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ABSTRACT. - We present a series of results on the regularity of edges
in the Mumford-Shah minimization process. We prove that an isolated
connected component of the edge set is a finite union of C1 ~ 1 arcs. A

fundamental step of the proof is the characterization of the four possible
global-minimizers having a connected edge.

Nous presentons une serie de resultats sur la regularity des
contours des minima de la fonctionnelle de Mumford-Shah. Sous certaines

hypotheses de connexite on montre que le contours est une union finie d’ arcs
C1,1. Une etape fondamentale de la demonstration est la caractérisation des
quatre possibles minima globaux ayant un contour connexe.
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1. INTRODUCTION

In computer vision, an image is characterized by the collection of numbers
giving the grey-level at each point of the screen. Mathematically, we will
say that an image is given by a real L°° function g (the grey level) defined
on a domain S2 (the screen) of R2. At the end of this article we will

consider color images. In this case, g will be a vector function (of the red,
blue and green intensity) and will take its values in a cube of R~.

In most images, human vision is able to detect structures, shapes of
objects, etc. Those structures appear, when, for instance, the image is

made of patches in which the grey level has but little variations. Sharp
discontinuities are visible at the boundary of these patches. They are

introduced by edges of objects, shadows, overlapping objects, etc.

The object of image segmentation is to extract, by a systematic algorithm,
the meaningful discontinuities. The result of this operation will be a

piecewise regular image u approximating the true image g and a set

K of discontinuities of u. The set K is an estimation of the contours of the

image. Although there is a number of different algorithms and softwares
for image segmentation, it appears that all rely on the same principle [17]:
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487ON THE REGULARITY OF EDGES IN IMAGE SEGMENTATION

the minimization of an energy. Moreover, this energy is essentially made
of the three terms of the Mumford-Shah functional.

In [19], Mumford and Shah proposed to define (u, K), where u E
and K is a closed set, as minimizers of the functional:

The first term of this energy penalizes the variations of u outside the edge
set K, the second term is the distance to the true image and the third term
is the 1-dimensional Hausdorff measure of the edge set K ([17] and [14]).
In the energy and v denote two positive constants. By a normalization
we may assume without loss of generality that ft = v = 1. For a simple
geometric image one would expect that the set K is regular. However,
for pictures of the real world it is not obvious that the edge set should
be simple. More precisely, one cannot eliminate a priori the possibility of
having a tree like edge set (Fig. 1) or lots of very small pieces (Fig. 2)

’ 

or multibranch stars (Fig. 3). Mumford and Shah conjectured that there
exists a minimizer of J such that the edge set K is the union of a finite
set of C1-arcs and that each arc may end either as a crack-tip or in a
triple junction (Fig. 4).

Existence of minimizers in the class of SBV functionals has been proved
in [2], [11] and [6]. A function u is in BV(H) if the distributional gradient
Du is a bounded Radon measure on 03A9 with values in R2. If Su denotes
the singular set of u E then  oo and for 
one can define a normal vector vu and limit values u+ and u- of u on
both sides of Su. A function u is in SBY(SZ) (Special function of Bounded
Variations) if u E and if its distributional gradient Du satisfies, for

Fig. 1.

Vol. 13, n° 4-1996.



488 A. BONNET

Fig. 2.

Fig. 3.

Crack-tip Triple Point

Fig. 4.
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every CJ vector field § : S2 ~ R2:

where Vu is in R2).
It is proved in [6] that there is a correspondence between SBV

minimizers and pairs (u, K) minimizing J. In the following, we choose to
work with the initial formula of the function as depending upon (u, K),
u E C1(0BK) n Wu2(52~K) and K is a Hausdorff 1-dimensional closed
set with finite Hausdorff measure.

Notice that we do not change J(u, K) by adding a set of zero ~-ll
measure to K. Therefore, we will assume in the following that K is a
minimal closed set: there is no closed set K c K, K ~ K, such that u can
be extended on with J(u, K)  J(u, K). Under this assumption, K
is an Ahlfors regular set: there are two positive constants c, C such that [6]:

In [7], it is proved that K is contained in a single rectifiable Ahlfors
regular curve whose length is proportional (with a universal ratio) to the
length of K.

In this paper, we are interested in the local regularity of the edge
set (see also [8] and [3]-[4]) and in the number of arcs. Our main

ingredient is the characterization of all global-minimizers (i. e. pairs
(u, K) defined on S2 = R 2 and such that for all balls BR the energy

cannot be reduced by a compact
perturbation of u and K inside the ball BR.) Under the assumption that
K is connected, it will be proved that there are only four types of global-
minimizers. The characterization is carried out by a monotonicity property
on the function r ~ BrBK 

~~u~2 r
. We will be able to prove that every

blow-up limit is a global-minimizer. The characterization of all global-
minimizers and therefore of the blow-up limits give strong information on
the local behavior of K and u.

THEOREM 1.1. - If G is an isolated connected component of K then, it is
the union of a finite set of C1 arcs. These arcs are away from crack-tips
and can only merge through triple junctions.
More precisely,
THEOREM 1.2. - Let P be a point of the edge set K. If BR(P) intersects

a single connected component of K, then there is a finite set of arcs lj,
Vol. 13, n° 4-1996.
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j = l, .., k, with the same regularity property as above and such that

Notice that this does not allow a minimizer to have an infinite number
of arbitrary small pieces connected to each other. In July 1994, G. David
announced a H1-almost-everywhere regularity result, [8]. Actually, the
method used to prove the theorems above allows one to get

THEOREM 1.3. - For almost every P in K there is a neighborhood
Br(P) of P in which K is a C1 ~ 1 arc.

The above results were derived when g is L°° . If one assumes more

regularity on g one may expect more regularity on K.

THEOREM 1.4. - Assume that g is If in an open neighborhood U of
P E K, K n U is a C1 arc then it is in U.

Lastly, we would like to point out that it can be interesting to look for
a minimizer of J that has at most n connected components (see
[17]). We have the complete result:

THEOREM 1.5. - The edge set Kn is the union of a finite set of C1 arcs,
C1 ~ 1 away from the crack-tips, and merging through triple junctions.
To conclude this paper, we show, in section 9, that the analysis

above holds for a model of color segmentation. A point of the image
is characterized by its Red, Green and Blue intensity. In this case, is
a vector of [0,1~3 with a specific Riemannian metric which gives a slightly
different energy functional [10].

Open questions. It is not known whether the edge set is regular up
to the crack-tip.
The finite number of arcs is still an open question. Notice that if the
characterization of global-minimizers was achieved without the assumption
that K is connected, then the conjecture would be solved.

2. BLOW-UP PROCEDURE

2.1. Definition : blow-up, global minimizer

For a given open set cv and a piecewise continuous function 1b defined
on ~03C9 we may study the minimization of the functional

under the condition on 8w.
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Assume, as in the previous section, that (u, K) denotes a minimum
segmentation. If 03C9 ~ 03A9 is such that n K is finite, we define the trace 03C8
of u on It is straightforward to see that (u, K) minimizes the functional
Jw with 1/J as Dirichlet condition. This means that one cannot modify u and
K inside w and reduce the total energy J = JW + 

In the study of free-boundary problems, it is common to use blow-up
procedures ([1], [16], etc.). Here, we introduce, for a given origin, the
blow-up sequences u~, g~, K~.:

The real function CE: (X) is piecewise constant. It is introduced in order to
be able to pass to the limit 6- --~ 0 in such a way that u~ converges almost

everywhere to some finite value. This will be detailed in the second part
of this section. We first take c - 0 and introduce:

We notice that VUe(X) = and that a ball BE with radius e
becomes Bi by the blow-up procedure. Thus

We introduce the new functionals J~:

With this definition we have the straightforward statement on the
minimization under Dirichlet conditions on and ~B1 respectively:

(u, K) minimizes JBg ~ (U~, minimizes (2.5)
We remark that in the definition of JW, the term Ge:)2 is of
order ~. In the limit 6- = 0 we define

Vol. 13, n° 4-1996.
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In the following we will be interested in minimizers of the functional
that are defined on the whole plane. Since there is no more image g in

the functional J° and since the domain is now unbounded, we introduce a
notion of compact-perturbation-global-minimizer of J° . For simplicity, this
will be referred to in the following as "global-minimizer of J°".

