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ABSTRACT. — Under what conditions can one say something about the
geometric structure of the singular set of a function? A famous result of
this type states that the singular set (= set of non-Lebesgue points) of a
function of bounded variation on R” is (countably) rectifiable. In this paper
we shall be concerned with quantitative forms of rectifiability, and we give
a quantitative version of this theorem. We also give uniform rectifiability
results for the singular sets of minimizers of higher-dimensional versions
of the Mumford-Shah functional. Along the way we shall encounter some
generalizations of the usual topological notion of a set “separating” points
in the complement, including one which is based on the failure of Poincaré
inequalities on the complement of the given set.

RESUME. — Que peut-on dire de la structure géométrique de 1’ensemble
de singularités d’une fonction f définie sur R™? Un théoréme classique
dit que si f est & variation bornée, alors I’ensemble singulier de f (c’est-
a-dire le complémentaire de ’ensemble des points de Lebesgue de f)
est dénombrablement rectifiable. Dans cet article, on donne une version
quantifiée de ce théoréme utilisant la notion de rectifiabilité uniforme.
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384 G. DAVID AND S. SEMMES

On donne également un résultat de rectifiabilité uniforme des ensembles
singuliers associés aux sections minimisantes pour la fonctionnelle de
Mumford-Shah en dimension quelconque. L’une des idées directrices de
Particle est que la rectifiabilité d’un ensemble de codimension 1 est en
rapport €troit avec la maniére dont il sépare localement R™ en composantes.
On y trouve en particulier une notion de séparation basée sur I’absence de
bonnes inégalités de Poincaré dans le complémentaire.

1. INTRODUCTION

In this paper we shall be concerned with quantitative rectifiability
properties of sets in R"™ with Hausdorff dimension equal to n— 1, especially
sets which arise as the collection of singularities of some function. We shall
review the necessary background information in the next section — the
definition of “uniform rectifiability” in particular — but for the moment let
us proceed with a vague description of our goals and intentions.

Codimension 1 is special in the study of rectifiable sets, because
rectifiability properties of a set 2 in R™ can often be detected by the extent
to which E separates points in R™\ E. (For the record: two points in the
complement of E are separated by E if they lie in different components of
the complement.) The idea is that if E has locally finite (n — 1)-dimensional
Hausdorff measure, say, and if £ were not rectifiable, then it would be too
scattered in some places to separate points properly. (Self-similar Cantor
sets provide good examples of sets which are unrectifiable and too scattered
to separate any pair of points in the complement.) Thus conditions which
say that £ does a good job of separating points in its complement in R™,
together with bounds on the (n — 1)-dimensional Hausdorff measure of E,
ought to imply rectifiability properties of FE.

In the context of classical rectifiability such results are well known and
easy to derive from famous theorems of Besicovitch and Federer (namely,
the fact that the projection of a totally unrectifiable set onto almost any
hyperplane has measure zero). In the context of uniform rectifiability we do
not have such powerful general tools available, but there are still reasonable
results of this type. (See Section 2.)

In this paper we shall deal with different notions of separation. Instead
of taking two points in the complement of E and asking whether they lie
in different complementary components, so that there is no curve that joins
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the two points without touching E, we shall ask whether it is difficult to
get from one point to the other without touching E. For instance, this could
mean that there is not a nice big family of curves joining one point to the
other in R™\ E. Actually, it will be convenient to formulate the existence
of such pairs of points in duval terms, as the failure of suitable Poincaré
inequalities on R™\E.

We shall prove in Section 3 a criterion for uniform rectifiability of a
set £ in R™ in terms of the uniform failure of Poincaré inequalities at
most scales and locations in R™\E. We use this criterion in Section 5 to
obtain uniform rectifiability results for the the singular sets of minimizers
of a family of variants of the Mumford-Shah functional in R™ (which are
described at the beginning of Section 5). For the original Mumford-Shah
functional in R? this gives an alternate proof of the main result in [DS4].
The new proof has the advantage that it works in higher dimensions.

In Section 4 we give a uniformized version of the theorem that the
singular set of a function of bounded variation is rectifiable. (See conclusion
(16) of Theorem 4.5.9 on p. 483 of [Fe] and Chapter 4 of [Gi] for the
classical result.) In the uniformized version we replace the assumption of
bounded variation with a Carleson measure condition on the distributional
gradient of the function, and we require a uniform bound on the size of the
jump discontinuities. Conversely, we prove that any uniformly rectifiable
set (of codimension 1) arises as the singular set of a function with the same
properties. See Section 4 for details.

In Section 6 we mention a different variational problem whose minimizers
are rectifiable sets with prescribed but generalized mean curvature. There
is a natural potential criterion for uniform rectifiability, but we produce
counterexamples to show that it is very wrong. By contrast, there are natural
regularity theorems under stronger conditions on the mean curvature which
are analogous to the usual results for minimal surfaces in codimension 1.

Note that Sections 2, 3, and 5 are independent of Section 4 and can be
read by themselves. Section 4 is logically independent of Section 3, but
it involves similar ideas and makes many references to analogous points
in Section 3.

2. A REVIEW OF UNIFORM RECTIFIABILITY

For the rest of this paper E will denote a d-dimensional (Ahlfors) regular
set in R™. (Eventually n will be d + 1.) This means that F is closed and
that there exists a nonnegative Borel measure u with support equal to E

Vol. 13, n° 4-1996.



386 G. DAVID AND S. SEMMES

and a constant Cy > 1 such that
(2.1) Cylrd < w(E N B(z,r)) < Cort

for all x € F and r > 0. Here (and forever) B(z,r) denotes the open ball
with center x and radius r.

For example, a d-plane is regular, with 4 taken to be Hausdorff measure
on the plane. In general, a regular set has the same kind of mass distribution
as a d-plane, but it could be very different geometrically. There are self-
similar Cantor sets, snowflake curves, tree-like fractals, etc., which are
regular. (For the snowflakes and trees one must have d > 1, but there are
Cantor sets with arbitrary positive dimension.)

It is easy to see that if p is as above, then p must be equivalent in
size to the restriction to E of d-dimensional Hausdorff measure, which
we denote by H?. Thus we may as well assume that y is H¢|z, but this
will not help us.

Recall that a set A in R" is said to be rectifiable with dimension d,
d € Zy, if there is a set Ag C A such that H¥(A\Ay) = 0 and A, is
contained in a countable union of d-dimensional C' submanifolds of R",
or, equivalently, a countable union of Lipschitz images of R?. (In the basic
reference [Fe], however, this is called “countable rectifiability”.) We shall
not really need this definition here, but it is helpful to recall it before
stating the definition of uniform rectifiability. One of the main points is that
classical rectifiability says that a set behaves well asymptotically at almost
all of its points, but without controlling the behavior at any definite scale.
Uniform rectifiability is designed to make up for this deficiency. We define
it first for the d = 1 case, which is simpler.

DEerINITION 2.2. — Let E be a 1-dimensional regular set in R™. We say
that E' is uniformly rectifiable if there is a regular curve I" that contains FE.

Recall that a regular curve is a set I' C R™ of the form I = z(R)), where
z : R — R" is Lipschitz (so that

(2.3) |2(s) — 2(t)] < Cls — ¢
for some C' > 0 and all s,t € R) and satisfies
(24) |{se R:z(s)e B(y,r)}| <Cr forallye R andr >0

(and for some other C > 0). Regular curves are allowed to cross themselves,
but (2.4) limits the extent of this crossing.
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Regular curves are almost the same as connected 1-dimensional regular
sets. Regular curves are clearly connected regular sets, but conversely any
connected 1-dimensional regular set in R™ is contained in a regular curve.
This is not very hard to prove. (Theorem 1.8 on p. 6 of [DS3] is helpful
in this regard.)

The idea of uniform rectifiability is that it prevents the set from ever being
too scattered (like a Cantor set) by requiring the existence of a reasonable
parameterization by a Euclidean space. In the higher-dimensional case,
among the several equivalent definitions of uniform rectifiability there is
unfortunately not one which is so much simpler than the others. We shall
use here the one that is closest to Definition 2.2. (See [DS3] for some
alternatives.)

Let A;(R?) denote the Muckenhoupt class of A; weights on R, that is,
the class of positive measurable functions w(x) on R? such that

(2.5) p_d/ w(y)dy < C essinf w(y)
B(z,p) y€B(x,p)

for some C > 0 and all z € R¢ and p > 0. This condition may appear
to be a little mysterious, but it means, roughly, that w does not oscillate
too wildly, on average, and that w never gets too small too quickly. The
simplest example is w = 1. One of the basic results about A; weights is
that if w € Ay, then there isa ¢ > 1 and a C’ > 0 so that

(2.6) (p—d / w(y)qdy)g oot [ way
B(m,p) B(il:,p)

for all z € R? and p > 0. This makes precise the idea that w cannot get
too big, on average.

If w € A1(R?), then a mapping z : R* — R™ (for some m > d) is said
to be w-regular if there is a C' > 0 such that

1

@1 ) - ()l < c{ Lo w(u)du}

for all z,y € R? and
(2.8) w{z € R?: 2(z) € B(y,r)} < Crt

for all y € R™ and r > 0. Here w(A) denotes the w(z)dz measure of A,
A C R This is of course analogous to the definition of regular curves
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above, and indeed (2.7) and (2.8) are equivalent to (2.3) and (2.4) when
w =1 and d = 1. In general one can think of w as representing a controlled
perturbation of the geometry of R¢. The point of allowing w here is to
make it easier to produce regular mappings and thereby ameliorate the
difficulty of building d-dimensional parameterizations. When d = 1 this is
not an issue, because it is then much easier to build parameterizations, and
in any case we could reduce to the w = 1 case by making an easy change
of variables on the real line.

DEFINITION 2.9. — A set E/ in R™ is uniformly rectifiable (with dimension
d) if it is a d-dimensional regular set and if there is a weight w € A'(R?)
and an w-regular mapping z : R? — R"*! such that E C z(R9).

In this definition we are identifying R™ with a subset of R**! in the
obvious way. We need to allow z to take values in R™t! (instead of
R"™) in order to make it easier to find parameterizations that do not cross
themselves too often. When n > 2d this problem can be avoided and we
can replace n + 1 by n.

There are many alternative characterizations of uniform rectifiability,
in purely geometric terms and also in terms of analysis. Some of these
alternatives are given in terms of uniformly bilipschitz parameterizations of
large pieces of the set. (That is, we can get rid of the w if we are willing
to not parameterize the whole set at once.) See [DS3] for an extensive
discussion of the various characterizations. The definition above is good
for making precise the idea that a uniformly rectifiable set is one that can
be rather well parameterized by R, but it is not so easy to verify. In
Definition 2.12 below we give a more convenient criterion, but first we
need an auxiliary notion.

DEerINITION 2.10. — Let B be a subset of £ x R,. We say that B is a
Carleson set if there is a constant C' such that

(2.11) [ tuy®P% <o
0 JENB(z,r) t

for all z € F and » > O.

Here the measure (4 is the same as the one in (2.1), and it can be taken to
be H¢|p. The measure @_(f)ﬂ scales like a d-dimensional measure, even
though it lives on a d + 1-dimensional space, and it can give infinite mass
to bounded sets (like the product of a ball with (0,1)). Roughly speaking,
a Carleson set is a subset of £ x R, which behaves in terms of its mass
distribution as though it were d-dimensional, at least from the perspective

of E x {0}. In particular Carleson sets are very small compared to E x R .
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For the sake of convenience let us agree to apply the notion of Carleson
sets even to nonmeasurable sets B, in which case we should use outer
measures in (2.11). This is not a serious issue; in most cases there will be
a kind of discreteness present which makes the relevant Carleson condition
equivalent to a statement about sums. (For instance, the measurability is
pleasantly irrelevant in the proof of Sublemma 3.9.) The main point is that
the reader should not waste time worrying about measurability when it is
not really necessary.

A compact subset of I/ x R is always a Carleson set. Some noncompact
examples of Carleson sets are B = {(z,t) € E x Ry : o <t < 1000t}
(for any given ¢y > 0) and B = {(z,t) € E x R} : |z — zo| < 1000t} (for
any given zo € E). It is not difficult to check that these really are Carleson
sets, with a constant C' which is bounded independently of ¢g and z,. A
more interesting class of examples is given as follows. Let J be a set of
integers, and set B = {(z,t) € E x Ry : 29 <t < 29*! for some j € J}.
This is a Carleson set if and only if J is a finite set. In general Carleson
sets do not need to be so neatly layered, but this example does provide a
reasonable illustration of how large a Carleson set can be.

Here 1is another amusing example. Suppose that E is a d-
plane, and let Q) be a (d — 1)-plane contained in E. Then B =
{(z,t) € E x Ry : dist(z, Q) < t} is a Carleson set. The assumption that
E and @ are planes is not crucial; there are very general versions of this
example. The point is that a Carleson set can have infinitely many layers,
but only over a relatively thin subset of E.

In practice we shall apply the concept of Carleson sets to “bad” sets in
E x R. That is to say, we shall have a set B of places in E x R where
something bad happens, and we shall want to know that there are not too
many of these bad places. The Carleson condition is often the right way to
say that these bad sets are small enough that they do not cause too much
trouble. The next definition provides an example of this.

DerFINITION 2.12. — Let E be a d-dimensional regular set in R™. We
say that E is locally symmetric if the following set B(e) is a Carleson
set for each ¢ > O:

(2.13) B(e) = {(=,t) € E x Ry : there exist points w, z € E N B(z,t)
such that dist(2z — w, F') > €t}.

In other words, E is locally symmetric if it is regular and if for most
(z,t) € E x Ry we have that E is approximately symmetric (at the scale
of t) about each of its elements in B(x,t). More precisely, B(e) is the
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set of (z,t) € E x Ry for which this approximate symmetry fails, and
the definition of local symmetry requires that this bad set be a Carleson
set, and hence small.

Clearly a d-plane is locally symmetric, because B(e) is then empty for all
€ > 0. A half-plane is locally symmetric too; in this case B(e) is not empty,
but it is still small enough to be a Carleson set. If E is a smooth embedded
d-dimensional submanifold in R™ which is also “smooth at infinity”, then
FE also satisfies the local symmetry condition. In this case B(¢) is a compact
subset of E'x R for all ¢ > 0. The point is that, under these assumptions,
E is very well approximated by a d-plane in all sufficiently small balls, as
well as all balls which are sufficiently large or sufficiently far out (towards
infinity), and so it is certainly approximately symmetric in these balls.

Notice that we do not impose any requirements in Definition 2.12 on the
way that the Carleson constants for B(e) depend on €. This is one of the
reasons that the local symmetry condition is often relatively easy to check.
As a practical matter, only one small choice of € is ever needed in any
particular application; this choice typically depends only on parameters like
the relevant dimensions and the regularity constants but is not explicit.

The local symmetry condition is equivalent to asking that £ N B(z,t)
be well approximated, for most (z,t) € E x Ry, by PN B(z,t) for some
d-plane P which depends on (z,t). As always, “most (z,t) € E x R,”
means that the exceptional set is a Carleson set in £ X R, . The precise
formulation of this condition of approximation by d-planes is called the
Bilateral Weak Geometric Lemma (BWGL) and is given in Definition 2.2
on p. 32 in [DS3]. It is easy to show that the BWGL implies the local
symmetry condition, because d-planes are symmetric about each of their
points, but it turns out that the converse is true too. This is not hard to
prove, but one must use also the mass bounds on £ that come from Ahlfors
regularity. See p. 27-30 in [DS1].

