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ABSTRACT. - We are concerned with the multiplicity of positive and
nodal solutions of

where 2   
2 N 

N > 3 > 0 E C RN and x > O forwhere 2  p  2N N-2, 3,  > 0, Q C and Q(x) ~ 0 for
x E RN. We show how the "shape" of the graph of Q ( x ) affects the number
of both positive and nodal solutions.
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568 D. CAO AND E. S. NOUSSAIR

1. INTRODUCTION

We consider the multiplicity question of both positive and nodal solutions
(solutions which change sign) of the following problem

where N > 3, 2  p  2N N - 2,  > 0, H1 denotes the usual Sobolev space
and Q E is assumed to satisfy the following condition:

Condition (Q)

Q(~) > 0 in IRN and there exist some points aB ..., a~ in IRN such that
are strict maximums and satisfy

Our objective is to establish the existence of at least k positive solutions
and k nodal solutions of problem (1.1). Our main result is:

THEOREM A. - Assume condition (Q) holds. Then there exists > 0

such that problem ( 1.1 ) has at least k positive and k nodal solutions for
Jlo.

It is known that if Q is a positive constant, (1.1) has a unique positive
solution for each p > 0 [10], and infinitely many radially symmetric nodal
solutions. When Q(x)) is not a positive constant, the existence of a positive
solution has been established by several authors under various conditions.
We mention, in particular, results by A. Bahri and P. L. Lions [3], P. L.
Lions [13], Yi Li [ 11 ], A. Bahri and Y. Y. Li [2], D. M. Cao [6]. In [2],
[3], [11], [13], Q(x) is required to satisfy

for some constants > 0.

In [6], Q (x) is required to satisfy

Regarding nodal solutions we mention a result by X.P. Zhu [17] where
existence of at least one nodal solution is established provided Q(x) satisfies
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569MULTIPLICITY OF POSITIVE AND NODAL SOLUTIONS

for some constants C, m > 0.
In this paper, we do not require Q(x) to satisfy any asymptotic property,

all of the above conditions may fail in our case. In fact, it is easy to construct

examples of Q (x) for which none of the above criteria are satisfied and
condition (Q) holds. When Q(x) is a positive constant, is replaced by a
bounded or an exterior domain, V. Benci and G. Cerami [4], G. Cerami and
D. Passaseo [7], A. Bahri and P.L. Lions [3] have considered the effect of
domain topology on the existence of positive solutions. Roughly speaking,
if 0 has a "rich" topology then the problem

has many positive solutions for larger p.
In this paper IRN has a trivial topology. Our emphasis here is on the

"shape" of Q (x) . Our result shows how the "shape" of the graph of Q (x)
affects the number of both positive and nodal solutions.
Our arguments are based on a combination of the concentration-

compactness principle of P. L. Lions [12], and Ekeland’s variational

principle [9].
In Section 2, we give some notations and preliminary results. In Section 3,

we first establish two results concerning the compactness of minimizing
sequences and then give a proof of Theorem A.

2. NOTATIONS AND PRELIMINARY RESULTS

~ 
N 

For a > 0, let denote the hypercube 03A0 ( ai - a, ai + a) centred at
i_=1

aj = ( ai ) , j = 1, ... k; i = 1,..., N. Let and denote

the closure and the boundary of respectively.
Set A = JIi’ v(x) = 03BB2/(p-2)u(03BBx). Then l.l becomes
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570 D. CAO AND E. S. NOUSSAIR

For u E c E R and nonnegative bounded functions b E C(IRN),
define

where h(~~ denotes the Frechet derivative of Ib(x~ .
We will write and Ib~~) simply as Ib(u), Mb, Ib

and Ib if there is no confusion. We will also write M, Ib as Mb and Ib.
Choose numbers > 0, so that are disjoint, Q(x)  

~ 

k 
~ 

N

for x E for j = l, ... , k, and U ~ 03A0 ( -K, K) . This is
j=1 i=1

possible by the assumptions on Q.
Define ~a e E C(H1, by

All our integrals are over IRN unless otherwise stated.
Let C~ ~ - C.~/a ( ~ ), and for j = 1,..., k, let

where u+ = max~u, 0~, u- = u+ - u.
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It is easy to verify that Nj03BB, Oj03BB, j03BB and ~j03BB are non-empty sets for
j = 1, ... , k. Define for j = 1,..., k

The main results of this section is included in the following proposition:
PROPOSITION 2. l. - Assume condition (Q) holds. Then there exists ~a > 0

such that for each ~ E (0, ~o), j = 1, ... k 
.

( 1 ) Jj03BB  3IQMax and Jj03BB has a minimizing sequence {ujn} C j03BB satisfying

as n - oo.

(2) pi  and P~ has a minimizing sequence ~vn ~ C N~
satisfying

The proof will be accomplished by a series of lemmas.

