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ABSTRACT. - In this paper we consider the unfolding of a geometric
Lorenz attractor when the singularity contained in this attractor goes through
a saddle-node bifurcation. It is shown that these unfoldings can carry such a
geometric Lorenz attractor either directly into a hyperbolic Plykin attractor
or into phenomena associated to the unfolding of homoclinic tangencies
like for instance strange Henon-like attractors and infinitely many sinks.
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Nous considerons le deploiement d’un attracteur de Lorenz
geometrique lorsque la singularite contenue dans 1’ attracteur passe par une
bifurcation selle-nceud. On montre que ces deploiements contiennent un
attracteur de Lorenz geometrique qui est soit dans un attracteur de Plykin
hyperbolique ou bien associe a un phenomene de tangences homocliniques
comme par exemple attracteurs etranges de type Henon et infinite de puits.

1. INTRODUCTION

Here we will study some unfoldings of a geometric Lorenz attractor
through a saddle-node bifurcation. We shall prove that these unfoldings can
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carry a geometric Lorenz attractor either into a Plykin attractor or, among
other possibilities, into a strange Henon-like attractor or into a vector field
with infinitely many sinks. These last two options are obtained through the
creation of a homoclinic tangency. Let us start with a description of the
main objects in these statements. Throughout the paper, an attractor for a
vector field X (a diffeomorphisms f) will be a transitive invariant set of X
(of f) for which its basin of attraction has non empty interior.
A geometric Lorenz attractor is a vector field in R3 which has an attractor

with a dense set of hyperbolic periodic orbits and one hyperbolic singularity.
Moreover, it is non-uniformly expanding and thus sensitive with respect
to the initial conditions . Besides the classical Lorenz equations proposed
by the author [8], for which the existence of a Lorenz attractor is still an

unresolved question, the first concrete example of this kind of vector field
was given by Guckemheimer and Williams (see [4]); more precisely, they
exhibited an open set of vector fields in R3 carrying a Lorenz attractor.
A remarkable fact about these attractors is that they are persistent under
every small perturbation of the vector field and yet they are nonhyperbolic.
However, they do have some hyperbolic structure and positive Lyapunov
exponent.
On the other hand, a Plykin attractor [12] will be for us the

suspension (see [16]) of a diffeomorphism defined in a two-dimensional
disc neighborhood which has a hyperbolic nontrivial attractor. We say
that an attractor is nontrivial if it does not consist of a single periodic
orbit. The existence of an open set of axiom A diffeomorphisms in the
two-dimensional torus T2 which contain at least one nontrivial attractor
was proved by Smale [16]. The similar problem in the two dimensional
disc or in S2 remained unsolved until Plykin, who produced examples of
open sets of axiom A diffeomorphisms in the two disc and in S2 with
nontrivial attractors.

Finally, by a Henon-like strange attractor we mean the suspension of
a two-dimensional diffeomorphism which has an attractor A with the

following properties:
- it is nonhyperbolic.
- there is a saddle point p E A such that A is the closure of the unstable

manifold 
- there exists a dense orbit in A which has positive Lyapunov exponent.
It is well known that these attractors appear in the unfolding of a

homoclinic tangency (see [9]). Also appears with such an unfolding, the
so-called infinitely many sinks phenomenum which consists of an interval,
in the parameter space, in which there exists a residual set of points
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corresponding to vector fields with infinitely many coexisting attracting
periodic orbits (sink type).
The present study of the unfolding of a Lorenz attractor through a saddle-

node bifurcation was motivated by [3], where they considered the unfolding
of surfaces diffeomorphisms that appears when a hyperbolic (saddle type)
set H goes through a saddle-node bifurcation by collapsing a sink and a
saddle whose stable and unstable manifolds bound the hyperbolic set H.
In this last reference it was proved that, in this case, hyperbolic parameters
(i. e. parameters which correspond to a hyperbolic diffeomorphism) and
Henon-like strange attractor parameters are prevalent phenomena, in other
words, they have positive density at the initial bifurcating parameter value.