Although the local symmetry condition and the BWGL are equivalent,
the local symmetry condition tends to be easier to check, and the BWGL
is more convenient for deriving information.

THEOREM 2.14. — Let E be a d-dimensional regular set in R™. Then E is
uniformly rectifiable if and only if it is locally symmetric.

This is proved in [DS3]. (See Definition 1.79 on p. 29 and Corollary 2.10
on p. 33 of [DS3]. Notice that [DS3] uses a different definition of uniform
rectifiability, but the equivalence of the definitions is proved in [DS1] and
is stated in Theorem 1.57 on p. 22 of [DS3].) Let us say a few words about
the argument for the “if” part, which is the part that we shall need here.
We already mentioned that the local symmetry condition is equivalent to
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the Bilateral Weak Geometric Lemma (BWGL). When d = 1 we proceed
as follows: the BWGL implies the Weak Connectedness Condition (WCC)
trivially (see Definition 2.12 on p. 34 of [DS3]), and we can derive uniform
rectifiability from the WCC using the argument on p. 69-76 of [DS3].
In general one should use the more complicated argument on p. 97-119
in [DS3]. Actually, we shall be concerned only with the codimension 1
(d = n — 1) case in this paper, and for this case the argument in [DS3]
is shorter and simpler (but still not as nice as when d = 1). For the
specific applications given here the argument can be simplified further, as
in Remark 3.27 below.

Next we state another criterion for uniform rectifiabilty. This one applies
only to the codimension 1 case and involves the extent to which E separates
points in its complement.

DEFINITION 2.15. — Let E be a d-dimensional regular set in RIt1. We
say that F satisfies Condition B if there is a Cy > 0 such that for each
z € E and each r > 0 we can find two balls B; and B, of radius Cp~'r
contained in B(z,r) which do not touch F and (most importantly) which
lie in different connected components of R4\ E. (See Figure 1.)

0B(x,r)

Fig. 1.

A modestly different version of this condition appeared first in [Sel]
in connection with L2-boundedness of singular integral operators on E. It
was proved in [D] that Condition B implies uniform rectifiability, and even
a slightly stronger condition (“big pieces of Lipschitz graphs”). Simpler
proofs of this fact are given in [DJ] and [DS2]; see also [Se2]. In this paper
we shall face generalizations of Condition B in terms of weaker forms of
separation, and we shall use methods similar to the ones employed in [DS2].

Notice that a hyperplane satisfies Condition B, but that a hyperplane with
an open ball removed does not. This illustrates one of the drawbacks of
Condition B; it is very unstable, in the sense that we can punch out a small
hole from £ and then get a set with only one complementary component. In
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Sections 3 and 4 below we give new criteria for uniform rectifiability which
are rather similar to Condition B but which do not have this drawback.

3. THE WNPC CONDITION

From now on, F will be a d-dimensional regular set in R4+, We want to
define a condition on F called the WNPC (Weak No Poincaré estimates in
the Complement condition). The structure of this condition will be similar to
that of the local symmetry condition in Definition 2.12; we shall first define
a family of bad sets in ' x R, and then we shall ask that these bad sets be
Carleson sets for certain ranges of the relevant parameters. This condition
will say that E tries to separate its complement at most locations and scales,
and the failure of Poincaré inequalities will measure this separation.

For the record, let us recall the Poincaré inequality. It has many variants,
but the following will be convenient for our purposes:

(3.1) r*wﬂéﬂum—ﬂmw@saﬂ*LHWWWu

for any ball B with radius 7 in R**!. Here C is a constant which depends
only on d, and f is a smooth function on B. (A standard approximation
argument implies that (3.1) holds under the weaker assumption that the
distributional gradient of f is integrable on B.) Recall that to prove (3.1)
one can simply bound |f(z) — f(y)| in terms of the integral of |V f(u)|
along the line segment that connects = to y, average over z and y, and
apply Fubini’s theorem.

A simple consequence of (3.1) is that if H, K C B are measurable
and |H|,|K| > 6|B| for some § > 0 (where |H| denotes the Lebesgue
measure of H), then

(3.2) lmuf —mif| < C(é)r”d_l/Br|Vf(u)|du.

Here my f denotes the mean value of f over H (with respect to Lebesgue
measure).

Let us now proceed to the definition of the WNPC. For each choice of
Co, k> 1,and M > 0 let B(Co, k, M) be the (bad) set of (z,t) € Ex Ry
such that

(3.3) lm&f—m&ﬂSAﬁ”/' IV £ (u)|du

B(z, kt\E
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for all choices of balls By, B; contained in B(z,t)\E with radius > CL(,
and for all functions f € C*°(B(z, kt)\E). In other words, (z,t) lies in
our bad set if there is some amount of control on the oscillation of a
function f € C*(B(z,kt)\E) in terms of the integral of |V f|, so that
we have something like the Poincaré inequality on B(z, kt)\E. Although
one normally considers the existence of a Poincaré inequality to be good,
in this case it is bad, because it means that the set E is scattered or has a
big hole. If (x,t) does not lie in our bad set, then (3.3) can fail, and this
means that E approximately separates some points in B(z, t).

To understand all of this note that if E is a d-plane, then B(Cy, k, M) is
always empty. The reason is that we can take f to be a constant on each
of the two components of R%+1\ E, so that the right side of (3.3) vanishes,
and we can make the left side arbitrarily large by choosing B; and B, so
that they lie on opposite sides of E, and by choosing the values of f on
the two sides of F to be sufficiently different from each other.

The same argument shows that B(Cy, k, M) is empty for all choices of
k and M when FE satisfies Condition B and Cj is as in Definition 2.15.
Conversely, if B(Co,k, M) = @ for some Cy and all k and M, then E
satisfies Condition B. This is not hard to check; the main point is that
the failure of (3.3) for large values of k& and M leads to a function f
which is locally constant on the complement of £ but which takes different
values on a pair of balls like B;, B, above. Thus the requirement that
B(Cy, k, M) be small for suitable choices of Cy, k, and M can be viewed
as a generalization of Condition B.

Notice that (3.3) does hold when B(z,t)NE = (} (with k¥ = 1 and a value
of M which depends on Cj) by (3.2). Of course in our situation B(z,t)NE
is never empty, but it can still be tame enough to allow (3.3) to hold. For
instance, if £ is a d-plane with a round hole, then B(Cy, k, M) will not be
empty. If = lies on the boundary of the hole and if ¢ is small enough, then
(z,t) will lie in B(Cy, k, M). Conversely, if (x,t) € B(Cy,k, M), then ¢
cannot be too large compared to the size of the hole, and z can’t be too
far away from the hole (compared to t).

One can also show that (3.3) will always hold if E is sufficiently scattered
(and M is large enough, depending on Cy), e.g., if E is a self-similar Cantor
set. If E is sufficiently scattered, then one has the same kind of estimates
as (3.3) as when E is empty. '

The moral of this story is that (3.3) will hold if F is sufficiently scattered,
or if its gaps are big enough, and that the failure of (3.3) means that E
separates some points, at least approximately. If B(Cy, k, M) is sufficiently
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sparse, then £ should never be too scattered, we can hope that E will have
good rectifiability properties.

DeFNITION 3.4. — Let E be a d-dimensional regular set in R4+!. We
say that E satisfies the WNPC (“Weak No Poincaré inequalities in the
Complement” condition) if there is a Cy > 1 such that B(Cp, k, M) is a
Carleson set for all values of £ > 1 and M > 0.

THeOREM 3.5. — If E is a d-dimensional regular set in R4+ which satisfies
the WNPC, then E is locally symmetric (and hence uniformly rectifiable).

The last part of Theorem 3.5 follows from Theorem 2.14, but we shall
say a few words later about how uniform rectifiability can be derived from
the WNPC with less machinery. (See Remark 3.27 below.)

As is customary in these situations, in order to conclude that E is
uniformly rectifiable we do not really need E to satisfy the WNPC, but
only the weaker condition that B(Cy, k, M) be a Carleson set for a single
choice of Cy, k, and M, and where k and M are large enough, depending
on Cy, d, and the regularity constants for F. (See Remark 3.43 below.)

One might wonder whether the converse to Theorem 3.5 is true, i.e.,
whether any uniformly rectifiable set in R4t with dimension d should
satisfy the WNPC. This is certainly not the case. Take, for instance, F
to be a coordinate hyperplane with holes of radius Tlﬁ at integer lattice
points. This set is sufficiently porous so that any (z,t) € E x Ry will
lie in B(Co, k, M) when ¢t is sufficiently large, assuming also that M is
large enough (depending on Cp). Thus these sets will be too large to be
Carleson sets.

Let us now prove Theorem 3.5. The argument will be much the same as
for Condition B in [DS2], but there will be a couple of differences.

Let E be as in the theorem, a regular set which satisfies the WNPC,
and let ¢ > 0 be given. We want to prove that the bad set B(¢) from
(2.13) is a Carleson set.

Let Cy be as in the definition of the WNPC, and let k, M, and k; be
three large constants, to be specified later. Let us begin by dispensing with
the annoying set B;(e€) of pairs (z,t) € B(e) which are not too far from an
element of the bad set B(2Cy, k, M), i.e., the set of pairs (z,t) which satisfy

t
(3.6) there exists y € E N B(xz,t) and s € [k—,t}
1
such that (y, s) € B(2Cy, k, M).
Lemma 3.7. — Bi(e€) is a Carleson set.

To prove this we begin with the following observation.
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SuBLEMMA 3.8. — If (y,s) € B(2Co, k, M), then all the pairs (y',s') €
E x Ry such that |y — y'| < % and § < s’ < 3¢ lie in B(Co, 3k, 2 M).

Indeed, let (y,s) and (y',s’) be as in the sublemma, let B; and Bs
be two balls contained in B(y’,s')\E with radius > é—; and let f be a
function in C*(B(y’, 3ks’)\E). Then By, B, C B(y, s)\F and B(y, ks) C
B(y’,3ks’), and we can use our assumption that (y, s) € B(2Cy, k, M) to

conclude that

s, f — mp, f| < Ms™ / IV (u))du
B(y,ks)\E
< 295 / IV f(u)|du.
By ,3ks'\E

This proves the sublemma.
To derive Lemma 3.7 from Sublemma 3.8 we shall use a general fact
which we state separately.

SuBLEMMA 3.9. — Let A be a subset in E x Ry, and let ky > 1 be
arbitrarily large. Define Ay and A, by Ay = {(z,t) € ExXRy : (¢/, 1) € A
whenever |z — z'| < Land £ <t < 3} and A; = {(y,s) € E x R, :
there exists a (z,7) € Ay such that |y — z| < kir and ky ™ 'r < s < kyr).
(Roughly speaking, Ay is smaller than A, and A, is a smeared-up version
of Ag.) If A is a Carleson set, then so is Aj.

Lemma 3.7 follows easily from the sublemmas. Indeed, if we take A to
be B(Co,3k,2M), then Sublemma 3.8 implies that B;(e) is contained in
A;, and hence is a Carleson set.

Sublemma 3.9 could be proved using a simple covering argument, but it
seems easier to use Fubini’s theorem. Let .4 be as above. We may as well
assume that A is open, because we can replace it with its interior without
affecting Ay or A;. Let x and x; denote the characteristic functions of A
and Aj, respectively. Then there is a constant C' > 0 such that

2k1t d

1(y)ds
xi(z,t) < C / x(y, s :
’ ENB(x,2k t) (®:9) s+l

i
3k

Using Fubini’s theorem we get that

R
d dt
[
0o JENB(ZR)

2k1R
! d d
< C(ky) / / (g, 5) 20
0 ENB(Z,3k, R) §
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for any Z € E and R > 0. This last integral is at most C(k;)R? since A
is assumed to be a Carleson set. This proves that A4, is also a Carleson
set, as desired.

Notice that Sublemma 3.9 finesses nicely the measurability issues. Even
if A is not measurable to begin with, we can replace it by its interior, and
the Carleson set A, that we get in the end is open (by definition) and hence
measurable. Thus, although the measurability of B;(e) is a nuisance, the
proof of Lemma 3.7 allows us not to bother with it by realizing Bi(e) as
a subset of a measurable Carleson set.

We are left now with the interesting part of the proof of Theorem 3.5,
namely, the fact that By(e) = B(e)\Bi(€) is a Carleson set. Our strategy
will be to associate, to each pair (x,t) € B (¢), a measurable subset F(x, t)
of E which is not too small and for which we can control the overlaps of
the E(z,t)’s. This will allow us to derive estimates on the size of By(e)
from corresponding estimates for F' (namely, the regularity condition (2.1)).

Let (z,t) € By(e) be given. Because (z,t) € B(e), there exist points
w,z € EN B(z,1) such that the ball Dy = B(2z — w, et) does not meet E.
(Compare with (2.13).)

We now choose k; = 100e! and k£ = 500¢~!. Set ¢; = % Since
(z,t) ¢ Bi(e) we get that (2,2, ) and (w, t1) do not belong to B(2C,, k, M).
Using this property of (z,t;), and the fact that 5¢ = kt;, we get that there
is a function f, € C°°(B(z,5t)\E) and two balls D; ; and D; 5 such that

(3.10) [ Vhldest,

B(z,5t)\E
D and D, 5 are contained in B(z,¢;)\F and have radius > thLo’ and
(311) lle,lfl - mD1,2f11 2 Mtl_d'

Let Dy be the ball Dy ;, j = 1,2, such that |mp, , fi — mp, f1] is larger.
Then (3.11) gives

1
(3.12) |mp, fi — mp, fi| > 5Mtl—d.

Since (w,t1) ¢ B(2Cy, k, M), we can also find (by the same argument)
a function f, € C*(B(w,5t)\E) and a ball D, such that

(3.13) / IV fa(w)|du < 1,
B(w,5t)\E
Dy C B(w,t1)\E, D5 has radius > 2%0 and
1 _
(3.14) |mp, fo — mp, fa| > §Mt1 d

(See Figure 2.)
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DO =B(2z-w,ty)
B(w,t{) B(zty)
@
D
Fig. 2.

Next we want to choose a pair of balls B; = B(z;, 5%0),3' = 1,2, with
certain properties. Let 6(z,t) = Ter—z-7 be the unit vector which points
in the direction of the line from z; to 2y (or, rather, which will point in
that direction once we choose z; and z3). We require that 2B; C Dj for
J = 1,2, and that 8(z,t) lic in a fixed finite set of unit vectors © = O(¢).
It is easy to see that we can always choose these balls B; in this way if ©
is sufficiently dense as a subset of the unit sphere in R*!,

Our next goal is to define the set E(z,¢) mentioned earlier. To do this
we need some auxiliary constructions.

Set 29 = 221 — 2 and By = B(z, 5%0) Thus By is the reflection of B,
about z;, and we have that 2By C Dy by definitions.

Denote by P; the hyperplane through z; which is orthogonal to 6(z,t),
J =0,1,2. For each £ € P, N By let L() be the line through ¢ determined
by the direction f(x,t). Let L*(£) be the portion of L(£) which lies
between P, and P,, and let L~ (£) denote the portion between P, and P;.
(See Figure 3.) Finally let Z* denote the set of £ € P; N By such that
L*(¢) intersects E.
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LEmma 3.15. — If M is chosen large enough, then HY(Z* N Z~) >
THYPi N By) > C 4.