DEFINITION 2.1. - A segmentation (u, K) is a global-minimizer of J° if
it is defined on the whole space and if for any bounded open sub-domains
U, V of R2 with U c c V there are no function ic and closed edge set K
defined on V such that:

(i) ic and u (resp. K and K) coincide in Y~U,
(ii) for every pair of points X, Y in U K), if X and Y are in two

distinct connected components of Y~K so they are in Y~K,
~V (2~, K)  ~y (u, K).

Notice that we take Y ~ U in order to avoid problems arising from
0 . Condition (it) is coherent with the introduction of the piecewise

constant function c~ (X ) in the definition of the blow-up sequences. Indeed,
if P is a regular point of K, then the blow-up limit at P, (uo, Ko), is the
segmentation of the plane such that Ko is a straight line ~ y = 0 ~ and u
is constant on both sides of K (u° (x, y) = c+ if y > 0, uo(x, y) = c-
if y  0). With condition (ii), (uo, Ko) is a global-minimizer. However,
whatever the value of c+ and c- , the value of J0B2 R can be reduced for large
enough R by excising a large segment out of K (this excision violates (ii)).

2.2. Blow-up limits are global-minimizers

The fundamental result in the blow-up procedure is the following theorem
which says that blow-up sequences converge to global-minimizers.
THEOREM 2.2. - Let (u, K) be a minimal segmentation of J. The blow-

up sequence K~) is such that there is a subsequence converging to
(uo, Ko) in the following sense:

Ko locally in the Hausdorff metric,

u~q ~ u° strongly in (2.7)
K°) [ lim inf JWq for any bounded open set w ,

J0Br (uo, Ko) = lim JBr for almost every r > 0. (2.8)

Moreover (uo, Ko) is a global-minimizer.

THEOREM 2. 3 . - If ( vn , Kn) minimizes J for an image gn such that
1 (or other uniform LP bound with p > 2) the blow-up sequence
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(v~ ~ , K:n) with En -~ 0 has a convergent subsequence to a global-minimizer
(vo, Ko) of the same sense as in theorem 2.2.

Remark 2.4. - Given a blow-up sequence (Ug, Kg) there may exist several
blow-up limits. The object of section 4 will be to characterize all the

possible blow-up limits.

Proof. - Theorem 2.3 is a straightforward generalization of theorem 2.2.
Therefore we will concentrate on the proof of theorem 2.2. The proof of
convergence relies as in [6] and [11] on the L2 bound on and on the

compactness of Hausdorff metric. However, because of the introduction
of the functions c~ in the definition of u~ and since u~ is not obviously
bounded, we will detail the proof hereafter.

(i) Convergence of K~ to Ko

First we recall the definition of the Hausdorff distance d of two sets A and
B (for two points x and y, d(x, y) denotes the usual euclidean distance):

The compactness of the Hausdorff metric d for subsets of a compact domain
gives the existence of a subsequence KEq converging locally to a set Ko.

(ii) Convergence of Ue to uo

In each connected component of R2BKo we choose a point Yi . Let c~
be the piecewise constant function defined on R2BKo by

c~ (X ) if X and Yi are in the same

connected component of R2BKo.
We study now the convergence of Ue. We notice that the gradients ~U~
are uniformly locally bounded in the L2 norm (by an excision argument
one gets Ke)  203C0R, see [6] for the details). Consequently

27rR. Let F be a bounded open set, F C C R2BKo.
For ~ small, F C Since ( = G~| ~ c3/2, 0394u~ is
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uniformly bounded for c  1 in F. The L2 bound on and the L°°
bound on give a bound on for all p > 1, uniform in e
small. By Sobolev embedding, we get a uniform bound on 
Consequently, 3M, Vc  ~o

and a subsequence of ~c~ converges to uo in 

(iii) The blow-up limit ( uo , .Ko ) is a global-minimizer

Let us finally check that (uo, Ko) is a global-minimizer. We notice that
by construction,

Inequality (2.12) and a lower semicontinuity lemma for the Hausdorff
measure [6] are the two main ingredients of the proof of the claim that
(uo, Ko) is a global-minimizer.
We recall definition 0.9, lemma 0.10 and theorem 3.38 of [6]:

DEFINITION 2.5. - (6J Let A be a Borel subset of 03A9. We say that A satisfies
the concentration property in SZ if for every ~ > 0 there exists a = a(~) > 0
such that, if BR = B(xo, R) is any disk contained in SZ with xo E A and
0  R  l, then there exists a disk r) contained in BR such that

diam(B(x, r)) > a diam(BR),
~C1 (B(x, r) n A) > (1 - r)).

LEMMA 2.6. - f 6J Let (Kk ) be a sequence of closed subsets of SZ which
converges in the Hausdorff metric to a closed subset K of Q. Assume that
the sets Kk satisfy the concentration property (definition 2. S) in SZ uniformly
with respect to k (i.e. with independent of 1~). Then

THEOREM 2.7. - Let u, K be a minimum segmentation of J. Then K
satisfies the concentration property in SZ with a function ~ H which
does not depend on the data Q, g, u  1 ).
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It is straightforward to see that if K satisfies the concentration property,
then the blow-up K~ for ~  1 satisfies the same property with the same
function 6- cx(~). Consequently, for the converging subsequence K~Q
of the blow-up procedure we have the following lower semicontinuity
property on any open domain w of R2,

This, together with (2.12), gives the lower semicontinuity result on the
blow-up sequence, .

We assume by contradiction that (uo, Ko) is not a global-minimizer of
J°. Then there is U = BR and V = B2R and a couple Ko) satisfying
conditions (i), (ii) and (iii) of definition 2.1. We construct hereafter a

compact perturbation of and prove that for large q, 
cannot be a minimizer of 

Since 1{1(Ko n Br)  2xr, the intersection Ko n 8Br is a finite set of
points for almost every r. We choose ro, ro > R such that Ko n 8Bro is

finite. We denote Ko n ~BT~ _ ~ ~1, .. , Choose ( > 0 such that

We introduce two subsets of aBro :

The set r is compact in R2BKo. For a subset A of R2 we define

A’~=~X ER2,d(X,A)  7~}. There is a ?7 > 0 such that F~ G 
Then for q large, the convergence of to Ko in the Hausdorff metric
gives r217 C Then for p > 2, the estimates (2.11 ) and the
compact embedding of W2,p in (c~ = 1 - P ) gives the convergence
of a subsequence to uo in F~ for the norm. We introduce the
continuous function wq in ~Br0 such that: wq = u0 on F and wq is
linear in the polar angle 0 on every connected component of ~Br0 BT (i. e.
wq (ro, 0) = a + where a and ,C~ are chosen such that wq is continuous
on Then, for ]  ro we define
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where ~ is a C°° nonnegative function in [0, 1] such that ~ = 1 in a

neighborhood of 1 and 03C8 = 1 in a neighborhood of 0. With this construction
w9 E and there is a constant C = C(ro, Ko, r~) such that

almost everywhere:

We define U~q by

and construct K~q from K~q by adding the piece L and replacing K~q by
Ko inside the ball Bro:

Then is such that

This, together with (2.16) and (2.14), gives for q large and ( small:

which contradicts the minimality of U~ .
As a consequence of this argument we have proved that for almost every r

which completes the proof of theorem 2.2.

2.3. Sufficient condition for Ko to be connected

In section 4 we will be interested in global-minimizers such that the edge
set K is connected. The following lemma will ensure that the edge set Ko
of the blow-up limit is connected.

LEMMA 2.8. - Assume that w c SZ intersects only one connected

component of K. Let Pn be a sequence of points of an open set U C C w. For
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every blow-up sequence un(X) = u(Pn+~nX)-cn(X) ~n, Kn = E

converging to a blow-up limit (uo, Ko), the limit edge set Ko is

connected.

