Vol. 13, nº 5, 1996, p. 553-565

Asymptotics for L^2 minimal blow-up solutions of critical nonlinear Schrödinger equation

by

Frank MERLE

Université de Cergy-Pontoise, Centre de Mathématiques Avenue du Parc 8, Le Campus, 95033 Cergy-Pontoise, France

ABSTRACT. – In this note, we describe the behavior of a sequence $v_n : \mathbb{R}^N \to \mathbb{C}$ minimal in L^2 such that $\frac{1}{2} \int |\nabla v_n|^2 - \frac{1}{\frac{4}{N}+2} \int |v_n|^{\frac{4}{N}+2} \leq E_0$ and $|v_n|_{H^1} \to +\infty$.

RÉSUMÉ. – Dans cette note, on explicite de façon optimale le comportement d'une suite $v_n : \mathbb{R}^N \to \mathbb{C}$ de norme L^2 minimale telle que $\frac{1}{2} \int |\nabla v_n|^2 - \frac{1}{\frac{4}{N}+2} \int |v_n|^{\frac{4}{N}+2} \leq E_0$ et $|v_n|_{H^1} \to +\infty$.

In the present note, we are interested in the behavior of a sequence v_n : $\mathbb{R}^N \to \mathbb{C}$ of H^1 functions such that

(1)
$$\int |v_n|^2 = \int Q^2,$$

(2)
$$E(v_n) = \frac{1}{2} \int |\nabla v_n|^2 - \frac{1}{\frac{4}{N} + 2} \int |v_n|^{\frac{4}{N} + 2} \le E_0,$$

(3)
$$\int \left|\nabla v_n\right|^2 \to +\infty,$$

where Q is the radial positive symetric solution of the equation

(4)
$$\Delta v + |v|^{\frac{4}{N}}v = v.$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 13/96/05/\$ 4.00/

© 1996 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

(See references [1], [4], [7] for existence and uniqueness of Q.)

This problem is related to the asymptotics of minimal blow-up solutions in H^1 of the equation

(5)
$$iu_t = -\Delta u - k(x)|u|^{\frac{4}{N}}u \text{ and } u(0) = \varphi,$$

where

(6)
$$\max_{x \in \mathbf{R}^N} k(x) = 1$$

Indeed, for all $\varphi \in H^1$, there is a unique solution in H^1 on [0,T] ([2], [4]) and

$$T = +\infty$$
 or $\lim_{t \to T} \int |\nabla u(t, x)|^2 = +\infty$.

In addition, $\forall t$

(7)
$$\int |u(t,x)|^2 dx = \int |\varphi(x)|^2 dx$$

(8)
$$E_k(u(t)) = E_k(\varphi)$$

where

$$E_k(v) = \frac{1}{2} \int |\nabla v|^2 - \frac{1}{\frac{4}{N} + 2} \int k(x) |v|^{\frac{4}{N} + 2}.$$

From [9]

(9)
$$\forall v \in H^1, \quad \frac{1}{\frac{4}{N}+2} \int |v|^{\frac{4}{N}+2} \le \frac{1}{2} \left(\frac{\int |v|^2}{\int |Q|^2}\right)^{\frac{4}{N}} \int |\nabla v|^2$$

and it follows from (6)-(9) ([6]) that

if
$$|\varphi|_{L^2} < |Q|_{L^2}$$
, then $T = +\infty$.

Moreover under some conditions on k(x), for any $\varepsilon > 0$ there are blow-up solutions $u_{\varepsilon}(t)$ such that

$$|u_{\varepsilon}(0)|_{L^{2}}^{2} = |\varphi|_{L^{2}}^{2} + \varepsilon$$
 ([6]).

Thus the questions are about existence of minimal blow-up solution (that is such that u(t) blows up in finite time and $\int |\varphi|^2 = \int Q^2$ and on the

form of these solutions. In the case where $k(x) \equiv 1$, the question has been completely solved (see Merle [5]). The general case is still open. We remark that from (6)-(9), if u(t) is a blow up solution, the sequences $v_n = u(t_n)$ as $t_n \to T$ satisfies (1)-(3) and we ask about the constraints it imply on v_n .