Remember that H? denotes d-dimensional Hausdorff measure. (In
the inequalities above this reduces to Lebesgue measure on P;.) Set
o= tl'de(Pl NB;),sothat C~' <o <C. It clearly suffices to show that

(316) Hd(Pl N Bl\Z+) S ;—lL‘O't(f

and a similar estimate for Z~. The idea is that if (3.16) were not true,
then there would be many paths that join B, to By, and then the difference
between the mean values of f, on these balls would not be too large, which
would contradict (3.14). Let us make this precise.

Suppose that (3.16) does not hold, and set

317) F=3¢(ePinB\Zt: szdHls—S—.
d
L oty

(&)NB(w,5t)\E
Because of (3.13) and the definition of F, we obtain from Fubini and
Tchebytchev that H4(P, N B;\(Z* U F)) < 21, and so

ot
—8-’
since we are assuming that (3.16) is false.

Next let R;, j = 1,2, denote the set of points u that lie on
some L(£), £ € F, and which satisfy dist(u, P;) < gi-. Notice that
R; C 2B; C D; C B(w,5t)\E, and also that H*'(R;) > C~1¢d+!
because of (3.18). Denote by m; the mean value of f, on the set R;. Then

(3.18) HYF) >

(3.19) Im; — mp, f2| < Ct7,
by (3.2) and (3.13).
Let us now estimate |m; — my|. Notice that m; =

HYFP)™ Jpm;(§)dH(E), where m;(£) denotes the mean value of
f2 on the intersection L({) N R; (which is a line segment of length
2). If € € Foup € L(€) N Ry, and up € L(€) N Ry, then the line
segment ¢ from u; to uy; does not meet E (because £ ¢ Z¥), and
is of course contained in L(£) N B(w,5t) by construction. Hence
|fo(ur) = fo(u2)] < [, |VfeldH! < 6%, since £ € F. Therefore

[m1(€) — ma(€)] < 08711 for all £ € F, and so

8
3.20 - < —,
(3:20) s = mal < g
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by averaging over &. This and (3.19) contradict (3.14) if M is large enough,
and so (3.16) holds. The analogue of (3.16) for Z~ is proved in the same
manner (but using the function f; and the estimates (3.10) and (3.12)),
and Lemma 3.15 follows.

We are now ready to define our set F(z,t). For each £ € Zt N Z~,
let p(§) be the “first” point on L1 (¢) (starting from £ and going in the
direction of Bs) that lies in E. By definition of Z* this point exists and
lies between B; and By. We let E(x,t) be the set of points of the form
(&), € € Z¥ N Z~. (See Figure 4.)

Let us check that E(z,t) is a Borel set. Notice first that Z+ N Z~ is
(relatively) closed in P; N B;. Let C denote the open cylinder which connects
P, N B, and P, N By, and let = denote the orthogonal projection onto P;.
SetC'=CNENw~Y(Z*NZ~), so that C’ is a Borel set. Now define C’,
to be the set of 7 in C’ such that there is no point ¢ € E which lies on
the segment from 7(7) to 7 and which satisfies [e — 5| > L. Each C}, is a
relatively open subset of C’, and hence is Borel. It is easy to see that E(z, t)
is just the intersection of the C!, for m = 1,2,..., and hence is Borel too.

By definition we have that the projection of E(z,t) onto Py is ZtTNZ~.
Lemma 3.15 implies that

(3.21) HY(E(z,t)) > C7't{.

By

Fig. 4.

We need to be able to control the overlaps of the various F(z,t)’s. Let
us first establish some preliminary facts. Given £ € Z+ N Z~ notice that
the line segment L~ (&) intersects £ somewhere between B; and B, (by
definition of Z7). Let v(£) be the first element of E N L~(£) on the way
to By. Then v(€) is also the first point on E that one meets when one
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starts at (£) and proceeds along L(€) in the direction —6(x,t). Moreover
we have that

(3.22) s < dist(n(€),v(©)) < #t.

(The first inequality follows from the fact that 2Bl C D, does not touch

E, so that n(€) and v(€) are both at distance > @~ from &.)

LEMMA 3.23. — There is a constant C = C(¢) such that if (x,t),(z',t') €
By(e),0(x,t) = 0(z',t'), and if either t' > C(e)t or |z — 2’| > C(€)t, then
E(z,t) N E(2',t") = 0.

This is very easy. Let § € © be given, and suppose that € E(z,t) for
some (z,t) € By(e) such that 8(x,t) = 6. Let v be the first element of
E that one hits starting from # and going in the direction —6, so that v
corresponds to 7 as above. From (3.22) we get that 522} < dist(n,v) < 4t.
Thus ¢ is determined by 7 to within a bounded factor, and the location of
x is also approximately determined, because n € B(z, 3t), by construction.
Lemma 3.23 follows.

Let us now finish the proof of Theorem 3.5, using Lemma 3.23 and a
simple covering argument. We need to show that By(e) = B(e)\Bi(e)
is a Carleson set. Let X and R be given, and set H = Ba(e) N
{(EN B(X,R) x (0, R]}. Let A be our usual measure <

—fftﬁ on E x R™.
We must show that

(3.24) A(H) < CR?

for some C' that does not depend on X or K.

Set A; = {x € E: thereis a ¢t > 0 such that (z,t) € H and 277" 'R <
t < 277R}. For each j > 0 choose a maximal subset A} of A; such that
|z—a'| > 279 R whenever z,z' € A} and z # ’. Then A is covered by the
union of the balls B(z,2 ! R), x E A%, and so pu(4;) < < C(277R)*(443),
where §A7 denotes the number of elements in A7. It follows that

(3.25) )< CY u(A;) <O (27R)(HAT).

i>0 ji=>0

For each z € A} choose a t € (2777'R, 277R] so that (z,t) € H.
Lemma 3.23 implies that no point n in E can belong to more than a
bounded number C' of the sets E(z,t) which arise in this manner (i.e.,
which correspond to some j > 0 and some x € A7}). This uses also the fact
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that © is a finite set. Applying (3.21) we get that

(3.26) AH)<CY " S HYE(z,t))

i>0 z€A?
<CY > w(E (1) < Cul| E(z,1)),
i20 z€A? jz

using the bounded overlap property for the last inequality. It should be
understood here that we are always taking ¢ to be associated to our z’s as
above. By our construction of E(z,t) we have that E(z,t) C B(X,5R)
when z € A}, and so we get that A(H) < Cu(B(X,5R) < CRY, since E
is regular. This proves (3.24) and completes the proof of Theorem 3.5.

The fretful reader may worry about the measurability of H or A; above,
but this would be pointless. One could easily work with outer measure, and
in fact our argument also implies that (3.24) holds even when we replace
‘H by its closure. The measurability of H really cannot be an issue here,
because we are controlling A() in terms of discrete sums that would just
as easily control much fatter sets. This is similar to the situation in the
proof of Sublemma 3.9.

Remark 3.27. — We know from Theorem 3.5 that the WNPC implies
uniform rectifiability, but the proof that we get by invoking Theorem 2.14
is unnecessarily complicated. The main point is that we can prove directly
that a set which satisfies the WNPC has “big projections”, while in the proof
of the “if” part of Theorem 2.14 additional constructions were required to
reduce to this case. To make this precise let us begin with the following
definition.

DeriniTION 3.28. — Let E be a d-dimensional regular set in R™. We say
that F has big projections if there is a constant # > 0 such that for each
x € F and every r > 0 we can find a d-plane P = P(z,r) which satisfies

HYIp(E N B(z,r))) > 67,

where IIp denotes the orthogonal projection from R™ onto P.

PROPOSITION 3.29. — If F is a d-dimensional regular set in R which
satisfies the WNPC, then E has big projections.

Let us assume the proposition for the moment and see how it is used.
Suppose that FE is a d-dimensional regular set in R%t! which satisfies
the WNPC. Theorem 3.5 implies that E is locally symmetric. It is not
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very difficult to show that £ must then satisfy the BWGL (“bilateral weak
geometric lemma”), as discussed just before Theorem 2.14. In particular E
must satisfy a condition called the “weak geometric lemma” (WGL) which
is weaker than the BWGL by definition, and which we shall not bother to
define here. (See Definition 1.16 on p. 858 of [DS2].) Since E also has
big projections, we can use Theorem 1.14 on p. 857 in [DS2] to conclude
that ' is uniformly rectifiable. (We shall say more about this result soon.)
This argument is very similar to a portion of the proof of the “if” part of
Theorem 2.14, but it is much shorter.

Let us now prove Propostion 3.29. The basic idea occurs already in the
special case of sets which satisfy Condition B, and the reader may find it
a useful exercise to do the argument first in that simpler situation.

Suppose that £ satisfies the WNPC, and let (z,7) € E x R* be given.
Let Co be as in the definition of the WNPC, and let M be a large
constant, to be chosen soon. We claim first that there is a constant Cj,
which does not depend on (z,r), and a pair (y,t) € E x R* such that

B(y,t) C B(z,7),t > &> and

This follows from the fact that B(Cy,1, M) is a Carleson set. If there
were no such (y,t), then B(Cy, 1, M) would contain the whole set (E N
B(z, 5)) x [&;, 5]- Since the A measure of this set is p.(E N B(x, ))log S
(where A is our usual product measure on E x R*), we would get a
contradiction if C; is large enough.

From (3.30) and the definition of B(Cy, 1, M) we obtain that there are
two reasonably large balls B; and B, contained in B(y, t) and a function
f € C(B(y,t)\E) for which (3.3) fails. Let P = P(z,r) be a d-plane
which is orthogonal to the line which joins the centers of By and Bs.
We claim that

(3.31) HYIL(E N B(y,t)) > C~1¢

if M is chosen correctly, where II = IIp is as in Definition 3.28 and C
is a positive constant that does not depend on (z,r). The point is that if
II(E N B(y,t)) did not contain most of II(1 By ), say, then there would be
many parallel line segments that join %Bl to %Bg without touching F. (See
Figure 5.) This would lead to a contradiction, because we could argue as
in the proof of Lemma 3.15 to get a bound on the difference between the
averages of f over B; and B; and thereby conclude that (3.3) does hold
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(y,)

Fig. 5.

(if M is large enough). We omit the details. (This result is not essential
to the purposes of this paper anyway.)

Of course Propostion 3.29 follows from (3.31), because of our choice
of (y,t).

Let us say a little more about the criterion for uniform rectifiability given
in [DS2]. To do this we need another definition.

DeriNITION 3.32. — A d-dimensional regular set £ C R"™ has big pieces
of Lipschitz graphs (BPLG) if there exist M > 0 and 6 > 0 so that for
each £ € F and r > 0 we can find a subset I' of R™ such that

(3.33) HYEnB(z,r)NT) > ord,
and
(3.34) I' is a rotation of the graph of a function

A:R% — R"~? with Lipschitz norm < M.

We shall sometimes refer to a set I' as in (3.34) as a Lipschitz graph, or
as an M-Lipschitz graph when we want to be precise about the constants.

The precise statement of Theorem 1.14 in [DS2] is that if a regular set has
big projections and satisfies the weak geometric lemma then it has BPLG. It
is not so obvious that BPLG implies the definition of uniform rectifiability
given in Section 2, but it follows from the main result in [DS1]. A more
direct proof can be obtained by using Theorem 2.29 on p. 336 of [DS3]
to pass from BPLG to the existence of a “corona decomposition” (which
we shall not define here) and then using a smaller piece of [DS1] to get
uniform rectifiability. (This smaller piece is contained entirely in Section 18
of [DS1].) When d = 1 there are reasonably direct geometric methods for
producing a regular curve I' O F when E has BPLG. The first person to
draw our attention to this fact was Peter Jones, but we do not know of
anyplace where this has been recorded. Let us briefly sketch the argument.

ProPOSITION 3.35. — A one-dimensional regular set in R™ which has
BPLG is contained in a regular curve.
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We could also deal with weaker conditions than BPLG (such as BPLI, see
[DS3]), but for simplicity of exposition we restrict ourselves to this case.

Suppose that E C R™ is one-dimensional and has BPLG. Let us first
show that for each X € E and R > 0 there is a connected compact set ~
in R™ which contains E N B(X, R) and satisfies H'(vy) < CR.

We shall produce this set v as the limit of a sequence {vy;} of compact
connected sets with finite length. Set Ey = E N B(X, R). We begin by
taking yo to be a curve in B(X, R) such that H'(yo N E) > 6R and
H'(v) < CR, where 8 is as in the definition of BPLG. We can do this
because E has BPLG. More precisely, because of the BPLG condition there
is a curve like o which is an arc of an M-Lipschitz graph but which is
not necessarily contained in B(X, R), but we can modify it slightly to get
a curve with all the required properties.

Now suppose that we have already constructed 7o, . .. ,7;» and let us
construct ;1. Set U; = Ey\y; and, for each x € Uj, let B(zx) denote
the closed ball centered at 2 and wih radius §(z) = dist(z,~;). Notice
that 6(x) < 2R when = € U;. By the standard Vitali covering argument
(as on p. 9, 10 of [St]) we can find a subset A of U; such that the balls
B(z),z € A, are pairwise disjoint and the balls 5B(x),z € A, cover
U;. Fix £ € A, and let us show that there is a compact connected set
ar C B(z) such that a, touches 1;,

(3.36) H' <a$ NEN %B(x)) > 5(x),
and
(3.37) H'(a,) < C8(x).

Since E has BPLG we can find an M-Lipschitz graph £, which satisfies
the analogue of (3.36). Let £,” be the smallest arc of £, which contains
£z N B(x). We can modify £, slightly to get a curve in B(z) which
contains &, N B(z) and which has roughly the same length as &,’. We
then add to this modified curve a line segment which connects it to v, to
get a,. Note that we can choose this line segment to lie in B(z), since
B(x) touches +y; by definition.

Let 7v;41 to be the union of 7, and the sets o,z € A. It is easy to see
that ;1 is closed, connected, and has finite length. We also have

(3.38) vi+1\7; € B(X,3R)
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(since a, C B(r) C B(X,3R) for all z € A) and

(3.39) H(vj41\7) €D HY (1) < C ) 8(x)

TEA €A
1
<C ;Hl (am NEN §B(m))

< CHY((vi+1\) N E),

because the balls 3 B(z),z € A, are pairwise disjoint and do not touch ;.
On the other hand, from (3.36) we get

(3.40) H(3y+1\1) N E) 2 03 8(x) > C76H'(U)),

T€EA

using also the fact that U; is covered by the balls 5B(z),z € A, and the
assumption that F is regular.

By repeating this construction indefinitely we obtain our sequence {v;}.
Note that it could happen that U; = @ for some j, in which case v;41 = ;.
From (3.38), (3.39), and the corresponding properties for v we conclude
that v; C B(X,3R) and H'(vy;) < CR for all j. Let v be the closure
of the union of the ;’s. It is easy to see that v C B(X,3R) and that
~ is compact and connected. Let us check that v D Ej. Suppose not, so
that there is a point y € Ey that does not lie in . Then there is a ¢t > 0
such that B(y,t) N £ C Uj for all j. However, (3.40) and (3.39) imply
that H'(U;) — 0 as j — oo, which contradicts the preceding statement.
Thus v D Ey.