Proof. - The proof will proceed by contradiction. We assume that Ko is
not connected. Notice that since Kn is a 1-dimensional Hausdorff connected
set, it is arc-wise connected: for any two points X and Y in Kn there is
a continuous function ~ : [0,1] -~ Kn such that ~ (0) = X and yfi(I) = Y
(see [13]).
The edge set Ko is the limit in the Hausdorff distance of the connected

edge sets Kn . Therefore, Ko cannot have a bounded isolated connected
component and has at least two unbounded connected components. One

may choose a point M in one component and a point N in an other. Since
K~ converges to Ko in the Hausdorff distance there are two sequences of
points Mn G Kn and Nn E Kn converging to M and N respectively.

NOTATION. - Let A, B be two points of K. We denote by dK (A, B) the
minimal length of an arc connecting A to B in K. (dK (A, B) = if
there is no arc connecting A to B in .K).

Since K~ is closed there is an arc of minimum length parameterized
by arc-length, connecting the points Mn and Nn in Kn :

Obviously, this is a Jordan arc is one-to-one) and is 1-Lipschitz
continuous. We notice that ln ~ +00. Indeed, if l n does not go to +00 then
a subsequence of will converge to a 03C8 connecting M to N in Ko. This
contradicts the choice of M and N in two different connected components
of Ko. We choose a new blow-up sequence such that the image by this
blow-up of the arc connecting Mn to Nn is with length 1:

To have a blow-up sequence, we have to check that goes to 0. We

argue by contradiction and assume that -~ l~ > 0. We introduce

We notice that, for all t E [0,1], E Kn = {X E R2, P~ + EnX E
K~. This implies: ~~(t) E K. Moreover, since -~ I~, ~n is 2k-Lipschitz
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for n large and a subsequence converges uniformly to £ : [0, 1] -~ K.
We may assume that Pn ~ PEw. Since 03BEn connects the points
n = + Pn and Nn = cnNn + Pn in K we deduce that
ç(O) = ~(1) = P. From the construction of £ we get:

Since ~-ll (K)  oc and since the arcs ~n converge to £ in K we shall have

Consequently, for large n there are two points n and 03BDn in 03BEn([0, 1]) n
~( ~0, l~ ) such that  k/8 and dK(Nn, vn)  k/8. Since, ~cn
and 03BDn are two points of the closed curve with length at most k defined by
~, we have  1~ / 2. Consequently

which contradicts the relation

This contradiction shows that --~ 0 and we may apply theorem 2.3 and
get the convergence of a blow-up subsequence (vn,Gn) to some ( vo , Go ) .
We consider arcs

For a subsequence, the arcs (n with length 1 converge uniformly to a an
arc ( with length at most 1 and such that ((0) = ((1) = 0. Thus, ( defines
a closed curve in Go. Since (vo, Go) is a global-minimizer, the interior
of the domain defined by ( must be empty (see lemma 4.8). Therefore
every point of (([0,1]) is reached twice by (. Since (n is a Jordan arc
with length 1 we get

This can be written as 7-Ll(~((0, l~))  xl(~n((0, 1~)) - 1/2. The argument
of the proof of theorem 2.2 gives then: for almost all r > 1/2:

which contradicts the equality (2.8). This completes the proof by
contradiction of the lemma.
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Notice that the proof of lemma 2.8 gives immediately that any connected
component of K is a chord-arc set:

LEMMA 2.9. - There is a constant C such that if M and N are in the
same connected component of K then

where d(M, N) denotes the euclidean distance.

3. A MONOTONICITY FORMULA

3.1. Global-minimizers of J°

To characterize the global-minimizers of J°, introduced in the previous
section, we prove a monotonicity formula

THEOREM 3.1. - Let (u, K) be a global-minimizer and let 

~) 2. If K is connected then r ~ is a non-decreasing function
of r. If is constant, then in some polar coordinates (r, 8) we have:

and K is the half axis {B = 0}.
Remark 3.2. - If (u, K) is defined in a ball BR, K is a closed connected

set and u minimizes under Dirichlet conditions u = uo on

8BR then the conclusion of theorem 3.1 holds for r E (0, R).
Monotonicity formulas of another type have been used in the study of

two-phase free-boundary problems (see for instance [1]). The proof of
theorem 3.1 follows a series of lemmas and propositions. We want to
compare the two integrals fBr and r which appears
in the derivative of ~~T~ . We first state a Green formula
LEMMA 3.3. - Let (u, K) be a global-minimizer, then for almost all r:

This lemma is analogous to lemma 3.1 in [6]. The reader is referred to
[6] for the detailed proof.
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PROPOSITION 3.4. - Let (u, K) be a global-minimizer. If K is connected
then for almost every r

Proof. - The proof of this proposition is based on an estimate of
where UT is the tangential derivative on the sphere We

know that for almost every r, 8Br n K is a finite set and 
+00 [6]. Therefore, we will prove the inequality under the assumption that
~Br n K is a finite set .., In polar coordinates, yi has coordinates
(r, 8i ) and we may assume that 0  01  82  ..  8,~  27r. We introduce

8~+1 = 81 + 27r (the point with coordinates (r, 0~+1 ) coincides with
We now evaluate the integral of on each arc 

Here, uT and Ue denotes the radial and azimuthal partial derivatives.

Introducing the average value Ui .~8 Z + 1 u of u on the arc 
we may use the following lemma which is a straightforward consequence
of a theorem of Wirtinger (see [15] theorem 258):

unless f(x) = a + b sin 2.
By a straightforward change of variables, we get

Using this together with (3.1) we deduce:
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that is

This inequality was derived without any particular assumptions on u and K.
Now, if K is connected then the set defines a bounded domain

D of boundary 8D = F U where F c K. Then, by a similar
argument as in lemma 3.1 [6] we observe that since ui is a constant,

~D u03BDui = D ~u~ui = 0. Moreover, u satisfies Neumann boundary
conditions on F and then ~D u03BDui = yiyi+1 u03BDui. Consequently if K is
connected (or more generally if yl, .., y~ belongs to the same connected
component of K) we have yiyi+1 u03BDui = 0 which gives the inequality:

Summing over all i = 1, .., k this reads

which is the conclusion of proposition 3.4.

Proof of theorem 3.1. -
Lemma 3.3 and proposition 3.4 implies

which is (~y~O.
The second part of the theorem is concerned with the situations where

/~)~ ~ 0. If this occurs then the inequality in (3.5) is in fact
an equality for almost every r. Consequently, the inequality given in
lemma 3.5 is an equality and there are three functions ~(r), /3(r) and
~(r) such that for a.e. r and for (9 ~ [~),~) + 27r) ~ is given by

= /3(r) + Since u is harmonic in we

get = = /~o and = ~o. This completes the proof
of theorem 3.1.
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We now study global-minimizers defined in a half-space R+ x R. In this
case, oi+1 - Oi  7r in (3.2) and it is straightforward to prove the

COROLLARY 3.6. - If (u, K) is a global-minimizer in R+ x R such that
x R) is connected then r H ~~2 ~ is a nondecreasing function of r.

Remark 3.7. - If U = ~ y > f (x) ~ is a Lipschitz domain ( f (o) = 0) and
if (u, K) is a global-minimizer in U such that K U 9!7 is connected then
there is a a E (1,2] such that r - ~~a ~ is a nondecreasing function of r.

3.2. Minimizers of J

We consider now a minimizer (u, K) of the Mumford-Shah functional

LEMMA 3.8. - Assume that 03C9 ~ 03A9 intersects only one connected
component of K. Let U be an open set U C C w. There is a constant
C > 0 and a real ro such that for all P E U we have:

Proof. - The lemma will be derived from inequality (3.3) by an estimation

of yiyi+1 u03BDui. Since Yi and are in the same connected component
there is an arc of minimum length connecting yi to Lemma 2.9

implies that ?-~1 (~i ( ~0, l~ ) )  C’r. Therefore, integrating
in the domain Wi defined by 1]) and the arc yiyi+1 we get

Since  (C’ + 27r)r we get, by isoperimetric inequality,
(  C"r2 and then C"r2. Inequality (3.3) gives

then the conclusion of the lemma.
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4. CHARACTERIZATION OF GLOBAL-MINIMIZERS

The main theorem of this section is:

THEOREM 4.1. - If (u, K) is a global-minimizer such that K is connected
then (u, K) is one of the following:

(i) K is empty and u is constant.