The first result in this direction was obtained by Weinstein in [9]. Using the concentration compactness method, he showed that there is a $\theta_n \in \mathbb{R}$, $x_n \in \mathbb{R}^N$ such that

(10)
$$v_n = \lambda_n^{\frac{N}{2}} e^{i\theta_n} Q\left(\lambda_n^{\frac{N}{2}}(x-x_n)\right) + \varepsilon_n,$$

where

(11)
$$\lambda_n = \frac{|\nabla v_n|_{L^2}}{|\nabla Q|_{L^2}},$$

(12)
$$|\varepsilon_n|_{L^2} \xrightarrow[n \to +\infty]{} 0 \text{ and } \frac{|\nabla \varepsilon_n|_{L^2}}{\lambda_n} \xrightarrow[n \to +\infty]{} 0.$$

In [5], Merle then showed that for all R > 0, there is a c > 0 such that

(13)
$$\int_{|x-x_n|>R} |\nabla v_n|^2 \le c.$$

We now claim the following result

THEOREM. – Let (v_n) be a sequence of H^1 functions satisfying (1)-(3) and $\theta_n(x)$ be such that $v_n = |v_n|e^{i\theta_n}$.

i) Phase estimates. There is a c > 0 such that

$$\forall n, \int |v_n|^2 |\nabla \theta_n|^2 \le c.$$

ii) asymptotics on the modulus. There is a $\varepsilon_n(x)$, $x_n \in \mathbb{R}^N$, and c > 0 such that

$$\forall x, |v_n(x)| = \lambda_n^{\frac{N}{2}} Q(\lambda_n(x - x_n)) + \varepsilon_n(x)$$

where

$$|\nabla \varepsilon_n|_{L^2} \leq c, \ |\varepsilon_n|_{L^2} \leq rac{c}{\lambda_n} \ ext{and} \ \lambda_n \left(rac{|\nabla Q|_{L^2}}{|\nabla v_n|_{L^2}}
ight) \xrightarrow[n \to +\infty]{} 1.$$

Remark. – This Theorem simplifies some proofs in [5], [6]. The case where v_n is real valued is also related to similar problems for the generalized Korteweg-de Vries equation with critical nonlinearity.

Remark. – The Theorem implies in particular for blow-up solution of equation (5) $u(t,x) = |u(t,x)|e^{i\theta(t,x)}$ and $\int |u(t)|^2 = \int Q^2$ the phase gradient is uniformly bounded at the blow-up: there is a c > 0 such that

$$\forall \ 0 < t < T, \quad \int |u(t,x)|^2 |\nabla \theta(t,x)|^2 dx \le c.$$

(Of course, we still have $\int |\nabla |u||^2(t,x) \xrightarrow[t \to T]{} + \infty$.)

Remark. – It is easy to check that the result is optimal. We remark that the residual term in the theorem $\varepsilon_n = O(1)$ (compared to $o(|\nabla v_n|_{L^2})$ in [9]).

Proof of the Theorem. – Let (v_n) a sequence of H^1 function satisfying (1)-(3) and $\theta_n(x)$ such that $v_n = |v_n|e^{i\theta_n}$. We have that

(14)
$$\frac{1}{2} \int |\nabla v_n|^2 = \frac{1}{2} \left\{ |\nabla |v_n||^2 + \int |v_n|^2 |\nabla \theta_n|^2 \right\}$$

and

(15)
$$E(v_n) = \frac{1}{2} \int |v_n|^2 |\nabla \theta_n|^2 + E(|v_n|).$$

The idea is to apply the variational identity (9) not with v_n but with $|v_n|$. Indeed, since $v_n \in H^1$ we have that $|v_n| \in H^1$. From (9) (applied with $|v_n|$)

(16)
$$\frac{1}{\frac{4}{n}+2}\int |v_n|^{\frac{4}{n}+2} \le \frac{1}{2}\left(\frac{\int |v_n|^2}{\int Q^2}\right)^{\frac{2}{N}}\int |\nabla |v_n||^2 \le \frac{1}{2}\int |\nabla |v_n||^2,$$

or equivalently

(17)
$$E(|v_n|) \ge 0.$$

Thus (2), (15), (17) imply that

(18)
$$\frac{1}{2} \int |v_n|^2 |\nabla \theta_n|^2 \le E_0$$

(19)
$$E(|v_n|) \le E_0.$$

Part i). – It is implied by (18).