We also have that H!(y) < CR, i.e., the limits points that we are adding
do not have too much mass. This is not hard to prove, using the definition
of Hausdorff measure and the fact that the «y;’s are connected. We omit the
details. Thus we have achieved our first goal, of showing that £ N B(X, R)
is contained in a connected compact set v with H(y) < CR. Of course
we can always modify « slightly to get v C B(X, R) also.

Next let us show that for each X € F and R > 0 there is a compact
connected set I' such that B(X,R)NE C T C B(X,R) and

(3.41) Cr'r < HY('N B(z,r)) < Cyr

for all x € " and r € (0, R].
One way to approach this task is to build I' by hand, in the same manner
as above, but taking more care to ensure that the curves «, do not pile
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up too much. There is an elegant and amusing alternative to this method
which was pointed out to us by J. M. Morel and S. Solimini and which
we describe instead. (See [MoS] for details, and note that they also give
a similarly elegant but slightly indirect argument for the existence of the
curves v constructed above.)

Let X € E and R > 0 be given. Let I' be a compact connected set which
satisfies B(X,R)N E C T C B(X, R) with H*(T') as small as possible.
Such a minimizer exists, because there are suitable lower semicontinuity
theorems for the H'-measure of compact connected sets (see [MoS]). Note
that our previous construction implies that there exist competitors for this
minimization which have finite length. Let us check that such a minimizing
I' must satisfy (3.41).

Let z € I" and r € (0, R] be given. The lower bound in (3.41) follows
from connectedness, and so we only need to verify the upper bound.
Suppose, to the contrary, that H(I' N B(z,r)) > Cir and that C; is
very large. By our earlier construction we can find a compact connected
set v such that v O E N B(z,r) N B(X,R) and H(y) < Cr. We can
modify ~ slightly to get also that v C B(z,r) N B(X,2R) (and without
increasing the length of v too much). If I' C B(z,r), then + satisfies the
same requirements as I' but has less H' measure (if C; is large enough),
a contradiction. If I' Z B(z,r), then let I be the union of I'\ B(z,r), v,
and a line segment which connects « to a point in I' N dB(z, ). In this
case I satisfies the same requirements as I' but has smaller H' measure
(if C; is large enough). Thus we conclude that I satisfies (3.41).

There is a more constructive version of this method for producing I' that
is worth mentioning. We start with any compact connected set I' with finite
length and which satisfies B(X,R)N E C T C B(X, R), and we make a
sequence of modifications to it to get a set which also satisfies (3.41). Since
I is connected the lower bound in (3.41) is automatic, and so we need only
concern ourselves with the upper bound. Suppose that z € " and 7 € (0, r]
are bad for (3.41), so that H*(I'N B(z,r)) > C;r, and assume that z, r are
chosen so that r is also approximately as large as possible. If C is large
enough, then we can modify I' to get a compact connected set I in the
same manner as above, in such a way that B(X,R)NE C " C B(X,R)
and H'(T') < HY(T') — r. We then apply the same procedure to I"”, and
then we keep repeating it as long as (3.41) is not satisfied (with a reasonably
large but fixed choice of C1). If this process does not stop in a finite number
of steps, it will still “converge”, because in each step we are winning so
much length that the size of the modifications must go to 0. In either way
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we end up with a set I' which satisfies (3.41) and which has the other
required properties.

We are nearly finished with our sketch of the proof of Proposition 3.35.
The “local” fact that we just verified has a simple global version, to wit,
E is contained in a connected 1-dimensional regular set in R™. This is not
very hard to show, by applying the preceding fact to larger and larger balls
and connecting the I"s that result in a suitable manner. One needs to be
a little careful, to avoid having too much mass accumulate anywhere, but
this is not difficult to arrange.

It remains to show that a connected 1-dimensional regular set is contained
in a regular curve. For compact sets there are stronger results: compact
connected sets with finite H' measure are basically the same thing as
curves, in the sense that they can be realized as the image of an interval
under a Lipschitz mapping, and this mapping can even be chosen so that
the parameterized length is not too much larger than the H' measure of the
original set. See Theorem 1.8 on p. 6 of [DS3] for a proof of this classical
fact. The same method can be used to show that if a compact set satisfies
estimates like (3.41), then the parameterization can be chosen to satisfy
(2.3) and (2.4). Thus we conclude that if F is a connected 1-dimensional
regular set, then any compact connected subset of it can be realized as a
subset of a regular curve. It is not very hard to use this to show that E itself
is contained in a regular curve. (Notice that connected 1-dimensional sets
cannot always be realized as a regular curve, rather than merely as a subset.
The union of two perpendicular lines in the plane won’t work, for instance.)

This completes the discussion of the proof of Proposition 3.35.

Although the BPLG implies uniform rectifiability, the converse is not
true. There are one-dimensional sets in the plane which are uniformly
rectifiable but which do not satisfy BPLG. (See [Hr].) Let us therefore
record the following.

THEOREM 3.42. — A d-dimensional regular set in R which satisfies the
WNPC has BPLG.

This follows from the proof of the fact that the WNPC implies uniform
rectifiability which is outlined just after Proposition 3.29. That argument
uses Theorem 1.14 in [DS2], which actually gives BPLG and not just
uniform rectifiability.

Note that a regular set satisfies BPLG if it is uniformly rectifiable and
has big projections. This can be derived from the main result of [Js], or
Theorem 1.14 in [DS2]. The converse is also true. We have already seen
that BPLG implies uniform rectifiability, and the fact that BPLG implies
big projections follows from the definitions.
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Note that the BPLG does not imply the WNPC. The same example as
mentioned shortly after Theorem 3.5 applies here too (i.e., a d-plane with
a lattice of holes of fixed size).

Remark 3.43. — The proof of the fact that the local symmetry condition
implies uniform rectifiability actually implies a stronger result. Let E be
a d-dimensional regular set in R™. Then there is a (small) ¢; > 0, which
depends only on the dimensions and the regularity constant for F, such
that £ is uniformly rectifiable if B(eg) is a Carleson set. (Compare with
Definition 2.12.) This is a small variant of Remark 2.5 on p. 98 of [DS3].
There is a similar strengthening of Theorem 1.14 in [DS2]; the result
still holds if, instead of requiring the “weak geometric lemma” at full
strength, one weakens it in the same manner. Similarly, in deriving uniform
rectifiability from the WNPC, it is actually enough to assume that there is
a Co > 1 such that B(Cy, k, M) is a Carleson set for a single sufficiently
large choice of k, M which depends on Cy, d, and the regularity constant
for £. As a practical matter, the selection of £ and M depends on the
analogous choice of ¢, mentioned above, or its counterpart for Theorem
1.14 in [DS2] (which is essentially the same issue).

4. SINGULARITY SETS OF SOME BV FUNCTIONS

Let F continue to be a d-dimensional regular set in R4, We need a
definition before we state the main result of this section.

DEeFINITION 4.1. — A “Carleson measure with respect to £ is a nonegative
Borel measure v on R*! such that

(4.2) v(B(z,r)) < Cor? forall z € F andr > 0.

The smallest constant Cy for which (4.2) holds is called the Carleson norm
of v and will be denoted by ||v|c.

A simple example is the restriction of Hausdorff measure H? to E.
In fact, the restriction of H? to any d-dimensional regular set defines
a Carleson measure with respect to any other d-dimensional regular set.
Carleson measures can also be more smeared-out. For instance, given a
t > 0, take v to be Lebesgue measure on {z € R*! : dist(z, E) < t}
divided by ¢. The regularity of E implies that this is a Carleson measure
with respect to E, with norm bounded independently of t.
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THEOREM 4.3. — Let E be a d-dimensional regular set in R4t and let f be
a locally integrable function on R, Suppose that V f (the distributional
gradient of f) is of the form hdv, where h is a bounded vector-valued
(Borel measurable) function and v is a Carleson measure with respect to E.
Suppose also that there is a constant a > 0 so that

(44) inf r'd_l/ |[f(y) —aldy>a forallz € Eandr > 0.
acR B(a,r)

Then E is uniformly rectifiable.

Condition (4.4) says that f is discontinuous at points in F, with a uniform
lower bound on the size of the jump. Theorem 4.3 should be compared
with the classical fact (see conclusion (16) of Theorem 4.5.9 on p. 483
of [Fe] and Chapter 4 of [Gi]) that if f is of bounded variation — so that
V f is a (vector-valued) measure of finite mass — then the “singular set” of
non-Lebesgue points of f is rectifiable. In other words, Theorem 4.3 is a
uniformized version of this classical result.

Theorem 4.3 is a close relative of the fact that Condition B (see
Definition 2.15) implies uniform rectifiability. If F satisfies Condition B
and if we assume for simplicity that F has exactly two complementary
components, then the characteristic function of either complementary
component satisfies the conditions required of f in Theorem 4.3. Indeed, the
Carleson condition on |V f| can be derived easily from the assumption that
FE is regular (because, as a measure, |V f| is dominated by the restriction of
H? to E), and (4.4) follows from the assumption that F satisfies Condition
B. In this special situation (where f is locally constant on R4*!\E)
Condition B is implied by (4.4) too, but in general the hypotheses of
Theorem 4.3 do not imply Condition B, because they allow E to be a
half-plane, or a hyperplane with a hole in it, for instance. (Exercise.)

Theorem 4.3 has a converse: if E is a regular set of codimension 1
which is uniformly rectifiable, then there is a function f which satisfies the
conditions above. The precise statement is given in Theorem 4.51 below.
This converse provides an appealing substitute for the false converse to the
theorem that Condition B implies uniform rectifiability.

We shall derive Theorem 4.3 from a generalization (Theorem 4.13) of
the fact that Condition B implies uniform rectifiability. This generalization
will be based on a variant of Condition B (called Condition C) which
allows a limited amount of holes, ends, and other bad behavior forbidden by
Condition B. To state this generalization we need some auxiliary definitions.

Let £ be a d-dimensional regular set in R*!, and let b(z) be a
nonnegative continuous function on Q = RA*\E. If v is a rectifiable
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curve in R¥*1, define its b-length by

(4.5) Ly(y) = /del ifyCQ
Y
= 400 if 7 intersects E.

Given z,y € (Q, set

(4.6) Dy(x,y) = inf{Ly(7y) : v is a rectifiable curve that connects z to y}.

Notice that
(4.7) Dy(z,2) < Dy(z,y) + Dy(y, 2) forall z,y,z € Q.

The quantity Dy(z,y) measures the separation between z and y caused
either by F or b. If  and y lie in different components of €2, then
Dy(z,y) = oo. If z,y lie in the same component of 2, then Dy(z,y)
vanishes when b = 0, and otherwise it measures the separation caused by b.
Thus the function b allows us to have a more flexible notion of separation
of points in €2, and to create more “components” of Q. However, we want
to limit the amount of separation that b can contribute, and so we shall
impose the following constraints on b:

(4.8) 0<b(z) < Cdist(z,E)™" for some C; > 0 and all z € Q;

(4.9) dv(z) =b(z)dz isa Carleson measure with respect to E.

Condition (4.8) simply prevents b from being too wild locally in §.
Condition (4.9) is much more interesting. It basically says that b(z)dz is no
larger in terms of its overall mass distribution than H? on a d-dimensional
regular set, although it will be smeared out locally in §2.

DerINITION 4.10. — A d-dimensional regular set £ C R satisfies
“Condition C” if there is a continuous function b(z) on Q@ = R¥\E
which satisfies (4.8) and (4.9), and a constant 7 > 0 such that for every
z € E and t > 0 we can find points y;,y2 € B(z,t)\F which satisfy

(4.11) dist(y;, E) >t for 1=1,2,
and
(4.12) Dy(y1,92) > 1.
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Notice that Condition B (Definition 2.15) implies Condition C with
b = 0. The main difference between Condition B and Condition C is that
we replace the requirement that y; and y; lie in different components of €2
with the weaker assumption (4.12). In other words, we allow points to be
separated by b even if they are not separated by E, although (4.9) implies
that this cannot happen too often.

For simple examples, take E to be a hyperplane with a ball removed, or a
d-dimensional half-plane. Then E satisfies Condition C but not Condition B.
(It is a good exercise to check this. In these examples one takes b(z) to
be dist(z, E)~! on certain parts of the complement of E near the trouble
spots, and O otherwise.)

TueorReM 4.13. — If a d-dimensional regular set E C Rt satisfies
Condition C, then it is locally symmetric (and hence uniformly rectifiable,
by Theorem 2.14).

We shall eventually derive Theorem 4.3 from Theorem 4.13 by showing
that the hypotheses of Theorem 4.3 imply that E satisfies Condition C.
Basically we shall take b(x) to be |V f|, except for an initial smoothing
of f. The uniform discontinuity condition (4.4) will give us the points y;
and y» as in Definition 4.10.

Let us now prove Theorem 4.13. Let F be a regular set which satisfies
Condition C, and set @ = RIF1\E. Without loss of generality we
may assume that the constant C; in (4.8) and the Carleson norm of
dv(z) = b(x)dz are both < 1. (Otherwise divide b by a suitable constant,
and then divide 7 by the same constant.) Let 7 be as in (4.11) and (4.12),
and notice that » must be < 1. Let € > 0 be given, and let B(¢) be the bad
set for the local symmetry condition defined by (2.13).

The proof of Theorem 4.13 will be along the same lines as for the
analogous results for Condition B or the WNPC. We shall associate to each
(z,t) € B(e) a set E(z,t) C F and a set F(z,t) C  in such a way that
we control their overlaps for different (z,t)’s. We shall control the total
mass of the E(z,t)’s and F(z,t)’s in terms of the regularity condition
(2.1) and the Carleson condition (4.9). We shall also show that for each
(z,t) € B(¢) one of E(z,t) and F(z,t) is not too small. The combination
of these estimates will tell us that there are not too many (z,t)’s, i.e., that
B(e) is a Carleson set.

Let (z,t) € B(e) be given. By definition of B(e) there are points
w,z € E N B(x,t) such that dist(2z — w, E) > et. Set t; = 1<t and
apply Condition C to the pair (z,t,). We conclude that there is a point
y1 € B(z,t1) such that

(4.14) dist(y1, E) > nt,
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and

(4.15) Di(yr, 22— w) 2 7.
(Actually, we get two points which satisfy (4.12), but we use the one
for which Dy(y,2z — w) is larger. Remember (4.7).) Applying the same
argument to the pair (w,t;) we get a point yo € B(w,t;) such that

(4.16) dist(yz, E) > nt:
and
(4.17) Dy(y2,11) > g

Notice that (4.17) and (4.8) (with C;
2dist(y;, ) for i = 1,2.

Next we want to choose a pair of balls B; = B(z, "120%) and
By = B(z,, 10t01) such that 2B; C B(y;, ™ tl) for j = 1,2. We have
a little room to move B; and B, and so we can choose them in such a way
that the unit vector 6(z,t) = {Z=2 lies in a fixed finite set © = O(e, )
of directions (which does not depend on z,t, z, w, etc.).