(ii) K is a straight line defining two half-planes and u is constant on
each half-plane.

(iii) K is the union of three half lines with angle 2~r/3 and u is constant
on each sector.

(iv) in a polar set of coordinates u(r, 0) = E [o, 2~r)
and K is the half axis 8 = 0.

Proof. - The proof relies on a careful use of the monotonicity formula
given in the previous section.

LEMMA 4.2. - If (u, K) is a global-minimizer such that ~~’~~ is constant

then either

(i) ~~r~ - I and in a polar set of coordinates u(r, 0) = 
for 8 E [0, 2~r).

(ii) or ~~r~ - 0.

Proof. - The determination of the constant can be found in [19].
The lemma is then a straightforward consequence of theorem 3.1.
To prove theorem 4.1 we will show that ~{’’~ is a constant for a properly

chosen origin. For this purpose we study the limits lim+~ 03C6(r) r and limo 03C6(r) r

using a blow-up and blow-down technique. The blow-up is defined as in
section 2, that is,

and the blow-down is given by

where c -~ 0 and l -~ +00.
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From theorem 2.2 we deduce the,

COROLLARY 4.3. - Let (u, K) be a global-minimizer then
(*) a blow-up subsequence Keq (i.e. ~q -~ 0 as q E N goes to oo)

converges to a global-minimizer (uo, Ko ),
(**) a blow-down subsequence Klp (i. e. lp ~ oo as pEN goes to

(0) converges to a global-minimizer 
The convergences are to be understood in the same sense as stated in
theorem 2.2. We can deduce then

With lemma 4.2 this implies,

LEMMA 4.5. - If (u, K) is a global-minimizer such that K is connected
then limo 03C6(r) r and lim~03C6(r) r can only take the value 0 or l.

Consequently, if limoo ~~r~ = 0 then the monotonicity formula gives
~(r) = 0. Thus, u is a constant in any connected component of 
and we are reduced to minimizing under the condition (ii) of
definition 2.1 which gives situations (i), (ii) or (iii) of theorem 4.1.

Let ( u, K) be a minimizer of the Mumford-Shah functional J(u, K) or
J°(u, K). Assume that K has a finite number of connected components.
We consider the blow-up at a point P: ue(X) = The next
lemma gives additional information about the way blow-ups converge in
case (i), (ii), (iii).

LEMMA 4.6. - If a blow-up limit at a point P (i. e. the limit of a subsequence
(uen’ Ken) is of type (i), (ii) or (iii) then for any other subsequence the
blow-up limit at P is of the same type.

Proof. - We study the function

Under the hypotheses of lemma 4.6, lemma 3.8 implies that ç’(r) > -C
for r small. Then, ~ has a limit 1 as r -~ 0.

We claim that for any converging subsequence, the blow-up limit (uo, Ko )
is such that the ratio is constant and equal to t. This is a

straightforward consequence of equations (2.12), (2.14) and (2.8). Under the
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assumptions of lemma 4.6, this implies that 1 = 0 and that every blow-up
limit is such that 

Br(0)BK ~~u0~2 r 
is zero. Therefore, every blow-up limit

cannot be of type (iv), it is of type (i), (ii) or (iii). This is a very strong
constraint on the solutions.

Assume first that a blow-up limit is of type (i). We recall [6] that there is
a constant C such that if ~C1 (K n Br )  Cr then K n B 2 = 0. If the blow-
up limit is of type (i), then (2.14) implies that lim inf H1 (K~ n Bi) = 0.
Therefore there is e such that  C, that is,  Ce.
This implies that K n B 2 =0 and then every blow-up limit is of type (i).

It remains to understand what happens when the blow-up limit is of

type (ii) or (iii). We argue by contradiction and assume that there are
two blow-up sequences ep and r~p such that converges to a

type (ii) and (u~p , K~p ) converges to a type (iii). We may assume that
r~P > Notice that this implies the convergence ) - 0 (if not,

the blow-up limit should be at the same time a type (ii) and a type (iii)).
We will now prove that we can construct a blow-up sequence inbetween
ep and % which converges to a global-minimizer which cannot be of one
of the types of theorem 4.1.

Let us denote by k2 the limit edge set of type (ii). It is a line passing
through the origin 0. Let M be the triple point of the limit edge set of type
(iii). We denote this set by M -I- 1~3 where k3 is the union of three half
lines meeting at the origin and making 27r /3 angles. For any R we have
the convergence: n BR - (M + k3) n BR in the Hausdorff metric. We
may choose a sequence lp going slowly to +00 such that lp~p  ~p and
for all R, n n BR. For simplicity, we will assume in the
following that the sequence r~P is chosen such that K"1p n BR - k3 n BR.
Theorem 2.2 implies that n K~p ) --~ 3R uniformly in any compact
interval. For the same reasons n 2R uniformly in any
compact interval. We introduce Rp = inf ~ R > 1, n K~P )  2 . 5R ~ .
Since Ep > we have Rp and +00. We are interested in

the blow-up sequence for 03B6p = Rp~p. Since n K) is an
increasing function of R, the definition of Rp and (p gives

A subsequence of (u~P, converges to some (uo, Ko) such that

Vol. 13, n ° 4-1996.



506 A. BONNET

None of the global-minimizers of theorem 4.1 satisfies this relation. This
contradiction completes the proof of lemma 4.6.
So far, we have proved that either we are in case (i), (ii), (iii) of

theorem 4.1, or we have lim~ 03C6(r) r = 1.

PROPOSITION 4.7. - If lim~ 03C6(r) r = 1 then there is a point P such that if
we denote = then

We will say that P is a crack-tip for the edge set K.

Proof. - We argue by contradiction. If the conclusion of the proposition
is not true then for every point P the blow-up limit at P gives situations
(i), (ii) or (iii) of theorem 4.1. We consider a point P E K and Jordan arcs
in K parameterized by arc length ~ : ( a, b) --~ K such that ~ ( 0 ) = P,

is one to one). We consider maximal Jordan arcs passing through P:
is such that (a, b) -~ K is a Jordan arc in K parameterized

by arc length and (a, b) c (a, b) and ~~(~,b) - , ~ then (a, b) = (a, b) and
~ _ Since K is a 1-dimensional Hausdorff connected set, it is arcwise
connected. By assumption, K is unbounded and then, there is a maximal
Jordan arc 03C8 : ( a, b) ~ K such that 03C8(0) = P and such that a - b is
arbitrary large. If ( a, b ) = R then Vr > 0, ~-C 1 ( K n Br(P) > 2r which
contradicts the fact that the blow-down is of type (iv). Therefore we may
assume that b  +00. and we may introduce N = ~ ( b) .

* If N (N = ~ ( c) ) then ~ : : [c, b] ~ K defines a closed
Jordan curve defining a bounded connected component of R2BK. This
contradicts lemma 4.8 below.

* then the blow-up limit at N is either a type (ii)
or a type (iii).
Assume that one blow-up limit is of type (ii). Lemma 4.6 says

that every blow-up limit is of type (ii). This reads: Vc > 0 3ro,
Vr  ro, :3Lr, Lr is a straight line passing through N such that

K n Br(N) C {X E R2, d(X,Lr)  Let ~ = 1/2. Then,
aBr(N) n ~X E R2, d(X,  r/2~ is made of two components
Ci and C2. There exists rl such that for r  ri, ~((a, b)) n Ci # 0

n C2 = 0. Indeed, otherwise this would imply (for r
arbitrary small) that 1{l(K n Br(N)) > (1 + ~) r . However, since the
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blow-up limit is of type (ii), we should have lim ~-C1 (.K n Br(N)) = 2.
r

Therefore we will assume intersects only Cr for r  ri.