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Part ii). – We claim that it is as a consequence of (18)-(19). We prove it in three steps:

- from Weinstein's results, we first obtain rough estimates on $|v_n|$,
- we then choose appropriate approximations parameters,
- we conclude the proof using a convexity property in certain directions of E near Q (and use in a crucial way that $|v_n|$ is a real-valued function).

Step 1: First asymptotics. - Since

(20)
$$\int |\nabla v_n|^2 = \int |\nabla |v_n||^2 + \int |v_n|^2 |\nabla \theta_n|^2 \xrightarrow[n \to +\infty]{} + \infty,$$

and

$$\forall n, \int |v_n|^2 |\nabla \theta_n|^2 \leq c,$$

we have

(21)
$$\int |\nabla |v_n||^2 \xrightarrow[n \to +\infty]{} + \infty.$$

Moreover,

(22)
$$\int |v_n|^2 = \int Q^2 \text{ and } E(|v_n|) \le E_0.$$

We conclude from Weinstein's result on the existence of $\hat{x}_n, \hat{\varepsilon}_n$ such that

(23)
$$|v_n|(x) = \hat{\lambda}_n^{N/2} Q\left(\hat{\lambda}_n x - \hat{x}_n\right) + \hat{\varepsilon}_n(x)$$

where

(24)
$$\hat{\lambda}_n = \frac{|\nabla |v_n||_{L^2}}{|\nabla Q|_{L^2}},$$

(25)
$$|\nabla \hat{\varepsilon}_n|_{L^2} = o\left(\hat{\lambda}_n\right), \quad |\hat{\varepsilon}_n|_{L^2} = o(1).$$

In order to obtain better estimates on the rest (that is $|\nabla \varepsilon_n|_{L^2} \leq c$), we have to choose appropriate parameters λ_n, x_n and use the structure of the functional $E(\cdot)$ near Q.

Step 2: Choice of the parameters of approximation. - Let us first renormalize the problem. We consider

(26)
$$w_{n,\lambda_1,x_1}(x) = \left(\frac{\lambda_1}{\hat{\lambda}_n}\right)^{\frac{N}{2}} |v_n| \left((\lambda_1 x + \hat{x}_n + x_1) \frac{1}{\hat{\lambda}_n} \right)$$

F. MERLE

(27)
$$\tilde{\varepsilon}_{n,\lambda_1,x_1}(x) = \left(\frac{\lambda_1}{\hat{\lambda}_n}\right)^{\frac{N}{2}} \hat{\varepsilon}_n \left((\lambda_1 x + \hat{x}_n + x_1) \frac{1}{\hat{\lambda}_n} \right).$$

We have from (23),

(28)
$$w_{n,\lambda_1,x_1}(x) = \lambda_1^{N/2} Q(\lambda_1 x + x_1) + \tilde{\varepsilon}_{n,\lambda_1,x_1}(x)$$

where

(29)
$$\frac{|\nabla \tilde{\varepsilon}_n|_{L^2}}{\lambda_1} + |\tilde{\varepsilon}_n|_{L^2} \xrightarrow[n \to +\infty]{} 0.$$

We write (28) as follows

$$w_{n,\lambda_1,x_1}(x) = Q(x) + \varepsilon_{n,\lambda_1,x_1}(x)$$

where

(30)
$$\varepsilon_{n,\lambda_1,x_1}(x) = \left[\lambda_1^{N/2}Q(\lambda_1x+x_1)-Q(x)\right] + \tilde{\varepsilon}_{n,\lambda_1,x_1}(x).$$

From the implicit function Theorem, we derive easily for $|\tilde{\varepsilon}_n|_{H^1}$ small enough the existence of $\lambda_{1,n}, x_{1,n}$ such that

(31)
$$\forall i = 1, ..., N, \quad \int \varepsilon_{n, \lambda_{1,n}, x_{1,n}} x_i Q = 0$$

(32)
$$\int \varepsilon_{n,\lambda_{1,n},x_{1,n}} |x|^2 Q = 0.$$

Moreover, from (29)

(33)
$$(\lambda_{1,n}, x_{1,n}) \xrightarrow[n \to +\infty]{} (1,0).$$

Indeed, let us note

for
$$i = 1, ..., N$$
, $\rho_i(\lambda_1, x_1) = \int \varepsilon_{n,\lambda_1,x_1} x_i Q$,
 $\rho_{N+1}(\lambda_1, x_1) = \int \varepsilon_{n,\lambda_1,x_1} |x|^2 Q$.