In order to study a similar situation for a three dimensional vector field
with a Lorenz attractor, we introduce a class of vector fields which we call

Saddle-node Lorenz attractors. It is defined as follows:

A Saddle-node Lorenz attractor will be a three-dimensional vector field

for which its nonwandering set consists of a hyperbolic set together with
an attractor in which there exists a dense set of periodic hyperbolic orbits
and at least one saddle-node singularity.
These Saddle-node Lorenz attractors are obtained when the singularity

contained in a geometric Lorenz attractor goes through a saddle-node
bifurcation by collapsing it with another saddle singularity in a similar
way as that in the case of hyperbolic sets for surface diffeomorphisms
mentioned before.

The main purpose of this paper is to study some of what we have called
Saddle-node Lorenz attractors as specified in the sequel. We introduce here
two definitions:

DEFINITION. - We say that a one-parameter family Y = 

unfolds a Lorenz attractor in a homoclinic tangency iff there exists a

parameter value Jlb E ( -1,1 ) and a 8 > 0 such that the following hold:
a) if E b, then Y  have a Lorenz attractor and there are

no homoclinic nor heteroclinic tangencies associated to hyperbolic periodic
orbits of Y~ ;

b) YJLb is a Saddle-node Lorenz and there are no homoclinic nor

heteroclinic tangencies associated to hyperbolic periodic orbits of YJLb;
c) there is a parameter sequence -~ such that every unfolds

a homoclinic tangency associated to some hyperbolic saddle-type periodic
orbit;

d) there is no parameter value  E + 8) for which Y  has a
Lorenz attractor. :
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Also we say that the family Y unfolds a Lorenz attractor directly into
a Plykin attractor iff there exist ~cb E ( - l,1 ) and b > 0, for which the
following holds:

a’) if E 8, Jlb), then Y  has a Lorenz attractor and no Plykin
attractors. In addition, there are no homoclinic nor heteroclinic tangencies
associated to hyperbolic periodic orbits of Y,~;

b’) YJLb is a Saddle-node Lorenz vector field with no Plykin attractors.
Also, there are no homoclinic nor heteroclinic tangencies associated to
hyperbolic periodic orbits of YJLb;

c’) if E + b ) , then Y  is an axiom A (see [14]) with a single
Plykin attractor.

With these two definitions in mind we shall give the statements of

two Theorems which describe the unfolding of some Saddle-node Lorenz
attractors. The first one implies that Henon-like strange attractors and vector
fields with infinitely many coexisting sinks can accumulate certain class of
Saddle-node Lorenz vector fields because of well known properties about
generic unfoldings of a homoclinic tangency associated to a hyperbolic
periodic orbit (see [9] or [ 14]). The second one says that one can separate the
set of geometric Lorenz attractors and those vector fields carrying a Plykin
attractor by a codimension one submanifold. This result is directly related
with the bifurcation mechanism showed by Afraimovic and Shilnikov [1]
(see also [17]), where the authors proved that this kind of separation can
occur between the Morse-Smale systems and those with a countable number
of hyperbolic periodic orbits. It is interesting to point out that the Theorem
II below also implies an approximation, by Plykin attractors, of some of
the Saddle-node Lorenz attractors showed here. Such an approximation by
Plykin attractors holds, for instance, when the initial flow is a constant

vector field on the three dimensional torus (see [11]).

THEOREM I. - There exists an open set U in the space of one-parameter
families of vector fields in R3 for which there exists a residual subset U’ in U,
such that every Y E U’ unfolds a Lorenz attractor in a homoclinic tangency.

THEOREM II. - There exists an open set W in the space of one-parameter
families of vector fields in R3 for which every Y E W unfolds a Lorenz
attractor directly into a Plykin attractor.

Let us now present a question, that we believe it is very interesting. In [3],
generic one-parameter unfolding of critical saddle-node cycles for surface
diffeomorphisms were considered in the context of strange attractors. It was
shown that such a bifurcating diffeomorphism is a positive Lebesgue density
point, in the parameter line, for Henon-like attractors. Our question here
concernes the possibility of obtaining a similar result, when considering
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two-parameter unfoldings of the above dynamic configurations exhibiting a
cycle of saddle-node singularities. Similarly, we can ask about the density
of hyperbolic systems (or even total density) in this context. These questions
will be addressed by the author somewhere else.

This article is organized as follows: in §2 we give some preliminar
concepts and start the proof of both Theorems by studying the unfolding
of some Saddle-node Lorenz attractors. These will be obtained in a similar

way that the ones given in [4]. In §3, we construct the open set U in order
to prove the Theorem I. Finally, in §4 we will construct the open set W
in order to prove the Theorem II.

