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ABSTRACT. - This paper is concerned with regularizing effects of solutions
to the (generalized) Korteweg-de Vries equation

and nonlinear Schrodinger equations in one space dimension

where p is an integer satisfying p > 2, A e C and G is a polynomial of
(u, u) . We prove that if the initial function § is in a Gevrey class of order
3 defined in Section 1, then there exists a positive time T such that the
solution of (gKdV) is analytic in space variable for t E ~-T, T~B~0~, and
if the initial function ~ in a Gevrey class of order 2, then there exists a
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positive time T such that the solution of (NLS) is analytic in space variable
for t E ~-T, T~~ f ~~..

Nous etudions, dans cet article, certains effets regularisants
pour les solutions de 1’ equation de Korteweg-de Vries (generalisee)

et des equations de Schrodinger monodimensionnelles

ou p est un entier superieur ou egal a 2, A E C et G est un polynome
en (u, uj. Nous montrons que, lorsque la donnée initiale 03C6 appartient a la
classe de Gevrey definie dans la premiere partie, il existe un temps T tel

que la solution de (gKdV) est analytique en espace pour t E ~- T, T~ B ~ 0 ~ ;
de meme, lorsque la donnee initiale ~ appartient a une certaine classe de
Gevrey d’ ordre 2, il existe un temps T tel que la solution de (NLS) est
analytique en espace pour t E ~ -T, T ~ B ~ 0 ~ .

1. INTRODUCTION

In this paper we study regularizing effects of solutions to the (generalized)
Korteweg-de Vries equation

and nonlinear Schrodinger equations in one space dimension

where p is an integer satisfying p > 2, A e C and G is a polynomial of

(u, t6). We prove that if the initial function § is in a Gevrey class of order
3 defined below, then there exists a positive time T such that the solution
of (gKdV) is analytic in space variable for t E [- T, T~B~0~, and if the
initial function ’Ø is in a Gevrey class of order 2, then there exists a positive
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time T such that the solution of (NLS) is analytic in space variable for
t E ~-T,T~B f 0}. In other words, the singularities of the data go to infinity
at once. We call this property the Gevrey regularizing effect.
We also prove analyticity in time of solutions of (gKdV) which is the

same result as that in [H-K.K] in the case of (NLS).
To state our results precisely we introduce the basic function space used

in this paper. We define a Gevrey class of order a as follows :

where A1, - - - , AN are positive constants, P1, - - - , PN are vector fields with
analytic coefficients and X is a Banach space of functions on an open set
in Rn with norm [] - ( ( x and a > 1. The above function space is used to
define several function spaces :

where

with

and

where
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with

For simplicity we let = = and
= H’n~2. We also define the closed balls in YT and as follows.

Throughout this paper we assume that Ai  1 since when (7=1

Aikawa’s result [A,Theorem 3] says that If Ai > 1, then Gl 1 (xc~x; L2) _
~0~ which implies that the solutions constructed in the theorems below are
identically zero when A1 > 1 and 03C3 = 1. Different positive constants are
denoted by C, Co, C1,..., A2, ~ ~ ~ in Sections 1 and 4.

We now state our main results.

THEOREM 1.1. (gKdV). - We assume that ~ > 1 and

Then there exist positive constants A3, A4, T and a unique solution u of
(gKdV) such that

and

where

A4 depends on A3 and
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THEOREM 1.1’ . (gKdV). - We assume that ~ > 1 and

Furthermore we assume that

is sufficiently small and p is an integer satisfying p > 6. Then there exist
positive constants A3, A4 and a unique solution u of (gKdV) such that

where

A4 depends on A3 and

Remark 1.1. - The positive constants appearing in Theorems 1.1 and 1.1’
are important numbers which determine the domain on which the data and
the solution of (gKdV) have analytic continuations when a = 1 or 3. We
explain this point herein.

(I) ([H-K.K]). If § has an analytic continuation ~ on the complex
domain

where and

then

Vol. 12, n° 6-1995.
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(II) In the case a = 1, Theorems 1.1-1.1’ say that

which implies

Hence u has an analytic continuation U(zo, x) on the complex plane

From Theorems 1.1-1.1’ we see that A3 is bounded from above by an
upper limit 3/4 (A1 = I,A2 = oo). On the other hand in the case of the
nonlinear heat equation

it is well known that if § E H1 (~), then u has an analytic continuation
U (zo, x) on the complex domain

This last result corresponds to the case A3 = 1. Hence the following
question arises. Can we improve the upper limit on A3 ?