LEMMA 2.2. - 7~ :- ~ C > 0, 

where b is bounded, b E and b(x) > 0 in 

Proof. - Let u E Mb and c > 0. Then

Vol. 13, n ° 5-1996.



572 D. CAO AND E. S. NOUSSAIR

To show that equality holds, let v E Hl , ~ ~ ~v ~ 2 = c, and define

with b > 0 being selected so that w~ E 
Since f ~~u~~2 = (u~~q = ~~N-2)q~2-N .l (v~~ ~ ~ 

for q E 2 ’ N - 2N 2 ’ it is eas y to see th at such a b = 03B4(03C3) exists and

b ~ 0 Therefore

Hence Icb = c.2
To complete the proof of Lemma 2.2, let c > 0 and u E Then

Let v = tu, where t > 0 is selected so that v E Mb. It is easy to see
that t E (0, 1). We have

The required inequality then follows by taking the infimum over Mb-c.

LEMMA 2.3. - Assume condition (Q) holds. Then for any E > 0, there
exists a ~E > 0 such that

(1) Jj03BB  2IQMax + E,
(2) pi  + E.

for j = 1,..., k, and A E (0, ~E)
Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Proof. - We prove (1) by constructing functions > 0, with E ~1~
such that (03C903BB) ~ 2IQMax as 03BB ~ 0. Let j be fixed and u denote the
ground state solution of

Define for small A > 0 such that 2VX  1

E C1(I~‘~’) and  2 in I~~’.

Let ~a = 2~(1, l, ... , 1) E ~‘~’ and

where ta > 0 are selected so that (w~ ), wt) = 0. That is

It is easy to see from the definitions of u, ~a and x~‘ that t~ exist and
-~ 0.

We show next that g~, ( w~ ) E C~~ ~ :

= > 1 by the definition of we have

Vol. 13, n° 5-1996.
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provided ~  ~ ~ , and from the definition of ~a we conclude that

g~ (w~ ) E Thus w~ E N~ .
We also have

where o(A) 
Since ~x~‘ --~ 0 as A - 0 we see from (2.8) that -

= 0. This completes the proof of (1).
The proof of (2) is similar. We can simply replace wa by wt and

prove (2).

LEMMA 2.4. - Assume condition (Q) holds. Then there are numbers

E, ÀE > 0 such that for j = 1 , ... , k
(1) J{ for all 03BB E (0, 03BB~),
(2) pi > for all 03BB~ (0, 03BB~).

Proof. - Fix j. Assume to the contrary there is An - 0 as ?~ 2014~ oo, such
that J~~ --~ c  Consequently there exists ~un ~ C such that
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and either gan (un ), or gan (un ) belongs to as n ~ oo.

It then follows that {un} is bounded in Let p; = applying
the concentration-compactness principle of P.L. Lions [12] to we obtain
a subsequence (still denoted by ~ un ~ , and hereafter, we always
choose subsequence and denote it by the same sequence if necessary) such
that one of the cases (i) Vanishing, (ii) Nonvanishing occurs. If (i) Vanishing
occurs, then for q E 2N it follows from P.L. Lions [12] that

Iq ~ 0. By Holder inequality and the boundedness of {u±n} in L2(RN)
we 0, which leads + un ( 2 -~ 0, a
contradiction, since from (2.9) we can find a number v > 0 such that
f + un ~ 2 > v for all n. Hence (ii) Nonvanishing occurs: there are
R > 0, a > 0 C RN such that

where Br(xo) = {x : |x - x0|  r} for Xo E IRN, r > 0.

Suppose E E can be considered

similarly). Denote Y;; by Yn. Let Un = + yn), then

Set vn = un - By Brezis-Lieb lemma [5] we obtain

Since Un converges weakly to uo, we have

It follows from (2.9) that

Vol. 13, n° 5-1996.
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Combining (2.10), (2.11) and (2.12) we have

We consider the following two cases

Case 2014~ 0 as n - oo.

By condition (Q) we can choose 6 > 0 so that

We complete the proof by establishing the contradiction that

Consider the sequence {03BBnyn}. By passing to a subsequence if necessary,
we may assume that one of the following cases occurs:

In case (a) we may assume e C~C~, and  

Consequently

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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since we also have

In case (b)

In the region we have

for sufficiently large n.

It then follows from (2.15) and the definition of ~a,~ that

It is clear from the above inequalities that we can choose t > 0, b > t
sufficiently small such that

for sufficiently large n,

contradicting gan (un ) E °

In case (c), we may assume that as n -~ oo,

g2 _ > ~ ai ~- .~ -~ b for some z, and ( yn )i > ai ~.~~-b~2 for all n. For

 RE we then have 
x~z

Vol. 13, n° 5-1996.
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and

for sufficiently small E, 8 > E, and n large enough. This contradicts

(~n l E 
Case (d) is excluded by assuming > 2K (or  -2K)

for some i and for all n, and using a similar argument to that of case (c).
Case (II).
Set

then by (2.13)

Suppose A > 0 (A  0 can be considered similarly). We can find tn -~ 1
such that wn = tn vn satisfies

Since ~ e have

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Thus

a contradiction.