Set zp = 221 — 29 and By = B{(z, 1200 ). Because of our choices of y;
and y, we get that

Il

1) imply that |yo — 31| >

(4.18) By C B(2z — w,4t;) = B(?z —w, %’%)

Thus dist(u, £) > $ when u € By, because of the way w and 2 were
chosen. Using (4.8) with C; = 1 we obtain

(4.19) Dy(u, 22 — w) < 1”—0 when u € Bo.
Similarly, using (4.14) and (4.16) we get

(4.20) Dy(u,41) < 1% when u € 2B,
(4.21) Dy(u,12) < 177—0 when u € 2B,.

These estimates, together with (4.15), (4.17), (4.7), and the definition of
D, imply that

(4.22) Ly(y) > whenever « connects By to B; or By to Bj.

~|3
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We are now ready to define our sets E(z,t) C F and F(z,t) C Q. For
j = 0,1,2, let P; be the hyperplane through z; which is orthogonal to
(z,t). For £ € PN By, let L () be the half-line emanating from ¢ in the
direction 6(z,t). (See Figure 3 in Section 3.) Also denote by 1(&) the point
p € Ly (&) closest to & such that the line segment v = [€, p] connecting £
to u satisfies Ly(y) > 2. This point u(§) exists and lies between P and
P, because of (4.22). The segment [, u(€)) does not intersect E, since
otherwise u(€) would not be as close to ¢ as possible. (Don’t forget the
second possibility in (4.5).) Set

(4.23) E(z,t) = {p € E : there is a £ € P; N By such that p = p(§)},

and

(4.24) F,ty= |J 79,
EePiNB;

where

(4.25) Y(€) = (&, u(§))-

LEmMMA 4.26. — F(z,t) is an open subset of 2, and E(x,t) is a Borel set.

Let II be the orthogonal projection onto P;, and let T denote the part
of II71(P, N By) that lies (strictly) between P; and P,. The first part of
the lemma is easy, because F'(z,t) is the set of points p € T for which
the segment [II(y), u] does not intersect ' and such that the integral of b
on this segment is < Z. For the second part of the lemma we observe that
E(z,t) is the set of points 4 € ENT such that y— 16(z, ) lies in F(z,1)
for all sufficiently large n. This implies easily that E(z,t) is a Borel set.

Notice that ;(£) is a Borel measurable function. To see this it suffices to
check that (u(€) — &) - 0(x,t) is Borel measurable. This last is actually an
upper semicontinuous function, since F(z,t) is open.

Lemma 4.27. — HY(E(z,t)) + v(F(z,t)) > C(e,n) 1t

Set Al = {f e PNB: ,u(f) c E} and A, = PlﬂBl\Al, so that
both sets are measurable, since u(€) is a measurable function. Observe that
A, = II(E(z,t)), and hence H(E(z,t)) > H%(A;). On the other hand,
for each £ € A, we have that the integral of b over [¢,u(£)) is equal
to . Integrating this over A, gives v(F(z,t)) > LH?(A;). (Remember
that dv = b(z)dz.) Lemma 4.27 follows from these two estimates and the
definition of ;.

Vol. 13, n°® 4-1996.



414 G. DAVID AND S. SEMMES

Our next goal is to control the overlaps of the E(z,t)’s and the F(z,t)’s.
To do this we shall need the following lemma, which tells about what

happens when we look “down” (in the direction of —6(x,t)) instead of
$‘up79.

Lemma 4.28. — Given p € E(xz,t) U F(x,t), let a(p) be the smallest
nonnegative real number o such that Ly((p,p — af(z,t)]) > % Then

2

' Nty
4.2 - < < 5t.
(4.29 < o) <

Let p € E(z,t) U F(x,t) be given, and observe that Ly((p,II(p)]) < Z
by definition of E(z,t), F(x,t), and p(§). This implies that a(p) > 0. On
the other hand, if u is the point on Py of the form u = p — 36(z,t) for
some 8 > 0, then Ly((II(p), u)) > 7, because of (4.22). The conclusion of
all this is that o(p) exists, is positive and finite, and that p — a(p)#(x, t) lies
somewhere between P, and F;. The second inequality in (4.29) follows
from this and the fact that p lies between P, and P;. To get the first
inequality it is enough to notice that at least one of the two points p and
p — a(p)f(x,t) must lie outside 2B, because of (4.20). (See Figure 6.)

Pp
ML

2B >n/5
b EE 1 v y
p-a(p)g(x,t)

>n/4
PO ( )P‘EQ(XJ)

Bo

Fig. 6.

LemMA 4.30. — There is a constant C(e,n) such that if (z,t),(z',t') €
B(e) satisfy 6(x,t) = 0(2’',t') and either t' > C(e,n)t or |2’ —z| > C(e,n)t,
then E(z,t) N E(z',t') = § and F(z,t) N F(z',t') = 0.

This is an easy consequence of Lemma 4.28. Notice first that
E(z,t)UF(z,t) C B(z,4t). Thus if |z — 2’| > 10 max(t,t'), then B(x, 4t)
and B(z',4t') are disjoint, and we are in business. Suppose now that ¢ is
much larger than ¢ (or vice-versa), and that there is a point p in one of the
forbidden intersections. If one defines a(p) as in Lemma 4.28 for both (z, )
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and (z',t'), then one should get the same answer, since §(z,t) = 0(z',t'),
but this contradicts (4.29) if ¢ is sufficiently large compared to ¢'. Lemma
4.30 follows.

To conclude the proof of Theorem 4.13 we use the same argument as
employed in Section 3 to derive Theorem 3.5 from Lemma 3.23. Let X € £
and R > 0 be given, set H = B(e) N {(E N B(X, R) x (0, R]}, and let A;
and A} be as in the previous argument. The same computations as before
apply, except that (3.26) must be replaced with

(4.31) AH) < CY D {HYE(2, ) + v(F(x,1))}

i20z€A? :
< CHd(U E(z,t)) + CV(U F(z,t)).

As before we observe that E(z,t)UF(z,t) C B(X,5R) for all the relevant
(z,t)’s, and so the estimate A(H) < CR¢ reduces to (2.1) and (4.9). Thus
we conclude that B(e) is a Carleson set, as desired. This completes the
proof of Theorem 4.13.

Let us now turn to the proof of Theorem 4.3. Let £ and f be as in
the statement of the theorem. We would like to apply Theorem 4.13 with
b(z)dr = dv, where v is as in Theorem 4.3, but we need to regularize
f first.

Let p > 0 be small, to be chosen soon. Let {Q;};cs be an enumeration
of the maximal dyadic cubes in 2 = R\ E such that

(4.32) diam@ < pdist(Q, E).

Thus {Q;} provides a fine Whitney decomposition of (2. Note that
diam@Q; > £dist(Q;, E) for each j, by maximality of these cubes. It is not
hard to check that the family {100Q); } has bounded overlap, with a constant
which depends on the dimension but not p, if p is small enough. (The point
is that if 100Q); and 100Q); intersect, then the ratio of the diameters of Q);
and @); is bounded by a constant which does not depend on p, so long
as p is small enough, because the diameters will each be approximately
p times the distance to F, and the distance to £ will be about the same
for both ); and ();.) We can associate to this decomposition a partition of
unity {¢,},cs in the usual manner, in such a way that each ¢, is a smooth
function such that 0 < ¢; < 1, suppg; C 2Q;,|Vé;| < C(diam@;)™ !,
and 3. ¢; =1 on Q.
Define g on 2 by

(4.33) o) = S {5 / | Fdn).

JjeJ
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Then the Poincaré inequality gives

1 1
4. _ - i ) _
(4.34) X /Qj If —g] < C’pdlst(QJ,E)le| /50Qj dv(y)

if we require also that p < ﬁ. (This condition ensures that if 2Q;, touches
Qj;, then 2Q C 50Q;, and both Q; and Q; have roughly the same size.)
Given z € E and r > 0 we can cover B(z,r)\E with Q;’s and apply
(4.34) to get

(4:35) e [ ) - gwa
B(z,r)\E
< Cr—d_I/ pdist(y, E)dv(y)
B(z,2r)\E
<Cr? / pdv(y) < Cp,
B(z,2r)\E

since v is a Carleson measure with respect to F (as in the statement of
Theorem 4.3). We are using here also the fact that {50Q,} has bounded
overlap with a constant that does not depend on p (to get that the constant

C in (4.35) does not depend on p). Altogether we conclude that if p is
small enough, then

4.36 inf r‘d‘lf 9(y) — aldy > g,
(436) [ ) ey 2

where a is as in (4.4).

We are going to need a slightly stronger version of (4.36), in which we
integrate only over the set of y’s which are not too close to E. To get this
stronger version we use the following estimates.

LemMa 4.37. — Let x € E and v > 0 be given, and let M denote the mean
value of f over B(z,r). Given t >0, set E;={x € R4*! : dist(z, E) <t}.
Then the Lebesgue measure of B(z,r) N E,, is < Csrit!, and

(4.38) ] F(y) - Mldy < Csrhpi
B(z,r)NE;,

for all s € (0,1), where C depends on f but not on z,r,s.

To prove the first part we observe that B(xz,2r) N E can be covered by
< Cs~? balls of radius 2sr. This is not hard to do, using the regularity
assumption (2.1). The doubles of these balls cover B(z,r) N Ej,., which
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implies the first part of the lemma. The second part of the lemma is an easy
consequence of the first part, Holder’s inequality, and the Sobolev-Poincaré
estimate

(4.39) { / ( )If(y)—MIde}PSr‘d“l / R

where p = (d + 1)/d. (Actually, one can get a better estimate than (4.38)
with more direct arguments.) Of course we are also using our Carleson
measure assumption on |V f|.

LeMMA 4.40. — There exist p,s,a9 > 0 so that for each x € E and
r > 0 we have

(4.41) ingr_d‘lf lg(y) — aldy > ao.
ag B(z,7)\Es~,

Let M, and N, denote the averages of f and g, respectively, over
B(z,7)\E,. By standard reasoning it suffices to find a uniform lower
bound for

(4.42) pmd=1 / l9(y) — N.ldy
B(z,r)\E;,

when p and s are small enough. However, the difference between this and
(4.43) e [ i) - Mildy

B(z,r)\Esr
is < Cp, because of (4.35), and the difference between (4.43) and

(4.44) /B )= Midy

is < C’sﬁ‘l, because of Lemma 4.37. (That is, we can control |M, — M
using (4.38).) We have a uniform lower bound on (4.44), because of “4.4),
and we conclude that there is a uniform lower bound on (4.42) if p and s
are small enough. This proves the lemma.

Let p,s, and ag be as in Lemma 4.40, and fixed for the rest of the
proof. From now on we can permit our constants to depend on p. (This
was dangerous before, as in (4.36).)
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Notice that g is smooth on €. Let Vg denote its pointwise gradient on Q,
ignoring any singular distributional part on E. Because {¢;} is a partition
of unity we have that > ;V¢; = 0 on Q. Using this and the Poincaré
inequality it is not hard to show that
(4.45) sup|Vg(z) < Oo— [ du(y)

Qj |Qj| 50Q;
for all Q;. (This is similar to (4.34), and it uses the observation that we can
control the difference between T@l_l le f(y)dy and ﬁ fQj f(y)dy in terms
of the right side of (4.45) when 2Q); touches @);.) Since v is a Carleson
measure with respect to E' (and diam@); > £dist(Q;, E)) we get that

(4.46) [Vg(y)| < Cdist(y, )™,

and

(4.47)  dv(y) = |Vg(y)|dy is a Carleson measure with respect to E.

(Note that dv(y) really lives on €, while v itself will have a nontrivial
singular part on F.)

We are now ready to apply Theorem 4.13. Set b = |Vg|. We have
just seen that b satisfies (4.8) and (4.9), and so we only need to verify
that there is an n > 0 so that for each x+ € £ and ¢ > 0 we can
find points y1,y2 € B(z,t)\E which satisfy (4.11) and (4.12). Since
Dy(y1,y2) > |g(y1) — 9(y2)| by definitions, the existence of 7,y;, and y»
follows easily from Lemma 4.40 (with 7 given in terms of s and ag). Thus
F satisfies Condition C, and Theorem 4.3 follows from Theorem 4.13.

Remark 4.48. — Theorem 4.3 would not remain valid if we replaced (4.4)
with a weaker condition of the type “the jump of f across E is bounded
from below”. Indeed, if such a condition were sufficient, then we could try
to apply it with f taken to be the characteristic function of an open set
U c R whose boundary is regular in the sense of (2.1). It is easy to
build examples of such sets U whose boundary is not uniformly rectifiable
but for which the jump across dU is bounded from below. (Basically one
should choose U to be a union of many scattered little cubes, as in a
suitable approximation to a Cantor set.)

Remark 4.49. — We stated Theorem 4.3 only for real-valued functions f,
but it is also valid (with the same proof) for vector-valued functions.

Remark 4.50. — Contrary to the situation with the WNPC, we cannot use
anything like the slightly more direct argument mentioned in Remark 3.27
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for deriving uniform rectifiability from the hypotheses of Theorems 4.3 or
4.13. Indeed, the next result tells us that the hypotheses of those theorems
are actually equivalent to uniform rectifiability, while it is known [Hr]
that uniform rectifiability does not imply the existence of big projections
or the BPLG condition (see Definitions 3.28 and 3.32), and the approach
mentioned in Remark 3.27 necessarily entails those properties. Thus in
this case we cannot seem to avoid Theorem 2.14 and the local symmetry
condition.

Let us now turn to the converse of Theorem 4.3.

THEOREM 4.51. — Let E be a d-dimensional uniformly rectifiable set
in R4, Then there is a smooth real-valued function g on Q = R*1\E
and a constant C > 0 such that

(4.52) lg(y)| < C and |Vg(y)| < Cdist(y, E)~* for all y € Q,
(4.53) |Vg(y)|dy is a Carleson measure with respect to E,
and

ac

(4.54) inf t_d_lf lg(z) —aldz > C~! forallz € E and t > 0.
R B(z,t)\E

The “distributional” version of (4.53) is also true. That is, since g is
bounded by (4.52) we can view it as a distribution on all of R?*!, and its
distributional gradient is a vector-valued measure whose total variation is a
Carleson measure. This strengthening of (4.53) will follow from the proof,
but it can also be derived from the boundedness of g and the regularity
of E. In other words, the singular part of the distributional gradient will
be a measure living on £ which will be bounded by a constant times
Hausdorff measure.

Our construction will also give that Vg = 0 except on a Carleson set
in Q, i.e., a set H such that 1y(y)dist(y, E)~'dy is a Carleson measure
with respect to FE.

To prove Theorem 4.51 we shall (unfortunately) need to import some
results and terminology from [DS3]. Although this will make the proof less
pleasant to read, it seems to be the only way to prevent it from becoming
too long.

Let E C R3*! be given, as in Theorem 4.51, and let A be a family of
“cubes” on E. The elements of A are subsets of £ which have the same
sort of size and intersection properties as dyadic cubes in R?; see [DS3],
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p. 53, for details. We shall not use these cubes in a serious way here, but
rather as a convenient tool for coding geometric information about E.

