(1,2γ+1

γ−1). We shall make use of
the following result.

LEMMA B.1. –One can find a fundamental system of solutions{ν1(X,

s), ν2(X, s)} of (B.5) such thatν1, ν2 ∈ C1({(X, s) ∈ R2,− t0
2 6 X 6

b, s > s0}) and∣∣∂js ν1(X, s)− (−λ)je−λs
∣∣6 Ce−(λ+l)s, j = 0,1,

∣∣∂js ν2(X, s)− λjeλs
∣∣6 Ce(λ−l)s, j = 0,1.
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Lemma 6.2 easily follows from Lemma B.1 if we putZk(X,Y ) =
e−s/2νk(X, s), k = 0,1. Hence it remains to prove Lemma B.1.

Proof of Lemma B.1. –The proof follows the same lines as in
Lemma 6.1. Putv(X, s)= eλsν(X, s). (B.5) can be rewritten as

∂s
(
e−2λs∂sv(X, s)

)+ g1(X, s)
(
e−2λs∂sv(X, s)

− λe−2λsv(X, s)
)− g2(X, s)e

−2λsv(X, s)= 0. (B.6)

Put

p(X, s)= exp

(
−
∞∫
s

g1(X,σ ) dσ

)
,

w(X, s)= e−2λsp(X, s)∂sv(X, s). Using (B.6), we obtain

∂sv(X, s)= e2λsA(X, s)w(X, s), ∂sw(X, s)= e−2λsB(X, s)v(X, s),

(B.7)

where A(X, s) = 1/p(X, s), B(X, s) = p(X, s)(λg1 + g2)(X, s). In
the rest of this proof we shall denote byC various strictly positive
constants independent ofX. Notice that|B(X, s)|6 Ce−ls , |AX(X, s)|+
|BX(X, s)| + |A(X, s)− 1|6 Ce−s . We may study (B.7) along the same
lines as (B.3), the only additional difficulty being the presence ofX. First
we rewrite (B.7) as a system of integral equations

v(X, s) =
s∫

T

e2λσA(X,σ )w(X,σ ) dσ + v(X,T ),

w(X, s) =
s∫

T

e−2λσB(X,σ )

( σ∫
T

e2λrA(X, r)w(X, r) dr

)
dσ

+ v(X,T )
s∫

T

e−2λσB(X,σ ) dσ +w(X,T ).

(B.8)

Arguing as in the proof of Lemma 6.1, we easily obtain thatw(X, s)

has a limitw(X,+∞), uniformly in X ∈ [− t0
2 , b], ass→+∞. More-

over, |w(X, s) − w(X,+∞)| 6 Ce−ls . We takeT large, w(X,T ) ≡
1, v(X,T ) ≡ 0. Then |w(X, s) − 1| 6 1

2 for all X ∈ [− t0
2 , b] if s is

large. In a similar way, it also follows from (B.8) thatwX(X, s) has
a limit χ(X) as s → +∞, and that moreover|wX(X, s) − χ(X)| 6
Ce−ls . Hence the functionX 7→ w(X,+∞) belongs toC1([− t0

2 , b]).
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Put v2(X, s) = v(X, s)/w(X,+∞), w2(X, s) = w(X, s)/w(X,+∞),
v1(X, s) = (∫∞s e2λσ A(X,σ)

v2
2(X,σ )

dσ )v2(X, s), w1(X, s) = w2v1−1
v2

(X, s). Ar-

guing as in the proof of Lemma 6.1, we easily obtain the estimates
|w2(X, s)− 1|6Ce−ls , |v2(X, s)− e2λs

2λ | 6 Ce(2λ−l)s, |v1(X, s) − 1| 6
Ce−ls , |w1(X, s)| 6 Ce−(2λ+l)s, from which Lemma B.1 easily fol-
lows. 2
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