2. SADDLE-NODE LORENZ ATTRACTORS

In this section a initial vector field Xo is introduced. It will be a Saddle-
node Lorenz attractor in the sense of the definition given in § 1 and its

contruction will be similar to the one given in [4]. In what follows WS,
W ~‘, W ~~‘ will denote the classical invariant manifolds associated to

either a singularity or a periodic orbit of a given vector field, namely the
stable, unstable, centre stable and centre unstable manifolds respect. Also,
we denote by fx the derivative of a given function f with respect to the
spacial coordinate x.
The vector field Xo will satisfy the following hypotheses:
H-1) Xo is, in a fixed neighborhood of (0, 0, 0), as follows

This neighborhood will be a small one of the cube [-1, 1] 3. We notice that
(0,0,0) is a saddle-node singularity of Xo.

Let S be the square ~-1/2, 1/2~2 x f 1~. If lies in S, we can
solve Xo to obtain the solution:

Set S*=S/{xo = Then a flow-defined map S* -~

{ X = ~ 1 ~ is defined and it has the following form
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so it carries S* into two cusp triangle as that in the picture (e) below

H-2) The Xo’s flow carries both cusp triangles back into S in such a
way that we have a first return map 7ro defined in S*. It sends S* into S.
We assume that it has the following form
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with

Therefore, the vertical foliation is preserved by ?ro. Besides this property,
it is also contracted by this map (see picture (f) above).

Remarks.

1) That construction is quite similar to the one given in [4]. The difference
now is that the singularity involved is a saddle-node singularity.

2) The arguments given in [4] imply that Xo has an attractor with periodic
orbits and the saddle-node (0,0,0). Furthermore, Xo is a Saddle-node Lorenz
vector field.

Now, let X be a one-parameter family which has the
following form (in the neighborhood which comes from (H-l))

We are interested in families Y - close to X. To study them
we have the next Proposition

PROPOSITION 2.1. - Suppose that X is generic. If Y is closed enough to
X, then there exists a parameter value ~cb E ( - 1,1) close to zero such
that Y  has a Lorenz attractor if   pb. In addition, is Saddle-node

Lorenz vector field..
Among another facts, this Proposition will imply that, under generic

conditions, the Saddle-node Lorenz vector fields belong to a codimension
one submanifold. Using a theorem due to Takens [19], which is also used
in [ 13], we will give the exact meaning of "generic" in the Proposition 2.1.

THEOREM 2.2. - Suppose that the eigenvalues of Xo satisfies certain open
and dense Stermberg conditions (see [ 13] ). Then for families 
near X there exists a parameter value ~cb E ( - l,1) such that Y~ is

C2-conjugate to the following vector field

where b and a are close to one. Also the functions f,g,h are C2-close to the
zero function and h(O, = hz(O, = _ = 0. The

conjugacy depends continuously on the family Y..

Vol. 13, n° 5-1996.
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We notice that in [4] some diophantine conditions on the eigenvalues
were used to obtain Cl-linearization of the singularities, to make the

computations in that work easier. Certainly, the same observation applies
to the present paper.

Hereafter we will assume that the parameter is zero for arcs Y close

to X since the saddle-node singularity is a codimension one phenomenum
(see [18]).

In order to prove the Proposition 2.1 we assume that Y is as that in
(2) with pb = 0. Let us denote by the first return map, defined in

S*, associated to Y~. Therefore, Y induce a one-parameter family of maps
These are discontinuous for p  0 and diffeomorphisms for

p > 0, as we will see in the sequel. Our goal here is to study these
maps when  ~ 0. As first step, we shall prove the existence of a C1-
strong stable, 03C0 -invariant foliation defined in the whole set S with the line
{ ~;o = 0 } as leave. This will let us to reduce the dynamics of the vector
field to that of a one dimensional map. It will be a expansive map and so
the approach given in [4] can be applied in order to get the existence of
a transitive attracting set with hyperbolic periodic orbits and, at least, one
hyperbolic saddle singularity.

If we consider the system (2) (with pb = 0), we can see that for

values p  0 there exist two singularities = which

are hyperbolic with index 1 and 2 respect. Also > 0 > z_(u) and

] and ~z-(u) ~ [ are O( -6~!‘) for negative parameter values ~c.