(III) In the case a = 3, Theorems 1.1-1.1’ say that if the initial function

~ belongs to a Gevrey class of order 3, the solution u(t, x) of (gKdV) has
an analytic continuation U(t, z) on the complex domain

In the case of the KdV equation (p = 2), the end of the proof of Theorem 1.1
(Section 4 below) shows that it is sufficient to take A4 such that

where

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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and C is the best constant arising in the Sobolev’s inequality

(The constant C can be given explicitly since we have

We now give a typical example of the function in H3 ),
but is not an analytic function, which may help the readers to understand
the Gevrey regularizing effect.

We put

Then the function belongs to Gevrey class of order s but not belong
to Gevrey class of order r, where 1  r  s (see [Ko, p41, Lemma 2.1] for
the proof). We let = cp(1 - x2) and s = 3. Then there exist positive
constants A1 and A2 such that E ~x; H3), but is

not analytic in the neighborhoods More precisely 03C8(x) is not in

GA1A2r(x~x, ~x; H3) for 1  r  3 and any A1, A2 > 0.
The analyticity of solutions of (gKdV) was studied first by T. Kato and

K. Masuda [Ka-M] (see also [H]). They proved that if the initial function

~ is in G11 1 (o~x; H3), then there exist Ai > 0, T > 0 and a unique solution
u of (gKdV) such that

and

Their method requires the condition a = 1 to treat the nonlinear term

involving the space derivative of the solution u. Hence their method is not

applicable to the general case a > 1. To overcome this difficulty we use the
local smoothing property of solutions to the Airy equation + = 0

which was shown by [Ke-P-V 1] first. Local smoothing property enables
us to .handle (gKdV) by using the contraction mapping principle (see [Ke-
P-V 5]). In fact, in the same way as in the proof of Proposition 3.1 in

Vol. 12, n° 6-1995.



680 A. DE BOUARD, N. HAYASHI AND K. KATO

Section 3 we can prove that there exist T > 0 and a unique solution u
of (gKdV) such that

and

when § E (a > 1). From the above result we can prove that
there exists A2 > 0 such that

However analyticity in time of solutions to (gKdV) does not come from
(1.2) since a > 1 is needed to obtain (1.1).

In [Ka], it was shown that if § E n > 0), then
the solution of (gKdV) becomes Coo ( - R, R) for t > 0 in space variable.
His proof is based on the fact that the unitary group exp(-t8~) in L6
is equivalent to

in L2 when t > 0. Hence the method is not valid for the negative time and it
is not clear whether or not the solution of (KdV) becomes analytic for t > 0.

In [Cr-Kap-St], the authors studied a fully nonlinear equation of KdV
type in one space dimension :

where f E C°° and

They showed that if the initial function decays faster than any polynomial
on R+, and possesses certain minimal regularity, then the solution
u(t, .) E COO ( -R, R) for t > 0. Their result ([Cr-Kap-St, Theorem 2.1]) is
considered as a generalization of results of [Ka] and [Kr-F].
We prove the regularity in time result for solutions to (gKdV) implying

analyticity by using the operator P = xax + 3t~t (which almost commutes
with the operator at + c~x ) and the local smoothing property. We also prove
a global existence in time result for solutions in a Gevrey class implying
analyticity by using a similar method to that of W. A. Strauss [St].
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By making use of the regularity in time result obtained in Section 3 and
an induction argument, we prove regularity in space of solutions to (gKdV)
yielding analyticity in space variable.

We next state the results concerning (NLS).

THEOREM 1.2. (NLS). - We assume that a > 1 and

Then there exist positive constants A3, A4, T and a unique solution u of
(NLS) such that .

where

A4 depends on A3 and

THEOREM 1.2’. (NLS). - We assume that a > 1 and

Furthermore we assume that

is sufficiently small and G(u, u) satisfies the following growth condition

where p is an integer satisfying p > 5. Then there exist A3, A4 and a unique
solution u such that

f or any t E R,

Vol. 12, n° 6-1995.
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where

A4 depends on A3 and

Remark 1.2.