If A = 0, we can find sn, tn > 0, sn -~ 1, tn -~ 1 as n - oo such
that vn = tnvn, wn = snuo satisfy

Hence

Thus, we have completed our proof of ( 1 ) in Lemma 2.4.
The proof of (2) of Lemma 2.4 is similar and is omited here.

LEMMA 2.5. - For any u E 11~ , there exist E > 0 and differentiable
, functions

defined for w E H1,  E such that tt(0) = 1, the functions
z = t+(w)(u - w)+ - t_(w)(u - w)- belongs to 11a and

for all v E H1.

Proof - The proof is similar to that of Lemma 2.4 in [16].

Vol. 13, n° 5-1996.



580 D. CAO AND E. S. NOUSSAIR

Define F+ : R x R by

Since u E A{ we have P+(l,O) = 0 and

Therefore we may apply the implicit function theorem to get a function
t+(w) defined for  E, E > 0 such that t+(0) = 1, (2.16) holds and
F+(t+(w), w) = 0 which is equivalent to

Furthermore,

still holds if E is sufficiently small by the continuity of the map gx .
Employing the same argument to the functional

we obtain the second function t_ (w) with analogous properties. Therefore

for any w E with sufficiently small norm. This completes our proof
of Lemma 2.5.

For the set by a similar argument, we have
. 

LEMMA 2.5’. - For any u E there exist E > 0 and a differentiable
function t ( w ) > 0 defined for w E  E such that t ( o ) = 1, the
functions z = t ( w ) ( ~c - w ) E N~ and

Having established the preliminary lemmas, we are now ready to prove
Proposition 2.1.
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Proof of Proposition 2.1. - If ~1.~ denotes the closure of ~1~, then we
first notice that, ~1~, = A~ U and is the boundary of 11~ for each
j = 1,..., k. This easily follows from the observation that any u with u+
or u- equals to zero can’t be the limit of a sequence of functions in 

Using Lemma 2.3 and Lemma 2.4 we see that there exists Ao > 0
such that

It follows that for A E (0, Ao)

Applying the variational principle of Ekeland [9] to (2.18) we obtain a
minimizing sequence C A~ for each fixed j = 1, ... , I~, with the
properties

Using (2.17) we may assume that un E l1~ for n sufficiently large.
Applying Lemma 2.5 with u = un we obtain En > 0, two functions

t+(w), defined for w E (  En, such that t+(w) (un -
03C9)+-tn-(w)(u-w)-~j03BB. Choose 003B4~n. Let u~H1, u~0 and

let w = Fix n, , and let z03B4 = 

Since Z8 E 11~ by Lemma 2.5, using (2.19) we obtain

and by the mean value theorem, we then have

Therefore

Vol. 13, n° 5-1996.
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Since (un - ws)+ - (un - = v,~ - lvb, we have

From E we obtain

Thus it follows from (2.20) that

Hence

But

for some constant C > 0, independent of 8, and

for some constant C > 0, independent of 8, as can be easily verified
from (2.16).
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For fixed n, let 8 --~ 0 in (2.21) we obtain

where we have used the fact that zs -~ un as 6 -~ 0, and h ~ ( z~ ) -~
as 8 - 0. (2.21) implies

Thus, we have proved (1) of Proposition 2.1.
Similarly, by using (2) of Lemma 2.3, (2) of Lemma 2.4 and Lemma 2.5,

we can prove (2) of Proposition 2.1. We will omit the detailed proof here.

3. EXISTENCE OF SOLUTIONS

In this section we establish the existence of at least k positive and k

nodal solutions of problem (1.1) for each ~ (1 03BB20, +00 ), where Ao is
as in Proposition 2.1.

For fixed j and A E (0, Ao), we have the following compactness results.

LEMMA 3.1. - Assume condition (Q) holds, and that ~un ~ C l~a is a

sequence satisfying

has a subsequence (still denoted by ~ un ~ ) satisfying

~cn -~ uo strongly in H1 as n - oo,

and 0.

Proof. - since is bounded in we can assume

un -~ uo weakly in j~~ as n - oo,

(3.4) un -~ uo a.e. in IRN as r~ ~ oo,

for some uo E H 1.

Vol. 13, n° 5-1996.
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We will show that

a) 
b) un --~ uo strongly in as n - oo . 