Since the blow-up limit is a line, there is a sequence Nn E K n C;n,
(rn = 0) converging to N. ( b, c) --~ K be an arc of
minimal length connecting N to Nn in K. This is a Jordan arc and we may
assume that it is parameterized by arc length. Lemma 2.9 implies that its
length goes to 0. Then for n large enough c Brl (N) and we can
prove easily by connexity that (where rn (t) = ( (~n (t) - 
for all t E ( b, c) . Consequently 0. We may then extend

on (a, c) by 03BEn and contradict the maximality of 
If the blow-up limit at N is of type (iii) (union of 3 half lines Di )

the same argument can be carried out with two connected components of

aBr n {X E R2, 3i, d(X, Di)  ~r~ instead of Cr and C; and give again
a contradiction. This completes the proof of proposition 4.7.

End of the proof of theorem 4.1. - We have proved that lim~ 03C6(r) r can

only take the value 0 or 1 (lemma 4.5). If limoo = 0 then we get (i),
(ii) or (iii) in theorem 4.1. If limoo ~~r~ = 1 then there is a P such that

is constant and equal to 1. This gives the situation (iv) of theorem 4.1
whose proof is completed.
We have been using in the previous proof the fact that KBR2 cannot

have a bounded connected component.

LEMMA 4.8. - If (u, K) is a global-minimizer, then R 2BK cannot have
a bounded connected component.

Proof. - Notice that by an obvious excision argument, any bounded
connected component of is convex. By contradiction, assume that
R2BK has a bounded convex connected component O. Now, u is necessary
a constant in the bounded connected component O. Let A be a regular point
of 90. The blow-up at A is a line (situation (ii)). There is a limit value
of u on both side of K at A. We may choose a compact perturbation of u
inside 0 such that those two values are identical. Then the blow-up at A
can be proceeded with a function c constant in the whole plane. Therefore,
the blow-up limit has to be a global-minimizer with respect to any compact
perturbation (the assumption (ii) of definition 2.1 is not required). Here, the
blow-up limit (uo, Ko) is such that Ko is a line and 0 in 

Consequently for any ball BR one can take Ko = Ko BBR and ic - 0
in R2BKo and reduce the ~I° energy. This contradicts the minimality of
(uo, Ko).
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5. FINITE NUMBER OF PIECES

In this section we will prove that any isolated connected component of
K is made of a finite number of Jordan arcs.

THEOREM 5.1. - Let Q be a Lipschitz domain and G be an isolated
connected component of K. Then,

where i = l, ..,1~, are one to one Lipschitz continuous functions and

~i((0~ 1)) n ~~((~~ 1)) _ ~ if i ~ ~~
Let P be a point in a neighborhood of G. Theorem 2.2 and lemma 2.8

ensure that a subsequence of the blow-up sequence of (u, K) at P converges
to a global-minimizer which satisfies the hypotheses of theorem 4.1. As
noted in remark 2.4 there may be several blow-up limits depending of the
chosen subsequence. However we have

PROPOSITION 5.2. - All blow-up limits at P are of the same type (that is,
(i), (ii), (iii) and (iv) of theorem 4.1 ). Type (i) is obtained when P ~ K,
for type (ii) P will be called a flat point, for type (iii) P is a triple point
and for type (iv) P is a crack-tip.

Proof. - We first notice that lemma 2.8 implies that any blow-up limit
is such that the edge set is connected. Consequently, theorem 4.1 implies
that the blow-up limit has to be of type (i), (ii), (iii) or (iv). Lemma 4.6

gives then the conclusion.

Proof of theorem 5.1. - Let us first assume that G cc Q. We know

(proposition 5.2) that any point of K is a flat point or a triple point or a
crack-tip. Let us prove that there is a finite number of triple points. By
contradiction, assume that there is a sequence Tn of distinct triple points
in G. By compactness we may assume that Tn converges to a point P
of G. We introduce the blow-up sequence = 

Ken = {X E R2, Tn + E K} where ~n = ~(Tn+1 - Tn~ ] and r
is the rotation which sends ex on For this transformation, Ke
has a triple point at the origin and at the point A = ( 1, 0) . A subsequence
of converges to a global-minimizer (uo, Ko) of J°. The origin
and A are in the set Ko and at least one of the two is not a triple point
(theorem 4.1). Assume that the origin is not a triple point. It is then a

crack-tip or a flat point. Therefore,
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Since Tn is a triple point we have

As in the proof of lemma 4.6 we introduce Rn = inf(r > 0,
n Br )  2.5r ~ . We notice that 0 and for r~n = we

consider the blow-up (X ) = = .~X E R2,"1 n ~n "1 n ,

Tn + E I~ ~ . Then,

As in lemma 4.6 the blow-up limit satisfies the above inequality and this
contradicts the result of theorem 4.1. Consequently, when G GC S2, there
is a finite number of triple points.

Let us now consider the case where G meets 852. Assume first that S2

is regular. We study then a blow-up at a boundary point. This gives a
global-minimizer defined in a half-space R+ x R. From corollary 3.6 and
the fact that (~(r) ~ Cr it is obvious that the blow-up limit satisfies: ~ = 0
and K is the half line R+ x f 0}. A similar argument as before shows that
there cannot be a sequence of triple points converging to the boundary.
If H is only Lipschitz then remark 3.7 gives a similar characterization of
blow-up limits ((~ ~ 0, K is a half-line ending at the origin, etc.) The same
argument as before gives the finite number of triple points.

Similarly, it is even easier to prove that there is at most a finite number
of crack-tips.
To conclude the proof of theorem 5.1 we have to prove that we have a

finite number of curves. We consider a flat point P of G. As in the proof
of lemma 4.7, we can prove that there is a Jordan arc parameterized by

: [a, b] --> K of maximal length, passing trough P and such that every
point of ~((a; b)) is flat. Then, the endpoints ~(a) and are either triple
points or crack-tips. We note also that for any Jordan arc ~’ : [a’, b’~ -i K,
if every point of b’)) is flat then either

Indeed, consider (tl, t2) c ~a’, b’~ such that t2)) n b)) = 0 and
(or ~’(t2)) is in b~). Either is an endpoint of b~)

(i.e. coincide with or ~(b)) or is a triple point. If is a

triple point then, by construction of ~(~a, b~), it is an endpoint: 
Consequently, G is a union of disjoint Jordan arcs connecting a finite

family of triple points and crack-tips with each other. The family of
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arcs is then obviously finite (7-ll(K)  oo). This completes the proof of
theorem 5.1.

PROPOSITION 5.3. - Let P be a point of K. Assume that Br(P) intersects
only one connected component of K. Then

where 03C8i are one to one Lipschitz continuous functions and 1)) n
03C8j((0, 1)) = Ø if i ~ j

Proof. - As in the proof of theorem 5.1, there is a finite number of triple
points and crack-tips in B 4,. (P). For each M E K n there is a

Jordan arc 03C8 : [a, b] ~ K of maximal length, passing trough M, such that
every point of ~((a, b)) is flat and such that ~((a, b)) c As before

those arcs are pairwise disjoint. The endpoints ~(a) and of this arc are

either triple points or crack-tips or points of the boundary ~B3r 4 (P). If 
or is in aB 4 (P) then ~-ll(~((a, b))) > r/4. Since Cr

there is a finite number of those Jordan arcs intersecting Bz (P) and ending
on We already know (as in theorem 5.1) that there is a finite
number of those arcs ending at a triple-point or at a crack-tip. Consequently
the family of maximal Jordan arcs made of flat points of K and intersecting
Bj (P) is finite and satisfies the conclusion of the proposition.

6. REGULARITY Cl‘y

Let U be a domain, we recall the definition of 

A curve c is if locally one can find local coordinates (x, y) such that
c n B(0, r) is a graph ~y = f (x)~ with f E 

THEOREM 6.1. - Let (u, K) be a minimizer of the Mumford-Shah
functional. Let P be a flat point of K. Assume that there is an open

neighborhood w of P such that w intersects only one connected component
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of K. Then, there is a neighborhood of P in which K is a arc for
all a  1/2.

Let r H We will prove a weak monotonicity
formula 

LEMMA 6.2. - Assume that for any R  Ro there is a straight line L R
passing through P such that Kf1 BR(P) c {X E BR(P), d(X, LR)  lR}
where 0  1  1 is a constant. Assume that only one component of K
intersects BRo and that for all R  Ro, K intersects both connected .
components of aBR(P) n {X E BR(P), d(X, LR)  lR~, then there is

,C3(l) and a constant C(Ro, ~) such that

The constant ,~ is such that ,C~ ( l ) --~ 2 as 1 -~ 0.