(I) By the same argument as in Remark l.l (I), we see that the solution
u of (NLS) has an analytic continuation U(zo, x) on the complex plane

and A3 has the upper limit 2/3. The same question as in Remark 1.1 (I)
arises concerning this upper limit.

(II) In the case o~ = 2, Theorems 1.2-1.2’ say that if the initial function
is in a Gevrey class of order 2, the solution u(t, x) of (NLS) has an

analytic continuation U(t, z) on the complex domain

(III) In the case = u2, the end of the proof of Theorem 1.2
given in Section 5 shows that it is sufficient to take A4 such that

where

and C is the best constant arising in the Sobolev’s inequality

The smoothing property of solutions to (NLS) implying analyticity in
space variable was studied in [H-Sai] in the case of G ( u, u) - 

More precisely, the main result of [H-Sai] is as follows.
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If the initial function § satisfies

then the solution of (NLS) has an analytic continuation on

the complex plane

The result stated in Remark 1.2 (1) was already obtained in [H-K.K] but
the result stated in Remark 1.2 (II) is new. It is interesting to compare
the result of [H-Sai] given above and Remark 1.2 (II). Our result is new
even in the case G(u, t6) = ~u~2~u, k e N since we do not assume that the
initial function decays at infinity.

For a general class of equations which includes a large number of models
arising in the context of water waves, analytic solutions were obtained in
[B]. We note here that the methods used in [H-Sai], [H-K.K] are not

sufficient to treat the nonlinear Schrodinger equation with a nonlinear term
involving the derivative of the unknown function :

where G is also a polynomial of ( u, u, 
The gauge transformation techniques used in [H-O] are applicable to

prove a time regularity result similar to Theorem 1.2 for (1.3) and for

general space dimension the method of [Ke-P-V 2] based on [Ke-P-V 2,
Theorem 2.3 (2.9)] is applicable for (1.3) with a smallness condition on the
data. However these methods cause undesireble complexities, and so we do
not go into the problem (1.3) in this paper. The difficulty to handle (1.3)
arises from the fact that the smoothing property of solutions to the linear
homogeneous Schrodinger equation is not sufficient compared with the Airy
equation (see , [Ke-P-V 2, Theorem 2.1]). Local smoothing properties in
the usual Sobolev spaces for the linear Schrodinger equation were studied
by [Co-Sau], [Sj] and [V] simultaneously. A sharp version of the local
smoothing property was obtained in [Ke-P-V 1, Section 4]. Moreover they
proved a sharp inhomogeneous version of the local smoothing property in
[Ke-P-V 2, Theorem 2.3] for Schrodinger equations which was used to
study several higher order models arising in both physics and mathematics
in [Ke-P-V 3,4].

G. Ponce [P, Theorem 3.2, Theorem 4.2] studied the regularity of

solutions to nonlinear dispersive equations including (gKdV) and (NLS)
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as examples. Roughly speaking, his results are as follows. If § E H2k
and E L2 (j = l, - - ~ ,1~), then the solution of (gKdV) is in
H3~ ( - ~, R) for any R in some time interval. and E L2
(j = 1, ... , k), then the solution of (NLS) is in H2~ (-1-~, R) for any R in
some time interval. His methods are based on the classical energy method
and the facts that the linear operator 8t + o~~, commutes with the operator
x + 3t0j and the linear operator i8t + 2 a~ commutes with the operator
x + it~x. However our results do not follow from the methods in [P]. This
commutation property was used in [G-Vel] to study the scattering theory
for nonlinear Schrodinger equations with power nonlinearity satisfying
the gauge condition. The iterative use of the operator x + it0x in [H-N-
T] allowed the authors to study the smoothing property of solutions to
nonlinear Schrodinger equations satisfying the gauge condition.