Because E is uniformly rectifiable, it satisfies the “bilateral weak
geometric lemma” (BWGL). This means that for each ¢ > 0 and k£ > 1
the set

(4.55) B(e,k) = {Q € A : there does not exist a d-plane P(Q) such that
dist(z, P(Q)) < ediam(@ for all z € FE which satisfy
dist(z, Q) < kdiam@ and also dist(p, F) < ediam@
for all p € P(Q)which satisfy dist(p, Q) < kdiam@}

(i.e., the set of cubes @ such that F is not well-approximated “bilaterally”
by a d-plane near ()) satisfies a Carleson packing condition of the type

(4.56) > HYQ)<Ct! forall z€Eandt>0.

QEB(e,k)
QCB(z,t)

(See p. 32 of [DS3] for the BWGL, and see the discussion around Lemma
3.10 on p. 55 of [DS3] for the packing condition (4.56).) In other words,
E is very well approximated by a d-plane near most cubes (). We shall
choose ¢ and % later in the argument.

Lemma 3.22 on p. 58 in [DS3] says that there is a ‘“coronization”
(B,G,F) of E such that B(e,k) C B. The precise definition of a
coronization is given on p. 55 of [DS3], and the highlights are these:
B is a set of “bad” cubes in A, and it satisfies a Carleson packing condition
(like (4.56)); G is the complement of B in A, the set of “good cubes”; F is
a partition of G into “stopping-time regions” S, S € F; each stopping-time
region S has a maximal cube Q(S), and the collection of all the maximal
cubes {Q(S) : S € F} satisfies a Carleson packing condition (like (4.56)).
This Carleson packing condition provides a way of saying that there are not
too many of these stopping-time regions. The stopping-time regions satisfy
some additional geometric conditions, such as the “connectedness” property
that if Q; and @, lie in one of them, call it S, and if @ is a cube which
satisfies Q, C @ C @», then @ lies in S also. See [DS3] for more details.

This coronization is useful because it provides a decomposition of the
complement of E into a not-too-large family of nice regions for which the
geometry of F is pretty trivial. It will then be easy to build approximations
to our desired function ¢ in each of these regions, and to combine these
approximations in a manner consistent with the claims of Theorem 4.51.
To do these things we need some more technical preliminaries.
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Let A be a large number, to be chosen later. We shall call two cubes
Q1,Q2 € A “neighbors” if

(4.57) dist(Q1, Q2) < A(diam@; + diam@Q-) and
A7 ldiamQ; < diamQ, < A diamQ;.

Because B(e, k) C B and B is the complement of G, we can assign to
each cube @ in G a d-plane P(Q) with the properties described in (4.55).
Thus the part of E not too far from  lies very close to P(Q), and the
part of P(Q) which is not too far from ¢ must lie very close to E. This
d-plane is not unique, but it turns out that it is determined up to small
perturbations, and at any rate we simply pick one that works for each Q.
Two cubes in G which are neighbors will have their corresponding P(Q)’s
being almost parallel, as in the following.

Lemma 4.58. — If Q1,Q2 € G are neighbors, and if k is large enough
(depending on A), then Angle(P(Q1), P(Q2)) < C¢, where C depends on
A but not €,Q1, or Q.

By “Angle(P, P')” we mean the largest angle between the two d-planes
P, P'. Parallel planes have angle 0, and otherwise the angle measures the
extent to which they are not parallel. Lemma 4.58 is the same as Lemma
5.13 in [DS1]. The proof is quite easy; it comes down to the fact that
P(Q,) and P(Q.) are both approximating the same piece of FE.

Since each stopping-time region S € F is contained in G, we have
chosen d-planes for all the cubes in every stopping-time region S. The next
lemma tells us that we can choose unit normals to the P(Q)’s for Q in a
fixed stopping-time region S in a coherent way.

LemMA 4.59. — If € and k™' are chosen small enough (depending on A
in particular), then we can choose a unit normal N(Q) to P(Q) for each
Q € G in such a way that if S € F and Q,,Q- € S are neighbors, then

(4.60) IN(Q)) ~ N(@2)| < 5.

This is Lemma 2.22 on p. 105 of [DS3]. The main point is that once we
have chosen N(Q) for the maximal cube Q(S) of a stopping-time region
S € F, then we have no choice for the other cubes in S, because P(Q;)
and P((Q)2) are always very close when @; and @, are neighbors. Note
that Lemma 4.58 says that if Q; and Q are neighbors, then N(Q;) and
N(Q2) are either almost the same or almost the opposite of each other.
Thus, once we have (4.60), we can get a better estimate from Lemma 4.58.
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We now have all the information about F that we need, but we need to
convert its coding in terms of cubes in A into information about Q (the
complement of F).

Let {W;},c; be a Whitney decomposition of 2. For instance, take the
cubes (); used in the proof of Theorem 4.3 (around (4.32)) and change
their names. (Note that the W;’s are supposed to be actual Euclidean
cubes, as opposed to the elements of A.) In particular we require that
dist(2W;, E) ~ diamW; for all j. For each j € J choose a Q; € A
such that

(461) diSt(Qj, WJ) = diSt(Wj, E)
and
(4.62) C~'diamW; < diam@; < CdiamW;,

where C does not depend on j. (C' can be given in terms of the constants
associated to A as in [DS3].)

Define a; € {+1,—1,0} for j € J as follows. If Q; lies in the bad
set B, then set a; = 0. If Q; € G, then W; C R\ P(Q;) if € and k!
are small enough. (This follows from the fact that dist(W;, F) = diamW;,
(4.61), (4.62), and the fact that all elements of P(Q) which are not too far
from ) must lie very close to E.) In this case we set a; = +1 if W; lies
on the side of P(Q;) into which N(Q;) points, and a; = —1 otherwise.

Let {¢;} be a partition of unity associated to the W;’s in the
usual manner (as in [St], p. 168-170). In particular each ¢; satisfies
0< ¢j <1, |V¢]I < C(diaij)“l, and suppgbj C QWJ Set

(4.63) ay) =Y a;p;(y) foryeQ

JjeJ

It is very easy to see that (4.52) holds, using the fact that the cubes 2W;
have bounded overlap. We want to show that Vg is supported on a Carleson
set in . Afterwards we shall verify (4.54) using the fact that our choice
of «;’s makes g switch frequently from +1 to —1 across E.

Fix a Whitney cube W; and suppose that Vg # 0 somewhere on W,.
This means that there is a Whitney cube W; such that 2W; N W, # 0 and
a; # oy If A is sufficiently large, then @); and (; must be neighbors.
One possibility is that either (); or ¢ lies in the bad set B. Otherwise,
if both lie in G, then 2W; U W, does not touch P(Q;) or P(Q;) if € and
k1 are small enough (for the same reason that W; C R4\ P(Q;) when
Q; € G). The fact that o; # «; implies that (); and Q; cannot belong to
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the same stopping-time region in JF. This follows from the definition of
the a’s, and the compatibility with the orientations given in Lemma 4.59.
(It comes down to the fact that W; cannot simultaneously be on opposite
sides of the same d-plane.) Altogether we get that ; lies in the set

(4.64) H={Q € A : Q has a neighbor in B} U
{Q € G : Q has a neighbor
in a different stopping-time region than Q}.

Lemma 3.27 and (3.28) on p. 59-60 of [DS3] imply that H satisfies a
Carleson packing condition, i.e.,

(4.65) > HYQ)<Ct* forzeEandt>0.

QEH
QCB(z,)

Let H denote the set of [ € J such that Q; € H.

Observe that a given cube ) € H cannot arise as a @); for more than
a bounded number of indices ! € H. Indeed, if two W;’s have the same
Qi € A, then they have to have approximately the same size, and they
cannot be too far from each other (compared to their diameters). It is
easy to check that any collection of Whitney cubes which have these two
properties can have only a bounded number of elements.

This bound on the multiplicity allows us to derive from (4.65) a similar
estimate for H and the W)’s:

(4.66) > (diamWy)* < Ctf

leH
WiNB(z,t)#0

for all € £ and ¢ > 0. We are using here the observation that if W,
intersects B(z,t), then diamW, = dist(W;, E) < ¢, and so @; C B(z, Ct).
Remember also that H4(Q) > C~'(diamQ)? for all cubes Q € A.

Let V denote the union of all the W;’s on which Vg does not vanish
identically. Thus V C Ujc g W, and (4.66) implies that

(4.67) / dist(y, E) ‘dy < Ct?
VNB(z,t)

for all x € F and ¢ > 0. This is the Carleson measure estimate on V that
we wanted, and it implies (4.53) immediately (with the help of (4.52)).
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We are left with the task of verifying (4.54). The point is that we defined
g so that if Q € G, then, near @, g should be about +1 on one side of
P(Q) and about —1 on the other. More precisely, let us show that for each
x € F and each t > 0 there exist Whitney cubes W; and W,, such that

(4.68) Wi UW,, C B(x,t),
(4.69) diamW, > C~'t and diamW,, > C~'t, and
(4.70) g9(y) =1 on W, and g(y) = —1 on W,,.

It is easy to see that (4.54) will follow once we have established this fact.

Let z € E and ¢ > 0 be given. Because of (4.65), we can find a cube
Q € A such that Q C B(z,%),diamQ > %, and Q ¢ H. (Indeed, the
sum of the measures H4(Q) of the cubes @ that satisfy only the first two
conditions and not the third grows like t?logC’ as C' — oo, and if all these
cubes were in H then this would contradict (4.65) when C’ is sufficiently
large.) If the neighborly constant A in (4.57) is chosen large enough, then
we can find Whitney cubes W; and W,,, (one on each side of P(Q)) that
satisfy the desired conditions (4.68), (4.69), and (4.70).

Thus we can choose the constant A, and then € and k, in such a way that
the function ¢ that we have defined satisfies all the required properties. This
completes the proof of Theorem 4.51. This proof also gives the following
more precise converse to Theorem 4.13.

THEOREM 4.71. — Let E be a d-dimensional uniformly rectifiable set
in R4, Then E satisfies Condition C, and we can even choose b(y) so that

0 < b(y) < dist(y, )" 1y(y), where V C R4\ satisfies the Carleson
condition

(4.72) / dist(y, E)'dy < Ct*  forall = € Eandt > 0.
VNB(z,t)

This follows from the construction above. More precisely, we take V and
g to be as defined in the preceding argument, and we set b = C~!|Vg|
for a suitably large constant C'. Then we have already seen that (4.8),
(4.9), and (4.72) are satisfied, and we need only check that we can find
points y; and y» as in (4.11) and (4.12). This follows from the existence
of the Whitney cubes W, and W,, as in (4.68)-(4.70) and the fact that

Dy(y1,92) = Cg(y1) — g(y2)l-

Remark 4.73. — It is interesting to compare the various situations in
which uniformly rectifiable sets arise as singular sets of functions. If d = 1,
so that we can identify R4*+! with the complex plane, then we can build
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holomorphic functions on the complement of £ with large jump across
E by taking the Cauchy integral of suitable suitable measures on E (like
Hausdorff measure). A similar construction in higher dimensions produces
Riesz systems or Clifford-holomorphic functions with a large jump. These
holomorphic functions satisfy weaker quadratic versions of the gradient
estimate (4.53) (see (2.39) in Definition 2.38 on p. 44 of [DS3]), but they
have the advantage of being holomorphic. In other words, in this section
we are making the trade-off of giving up holomorphicity in exchange
for stronger gradient estimates. (Compare with Theorem 3.4 on p. 240
and Exercise 13 on p. 275 of [Ga].) In the next section we shall deal
with functions which satisfy stronger Carleson measure conditions on their
gradients but which have weaker singularities.

5. MINIMIZERS OF THE MUMFORD-SHAH
FUNCTIONAL AND ITS VARIANTS

Let @ ¢ Rt be a nice domain. To simplify the exposition we assume
for the time being that 2 is a cube or a ball in R4*?, but we shall discuss
general conditions on £ which will suffice for our purposes in the remarks
at the end of the section. Also let 1 < p < co and g € L>(Q2) be given.
We want to consider the functional

(51)  J(wK)= / P / IVl + HY(K),
11V:¢ O\K

where H¢ denotes d-dimensional Hausdorff measure, and the competitors
(u, K') are required to satisfy the following conditions:

(5.2) the set K is (relatively) closed in © and H*(K) < oo;
(5.3) wu is a function defined on Q\ K whose distributional gradient
Vu lies in LP(Q\K) (so that u € W P(Q\K)).

(The integrals in (5.1) are taken with respect to ordinary Lebesgue measure.)

This is a generalization of the Mumford-Shah functional introduced in
[MuS] (which corresponds to p = 2 and d = 1). We are allowing an
exponent p # 2 in the gradient term because it is not clear whether powers
p > 2 (like p = d + 1) will be more natural in higher dimensions. For
the purposes of this paper the choice of exponent will make no difference.
We could also change the power 2 in the first integral without ill effect,
but that is less likely to have substantial consequences for the properties of
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J(u, K). Also, we could have allowed multiplicative constants to modify
the relative weighting of the three terms in (5.1) without seriously affecting
the arguments to follow.

There is a very general existence theorem for minimizers of a large class
of functionals including J(u, K) given in [Am], but this result requires also
a larger class of competitors. It turns out that for J(u, K) these generalized
minimizers are equivalent to competitors which satisfy (5.2) and (5.3). This
was proved in [DCL] for the case p = 2. Unfortunately the p # 2 case
does not seem to be stated anywhere in exactly this way, but the paper
[CL2] deals with the more complicated case of maps into spheres, and their
arguments apply to this situation as well. The proofs of these existence
results also imply that the singular sets of minimizers are rectifiable.

See [MoS] for more information about the Mumford-Shah functional,
particularly in connection with image segmentation and the properties of
its minimizers. (See also [DS5] for the latter.)

Let us call a competitor (u, K) irreducible if there is not a proper closed
subset K of K such that u extends to a C* function on Q\K It is not hard
to check that any minimizer (u, K) can be replaced with an irreducible
minimizer (also called “an essential minimizing pair” in Remark 4.6 of

[CL2]). This is useful, since it excludes extraneous isolated points, etc.,
from K.

THEOREM 5.4. — Let Q, g, and J(-,-) be as above, and let (u,K) be an
irreducible minimizer for J(-,-). Then K is contained in a d-dimensional
uniformly rectifiable set.

As in Definition 2.9, the conclusion means that there is an A;-weight
w and an w-regular mapping z : RY — R%*2 such that K C 2(R¢?). Of
course the part of z(R?) which is far from { does not really matter here.

The proof of Theorem 5.4 will show that the uniform rectifiability
constants (i.e., the constants in (2.5)-(2.8)) can be controlled by a function
of Q,p,d, and ||g||c only. Some variants of Theorem 5.4 will be described
in the Remarks 5.47 and 5.49 below.

When d = 1 this theorem implies that the singular set K of any irreducible
minimizer is contained in a regular curve. This was already proved in [DS4]
(at least when p = 2, but the method also works in general). The argument
here will be somewhat different, and more successful in higher dimensions.

A crucial ingredient in the proof of Theorem 5.4 is the “Elimination
Lemma”: under the assumptions of the theorem, there is a constant Cj
(depending on p,d, and ||g||.) such that

(5.5) HYKNB(z,r)) > Cy'r? forall z € K and 0 < r < dist(z, Q).
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When d = 1 and p = 2 this was proved in [DMS]. When d > 1 and
p = 2 this follows from Remark 3.13 in [CL1], although it is not stated
explicitly in this form. A more general result is given in Lemma 4.9
[CL2], but unfortunately that result is stated only for the more complicated
situation where the mappings take values in spheres (instead of simply R).
Although it is not stated explicitly in [CL2], their methods apply also to
the real-valued case.