Take in S and the solution of (2) with such a initial condition.
Denote it by Then, we have the two

following functional equations:

The above considered map ~r~ is then obtained by the composition of two
maps, namely the local map and the global map The first

one is defined as follows

where To is defined by the implicit equation in t given by
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this map is represented in the picture below

Fig. 2.

The second map is related to the global behavior of the flow. It carries
{x = ~ 1 ~ back into S as above.
The derivative of has the form

with ao = do = 0, |0| bounded away fron zero and co small enough.
We shall prove the following Proposition which yields the proof of

Proposition 2.1.

PROPOSITION 2.3. - For as that in (2) (with ~cb = 0) and for
nonpositive parameter values p close to zero, there exists a C1-invariant
foliation for _ Moreover, it is contractive and almost
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vertical. Also, the one dimensional map f ~ associated to this foliation is

locally eventually onto (see [4] )..
The proof of the Proposition 2.3 goes through the next lemmas.

LEMMA 2.4. - For every E > 0

if ~c is negative, close to zero and h is small enough (recall (2)). /

Proof - We set

then

where R is a function such that ~c) = RZ(z+(Ec), = 0 for

all M. But

if  is small enough. On the other hand

where ~ lies between z and z+( ). Hence, we are done if h is close to
zero because

LEMMA 2.5. - Let a be a positive, fixed number. Let us define, for any
0 > 0 and ~u  0:

then, for every real number M there exists 0(M) positive such that for any
0  0  ~(M), p~(0) > M if ~c is negative, close to zero..

Proof. - Using Lemma 2.4 it follows that
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if z E (z+(~), l~. Now

by a direct computation. Then, all we need to prove is that the following
number

is large for every z in an appropriate domain. Let us define, for x > ,~ > 0

CLAIM

For every M > 0 there exists /~o > 0 and Ao > ~3o such that

if 0  (3  (~o and (3  ~  Ao.
This claim clearly implies the Lemma 2.5. Now, to prove it we first

observe that f~(x,~)  0 if 0  ~  1/2. Hence it follows that

if (3  x  1/2N, with (3 small and N being a fixed, big number. Therefore

when ,~  x  1/2N. But (1+2’~N)~l~Za±1~ goes to e2N if ,~ goes to zero
and e2N (2N) -2 is large if N is large enough. This finishes the proof of
the claim. D

This last Lemma implies the following Corollary. Recall the definitions
of y(t , tc), z (t, tc) and To given above.

COROLLARY 2.6. - There exist K > 0 and a > 0 such that

if t E ~0, 
Vol. 13, n° 5-1996.
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Now, the next Proposition give a version of the Proposition of the
section II in [15] for generic unfolding of a saddle-node singularity. We
use the notation z for Txo for and so on. Recall that

a~ , b~ , c~ and d~ are the entries of the matrix .

PROPOSITION 2.7. - Suppose   0. Then for the matrix 

the following p ro p erties hold

and there exist constants K’,K" >0 such that ]  K" i =1, 2, 3, 4 ;

( > K’. Also the quotient ] K2 ° ~‘ ~ , ~ K3 ° ~‘ ~ and ] K4 °’~ ( are small..i,> i,> ,w

Proof. - We can see that zxo = 0 , ~xo = 0 and Tyo = 0. Hence we

have the next equalities

Now we can take = a~ . (~/z) -~ b,~ , K2,,~ = au , K3,~ = c~ . (~/z) + d~,
and K4,~ = c~. Next, we observe that b~. So it is bounded away
from zero and also d~ , CL.t and are small. This finishes the proof of
the Proposition 2.7. D

Proof of the Proposition 2.3. - If ( ~p,1 ) is a vector such that  E

(where E is small), then is a vector with slope

now, the Proposition 2.7 yields I  ] and

]  p with p positive and small. But is about for some

constant a > 0 because the functional equations (2) apply with g small.
Also, these equations give us that T~° is about xo ’~ for some another

constant (3 > 0. Therefore / iTxo I is bounded and then it follows that

if ] cp ~  E, where ( . ( means here supremun norm. Thus T defines an
operator on the space ! ~ }. Moreover, T is a contraction because
of the following computation
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if p and E are small enough. Therefore, the Contracting Map Theorem
(see [5]) applies to obtain a fixed point po of T which induce a C°-
invariant, contractive and almost vertical foliation for 03C0 . Now we prove
that po is a First, we look at the following operator