From (30), we have

$$\begin{aligned} \frac{\partial \varepsilon_{n,1,0}}{\partial x_{1,i}} &= \partial_i Q + \partial_i \ \tilde{\varepsilon}_{n,1,0} \\ \frac{\partial \varepsilon_{n,1,0}}{\partial \lambda_1} &= \frac{N}{2} Q + x \cdot \nabla Q + \left(\frac{N}{2} \tilde{\varepsilon}_{n,1,0} + x \cdot \nabla \tilde{\varepsilon}_{n,1,0}\right), \end{aligned}$$

where $x_1 = (x_{1,1}, ..., x_{1,N})$.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Therefore, from (29) and integration by parts, - for i = 1, ..., N, and j = 1, ..., N,

$$\begin{split} \frac{\partial \rho_i}{\partial x_{1,j}}(1,0) &= \int \partial_j Q \ x_i Q + o(1) = -2\delta_{i,j} \int Q^2 + o(1), \\ \frac{\partial \rho_i}{\partial \lambda_1}(1,0) &= \int \left(\frac{N}{2}Q + x.\nabla Q\right) x_i Q + o(1) = o(1), \\ \frac{\partial \rho_{N+1}}{\partial x_{1,j}}(1,0) &= \int \partial_j Q |x|^2 Q + o(1) = o(1), \\ \frac{\partial \rho_{N+1}}{\partial \lambda_1}(1,0) &= \int \left(\frac{N}{2}Q + x.\nabla Q\right) |x|^2 Q + o(1) \\ &= \frac{N}{2} \int |x|^2 Q^2 - \frac{N}{2} \int |x|^2 Q^2 - \frac{1}{2} \int x.x \ Q^2 + o(1) \\ &= -\frac{1}{2} \int |x|^2 Q^2 + o(1). \end{split}$$

Therefore, the implicit function theorem implies the existence of $(\lambda_{1,n}, x_{1,n})$ such that (31)-(33) hold.

In conclusion, we have proved the following. There exist $(\lambda_{1,n}, x_{1,n}) \xrightarrow[n \to +\infty]{} (1,0)$ such that

(34)
$$w_{n,\lambda_{1,n},x_{1,n}}(x) = Q(x) + \varepsilon_{n,x_{1,n},x_{1,n}}(x)$$

where

(35)
$$\forall i = 1, ..., n, \quad \int \varepsilon_{n,\lambda_{1,n},x_{1,n}} x_i Q = 0,$$

(36)
$$\int \varepsilon_{n,\lambda_{1,n},x_{1,n}} |x|^2 Q = 0,$$

(37)
$$|\varepsilon_{n,\lambda_{1,n},x_{1,n}}|_{H^1} \xrightarrow[n \to +\infty]{} 0.$$

We now note

$$w_n = w_{n,\lambda_{1,n},x_{1,n}},$$

 $\varepsilon_n = \varepsilon_{n,\lambda_{1,n},x_{1,n}}.$

Step 3 : Conclusion of the proof. – Geometry of energy functions at Q. Vol. 13, n° 5-1996. We now use convexity properties of a functional (related to E) and the fact $\int w_n^2 = \int Q^2$ to conclude the proof. Let

$$H(v) = \frac{1}{2} \int |\nabla v|^2 - \frac{1}{\frac{4}{N} + 2} \int |v|^{\frac{4}{N} + 2} + \frac{1}{2} \int v^2 = E(v) + \frac{1}{2} \int v^2,$$

and

$$H_2(v) = \frac{1}{2} \int |\nabla v|^2 - \frac{4}{N} \int Q^{\frac{4}{N}} v^2 + \frac{1}{2} \int v^2.$$

We know that Q is a critical point of H, and H_2 is the quadratic part of H near Q (where v is real-valued). Moreover, it is classical that for $|\varepsilon|_{H^1} \leq 1$,

(38)
$$H(Q+\varepsilon) - H(Q) = H_2(\varepsilon) + \tilde{H}_2(\varepsilon)$$

where $\left| \tilde{H}_2(\varepsilon) \right| = o(|\varepsilon|_{H^1}^2)$.