Proof. - Let r~ = Inequality (3.2) with (82+1 - 82 ~ I  7r + 2r~
allows us to adapt the proof of lemma 3.8 and get for r  Ro,

We define j3 = ~+2~ , 1  j3  2. Inequality (6.1) reads then

A direct integration between R  Ro and Ro gives

which is exactly the conclusion of the lemma with = ~~-2 sm-1 l ’
Obviously, 1  ,~(l)  2 and ,C3(l) -~ 2 as 1 -~ 0.

LEMMA 6.3. - Under the assumptions of lemma 6.2 and for l  2 there
is a constant C(Ro, ,Q) such that for R  Ro,

Proof. - We remark that under the hypotheses of lemma 6.2 and for
1  9 any blow-up sequence at P will yields a type (ii) blow-up limit
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(theorem 4.1 ). This is indeed the only type compatible with the hypotheses.
Therefore we know that

Let no E N be chosen such that Ro E ~2-n° -1, 2-n° ) . The limit (6.4)
and inequality (6.1) imply then the existence of a constant Ci > 0 such
that for all n 2:: no,

such that

Let K n {yl, y2~. We introduce a compact perturbation
of (u, K). In Br(P) we replace K by the union of the two

segments: K n Br(P) = U ~P, y2~. Outside Br(P) we define
= KBBr(P). The function ic is introduced as:  = u in

and u minimizes the energy under the Dirichlet

condition v = ~cc on dB,.(P).
We claim that is less than C2r~. Indeed has

two sectors az of angles (i = 1, 2 and 1 +2 = 2) which can be mapped
by a conformal mapping (we identify R2 and C) z E C - ~(z - 7=
(where A E C, |03BB| = 1) into the half ball B _L n (R + iR+). If v is the

image of  by this conformal mapping then we have ~03C5 ~03BD = 0 on the diameter
of the half ball. By a reflection we extend v to an harmonic function w on
the ball B ~ . We have then the identity [6]:

T 7i

The monotonicity formula (theorem 3.1) gives:

(The factor 2 comes from (3.2) with 8i+1 - Bi = 7r.) We notice that by
the construction of w we have
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and

where wT (resp. uT) is the tangential partial derivative on (resp. on
~ 

r "Y i

the associated arc of aBr(P)). From the construction of u we know
that uT = UT on Identities (6.6), (6.7) and (6.8) gives then:

Using (6.5) we deduce

Since (u, K) is a minimizer of the Mumford-Shah functional we shall have

which implies

For any R  Ro, ~n > no such that R E ~2-n-1, 2-’~ ) . We have proved
that there is a r E ~2-n, 2-n+1 ) such that (6.13) holds. The hypotheses of
the lemma implies that for R  r,

Therefore we have
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PROPOSITION 6.4. - Under the assumptions of lemma 6.2 there is a constant
C(Ro, ,~) and a straight line L passing through P such that for all
R  Ro/2:

Proof. - Let R be given, R  Ro/2. Let M and N be two points
of K n chosen in each connected component of n

{X E BR(P), d(X, LR)  lR} (see lemma 6.2). If there is a point
X E K n BR(P) and a real m ~ 2l such that d(X, [P, M]) > mR > 0 and
d(X, [P, N] ) > mR > 0 then a straightforward estimation gives a constant
C such that 1{l(K n 2R + CRm2. We deduce from (6.3) that
there is a constant C such that m ~ This is:

We can choose two sequences Mk and Nk of points in each connected
component of K n (P). Identity (6.17) gives the estimates:

Let ()k (resp. 8k) denotes a determination of the angle that the vector PM~
(resp. P Nk) makes with a fixed vector e. Inequalities (6.18) implies that
the determination of 8~~1 and can be chosen such that:

This gives the convergence of the sequences 8~ and 8k to real numbers 8~
and We notice that since the blow-up limit at P is a straight line we
shall have = 0oo + (2n + 1)7r where n is an integer. This defines a line
L passing through P. Inequalities (6.19) give the existence of a constant
C : (8~ - ]  C (l~/2~) p21 and ~~~ - ~~~ [  C (R/2~) ~21. Together
with (6.17) this gives the conclusion of the proposition.

Let P be a flat point of K, we assume that there is an open neighborhood
w of P such that w intersects only one connected component of K. We
will prove then that K is in a neighborhood of P.

LEMMA 6.5. - There is a neighborhood U of P such that K n U is a
Jordan arc and such that for all l, 0  1  1 there is a Ro > 0 such that
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for all M E K n U, M is a flat point and for all R  Ro there is a straight
line passing through M such that

Proof. - We first notice that proposition 5.3 gives the existence of a
neighborhood of P in which K is a Jordan arc. In this neighborhood, any
point of K is a flat point. By a contradiction argument, if the conclusion
of the lemma is not true then one can construct a sequence of flat points
Mn converging to a point P and a sequence of positive real numbers
Rn converging to 0 such that (6.20) does not hold. By construction,
the associated blow-up sequence (un(X) = u(Mn + 
cannot converge to a type (ii) global-minimizer. Since K is an arc in a
neighborhood of P, 7~1 (.K n > 2 and the blow-up limit cannot
be a type (iv) (neither (i)). Finally, a similar argument as in lemma 4.6
proves that the blow-up limit cannot be of type (iii) (triple-point). This
contradicts theorems 2.2 and 4.1.

Proof of theorem 6.1. - From lemma 6.5 we know that the hypotheses of
lemma 6.2 and 6.3 are satisfied uniformly in a neighborhood of P. Then
the conclusion of proposition 6.4 holds uniformly in this neighborhood.
This gives exactly the C1~~ regularity for a = ~21. Since this is true for
any l, 0  l and since ~3(l ) --~ 2 when l --~ 0 we have proved the
C 1 ~ a regularity for any a  1/2.

Notice that the same arguments as in lemma 6.2 in the case of a triple
point P give the

LEMMA 6.6. - Let P be a triple point of K, such that there is an open
neighborhood w of P such that 03C9 intersects only one connected component
of K. Then for any ,~  3 there is a constant C such that

Then, the procedure of lemma 6.3 and proposition 6.4 yields
PROPOSITION 6.7. - Under the conditions of lemma 6.6, there are three

half lines Di meeting at P with angle 2~/3 such that for any ,Q  3 there
is a constant ~’ such that

Taking this into account in the proof of theorem 6.1 we write the:
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THEOREM 6.8. - Let P be a triple point of K, such that there is an open
neighborhood w of P such that c.~ intersects only one connected component
of K. Then there is a neighborhood U of P in which K is the union of three

arcs (Va  1/2) making a 2~-/3 angle at P.

COROLLARY 6.9. - If G is an isolated connected component of K then it
is the union of a finite number of arcs. Those arcs are away from the

crack-tips and can only merge through a finite number of triple points.

7. FURTHER REGULARITY

7.1. C 1 ~ 1 regularity

In this section we will prove in theorem 7.2 that if K is, locally, a
curve then it is C1~1. This result together with theorem 5.1 and 6.1

completes the proof of theorem l.l and 1.2. We first start with a proposition
which gives the regularity of u up to the edge set K. In the following,
(u, K) is a minimizer of the Mumford-Shah functional.

PROPOSITION 7.1. - Let P be a point of K such that in a neighborhood
B4R(P) of P the edge set K is a curve: ~(x, y), y = f(x), x E I~. K
defines two sets BR = ~ (x, ~) E BR(P), y > f (x) ~ and BR = ~ (x, ~) E
BR(P), ~  f (x)~. The minimizer u can be extended on each side of K
such that

Proof. - We will prove that u is in BR = ~(x, y) E BR(P), y >
f (x)~. The minimizer u satisfies - Au + u - g = 0 in the interior of B ~.
In the sense of lemma 3.1 in [6] we can say that u satisfies Neumann

boundary conditions av = 0 on K. We want to prove that a solution of
-Du ~- u - g = 0 with av = 0 on K is in BR. Since g
is L°°, the regularity in the case of Dirichlet conditions is given by
theorem 5.5.5’ of [18]. Following [18], it is possible in fact to prove the

regularity in the case of Neumann boundary conditions. For sake of

completeness the proof is given in the appendix.