In Section 5 we prove regularity in space of solutions to (NLS) by
using regularity in time of solutions. However the proof in Section 5 is not
applicable directly to the case of arbitrary dimension.
Our method in this paper can be applied to the system of nonlinear

equations

where

When

(1.4) is written as

which is equivalent to the (linearized) Boussinesq equation
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We can obtain the same result as that of Theorem 1.2 for (1.4) since the
operator P = xax + 2tat has the commutation relation

Our method is also applicable to a diagonal system

where Q~ s are polynomials having no constants or linear terms, since the
operator x8x + (2j + 1)tat almost commutes with the linear part of (1.5)
and the local smoothing property for the linear part of (1.5) proved in
[Ke-P-V I,Section 4] works well for (1.5) thanks to the nonlinear terms
Q~ s which are independent of the derivatives of order 2 j . The system (1.5)
was studied in [Ke-P-V 3] to obtain local well-posedness of the initial value
problem for higher order nonlinear dispersive equations of the form

where P is a polynomial having no constant or linear terms. We notice here
that P has the highest derivative By using a gauge transformation
we can write (1.6) as a diagonal system (1.5) (see [Ke-P-V 3] for details),
and so local well posedness of (1.6) can be treated.

If we add a smallness condition on the data, our method can apply to
a system

by using the sharp inhomogeneous version of local smoothing property
given in [Ke-P-V 3, Theorem 2.1 (2.2)].
The main tool in the proofs of our main results is a first order differential

operator which almost commutes with the linear part of the target nonlinear
evolution equation and which has only derivatives with respect to the space
variables for t = 0 and has a derivative with respect to the time variable for
t 7~ 0. Hence the following question arises. For linear dispersive systems
of the type

Vol. 12, nO 6-1995.
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where

do there exist such first order differential operators ?
Under some conditions on P(D) which includes many applications in

the theory of dispersive long waves of small amplitude, local smoothing
effects for (1.7) was proved in [Co-Sau]. Laurey [L] studied the Cauchy
problem for a third order nonlinear Schrodinger equations

which is introduced by A. Hasegawa and Y. Kodama (see references cited
in [L]), where a, b, a, ~3, ~y are given real parameters. The linear part of
(1.8) satisfies the condition of [Co-Sau] and so it has the local smoothing
effects. As can be seen in [P], the differential operator

commutes with the linear part of (1.8). However it is difficult to construct
a first order differential operator which almost commutes with the linear
part of (1.8) from (1.9).
By combining the induction method in [P] and the local smoothing

property for the linear part of (1.8) in [L, Proposition 2.1] we can obtain
the similar result as [P, Theorem 3.2] for (1.8). However the result in a
Gevrey class function space is still open. More precisely, assuming that Uo
is in some Gevrey class, is the solution of (1.8) analytic in space variable
or not ?

This paper is organized as follows. In Section 2 we prove useful lemmas
which are needed to obtain the main results. Section 3 is devoted to study
the existence of solutions to (gKdV) when the initial function is in some
Gevrey class of order a, which yields that the solution of (gKdV) is in the
(usual) Gevrey class of order a in time variable. By using the existence
results of Section 3, we prove Theorems 1.1 and 1.1’ in Section 4. In
Section 5 we state the results of [H-K.K, Propositions 3.3-3.4] that the
solution of (NLS) is in the (usual) Gevrey class of order a in time when
the initial function is in some Gevrey class of order a and using these
results we show Theorems 1.2 and 1.2’.
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2. PRELIMINARIES

In Sections 2 and 3, we denote positive constants by C and C may
change from line to line. We let S(t) be the unitary group associated with
the linear equation 8tu + = 0. We first state well known estimates and
local smoothing property of obtained by [Ke-P-V 1].

LEMMA 2.1. - For any 03C6 G L2 and any t > 0

and for any 03C6 E L 1,

LEMMA 2.2. - We have for P = x8x + 3t8t

Proof - We prove (2.1) and (2.2) by induction. When l = 1, it is clear
that the first equality of (2.1) is valid. We assume that the first one of (2.1)
holds true for any L Then we have by assumption

Vol. 12, n° 6-1995.
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By a direct calculation the right hand side of (2.3) equals

From (2.3) and (2.4) we have

Hence we obtain the first part of (2.1). The second part of (2.1) and (2.2)
are obtained in the same way as in the proof of the first equality of (2.1).

Q.E.D.

LEMMA 2.3. - We 1 and P = xax + 3t8t . Then we have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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and

Proof - Since every inequality in the lemma is proved in the same way
by using Lemma 2.2, we only prove the third one. By the first equality
of (2.2) in Lemma 2.2 we have

Q.E.D.

LEMMA 2.4. - We have

provided that the right hand side is finite.

Vol. 12, nO 6-1995.
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Proof - By Schwarz’ inequality we have

from which the lemma follows.

