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ABSTRACT. - We find a new method for proving the local ill-posedness
of the Cauchy problem for non-linear partial differential equations. The
method is used to prove that the Cauchy problem for the Modified KdV
equation is ill-posed in Sobolev spaces  -1/2.
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RESUME. - Nous presentons une nouvelle methode pour demontrer que le
probleme de Cauchy est localement mal pose dans des equations aux
derivees partielles non lineaires. Nous appliquons cette methode pour
demontrer que le probleme de Cauchy pour 1’ equation de KdV modifiee est
mal pose dans l’espace de Sobolev Hs(R), s  -1/2.

1. INTRODUCTION

Consider the initial value problem (IVP) of the Modified KdV equation
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It was proven in [6] that this IVP is locally well-posed in Sobolov

spaces, Hs(i~) _ (1 - 0)-s~2~2(~), for s > 1/4, and in addition that

the IVP has a global solution in > 1. Local well-posedness means
that there exists a unique solution in Hs for a small time interval [0,T],
it is a continous curve in Hs , originating in uo and the solution depends
continously upon the data.

In this paper we introduce a technique to prove ill-posedness and apply
it to the IVP (1.1). A known technique for showing ill-posedness uses a
finite-time blow-up of the solution to the IVP, see [4]. If the solution and
its lifespan T* scales with a parameter A then one can scale the solution
to get arbitrarily small lifespans T*/A, as A - oo . This contradicts the

existence of a non-zero time interval [0,T] where the solution exists. Our

technique is very different from this but it seems to be of general use. In a
subsequent publication [2] it will be applied to prove the ill-posedness of
the generalized KdV equations, see [3], [6] and (1.2) below, and nonlinear
Schrodinger equations in any dimension. The idea is to show that the

solution, of (1.1), does not depend continously on its data in  -1/2,
by constructing a sequence converging (strongly) to the data in HS and then
showing that the corresponding sequence of solutions does not converge
(strongly) in Hs .

The sequence consists of the solitary wave solutions of (1.1), see [5] and
[7], and the data is chosen to be the Dirac delta function. Thus we show
that the IVP of the generalized KdV equations,

is locally ill-posed in  -1/2, for n = 2. In [6] (1.2) was shown to
be locally well-posed in Hs, s > -3/4, for n = 1, and in [2] (1.2) will be
shown to be locally ill-posed in  1/2 - 2 / n, for n > 3, compare
[8]. The Dirac delta function lies in HS, s  -1/2, this is sufficiently
smooth initial data for KdV, borderline for MKdV and too rough for the
(higher order) generalized KdV equations.
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2. SOLITARY WAVES

Consider the IVP

For any n there exists a one-parameter (k) family of solutions

which are solitary waves.
The norm of these solutions is finite, with the exception of KdV (n = 1),

in the Sobolev spaces H 2 - n , and independent of k, as k - oo. This is
easily shown by use of the Fourier transform,

where r is the gamma function, see Batemann [1]. The Fourier transform
reduces to

and

for n = 1 and 2, respectively. 
’ ’

LEMMA 2.1. - The solitary wave solution un (x, t, k) has a finite Hs norm,
s = 1 - 2 2 , n uniformly with respect to k > 0, for n > 2.

Proof. - By the Plancherel identity,
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where z = ~/k;. Then we use Stirling’s formula to obtain

where is a regular function of k. The last integral converges
uniformly in k and by the dominated convergence theorem we can pass
to the limit 1~ -~ oo, to get

This integral converges (at the origin) only if n > 2. D

Remark 2 .l . - The limit 1~ -~ oo gives the norm

of the homogeneous Sobolev space This is actually
independent of k. Therefore the index s = 2 - n is called the scaling
index for n.

Remark 2 .2 . - Observe that if u(x, t) solves (2.1), so does

À3t) for any real-valued A > 0. This suggests that one should
consider the homogeneous norm ( u ~ ( 2 1 _ 7z 2 , and this agrees with [6] for

n > 4. However, for n = 1 and 2 the formulas (2.4) and (2.5) easily
show that the Hs norms of k) diverge as k - oo, for s  -3/2
and s  -1 /2, respectively. One must consider the usual inhomogeneous
HS norms to overcome this difficulty.

3. THE MODIFIED KdV EQUATION

Consider the IVP for the modified KdV equation (MKdV)
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We will show that the solution of this IVP cannot depend continuously
on its initial data in a Sobolev space Hs of negative index s  - 2 . The
soliton solution (2.2) of MKdV scales to a constant multiple of the Dirac
delta function,

this is proven in two lemmas below, and we will pose the IVP with this
initial data in H s, S  -1/2, to prove the theorem.

LEMMA 3.1. - The HS norm of

is finite for s  -1/2 and

for s  -1/2.

Proof - The Fourier transform of use, see (2.5), is

By the Plancherel identity

for s > 1 /2. Thus the integral converges uniformly in E and we can bring
the limit inside it. Finally one observes that

by the Plancherel identity, since 8 = 1. D
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The integrals are invariant with respect to translation
and this implies that we get the same statements for uE (x, t),

and

for t > 0 and s  -1/2.
LEMMA 3.2. - converges weakly to ~~rb(x), as E -~ 0, but

t) converges weakly to zero, for t > 0, as E -~ 0, in Hs, s  -1 /2.

Proof - The H-s norms are finite

by Lemma 3.1 and Remark 3.1, so it suffices to compute the limits

for all v in a strongly dense subset of the dual space HS, s > 1/2, where
( , ) denotes the dual pairing between H-s and We choose the smooth

compactly supported functions they are dense in HS, s > 0. Then

by the uniform convergence of the integral. This shows that 
converges weakly to in H-s. Similarly

since 4J E Co has compact support. This shows that E ~
converges weakly to 0 in H-s . D

We can now prove the result.
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THEOREM 3.1. - The initial value problem (3.1 ) for the modified
KdVequation is locally ill-posed in HS, s  -1/2.
Proof - We will prove that if there exists a local (strong) solution of

the IVP (3.1) with uo(x) = in H5, s  -1/2, then it does not

depend continuously on its initial data.

The HS norm of converges to the norm of by
Lemma 3.1 and converges weakly to by Lemma 3.2,
therefore converges strongly to Now we solve the IVP

(3.1) with initial data

to get the explicit solutions

By Remark 3.1, the HS norm of t) converges to the norm of 
which is non-vanishing but, by Lemma 3.2, converges weakly to
zero. Consequently, cannot converge strongly to the solution of
the IVP (3.1) with initial data
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