From a result of Weinstein [8] (see also Kwong [4]), we have the following convexity property of H_2 at Q.

PROPOSITION 1. See [8]. – (Directions of convexity of H at Q in the set of real-valued functions.)

There is a constant $c_1 > 0$ such that $\forall \epsilon \in H^1$ If

(i)
$$\forall i = 1, ..., N, \quad \int \varepsilon x_i Q = 0$$

(ii)
$$\int \varepsilon |x|^2 Q = 0.$$

(iii)
$$\int \varepsilon Q = 0,$$

then

$$H_2(\varepsilon) \ge c_1\left(\int |\nabla \varepsilon|^2 + \varepsilon^2\right) = c_1|\varepsilon|_{H^1}^2.$$

Remark. – We have here a strict convexity property (up to the invariance of the equation) except in the direction Q which is not true for the quadratic part of H for complex valued functions (see [8]).

Remark. - This proposition is optimal. Other functions can be chosen also.

Using now crucially estimates on the L^2 norm, we obtain the following

PROPOSITION 2 (Control of the Q direction by the L^2 norm). Assume

(i)
$$\forall i = 1, ..., N, \quad \int \varepsilon x_i Q = 0,$$

(ii)
$$\int \varepsilon |x|^2 Q = 0,$$

(iii)
$$\int (Q+\varepsilon)^2 = \int Q^2,$$

then there are $c_1 > 0$ and $c_2 > 0$ such that

$$|\nabla \varepsilon|_{L^2} + |\varepsilon|_{L^2} \le c_2 \text{ implies } H_2(\varepsilon) \ge c_1 \left(|\nabla \varepsilon|_{L^2}^2 + |\varepsilon|_{L^2}^2 \right).$$

Remark. – We need control on 3 directions to obtain estimates on $|\varepsilon|_{H^1}$ with $H_2(Q + \varepsilon)$. Two directions can be controlled using the invariance of the equation. The last one is controlled by the condition of minimality on the L^2 norm (among sequence satisfying (2)).

Proof of Proposition 2. - Let us note

$$\tilde{H}_2(v_1, v_2) = \frac{1}{2} \int \nabla v_1 \nabla v_2 - \frac{4}{N} \int Q^{\frac{4}{N}} v_1 v_2 + \frac{1}{2} \int v_1 v_2.$$

We can write

$$\varepsilon = z + aQ + b|x|^2Q$$

with

$$\int zQ = \int zx_iQ = \int z|x|^2Q = 0 \quad \text{for } i = 1, ..., N.$$

Indeed a and b have to satisfy

$$\int \varepsilon Q = a \int Q^2 + b \int |x|^2 Q^2$$
$$o = a \int |x|^2 Q^2 + b \int |x|^4 Q^2$$

or equivalently

$$b = -a\left(\frac{\int |x|^2 Q^2}{\int |x|^4 Q^2}\right)$$
$$a\left(\frac{\int Q^2 \int |x|^4 Q^2 - \left(\int |x|^2 Q^2\right)^2}{\int |x|^4 Q^2}\right) = \int \varepsilon Q$$