In the same way as in the proof of Lemma 2.4 we have

LEMMA 2.4’.

provided that the right hand side is finite.

In order to prove Lemmas 2.5-2.5’ we need [H-K.K, Proposition 2.1]
and since we also use it in several stages of the proofs of the results in
Section 3, we state the proposition without proof.

[H-K.K, PROPOSITION 2.1.]. - We let

and P = x~x + 3t8t. Then we have

where [s) is the largest integer less than or equal to s.

The following lemma is needed to show the local existence in time of
solutions to (gKdV).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LEMMA 2.5. - We let f E YT, F( f ) = 1 and

P = x8x + 3t8t. Then we have

Proof - We have by lemma 2.3

A direct calculation gives

By the same argument as in the proof of [H-K.K, Proposition 2.1],
Lemma 2.3 and Sobolev’ s inequality, 8x ; L2 ) norm of each term
in the right hand side of (2.6) is estimated from above by

Hence we have by (2.7)

Vol. 12, nO 6-1995.
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By Lemma 2.4 and a simple calculation

Since

we have by (2.9)

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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by Schwarz’ inequality and Lemma 2.3.

We apply (2.10) with gi = and g2 = and Lemma 2.3 to the

right hand side of (2.8) to obtain

By using [H-K.K, Proposition 2.1] and Sobolev’s inequality in the second
term of the right hand side of (2.11 ) we get

In the same way as in the proof of (2.8) we have

We again use (2.10) with gi = fP-1 and g2 = 8t8x f, and Lemma 2.3 to

Vol. 12, nO 6-1995.
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the right hand side of the above. Then we have

By the same argument as in the proof of (2.12), (2.13) yields

The lemma follows from (2.12) and (2.14) immediately.

Q.E.D.
In the same way as in the proof of Lemma 2.5 we have

LEMMA 2.6. - We let F, a, Al and P be the same as those in Lemma 2.5,
and we let f, g E YT and f(O) = g(0). Then we have

The following lemma is needed to show the global existence in time of
solutions to (gKdV).

LEMMA 2.5’. - We let f e F( f) = 7 > 1 and
P = x~x + 3t8t, where p is an integer satisfying p > 6. Then we have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Proof - We have by (2.5), (2.6) and [H-K.K, Proposition 2.1]

(by Sobolev’s inequality and Lemma 2.3).

Hence

and since (p - 2)/3 > 1, the integral in the preceeding term is convergent
and we get

We have

(by [H-K.K, Proposition 2.1])

Vol. 12, n° 6-1995.
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(by Schwarz’ inequality)

(by Lemma 2.3).
In the same way as in the proof of Lemma 2.5 we use the fact that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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to obtain

(by Schwarz’ inequality),

and by the same arguments as in [H-K.K, Proposition 2.1],

Vol. 12, nO 6-1995.
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Hence we have

From (2.15), (2.16) and (2.17) it follows that

On the other hand, using the fact that

and the same arguments as in the proof of (2.15), we can easily show that

In the same way as we proved (2.16), we have

and this, together with (2.19) and (2.17), gives

From (2.18) and (2.19) the lemma follows.

Q.E.D.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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The following three lemmas are needed to show analyticity of solutions
to (gKdV) in space variable when the solutions are in a Gevrey class of
order 3 in time variable.

LEMMA 2.7. - We have for any m e N

Proof - By an elementary calculation

LEMMA 2.8. - We have

Proof - We expand both sides of the equality (1+t)i+"‘ _ 
Then we have

Hence

Since every term of the left hand side is positive, we have the result.

Q.E.D.

Vol. 12, n° 6-1995.
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LEMMA 2.9. - We have

Proof - We first prove

where

For m = 1, 2, it is clear that (2.20) is valid, and so we consider the case
m > 2. We have

Since x - x2  log(I + :c)  x for x > 0, the above equality gives

By an elementary calculation

from which it follows

and so

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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This implies

Similarly, we have

Therefore (2.20) comes from (2.21) and (2.22). We note that

From this we see that if 0, m

When mi = 0 or mi = m,

From (2.23) and (2.24) the lemma follows.
Q.E.D.

The following lemma is needed to show analyticity in space variable of
solutions to (NLS) which are in a Gevrey class of order 2 in time variable,
and is proved in the same way as Lemma 2.9.