THEOREM 7.2. - Let P be a point of K such that in a neighborhood U of
P the edge set K is a curve, then K is C 1 ~ 1 in U.

Proof. - For every point M of K n U we may take a ball Br(M) C U
and a coordinate system centered at M in which K n Br (M) is the graph
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of a function f : I - R such that f (0) = 0 and f’(0) = 0:

We would like to estimate if we can reduce the Mumford-Shah energy
by moving the edge set near M. This can be achieve for instance by adding
a Co (I) function ( to f. Assume that ( > 0, let us replace K in Br ( M)
by the set f (~, y) E Br(M), y = f(x) + ~(x)} and get a new edge set K.
We define now a new function u from u in Br(M)BK:

It is easy to compute:

Since (u, K) is a minimizer we must have K) - J(u, K) > 0 that is:

We may replace ( by t( and let t > 0 go to 0. We get then:

We denote by x the distributional first order derivative of f ~ 
. It is

1+(.f’)2
the curvature of K and we can write:
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Since u and f are and since g is bounded we deduce from (7.3) that
there is a constant C such that:

A similar construction with -( gives the existence of a constant C such
that for all function 0:

This means that r~ (and therefore f ") is an L°° function and that K n Br ( M)
is a C1~1 curve. This is true for every point M E K n U. The proof of
theorem 7.2 is completed.

7.2. regularity when g is 

In this section we prove theorem 1.4. From theorem 6.1, we know that
if K is a C1 curve then it is We follow then the same construction

as in the proof of theorem 7.2. With the same notations, we start over from

inequality (7.3). We denote by u+ (x), and ~ic+ (x) the
limit value of u, and ~ on K from above at the point ( x , f ( x ) ) .
We write (7.3) with t( in place of (. We notice that the continuity of g
allows to rewrite (7.3) in the limit t -~ 0 as:

We denote by u-(x) and the limit value of u and Wu on K from

below at the point (x, f (x)). Inequality (7.8) gives at almost every x E 1:

With -( we derive at almost every x E I :
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Since f’(0) = 0, there exists a function eo with limo = 0 such that

for almost every x E I:

This inequality has been derived by an argument centered at M of

coordinates (0, 0). The same argument at a point N(xo, f (xo)) would
give the existence of a function Exo with limxo (:~~ = 0 such that for
almost every x E I:

Consequently f" is continuous and at every point N(x, f (x)) of Kn Br (M)
we have the expression of the curvature of K at the point N:

From this equation we are able to start a classical bootstrap argument. If g
is C°,~ then f is C2,a and then (elliptic regularity) u is C2,a up to K.

By induction, if g is and u is up to K then f is Ck+2,a
and u is Ck+2,a up to K. This completes the proof of theorem 1.4.

Remark 7.3. - Notice (7.14) makes it easy to construct an example of an
L°° function g such that K is and not C2.

7.3. Minimization with n connected components

One can study the problem: minimize the Mumford-Shah functional
under the condition that K is made at most of n connected components
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(see proposition 15.44 of [17]). The previous analysis gives immediately
the proof of theorem 1.5.

Remark 7.4. - The proof through blow-up procedure (theorem 2.3) gives
that the maximum number of arcs and triple points do not depend on the
image g, 0  g  1.

8. REGULARITY ALMOST EVERYWHERE

In this section we will not make any assumption on the connected
components of K and prove theorem 1.3. This result is a direct consequence
of the following proposition and of theorem 6.1 and 7.2. The proof of
proposition 8.1 involves an argument of coarea formula as in [7]. The
coarea formula is used, here, together with blow-up techniques and precise
estimates on the length of the level set of a distance function.

PROPOSITION 8.1. - For almost every point P of K there is a ball

Bp(P) and a one-to-one Lipschitz ~0,1] -~ SZ such that

Proof. - almost every point of K has a tangent and has density one.
Therefore by a blow-up at such points one gets a global minimizer (uo, Ko)
where Ko is included in a line (the tangent) and where BT) = 2r
for all r. Then, Ko is a line and uo is a constant on both sides. Let P be
such a point of K and (ue,Ke) be a blow-up sequence at P.

Step 1. - There are no holes in KE near P.
Assume that Ko coincides with the x axis. For e small, (ue, Ke) is

arbitrary close to (uo, Ko) and for any A > 0 there is e > 0 such

that (Ue(X) = u(P + Const, Ke) satisfies in the rectangle
R2 = [-2,2] x ~-1; 1]:
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Let Xo E [-2, 2] be such that KE intersects the vertical segment
x [-1,1] in a single point (xo, yo). Assume that

then A2. For large A, is small and

there is at least a Xo E ~1, 2~ such that Ke intersects {xo} x [-1,1] and
{-xo} x [-1,1] in a single point and such that (8.3) does not occur.
Replace e by exo and let Rl = [-1,1] x [-1,1]. The set Ke intersects aRl
at two points Mi = (-1, Y1) and M2 = (1, y2) and divides in two

parts: the upper one where Ue > A and the lower one where Ue  -A.
Moreover, for e small, properties (8.2) are still satisfied in Rl.
We will now prove that for A large, there are no holes in Ke, i.e. Mi

and M2 are in the same connected component of Ke n R1. Consider a path
y : [0, l] -j R2 connecting Mi to M2 and such that = 1 a.e. and such

that ’Y = ~-L1(~~0, is minimal. Assume by contradiction that -y ~ 0
(there are holes in We want to prove that taking k = Ke U ~(~0, l])
instead of K we reduce the energy by more than 7 and
contradict the minimality of (Ue, Ke).

For this purpose we notice that if:

then Ioa > We will then construct a family of such
curves as part of the level surfaces of a distance function.
Assume that Ke n R1 is made of a finite number of pieces and that

the minimum path 03C8 touches successively the components F0  Mi,
Fi, ..., Fn :1 M2. We construct the dilation of Fo. For 8 small,
R1 n E R2 , d ( N, Fo )  b ~ does not intersects Ke and one component
of this boundary is a curve ~s satisfying (8.4), such that its length l8
is less than 2~-C1 (Fo) + 7r8. We proceed until ~s ( ~0, l~~ ) touches Ke for
8 = 80, then we replace Fo by the union Gi of {N E R1, d(N, Fo)  bo~
and the connected components of Ke touched by ~so ( ~0, l so ~ ) . We proceed
as before: for 6 > 80, ~s is the component satisfying (8.4) of the set

n E R2, d(N, G1 )  8 - bo ~. We proceed until ~s ( ~0, ls~ ) touches
Ke, etc. We remark that by construction, ~s at a point
~(T) such that ~C1(~(~0, = b. And if K E: then, ~s(~0, ls~)
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cannot intersect any of the Fi, or this would contradict the minimality of
~. Consequently, the construction can be done for any 8 E ~0, 7~. For all 6,
except a finite number of them, ~b satisfies condition (8.4) with a length ls
less than Moreover, we have d(~~(t); ~6~(t’)) > ~b-6’~ ]
for all 8,8’ and t E [0, t’ E [0, lb~~. With this construction, the curves ~~
can be viewed as part of the level surfaces of the distance function D where

D(X) is the infimum of ~-ll(~(~0, with ~(0) = Ml and = X.
On each curve ~s, ~~F is larger than 4A2/(2~-L1(K~ n Rl) + ~r~y).
The coarea formula [12] gives

In general, we take the sequence (Fn)nEN of components of Ke n Rl
touched by 03C8 and (Gn)nEN the other components of Ke n R1. We
first remove the Gn. Then we choose a finite number of holes of
total length larger than ~y/2 (i.e. a finite number of disjoint intervals