(which has always a solution since from the Schwarz inequality and the fact $|x|^2 Q \neq Q$, $\int |x|^2 Q^2 < (\int Q^2 \int |x|^4 Q^4)^{1/2}$). On the other hand, we have from $\int (Q + \varepsilon)^2 = \int Q^2$

$$2\int Q\varepsilon = -\int \varepsilon^2$$

$$2\left(a\int Q^2 + b\int |x|^2 Q^2\right) = -\int \varepsilon^2$$

$$2a\left(\frac{\int Q^2 \int |x|^4 Q^2 - \left(\int |x|^2 Q^2\right)^2}{\int |x|^4 Q^2}\right) = -\int z^2 + O(a^2 + b^2)$$

or equivalently,

$$ac_0 = -\int z^2 + O(a^2)$$
 where $c_0 \neq 0$

which implies that

$$a = O\left(\int z^2\right)$$
 and $b = O\left(\int z^2\right)$

and for $|\varepsilon|_{H^1}$ small enough

$$|\varepsilon|_{H^1}^2 \ge |z|_{H^1}^2 \ge \frac{1}{2} |\varepsilon|_{H^1}^2.$$

On the other hand, by bilinearity and Proposition 1, we have for $|\varepsilon|_{H^1}$ small enough

$$\begin{split} H_{2}(\varepsilon) &= H_{2}(z) + 2a\tilde{H}_{2}(z,Q) + 2b\tilde{H}_{2}\left(z,|x|^{2}Q\right) + 2ab\tilde{H}_{2}\left(Q,|x|^{2}Q\right) \\ &+ a^{2}H_{2}(Q) + b^{2}H_{2}\left(|x|^{2}Q\right) \\ &\geq H_{2}(z) - c\left(|z|_{H^{1}}(|a|+|b|) + a^{2} + b^{2}\right) \\ &\geq H_{2}(z) - c\left(|z|_{H^{1}}^{3} + |z|_{H^{1}}^{4}\right) \\ &\geq c_{1}\left(|z|_{H^{1}}^{2}\right) - c\left(|z|_{H^{1}} + |z|_{H^{1}}^{4}\right) \\ &\geq \frac{c_{1}}{2}|z|_{H^{1}}^{2} \\ &\geq \frac{c_{1}}{4}|\varepsilon|_{H^{1}}^{2}. \end{split}$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

This concludes the proof of Proposition 2.

As a corollary of Proposition 2 and (38), we have

COROLLARY. – There are $c_1 > 0$ and $c_2 > 0$ such that if

(i)
$$\forall i = 1, ..., N, \quad \int \varepsilon x_i Q = 0$$

(ii)
$$\int \varepsilon |x|^2 Q = 0$$

(iii)
$$\int (Q+\varepsilon)^2 = \int Q^2$$

(iv)
$$|\nabla \varepsilon|_{L^2} + |\varepsilon|_{L^2} \le c_2$$

then

$$H(Q + \varepsilon) - H(Q) \ge c_1 \left(\int \nabla \varepsilon^2 + \int \varepsilon^2 \right).$$

We now apply the corollary. If $w_n = Q + \varepsilon_n$, we have - $|\varepsilon_n|_{H^1} \xrightarrow[n \to +\infty]{} 0$, and in particular there is n_0 such that

$$\forall n \ge n_0, \quad |\varepsilon_n|_{H^1} \le c_2,$$

- $\forall i = 1, ..., N, \int \varepsilon_n x_i Q = 0.$ In addition,

$$\begin{split} H(Q) &= \frac{1}{2} \int |\nabla Q|^2 - \frac{1}{\frac{4}{N} + 2} \int |Q|^{\frac{4}{N} + 2} + \frac{1}{2} \int Q^2 \\ &= E(Q) + \frac{1}{2} \int Q^2 \\ &= \frac{1}{2} \int Q^2 \end{split}$$

(since the Pohozaev identity for equation (4) yields E(Q) = 0), and

$$H(Q + \varepsilon_n) = H(w_n) = H\left(\left(\frac{\lambda_1}{\hat{\lambda}_n}\right)^{\frac{N}{2}} |v_n| \left(\frac{x\lambda_1}{\hat{\lambda}_n} + \hat{x}_n + x_1\right)\right)$$
$$= E\left(\left(\frac{\lambda_1}{\hat{\lambda}_n}\right)^{\frac{N}{2}} |v_n| \left(\frac{x\lambda_1}{\hat{\lambda}_n}\right)\right) + \frac{1}{2} \int |v_n|^2$$
$$= \left(\frac{\lambda_1}{\hat{\lambda}_n}\right)^2 E(|v_n|) + \frac{1}{2} \int Q^2.$$