"

We proceed by contradiction. Assume to the contrary that

Since ~un ~ is bounded in the concentration-compactness
principle [12] implies satisfies either vanishing or nonvanishing.
Vanishing can be ruled out by the same argument used in Lemma 2.4.
Therefore, nonvanishing occurs, that is, there are numbers a > 0, R > 0,
and a sequence {yn} C such that

Set - + Since {n} is bounded in we may assume

From (3.6) we see that 0.

Case 2. - either 0 or 0.

We show next that each of the Cases 1 and 2 leads to a contradiction

to either (3.5) or to (3.3).
Assume Case 1. Set vn = icn - Uo. --~ ~ as n - oo, and

is unbounded, we employ the argument in Lemma 2.4 to obtain

gi03BB(u+n) > aji + 3l 203BB, or gj03BB(u+n)  aji - 2A for some

i E {1,2,..., N}, contradicting un E j03BB.
--~ 0 as n - oo is bounded, so Yo E as

n ---~ oo, we would have

ico ( ~ - Yo) strongly in Hl as n - 00

which implies that un -~ ic~ ( ~ - 0 (since > ~ > 0 for some

constant ~ > 0), contradicting (3.5).
On the other hand, if > b > 0 for large n and some constant 6 > 0,

we notice first that (3.2) implies

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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By (3.8) and Brezis-Lieb lemma [5] we obtain

since > b > 0 for large n, it is easy to find sn > 0, sn -~ 1 as

n - oo such that Sn Vn E and to show that

Similarly

Thus by Brezis-Lieb lemma [5] we obtain

which implies that

contradicting (3.3).
In case 2, we may assume, without loss of generality, that 0.

First notice that we must have ut strongly in H1 as n - oo,
otherwise ~+n - +o~ ~ 03B4 > 0 would lead to the contradiction (3.12), as
above. Next, by the concentration-compactness principle, applied to 
and by ruling out vanishing as before, we obtain a > 0, R > 0, and a
sequence {n} such that

Vol. 13, n° 5-1996.
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Set + fin) = Un(X + Yn + by the boundedness of
~un ~ in Hl, and (3.13) we may assume that

If 0, we have a situation similar to Case 1, which is impossible. We
may therefore assume wo - 0. In this case we can’t ( >
6 > 0 for some b > 0 and for large n, since otherwise we argue as before
to obtain (3.12), contradicting (3.3). Then we must Wo strongly
in H 1 as n - oo . We are now left with

But (3.14) and (3.15) imply, as argued before, that + are

bounded. We may assume yn ~ yo, yn ~ yo, as n ~ oo . Therefore

Hence

(3.5). This proves the conclusion (a).
Using (a) we can show that 1~0 strongly in HI as n - oo,

otherwise, we may use a similar argument as above to reach the

contradiction (3.12).
This completes the proof of Lemma 3.1.
For the minimizing sequences of P~ , we have

. 

LEMMA 3.2. - Suppose condition (Q) holds, C N~ satisfies

Then ~vn ~ has a subsequence converging strongly in H 1.
Since the proof is similar to that of Lemma 3.1, but simpler, we omit

it here.
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Proof of Theorem A.
It follows from Proposition 2.1 that there exists ~o > 0 such that for

A E (0, Ao), fixed j = 1,... ,1~ we can find minimizing sequences 
of Ji and respectively. {ujn} satisfies the assumptions in

Lemma 3.1, ~vn ~ satisfies the assumptions in Lemma 3.2. Therefore we
have, as n - oo,

strongly in H 1

and 0,

strongly in H 1.

From h ~ ( un ) --~ 0, h ~ (vn ) -~ 0, as n - oo, and the strong convergence
of ~ un ~ , ~ v~ ~ we see that uj is a nodal solution of (2.1), vj is a nontrivial
solution of (2.1). We next show that either v~ - 0 0. Otherwise,
suppose 0, (v~ ), = 0 leads to

a contradiction. So we can assume vj ~ 0 in RN (otherwise, -vj ~ 0 in
RN). By a standard regularity argument, we can show that E C2(RN)
and vj > 0 in RN by the maximum principle.

Since C~ / ~, ga (v~ ) E C~ / ~, and C~ / a are disjoint, are

distinct solutions of (2.1).
Let Jlo = ~10 2 , Uj = then

and Uj are k positive and k nodal solutions of problem (1.1). We thus
have proved Theorem A.

Remark 3.3. - By Lemma 2.3 and the proof of Theorem A, it is easy
to see that for any E > 0, there exists ~E > 0 such that for A E (o, ~E),
problem (2.1) has at least k positive solutions v j (j = 1, ... k) and k nodal
solutions = 1,..., k) satisfying

provided condition (Q) holds.

Remark 3.4. - It is easy to see from the proof of Theorem A that the
solutions V~ , ~~ ( j = 1, ... ,1~) satisfy
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