Let us now prove the theorem. Let (u, K) be an irreducible minimizer for
J(:,-). Our plan is to show that K satisfies a local version of the WNPC
(Definition 3.4). To do this we shall need some preliminary estimates,
especially for Vu.

LEMMA 5.6. — There is a constant C (depending on ||g||o) such that

(5.7) HYK nB(z,r)) < Cr?

and

(5.8) / IVulP < Cr
QNB(z,r)\K

forall z € K and 0 < r < 1.

This follows from a simple, brutal, and well-known truncation argument.
If we replace K N B(x,r) with dB(z,r) and u by 0 on B(z,r), then we
get a new competitor (u, K) such that

(5.9) / fi-gP< / Ju— gl + g2 B(a,7)]
O\K oK

s/ _|u—gl*+Crd,
O\K

(5.10) / ~|Vﬂ|p=/ ~|Vu|p—/ _|VulP,
O\K QK QNB(z,r)\K

and
(5.11) HY(K) < HY(K) - H{K N B(z,7)) + HY9B(z,r)).

The estimates (5.7) and (5.8) follow from these inequalities and the fact
that J(u, K) < J(u, K), since (u, K) is a minimizer.
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Note that the mass bounds (5.5) and (5.8) imply that K is “locally”
regular (in the sense of (2.1)).
For the next estimate fix any ¢ € (1,p) and set

2

1 q
5.12 we(x,t :t{—/ qu}
(512) o) =t [,V

for all pairs (z,t) € A = {(y,s) € K x (0,1] : B(y,s) C Q}. (This set
A is a local version of the set K x R, which we have used so much
before, but it is unrelated to the A which we used in the previous section.)
Holder’s inequality (or Jensen’s) implies that wy(z,t) < Cw,(z,t), which
is itself < C by (5.8). The reason for taking ¢ < p is that we can do
much better than this.

LemMma 5.13. — The function wy(x,t) satisfies the local Carleson measure
estimate

(5.14) / / wy(z,t)dA(z,t) < CR?
(z,t)e(KNB(X,R))x(0,R)]

for some C > 0and all X € K and 0 < R < min(1, 3dist(X, 8Q)), where
dA denotes the measure t~*dH?(x)dt on A.

This lemma can be verified without much pain using Hélder’s inequality,
Fubini’s theorem, the mass bounds (5.7) and (5.5), and also (5.8). We
shall omit the proof because it is the same as the proof of Proposition 4.5
in [DS4}, modulo cosmetic changes pertaining to the dimension and the
more general exponents permitted here. However, as a demonstration of
our solidarity with the reader, let us indicate the main points. Given 7 > 0,
consider the quantity

1
1 Vuly) [P (¢~ dist (y, K))"d }
(G [t oy

Like wy(z,t), this is an average of |Vu| which is smaller than w,(z,t).
The analogue of Lemma 5.13 for this quantity instead of w,(z,t) is much
easier to prove, using Fubini and a technical lemma to reduce to (5.8).
Lemma 5.13 itself can be reduced to this simpler variant when 7 is small
enough using Holder’s inequality and another technical lemma.

With these preliminary estimates out of the way let us now show that K
satisfies a local version of the WNPC. Let & > 1 and M > 0 be given and
fixed. We may as well assume that & > 10. Suppose that (z,t) € K x (0, 1]
satisfies B(z, kt) C Q and (z,t) € B(Cy,k, M), where B(C1,k, M) is as
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defined at the beginning of Section 3 (see (3.3)), but with E replaced by
K, and where C, is large, to be chosen soon. We want to show that these
properties imply that w,(z, kt) is not too small, so that the set of these
(z,t)’s will be controlled by Lemma 5.13. We shall only be able to do this
for g close to p, but that will be adequate for our purposes.

By definition of B(Cy,k, M), we have that (3.3) holds (with £ = K)
for all f € C(B(x,kt)\K). A standard limiting argument implies that
(3.3) is also true for any f € W1P(B(z, kt)\K), and for the function  in
particular. Hence there is a real number « such that

(5.15)  |mp,u— o] < Mt~ / IVl
B(z, kt)\ K

< Ot v wy (z, kt) 7 < Ct v w,(z, kt)

8=

for all balls By C B(z,t)\K with radius > C;'t. The constants C in
(5.15) depend on k and M, but we do not mind. We may as well require
also that |a| < ||u)|co.

The basic idea in the argument that follows is quite simple. If w,(z, kt)
is very small, then (5.15) says that u oscillates very little on B(z,t). We
then modify (u, K) in such a way as to remove a substantial portion of
K inside B(z,t), and hence reduce the H(K) term in (5.1) substantially,
while only adding a small amount to the other two terms in J(u, K). This
will contradict the minimality of J(u, K). In making this modification we
cannot operate too brutally on B(z,t) itself, we need to choose first a
slightly smaller ball B(z,r) whose boundary has small intersection with K
and other nice properties. Once we choose this ball we shall then modify
K and wu.

Let us now choose the ball B(z,r) C B(z,t) such that K N BB(x ) is
reasonably small, etc. Let 7 be a small positive number ( < 10 anyway),
to be chosen soon, and cover K N B(z,t) by balls D;,i € I, which are
centered on K N B(x,t) and which all have radius 7¢. We can do this with
< Cn~ balls, because of the mass bounds 5. 5) and (5.7). We claim that

we can find a radius r such that
t 3
5.16 - <r<—=

and

(5.17) the set I of indices ¢ € I such that 2D; touches dB(x, 1)
has < Cn'~? elements.
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This is easy to see, because we can find more than (Cn)~! choices of
radii r which satisfy (5.16) and for which the corresponding sets of indices
I, are disjoint. We can even choose r so that it also satisfies

(5.18) / Vu|tdH? < Ot~ / |VultdH™!
dB(z,r)\K B(z,t)\K

< Ctd<wq(‘z‘7 t)) ®
= ¢ )

because of the usual Fubini theorem argument. (If we choose C large
enough, then at least half the 7’s in the range (5.16) satisfy (5.18), and
that is enough so that at least one of them also satisfies (5.17).) Fix such
a radius 7.

Next we want to modify (v, K) on B(z,r) to get a new competitor
(w,K). We start with K. Set

(5.19) Z = 8B(z,r)n (| ] 2D)
1€l

and

(5.20) K = (K U Z)\(B(z,r) N K).

Notice that K is closed, since K N 9B(x,7) C Z, and also that

(5.21) HYK) < HYK) + HZ) — HY(K n B(z,1))
< HYK)+ Cnt* — Cyr,

This uses the bound in (5.17) on the number of elements of I and also (5.5).
We now choose 7 to be so small that (5.21) implies

(5.22) HYK) < HY(K) — (2¢t1Cy)~1¢¢.

We can do this in such a way that 7 does not depend on C; (which will
be chosen later), k, or M (let alone z or t). _

Our next task is to modify v to get a new function % on 2\ K. We shall
leave u alone off B(z,), but we shall make a substantial change inside
B(z,r) in order to get rid of the singularities of u there. We shall first
build a function h on dB(x, r) which agrees with « off Z, and then extend
h to B(z,r) in a nice way.

In the following we shall need to work with the restriction of u to
O0B(z,r)\Z. Of course this does not quite make sense for merely a function
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in WP, The definition of u implies that it satisfies a PDE off K whose
leading term is the p-Laplacian of u, and we could use the well-known
regularity theory for such things to get better information about u, but
overall it is probably simpler to employ the usual technicalities about
Sobolev spaces. Since u € W'P(Q\K), u has a “trace” on B(z,r)\K
which is locally in LP and which we also denote by u. We can even be
careful in choosing r and get that this trace lies in W14(dB(xz,7)\K), and
that the tangential part of the gradient of this trace is controlled by (5.18).
These technical points are quite standard, and we shall be a little sloppy in
referring to them. We might even use the expression “the restriction of u
to 0B(x,7)\K” instead of saying “trace”.
Let ¢ be a smooth function on R4+ such that 0 < ¢ < 1,

(5.23) #(z) =0 when dist(z, K) < %,
(5.24) #(z) =1 when dist(z, K) > nt,
and

(5.25) [Vo(z)| < Cp~ 1.

The construction of such a function is a standard exercise.
Define a function h on dB(z,r) by

(5.26) h(z) = (u(z) — a)g(2) + o,
where « is the same number as in (5.15). Strictly speaking, we are using
here the trace of u on dB(x,7)\K, and we interpret (5.26) to mean that
h = a on a neighborhood of dB(z,r) N K, even though v is not defined
on K. By (5.24) and the definition of Z we have that
(5.27) h(z) = u(z) on z € 0B(z,r)\Z.

Notice also that h € W19(dB(z,r)).
Take C; to be (10n)~!. With this choice we claim that

(5.28) / IVh|“dH? < Ctd(M) o
8B(z,r) t

where the constant C' may depend on 7, k, and M.
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To prove this claim we begin by observing that |[VA| < IVullop ek +
|u — ||V, so that the left side of (5.28) is at most a constant times

(5.29) / VulidH? + / (Ot u — a|)7dHY,
8B(z,r)\K Zo

where Zy = {z € 0B(z,r) : 2nt < dist(z,K) < nt}. The first integral
is at most Ct4(t~w,(x, kt))* by (5.18), and so we only need to estimate
the second one.

Given z € Zo, let B; = Bi(z) denote the ball B(z, ). We shall need
the estimate

(5.30) / lu = mp, wlidH? < Ct-1 / Vult,
B;N3dB(x,r)

B,

where C' depends on 7. This inequality is basically well known, but let us
quickly sketch a proof. It is helpful to take B; to be a ball contained in B,
such that 2B, does not intersect B(z,r) and the radius of B, is at least
10~3nt. To prove (5.30) it suffices to show that

(5.31) / lu — mp,u|fdH? < Cta1 |Vul|?,
B1NdB(x,r) B,

since the usual Poincaré inequality will control |mp, u — mp,u|. Suppose
for the moment that u is C'. Then for each y,z € B; we can estimate
|u(y) — u(z)| in terms of the integral of |Vu| over the segment that joins
them, and then it is an simple matter to get (5.31) by averaging over
y € BiNOB(z,r) and z € B,. The general case can be reduced to
the estimate for C* functions by standard approximation arguments. This
proves (5.30).

Now let us use (5.30) to prove (5.28). With B;(z) as above, notice that
we chose C in such a way that B; satisfies (5.15). We can cover Z, with
a family of balls like B; with bounded overlap and then use (5.15) and
(5.30) on each ball and sum to get

5.32 u—alldH* < Cta~! Vul? + Ct{t v w x, kit EAU
q
Zy B(:t,zT)
< th+d (wQ(xv kt)) B
—_— t .

This implies the estimate that we need on the second term in (5.29) to get
(5.28), and so our claim is established.
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We now define & on B(z,r) to be the harmonic extension of the
function h, i.e., the Poisson extension of h. If we choose ¢ to be sufficiently
close to p (one can easily compute a suitable range), then « lies in
WLP(B(z,r)) and satisfies

(5.33) / |Vl < Ctd+1t‘Td”{ / th[qud}q.
B(z,r) a8B(z,r)

(This is pretty standard and not hard to check.) Combining this with (5.28)
gives

(5.34) / |ValP < Ctlw,(z, kt).
B(z,r)

Set w = u_on the complement of B(z,r) U Z. Because of (5.27),
u € WHP(Q\K). The main point here is that we have chosen % in such
a way that it does not jump across 0B(z,r)\Z, even though it will jump
across Z, and so the distributional gradient of u will be locally integrable
around 0B(z,m)\Z. It is easy to check that (u, K) is an acceptable
competitor for J(-,-), and so J(u,K) < J(u,K). We want to use this
inequality to get a lower bound for w,(z, kt). The idea is that if w,(z, kt)
is very small, then the amount of additional energy that u has is small
compared to the amount of K that we removed to get K, in contradiction
to the minimality of J(u, K).

To estimate J(u, K') we begin by observing that ||u||o. < ||g||oo. Indeed,
if this were not true, then we could reduce J(u,K) by truncating wu,
and contradict the minimality of (u, K). It is not hard to check that
|Plloc < ||tt]|oo, by the definition (5.26) of h, and hence that ||i]|oo < ||%[oos
by definition of . Thus ||@||co < ||g||co. This and the definition of % imply
that

(5.35) / gl < / fu — gf? + Cot* g2,
O\K Q\K

where the constant C; can be taken to be 4 times the volume of the unit
ball in R4,
From (5.35), (5.34), and (5.22) we obtain that

(5.36) J(@, K) < J(u, K)—(291Co) "Lt + Ctlw, (z, kt)+Cat® || g|2 .
This implies that

(5.37) wy(z, kt) > C(k,M)™!
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when t < to = [29F2C,Col|g||%] L.

Altogether now we have shown that there is a constant C; such that
for all £ > 10 and all M > 0 there exists a constant C(k, M) so that
(5.37) holds whenever x € K and t € (0,t,] satisfy B(x,kt) C Q and
(z,t) € B(Cy,k, M). Therefore, by Lemma 5.13,

(5.38) B ={(z,t) € K x (0,t0] : dist(z, Q) < kt
and (z,t) € B(Cy,k, M)} is a “local Carleson set”.
This means that
(5.39)  A(BN([KNB(X,R)] x (0,R])) < CR
for all X € K and 0 < R < min(1, %dist(X, a0)),

where A is as in Lemma 5.13.

We are now almost finished with the proof of Theorem 5.4, but before
we finish it off let us specify some general conditions on £ under which
the rest of the proof will work. (The argument so far works for any open
set.) The simplest conditions for us to use at the moment are the following:

(5.40) (2 is bounded,

and

(5.41)  there is a d-dimensional regular set E
which satisfies the WNPC condition and contains 9.

Under these conditions we shall show that ' = K UF is a regular set which
satisfies the WNPC. Theorem 5.4 will then follow from Theorem 3.5.
Let us first check that F' is regular. It is clearly closed. We have

(5.42) HYFn B(z,r)) < Crd

because of (5.7), (5.40), and the corresponding estimate for E. Next,
(5.43) HYF N B(z,r)) > C~ 4

holds trivially when z € E, and also when r > 2dist(x,d(), because

E is regular. When = € K and r < 2dist(z,9Q) we simply use (5.5).
Thus F' is regular.
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Now we want to check that F satisfies the WNPC. Denote by
Bg(C,k, M) the subset of E x R, that was defined around (3.3), and
let Bp(C,k, M) denote the corresponding object for F. Our assumption
(5.41) implies that there is a constant Cg such that Bg(Cg, k, M )is a
Carleson set in £ x R, for all ¥k > 1 and M > 0.

LEMMA 5.44. — If Cp = Csmax(Cy,CEg), where Cs is a sufficiently
large constant (which depends only on d and the regularity constants for E
and F), then Bp(Cp,k, M) is a Carleson set in F x R for all choices
of k > 1and M > 0.

Of course this says that F' satisfies the WNPC.
Let £ > 1 and M > 0 be given. We may as well assume that & > 10.
Define A;, A2, A3 C F x R, as follows:

A1 = {(z,t) € Br(Cr,k, M) : t > 10dist(z, E)};

Az = {(z,t) € Br(Cr,k, M) : z € K,t <tg, and kt < dist(x,dQ)};

Az = {(:L’,t) € BF(CF,IC,M) :
x € K and min(to, k~dist(z, Q) < t < 10dist(z, E)}.