Therefore $\forall n \geq n_0$

(40)
$$\left(\frac{\lambda_1}{\hat{\lambda}_n}\right)^2 E(|v_n|) > c_3\left(|\varepsilon_n|_{H^1}^2\right)$$

or equivalently from (19), (24) and the fact that $\lambda_1 \rightarrow 1,$

(41)
$$\left|\varepsilon_{n}\right|_{H^{1}}^{2} \leq \frac{c}{2} \frac{1}{\int \left|\nabla |v_{n}|\right|^{2}} \leq c \frac{1}{\int \left|\nabla v_{n}\right|^{2}},$$

where c is independent of n. Thus,

$$w_n = Q + \varepsilon_n,$$

with

(42)
$$\left|\varepsilon_{n}\right|_{H^{1}}^{2} \leq \frac{c}{\int \left|\nabla v_{n}\right|^{2}}.$$

Therefore from (26), there is x_n such that

(43)
$$|v_n|(x) = \left(\frac{\hat{\lambda}_n}{\lambda_1}\right)^{\frac{N}{2}} Q\left(x\left(\frac{\hat{\lambda}_n}{\lambda_1}\right) + x_n\right) + \left(\frac{\hat{\lambda}_n}{\lambda_1}\right)^{\frac{N}{2}} \varepsilon_n\left(\frac{\hat{\lambda}_n}{\lambda_1}x + x_n\right).$$

We remark that from (19), (42), the fact that $\lambda_1 \rightarrow 1$,

$$\begin{split} \frac{\hat{\lambda}_n}{\lambda_1} \frac{1}{\left(\int \nabla v_n^2\right)^{\frac{1}{2}}} &= \frac{1}{\lambda_1} \left(\frac{\int |\nabla |v_n||^2}{\int |\nabla v_n|^2 \int |\nabla Q|^2}\right)^{\frac{1}{2}} \xrightarrow[n \to +\infty]{} 1, \\ \left| \left(\frac{\hat{\lambda}_n}{\lambda_1}\right)^{\frac{N}{2}} \varepsilon_n \left(\frac{\hat{\lambda}_n}{\lambda_1} x + x_n\right) \right|_{L^2}^2 &= |\varepsilon_n|_{L^2}^2 \leq \frac{c}{\int |\nabla v_n|^2}, \\ \left| \nabla \left(\frac{\hat{\lambda}_n}{\lambda_1}\right)^{\frac{N}{2}} \varepsilon_n \left(\frac{\hat{\lambda}_n}{\lambda_1} x + x_n\right) \right|_{L^2}^2 \leq c \left(\frac{\hat{\lambda}_n^2}{\int |\nabla v_n|^2}\right) \leq c \end{split}$$

conclude the proof of the Theorem.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

REFERENCES

- H. BERESTYCKI and P. L. LIONS, Nonlinear scalar field equations I. Existence of a ground state; II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., Vol. 82, 1983, pp. 313-375.
- [2] J. GINIBRE and G. VELO, On a class of nonlinear Schrödinger equations I, II. The Cauchy problem, general case, J. Funct. Anal., Vol. 32, 1979, pp. 1-71.
- [3] T. KATO, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 49, 1987, pp. 113-129.
- [4] M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^N , Arch. Rational Mech. Anal., Vol. 105, 1989, pp. 243-266.
- [5] F. MERLE, Determination of blow-up solutions with minimal mass for Schrödinger equation with critical power, Duke J., Vol. 69, 1993, pp. 427-454.
- [6] F. MERLE, Nonexistence of minimal blow-up solutions of equations $iu_t = -\Delta u k(x)|u|^{4/N}u$ in \mathbb{R}^N , preprint.
- [7] W. A. STRAUSS, Existence of solitary waves in higher dimensions, Commun. Math. Phys., Vol. 55, 1977, pp. 149-162.
- [8] M. I. WEINSTEIN, Modulational stability of ground states of the nonlinear Schrödinger equations, SIAM J. Math. Anal., Vol. 16, 1985, pp. 472-491.
- [9] M. I. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Vol. 87, 1983, pp. 567-576.

(Manuscript received October 25, 1994; revised version received January 26, 1995.)