LEMMA 2.10. - We have

Vol. 12, n ° 6-1995.
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3. EXISTENCE OF SOLUTIONS TO (gKdV)

In this section we prove

PROPOSITION 3 .1. - Let 03C6 E GA1A203C3 (x~x , 8x , H3). Then there exist a unique
solution u of (gKdV) and a positive constant T such that u E YT.

PROPOSITION 3.1’ . - In addition to the assumptions on Proposition 3. l,
we assume that

is sufficiently small and the nonlinear term satisfies the same growth
conditions as those in Theorem l.1 ’. Then there exists a unique global
solution u of (gKdV) such that u E Z~ .

In what follows we only consider positive time, since the case of negative
time is treated similarly. We let ~cn be the solution of

for n > 1, and uo be the solution of

where L = 8t + In the same way as in the proof of [H-K.K, (3.3)]
we have by induction

The integral equation associated with (3.3) is written as

where is the unitary group associated with the linear equation Lu = 0.
By using formula (3.4) and Lemma 2.1 we prove Propositions 3.1-3.1’.

Proof of Proposition 3. l. - It is sufficient to prove that is a Cauchy
sequence in YT when T is sufficiently small. Taking L~ norm in (3.4),
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multiplying both sides of the resulting inequality by 
making a summation with respect to l and k, and using Lemma 2.1, we
obtain

where and in what follows we let for simplicity

In the same way as in the proof of (3.5) we have

We have by [H-K.K, Proposition 2.1] and Sobolev’s inequality

From (3.5)-(3.7) it follows that
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(by [H-K.K, Lemma 2.1])

(by Lemma 2.5)

From (3.2) and energy estimates it follows that

We take p such that

and T such that

in the right hand side of (3.8). Then we have by (3.8) and (3.9)

Proposition 3.1 is obtained by showing is a Cauchy sequence in YT.
In the same way as in the proof of the second inequality of (3.8)

(by Lemma 2.6)

(by (3.10)).
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If we take T satisfying

in the right hand side of (3.11 ) we have by (3.10)

This means that {un} is a Cauchy sequence in YT. This completes the
proof of Proposition 3.1.

Q.E.D.

Proof of Proposition 3.1 ’. - In the same way as in the proof of the second
inequality in (3.8) we obtain by (3.4)

We apply Lemma 2.5’ to the above to have

(by Young’s inequality).

On the other hand, by Lemma 2.1
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Hence we have by (3.4) and [H-K.K, Propositions 2.1-2.3]

which gives

By (3.12) and (3.13)

In the same way as in the proof of (3.14) we have

this with (3.14) gives

Similarly, we have by Lemma 2.6’ and (3.15)

By (3.15) and (3.16) we have the result.

Q.E.D.

In the same way as in the proofs of [H-K.K, Proposition 3.3-3.4] we
have by Proposition 3.1-3.1’
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PROPOSITION 3.2. - Let u be the solution of (gKdV) constructed in
Proposition 3.1. Then

where

PROPOSITION 3.2’. - Let u be the solution of (gKdV) constructed in
Proposition 3.1’ . Then

and

where Rand A3 are the same as in Proposition 3.2.

4. PROOFS OF THEOREMS 1.1-1.1’ (gKdV)

By Propositions 3.1, 3.1’, 3.2, 3.2’, to obtain Theorems 1.1,1.1’ it is
sufficient to prove

PROPOSITION 4.1. - Let u be the solution of (gKdV) satisfying

Then there exists a positive constant A4 such that

Proof of Proposition 4.1. - We divide the proposition into the following
two lemmas.

LEMMA 4.1. - Let u be the solution of (gKdV) satisfying

Then there exists a positive constant A5 such that
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LEMMA 4.2. - Let u be a function satisfying

Then there exists a positive constant A4 such that

Proof of Lemma 4.1. - It suffices to prove the result for t = l. By the
assumption we have

which implies

We prove by induction with respect to m that there exists a positive
constant A6 such that

for l, mEN U ~0~, 1~ = 1, 2, where a’ = max(a,3), A is a positive
constant determined later. If (4.2) is valid, then taking l = 0 in (4.2) and
(4.3) we have Lemma 4.1 with