It suffices to show that each of these is a Carleson set.

Let us begin with A;. Let (z,t) € A; be given. We claim that each pair
(y,8) withy € ENB(z,£) and £ < s < Z, say, lies in Bg(Cg, 3k, M’)
for some M’ which can be computed in terms of M,k,Cs, and d. To
prove this suppose that (y,s) satisfies the preceding conditions but that
(y,5) € Be(CEg,3k, M'). Then there is a function f in C>°(B(y, 3ks)\E)
and balls By, By C B(y, s)\E with radii > sCEl such that

(5.45) mo,f = mp fl 2 M5~ 1.

B(y,3ks)\E

Our restrictions on y and s imply that f € C*(B(z,kt)\F) and that the
balls By, B; are also contained in B(z,t). However, it is possible that these
balls will intersect K and hence F'. To get around this difficulty we observe
that if C'3 is large enough, then we can find balls B; C B; and B} C B,
which do not intersect F' and which have radii > tC’;l. (Indeed, since F
is regular of dimenson d, one can compute that the maximal number of
balls of radius tC;l which are contained in B; (or Bs) and have disjoint
doubles is about C~1Cj; times the maximal number of such balls which
also intersect F'.) We want to use these balls to contradict the assumption
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that (z,t) € Br(Cp, k, M). By the usual Poincaré inequality (as in (3.1))
we have that

(5.46) |, f — i /] + [mp, f —msy f| < Ot / VI,
B(z,t)\E

where C' depends on Cs (but we don’t care). This together with (5.45)
implies that the balls B] and B/, do not satisfy the analogue of (3.3) with
E replaced by F, C, replaced by Cr, and M replaced by a suitable M’.
This proves our claim.

Note that we did not use the assumption that ¢ > 10dist(x, E) in the
proof of the preceding claim. This assumption is needed in proving that the
claim implies that .4, is a Carleson set. Specifically, this assumption implies
that there are plenty of points (y, s) around with y € EN B(z, £), and this
allows us to derive the Carleson set condition on .4, (as a subset of F xR)
from the claim, a simple accounting argument (as in Sublemma 3.9), and
the fact that Bg(Cg, 3k, M') is a Carleson set (in E x Ry), by (5.41).
We omit the details.

Now let us check that A, is a Carleson set. Let B’ denote the set defined
in (5.38), but with M replaced by a larger constant M’. (This constant M’
will play the same role as in the preceding case, but may not be the same
number.) The key observation now is that if Cj is large enough, and if we
choose M’ correctly, then A, C B’. This follows from the definitions and
the fact that if B; and By are two balls of radius > tC] ! contained in
B(z,t), then we can find two smaller balls B; C B; and B} C By which
do not intersect F' and which have radii > tCj"'. The precise argument is
just like the one above for A;, and so we omit the details. Once we have
that A, C B’ it is not hard to prove that A, is a Carleson set using (5.39).
There is a small subtlety, though, which is that in (5.39) we are restricting
the range of R’s allowed, while in asserting that 4, is a Carleson set we
do not make any such restriction. We are saved by the restriction on the
range of ¢’s in the definition of 45, but we leave the details as an exercise.
(One has to chop large things up into small things. At least one of the
authors would use a Whitney decomposition of €2.) Of course there is also
the point that (5.39) applies only to X € K and not X € F', but that is not
serious, again because of the definition of As.

Finally, the Carleson condition on .4j is essentially trivial. We need only
observe that for each x € K we have that fR+ 1a,(z, )% < C. (Don’t
forget about (5.40).) This implies that A3 is a Carleson set, and Lemma
5.44 follows.

This completes the proof of Theorem 5.4.
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Remark 5.47. — As we mentioned before, in the preceding proof we
actually showed that if Q satisfies (5.40) and (5.41), then K is contained
in a regular set which satisfies the W N PC. The assumptions (5.40) and
(5.41) are pretty reasonable, but even for an arbitrary open set {2 we have
the following interior regularity result.

THEOREM 5.48. — Let Q be an open set in R4, let g € L>(Q) and J(-,-)
be as above, and let (u, K) be an irreducible minimizer for J(-,-). Assume
that J(u, K') < oo (which is automatic when Q is bounded). For eachx € K
andr < dist(z,00N) let E(x, 1) be the set [ KNB(z,r)|UdB(z,m)UP(z,7),
where P(x,r) is any d-plane which satisfies dist(z, P(z,r)) < 2r, say. Then
each such E(z,r) is a d-dimensional regular set which satisfies the WNPC
(and hence is uniformly rectifiable) with estimates that depend only on d, p,
and ||g||oo but not on x or r.

This is proved in exactly the same manner as Theorem 5.4 was. We added
the hyperplane P(z,) only to get a lower bound on H¢(E(z, )N B(y,t))
(as in (5.43)) for large radii ¢ (so that E(z,r) satisfies the definition of
regularity in Section 2.). Note that we are implicitly using the simple fact
that P(z,r) U B(z,r) satisfies the WNPC with bounded constants.

Remark 5.49. — If 0} is contained in a uniformly rectifiable set E of
dimension d, and if (u, K) is an irreducible minimizer as above, then EUK
is uniformly rectifiable (and hence K is contained in a uniformly rectifiable
set). To see this it is more convenient to use the characterization of uniform
rectifiability in terms of the existence of “big pieces of bilipschitz images
of R%”. This condition is defined in Definition 1.33 on p- 15 of [DS3],
and its equivalence with Definition 2.9 is stated in Theorem 1.57 on p. 22
of [DS3]. (See also the main result of [DS1].) Assuming that E D 99 is
uniformly rectifiable, let us check that F' = K U F is too. It is easy to see
that F' is regular, as in the discussion around (5.42) and (5.43). Let z € F'
and r > 0 be given, and let us check that F'N B(z,r) has a big piece of a
bilipschitz image of R?. When z € K and r < dist(z,d%) there is a big
piece of a bilipschitz image of R? inside K N B(z, ) because of Theorem
5.48. (It is helpful to take P(z,r) to be disjoint from B(z,r) here, to keep
it from interfering with K in B(z,r).) If z € K and r < 10dist(x, 99),
then we can also get a big piece of a bilipschitz image of R? inside
K N B(z,r) by applying the preceding case to 15- In the remaining cases
we have either z € K and r > 10dist(z, dN) or else z € E. In either case
there must be a big piece of a bilipschitz image of R? inside E N B(z, r),
since E is uniformly rectifiable. Thus F' is uniformly rectifiable, as desired.
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(See Section 7 of [DS4] for a slightly more detailed treatment of the same
point in the simpler d = 1 situation.)

6. SETS OF PRESCRIBED MEAN CURVATURE

Let  be an open set in R%*1, d > 1, and let H € L!(f2) be given. If
X is a measurable subset of (2, define F(X) by

(6.1) F(X) = |9X](9) + /Q 1x (2) H(z)dz,

where |0X|(€2) denotes the “perimeter” of X in (2, i.e.,
(6.2) 10X1(2)
= sup{/ 1x(z)divG(z)dz : G € C3(2, R*™), |Gl < 1}.

Here C}(Q2, R4*!) means R¢*!-valued C' mappings with compact support
in €. In other words, [0 X |(€2) is the total mass of the distributional gradient
of the characteristic function of X. If X is a local minimizer for F(-), so
that F(X) < F(Y') whenever (X\Y) U (Y\X) is contained in a compact
subset of €2, then X is said to have generalized mean curvature H. Indeed,
if this condition holds, and if X and H are sufficiently well behaved, then
the classical mean curvature of X is given by (a constant multiple of) the
restriction of H to the boundary of X. See [GMT] and the references therein
for more information about this notion of generalized mean curvature.

Note that in general the restriction of H to the boundary of X does
not make sense, because H is merely integrable, and that the values of H
off X are not at all determined by X. Also, when H = 0 this variational
problem reduces to the usual least area problem of minimal surfaces.

If X has generalized mean curvature H, then what can we say about the
structure of the boundary of X in terms of the behavior of H? In general
we have to be careful and work with the “reduced boundary” of X (as in
[Gi]), rather than the topological boundary. (This is not a surprise, since
X is really defined only up to sets of Lebesgue measure 0.) Since our
competitors have finite perimeter their reduced boundaries are rectifiable.
(Again, see [Gi].) Under suitable conditions on the size of H (e.g., H € L?,
p > d+ 1) one can get regularity theorems analogous to those for minimal
surfaces in codimension 1. (See the introduction and references in [GMT].)
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Since we have rectifiability of the reduced boundary for any integrable
function H, we can wonder whether we can get uniform rectifiability
under uniform integrability conditions on H. Because of the scaling in this
problem the natural “uniform integrability” condition to impose on H is

(6.3) [ iy < vt
B(z,r)

for some constant M and all z € R%*! and r > 0. (We may as well take
H to be 0 outside 2.) Note that this is automatically true when H € L+t
by Holder’s inequality, and in that case one can even take M to be small
if one restricts one’s attention to sufficiently small radii 7.

It turns out that (6.3) is really too weak to obtain anything like uniform
rectifiability of the boundary of X. In order to build examples we shall use
the following result (given as Lemma 1.3 in [GMT]).

LEMMA 6.4. — Suppose that X is a set with smooth boundary in ), and
assume that the outer normal unit vector v(z) at x € QN X can be extended
to a vector field V : 2 — R with V € WL Q)N C(Q), ||V]loo < 1. If

(6.5) H(z) = —divV(z),

then X has generalized mean curvature H.

This lemma is useful because it permits us to build complicated sets
with generalized mean curvature H, with H under some control, by taking
many nice little blobs (like balls) and scattering them about. To make this
precise we begin with a trivial observation.

LEmMA 6.6. — If B is a ball of radius v in R\, then there is a
smooth vector field V : Q@ — R supported in 2B such that ||V]|e < 1,
IVV]loo < Cr~Y, and V agrees with the outer unit normal of B on dB.

Thus given a ball B we can find an H which works and which is
supported in 2B. To build complicated sets we need only arrange some
balls in a suitable way. For simplicity let us give examples only in R?,
although the construction can be adapted easily to higher dimensions.

Let S denote the unit square [0,1] x [0,1] in R?. Let T denote the
union of the four squares with sidelength % in the corners of S. Given
a set A in R? which is a finite disjoint union of squares, let us call a
set A’ an admissible modification of A if we can obtain A’ from A by
taking one of the squares in A and replacing it with the four smaller corner

squares of size i— the size of the square which is being replaced. Thus
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S has only one admissible modification, which is T, while T has four
admissible modifications. Let C denote the collection of sets in the plane
consisting of S, its modification T, all the modifications of T, and the
modifications of the modifications, etc. Thus every element of C is a finite
union of squares, each with sides parallel to the axes and with sidelength
some negative power of 4. Let C denote the collection of sets consisting of
the elements of C and all sets obtained by taking a set in C and deleting
any number of its constituent squares.

In short, C and C are collections of subsets of the plane which are finite
unions of squares arranged in a Cantor-like way. If one is exhaustive about
replacing all the squares by smaller squares, then one obtains the usual
approximations to a true Cantor set. The difference between C and C is
that elements of C are never too sparse, while elements of C can be very
sparse (by deleting many little squares).

Now suppose that Y is an element of C, so that Y is the union of some
squares{c;};. Let {B;}; be the collection of open balls such that 2B; is the
largest possible disk inside o;. Set X = |J B;. Let V be the vector field on
R? supported on Y which is obtained by applying Lemma 6.6 to each of
the B;’s and adding the results. If we take H to be as in (6.5), then we
conclude from Lemma 6.4 that X has generalized mean curvature H.

LEMMA 6.7. — Under the notations and conditions of the preceding
paragraph, there is a constant M which does not depend on the choice
of Y € C such that H satisfies (6.3).

This is not hard to check. From Lemma 6.6 we have that |H| <
Cdiam(o;)™" for each o;. The estimate (6.3) follows from the fact that in
the construction of elements of C we are always careful to replace a square
by the union of four smaller squares whose total sidelength is the same as
that of the original square. We omit the details.

Although each X arising in this manner is just a finite union of disks,
they are not uniformly well-behaved. For the purposes of this discussion
let us agree to call a compact set (Ahlfors) regular if it satisfies the same
definition as given in the beginning of Section 2 except that we ask only
that (2.1) hold for r less than the diameter of the set. It is not true then that
0X is regular (of dimension 1) with a uniformly bounded constant as Y
runs through C, since we can make Y and hence 3X as thin as we want, by
the definition of C. This is not the case for X’s which result froma Y € C ;
for these X’s 30X is regular with a uniformly bounded constant. (This is
not hard to check from the definition of C. It comes down to the fact that
when we replace a square by the four corner squares of one-fourth the
size, we do not reduce the length of the boundary.) However, even for this
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more restricted class of sets X we do not get uniform rectifiability with
uniform bounds. To see this, let K be the Cantor set obtained by starting
with the unit square S by T above, then replacing each of the four squares
in T by a smaller copy of T, etc., so that in the limit we get the totally
disconnected compact set K. K has positive and finite one-dimensional
Hausdorff measure, but it is well-known that it cannot be realized as a
subset of a curve (or even a connected set) of finite length. (In fact, its
intersection with any such curve must have length 0.) If the 0X’s for
Y € C were uniformly rectifiable with uniform bounds, then we would be
able to conclude that K is contained in a rectifiable curve, because we can
approximate K by 0X'’s in the Hausdorff metric.

Thus we conclude that (6.3) is not strong enough to imply anything
like regularity or uniform rectifiability of X. We shall spare the reader
the technicalities of producing X’s such that X is not regular, or such
that X is regular but not uniformly rectifiable, rather than simply nice
0X’s as above for which the regularity or uniform rectifiability constants
are arbitrarily large.

Of course the situation would be different if we were to assume that
(6.3) holds with a small constant.

Remark 6.8. — There are other ways of seeing that (6.3) itself has no hope
of implying anything like uniform rectifiability which are more complicated
but which make clearer the principles involved. There is a nice theorem
of Varopolous [V2] which implies that any L*° function f on R? has an
extension F' to R**! such that |V F| satisfies (6.3). It turns out that there
is nothing really special about a hyperplane here, in the sense that the
same result would work for much more general sets in R4+ (like regular
sets of dimension d). Modulo a priori smoothness assumptions, then, the
requirement that the unit normal on the boundary of a domain have an
extension V' which satisfies the conclusions of Lemma 6.4, with H also
satisfying (6.3), does not really put much of a restriction on this unit normal
vector, since it lies in L> anyway. Our Cantor set examples made this
precise and explicit, but the truth of the matter is that in this context (6.3)
is not much of a condition.

If, on the other hand, our extension F' of f has the property that |V F|
satisfies (6.3) with small constant, then Varopolous [V1] showed that f must
have small BMO norm (and conversely). Roughly speaking this means that
the average oscillations of f are small, but we shall spare the reader the
precise definitions. This type of condition on the unit normal of a domain
is pretty strong. (See [Se3].) It is also stronger than we would have here
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when the constant in (6.3) is small, because it would correspond to a

condition on all the (generalized) principle curvatures, instead of only the
generalized mean curvature.
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