(ak, bk) of total length larger than q/2 in ~-1(~(~0, l~~K~)) and fill
in the other holes with the appropriate pieces of ~ ( ~0, ~~ ) (i.e. we take
K’ = UFn U ~(~0, l~~ U (ak, bk))). This way, we are reduced, with K’,
to the previous case with a finite number of pieces and may construct
the curves ~s for 8 E ~0, ~y/2~ . We introduce the one-to-one function

ho(t,8) = ~s (t) for t E ~0, ls~ . We may introduce successively the Gn
and construct a function hn (hn is a small perturbation of hn-i). The
sequence hn converges to a function h such that for almost every 8,
t ~ h(t,8) satisfies (8.4), has a length less than n Rl ) + ~y + ~rb
and d(h(t, b), h(t’, b’)) > ~b - b’~. Again, the coarea formula gives

CA2’Y where C = 2/(2?-~1(K~ n Ri) + (7r + 1)’Y). °

Now, if we replace Ke by K = then ~-Cl (K) _ ~‘~C1 (K) ~ ~y
and K cut R1 in two parts. In the upper part, take U = sup(A, Ue) and in
the lower part take !7 = inf ( - A, Ue). For almost every curve t t2014~ h ( t, 8)
there is a minimum segment ~a, ,~~ in which t H goes from

- A to A and one gets as above which

is larger than ’Y for large A. Therefore, (!7, K) is a compact perturbation
of Ke) which reduces the energy. This contradicts the minimality of

K~).
Consequently, for c small, Mi and M2 are in the same connected

component of Ke

Step 2. - The blow-up limit at any point near P is a line.
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Let P be a point where K has a tangent and has density one. Then, for
any /3, 3ro such that Vr  ro

(a) the set Gr = {p E [r/2,r),#(K n = 1 ~ satisfies

meas(Gr) > (1 - 
(b) Vp E Gr ; K n is made of two points of the same connected

component of K (consequence of step 1) and of polar coordinates centered
at P, (p, 81 ), (p, 82 ) such that > 82 - 81 - ~r ~ .
Those two properties hold then for the blow-up Ke, Vr  The

convergence of Ke to the line Ko gives the existence of ri and ei such that
VE  ei, VQ E r  r1/~1 properties (a) and (b) above
holds at Q. Assume that there are sequences 0, Qn E n B1 and
rn, 0  rn  1 such that (a) and (b) are satisfied for r, rn  r  r1/~n
but not at r = rn . Consider the blow-up sequence Vn(X) = ,

vn (X ) = Vn (X ) - en (X) (where cn is piecewise constant as in section 2),
Kn = ~ X , Qn + rnX E A subsequence will converge to a global
minimizer (v, Kv) such that 0 E Kv, identities (a) and (b) (with > instead
of >) are satisfied for r > 1 and

(1 -,(3)1/2 or 3p E Gisuch that 7r{3’  ~82 - 81 - ~r~. (8.6)
For r > 2, the computation for the monotonicity formula gives for all

p E Gr

and then

where -~ 0 when fl, ~3’ goes to 0. Assume that ,~, ~3’ were
chosen such that T  1. Then, since f Br 27rr one gets for all
r > 1, and n > 1,  2n(-2+)203C0r2n = 203C0r2n(-1+). Thus,

0 for all r and the global minimizer (v, Kv ) is of type (i),
(ii) or (iii) of theorem 4.1. Only (ii) satisfies (a) and (b) above. Therefore
Kv is a line, which contradicts (8.6). Consequently, (a) and (b) holds for
all r  ri at any point Q E K n The blow-up at Q is then a line.

Step 3. - Conclusion.
We have proved that there is a ball Bu such that n K = {No, Nl ~

and there is a Jordan arc 03C8 : [0, l] ~ B03C3 n K with endpoints No and N1.
We know also that for any Q E Bu n K the blow-up limit is a line. As
in section 5 we conclude then that B~ n K = ~~0, l] which completes the
proof of the proposition.
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9. COLOR SEGMENTATION

In the previous sections we have concentrate on black-and-white images.
Mumford-Shah segmentation procedure can also be applied to color images.
Following [ 10] we say that each point of a color image is characterized by
its red, green and blue intensity. The true image is then the vector function
g : SZ ~ R3 of red, green and blue intensity. We may assume that g (and
therefore the regularized image u) takes its values in the cube ~0,1~ 3 on
which we define a Riemannian metric:

where are continuous functions. We assume that there are two positive
constants, A and ~c such that

Mumford-Shah functional is then replaced by

The distance d(u(:~), g(x)) is classically defined as the infimum

over paths v connecting u(x) to g(x) (a path is a smooth function

v : [0,1] -~ ~0,1~3 such that v(0) = u(x) and = g(x)).
We may study, as in section 2, blow-up sequences (ue, Ke). Condition

(9.2) ensures the convergence of a blow-up sequence to a blow-up limit
Ko). Since 03C6ij is continuous, we may choose a subsequence such

that in each connected component of R2BKo, converges locally
uniformly to a constant. Since Ko is a closed set there is a countable family
of connected component en. For each Cn we denote by a ~ the limit value
of in The argument of the proof of theorem 2.2 gives then

PROPOSITION 9.1. - For any bounded open sub-domains U, V of R2 with
U cc V there is no function ico and closed edge set Ko defined on V
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such that

(i) ico and uo (resp. Ko and Ko) coincide in 
(ii) for every pair of points X, Y in U Ko), if X and Y are in two

distinct connected components of VBKo so they are in VB,
(iii) (ico, Ko) lowers the energy

where denotes the connected component of a ~ is defined as

a ~ = a ~ if n Cn n (VBU) ~ ~ (there is at most one n satisfying
this condition),

Remark 9.2. - If Vn, C"2 n C’~ n (VB!7) = 0 then C"2 c U is bounded
and one can lower the energy by taking £ constant in whatever the
definition of the definite positive matrix 
We will now concentrate on each connected component en. There is

an orthonormal basis of R~ in which matrix a ~ is diagonal. We denote
by bi the element of the diagonal in this basis and by the

components of uo in the same basis. The energy of (u, K) in a ball BR
can be written as

.Obviously, since (uo, Ko) is a global-minimizer, Uo is harmonic and
satisfies Neumann boundary conditions on acn . Therefore, if ~Cn is

connected, theorem 3.1 and remark 3.2 implies that the functions

are nondecreasing functions of r. Therefore the analysis of section 4 gives
the

THEOREM 9.3. - If (uo, Ko) is a global-minimizer of E such that Ko is
connected then (uo, Ko) is one of the following:

(i) Ko is empty and uo is constant.
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(ii) Ko is a straight line defining two half-planes and uo is constant on
each half-plane.

(iii) Ko is the union of three half lines with angle 2~/3 and ~co is constant
on each sector.

(iv) in a polar set of coordinates and in the appropriate basis of R3

and K is the half axis 03B8 = 0. The constants ai are such that 03A3i bi(03B1i)2 = l.

Consequently, it is easy to check that the proofs presented in sections 5
to 8 for a black-and-white image holds for the case of a color image.
Theorems 1.1 to 1.5 are true for ( u, K) minimizer of the energy E defined
in equation (9.3)-(9.1) and under condition (9.2).

10. APPENDIX

Proof of proposition. 7. l. - Let w be the solution of 0394w = u - g in B R
with Dirichlet conditions w = 0 on Since u and g are in L°° and K
is C1,0152 then theorem 5.5.5’ of [18] gives that w is in 
We would like now to prove that v = u - w is also in 

By construction v is harmonic, it has an adjoint V such that v + iV is
holomorphic. We may assume that V(P) = 0. If ~y is an oriented regular
curve connecting two points A and B in the interior of B R and if v

denotes the normal to q then

For any points M of K n B2~ let be the portion of K connecting P
and M. Since w is in we may introduce a function:

For any point (x, y) of B2R(P) we may define x by

The function x is then in B2R(P).
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Assume that A and B are two points of K. The curve ~y connecting A
to B can be chosen arbitrary close to K. Lemma 3.1 of [6] and equation
(10.1) give then

Since we assumed V(P) = 0, we have for all M E K n B2R,

Since x is C1,a, theorem 5.5.5’ of [18] give now that V E The

adjoint v of V is in the same space and we have proved that u E 
which completes the proof of proposition 7.1.
.....
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