It is clear that (4.2) and (4.3) hold for all land k = 1,2 when m = 0.
We assume that (4.2) and (4.3) are valid for all L, m and k = 1, 2. For

simplicity we denote

until the end of of the proof of Proposition 4.1.
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Since

we have

where and in what follows

Hence

The crucial term is I2,~ because it is easy to handle Ii,k by the induction
assumption. Indeed we have

We shall prove that

For simplicity, we show (4.6) in the case p = 2, since the general case
p > 3 can be proved by induction. We have by Sobolev’s inequality
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First we treat the term ~2,~. We have by (4.7)

Hence

(by the induction assumption)

(by Lemmas 2.7-2.8)
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In the same way as in the proof of (4.9) we have

(by the induction assumption)

(by Lemmas 2.7-2.8)
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(by Lemma 2.9)

and we also have

(by the induction assumption)

(by Lemmas 2.7-2.8)
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Consequently we have

If we take

(

Then

which implies (4.6) for k = 0 if

Next we treat the case k = 1. We have by (4.7)
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In the same way as in the proofs of (4.9)-(4.11) we have

From (4.13)-(4.16), (4.6) follows for k = 1 if
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Finally we treat the case k = 2. We have by (4.7)

In the same way as in the proof of (4.9) we have by (4.18)

(by the induction assumption)
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(by Lemmas 2.7-2.8)

(by Lemma 2.9)

Hence we have by (4.19)

In the same way as in the proofs of (4.10)-(4.11 ) we have by (4.18)
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Hence (4.20)-(4.22) imply that (4.6) holds true for k = 2 if

From (4.9)-(4.11), (4.14)-(4.16), (4.20)-(4.22), and (4.12), (4.17), (4.23) it
follows that (4.6) holds for

From (4.5) and (4.6) we have (4.2) and (4..3) under the condition

This completes the proof of Lemma 4.1.
Q.E.D.

Proof of Lemma 4.2. - For simplicity we denote ~~3 by ~~ . IIH3 (-R,R).
Since
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Therefore we have
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Hence, if we take A4 such that

we have Lemma 4.2. We note here that by (4.25) and (4.26) , when p = 2,
it is sufficient to take A4 satisfying

to obtain the result.

Q.E.D.

5. PROOFS OF THEOREMS 1.2-1.2’ (NLS)

The following two propositions were proved in [H-K.K, Propo-
sitions 3.3-3.4].

PROPOSITION 5.1. - We assume that a > 1 and

Then there exist A3, T and a unique solution u of (NLS) such that

where

PROPOSITION 5.2. - We assume that o~ > 1 and

Furthermore we assume that

is sufficiently small and G(u, u) satisfies the following growth condition

Vol. ~~r n° 6~-1~~,
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where p is an integer satisfying p > 5. Then there exist A3 and a unique
solution u of (NLS) such that

where

We now prove Theorems 1.2 and 1.2’.

Proofs of Theorems 1.2-1.2’. - From Proposition 5.1-5.2 it is sufficient

to prove that there exists a positive constant A4 such that

The proof is obtained in the same way as in the proof of Proposition 4.1,
and so we only give the outline. We first prove there exists a positive
constant A5 such that

It suffices to show it for t = 1. By Propositions 5.1-5.2 we have

which implies

We prove by induction with respect to m that there exists a positive
constant A6 such that
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for l, mEN U ~ 0 ~, a’ = max(a, 2). If (5.4) is valid, then taking l = 0,
we get (5.2) with

In what follows for simplicity we let

It is clear that (5.4) holds true for all when m = 0 by (5.3). We assume
that (5.4) is valid for all l , m and k = 0,1. We only consider the case

since the general nonlinearity can be treated by induction. We have by an
elementary calculation and Sobolev’s inequality
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In the same way as in the proof of (4.9)

and in the same way as in the proof of (4.11 ) we have

We also have (see (4.13))

In the same way as we proved (4.14) and (4.15) we obtain by Lemma 2.10

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



723GEVREY REGULARIZING EFFECT

From (5.6)-(5.8) we see that if we take A6 such that

then

On the other hand, the solution of (NLS2) satisfies

By the induction assumption, we see that the first term of the right hand
side is estimated from above by

Hence, we have (5.4) by (5.9) and (5.10) if

Using (5.4) and the same argument as in Lemma 4.2, we obtain the desired
estimate (5.1), provided that A4 satisfies .

’ Q.E.D.
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