(see [6] or [2]), where i7 is the classical gradient function and D is the
total derivative, with respect to {xo, Actually, we have to study the
following map

which is defined for (cp, A) in a appropriate functional space and we shall
prove that the map ,,4 -~ S ( ~p) (,~4) is a well defined uniform contraction for
every p (see also [15]). We get it by looking at three facts which follows
by using the Lemma 2.4, Lemma 2.5 and the Corollary 2.6: if w is the

map defined as w(xo, yo, ) = yy0//zx0 then
1) ow(xo, yo, ~c) has a continuous extension to xo = 0 by setting

2) It can be proved that w(xo, yo, yo, ~c) ~ 0 when zo - 0.
3) The coefficient of A in the equation of S(cp) (,~1.) is small by checking

the calculations which was done before.

Now, we show that the one dimensional map induced by 7!~ in the

foliation given by po is locally eventually onto. It can be done by seeing
that near xo = 0 the derivative of the induced map f,~ is large and therefore
it is also large in its domain by continuity off side a fixed neighborhood of
xo = 0. Hence f ~’ > ~/2 and then by [4] it is a locally eventually onto map.
Finally we can prove that Yo is a Saddle-node Lorenz by doing a similar
approach as the above descripted, indeed we shall obtain the corresponding
version of the Lemma 2.5, Corollary 2.6 and the Proposition 2.7 and then
proceed as before. This finishes the proof of the Proposition 2.3 and the
Proposition 2.1. D

3. PROOF OF THE THEOREM I

Our goal here is to prove the Theorem I. For this purpose we construct
a initial one-parameter family X for which H-l, H-2 and
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equation (1) of §2 hold, so the conclutions given above apply in order to
obtain that for nearby arcs Y = Y~ is a Lorenz attractor if

Jl  pb and Y~~ is a Saddle-node Lorenz vector field, where Jlb comes from
the Proposition 2.1. Hence the Theorem I will be obtained by studying

Y  for  > pb.
Before give the initial one parameter family, some notations and

definitions are given. For a curve 03B3, which lies in the plane y = 0,
it is defined the { (x, y, z) . ( x, 0, Z ) E " 1 }.
Given any small, positive fixed numbers 6  6’ we consider two

functions C+, C- : ~-b, -b’~ - R+, R- with the following properties:
C:i:( -8’) == C~(-~) = ~e with e  1 close to 1. In addition,
~c~~~~-s~~ = 0, ~c+~~(-s~ _ (c-)~~-s~ _ ~, ~c+~~~z~  o and
(C-)’(z) > 0. Let us define the curve 10 as the following one

where C~ _ ~ (x; 0, z) . E yo }, and OZ is a positive fixed
number. Let us consider the set Eo = ~(~yo) which is showed in the

picture below

Fig. 3.

Here, the sets C~ represent the "corners" of ~o. Let Sand S* be as
these in H-1 §2, and let D+ and D- be two small rectangles abyacent to
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the sides { xo = (see the picture above). Now, our initial vector
field Xo is defined in such a way it satisfies the following properties:

C-l) The hypotheses H-l, H-2 of §2 hold for Xo.
C-2) The map ~ro (see H-2) is also defined on D~. It has the same form

as the one given in H-2 and C int(S). See the picture below.
C-3) A successive flow-defined map, which is still denoted by 1r far,O,

is defined from ~o ~ ~ z > 0 } to S = D~ U S. It sends the corners Ct
into the interior of D~ and it also carries the lines x = cnt. and z = cnt.
in ~~ = (~ z > 0 } U C~) into lines xo = cnt. in S, in a specific
contractive way. In addition, the curves y = cnt. in Eo are carried into lines
Yo = cnt. in S. It is assumed that the image of the curves y = cnt. in the
whole Eo have quadratic contact with the vertical foliation {xo = cnt. ~
in S. See the picture below

image of x=cnt., z=cnt.
image of y=cnt.

Fig. 4.

Here, F~~‘ represents the intersection of W ~‘ (0, 0, 0) with S. The

hypotheses above imply that this set is a nice curve in the sense of it
is horizontal in S, although the whole curve F~~‘ has two critical points
denoted by c+, c- with respect to the vertical foliation in S. These critical
points are generic (i. e. c~ have quadratic contact with the above mentioned
foliation).
As before, we set Xo into the family X = which takes the

form (1) in the neighborhood of [-1,1]3 which comes from §2. We try
to study the perturbations of X in the space of one-parameters families as
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was done before. In the sequel, we suppose that Xo is generic (in the sense
of the Theorem 2.2). We denote by F~~‘, c_,~, c+,,, etc. the analytical
continuation of the corresponding elements of Xo above descrited. We do
not use notations related to perturbation arcs Y = close to X.

Let us give the following Lemma.

LEMMA 3.1. - Let U be a small neigbourhood of X in the space of one-
parameter families of vector fields. Then there exists a residual set U’ in U
for which the following hold:

If Y is a close family as before in U’ and pb E ( -1,1 ) is as that in
the Proposition 2.7, then the positive orbit of c~,~ and c_,~ under the
map ~ro has empty intersection with W s (o~,b ); where is the analytical
continuation of the saddle-node (0,0,0) of Xo..

Remarks.

1) In other words, the Lemma 3.1 says that for a residual set U’ in U there
is no critically twisted orbit, that is, there is no tangency orbits between

W~b (o~b ) and W~b (o~b ). See for instance [7] where critically twisted orbit
is studied but associated to hyperbolic saddle type singularities.

2) For every arc Y = close to X, it is defined a first
return map ~r~ associated to Y~,,. It is a discontinuous map, defined in

B{x0 = 0}, if  ~ 0 (provided pb = 0 for every near arc Y) and 03C00 is
as the one given in C-2. When J-L > 0, these maps become diffeomorfisms
all of them defined in the whole set S. The main purpose here is to describe
this set of maps. These have the form = o where 
is the local map from S to ~o and is the global map from ~o to
S. The first one has the form

where again To is defined by the implicit equation

and the solution (x, ~, z ) comes from §2. A detailed description of this map
will be given in the next section.
To continue we will need the following definitions

DEFINITION. - A vertical band or simply a band is a set in S given by

where pi are almost vertical C’’-functions (i.e. with small derivative) with
pi  C{J2. We call these functions the boundary of B. When pi  0 (i=1,2)
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we say that B is a negative band. In the positive case we say that it is a
positive band. If B is a band, the number ~p2 ~ ] is called the diameter
of B ( ~ . ( is the supremum norm).
The next proposition is key in what follows. Recall that we are working

on with perturbations as that in (2) (see ~2).

PROPOSITION 3.2. - For arcs Y near X and for p > 0 small, there exists
three bands and’ B~ with (B~ U B~ ) and B~ r~ negative
(positive) band such that the following statements hold:

a) There exist a 03C0 -invariant contractive almost vertical foliation Fs
defined in = B~ ~ U int(B~ ) ), where ~r~ is the continuation of
xo for the perturbation arc Y (see remark after the Lemma 3.1 ).

b) The maximal invariant set in H~ given by

is a nontrivial saddle type basic set of x,.
c) The diameters of B~ r~, and that of the convex hull of the union Bl U Bl

are of order for some positive fixed constants K and c..
We give the proof of the Proposition 3.2 through the following lemmas.

LEMMA 3.3. - For perturbations arcs as that in (2) §2 and
for p > 0 there exists a band B~ which is fenced by stable manifolds of
periodic orbits of ~r~, ( B~ C S) such that

a) There exist two band B~ and B~ (in S) negative and positive (resp. )
so that n ~r~ 1 ( B~ ) = B~ B (int ( B~ ) U int ( B~ ) )

b) The boundary of both bands are part of the stable manifolds which
fence 

c) The diameters of B~’~~ and of the convex hull of Bl U Br are of the
order for some positive constants K and c..

Proof. - Take the band (for p > 0) as follows (see fig. 5)
Here the boundary of B,~ is union of two parts of stable manifolds of
periodic points of Now, for p = 0 define the corners C1 and C2 as
C1 U C2 = Bo B ( B ) n ( D _ U D+ ) , where 8 is the analytical continuation
of the saddle-node (0, 0, 0) of Xo.
We would like to see B~ B ( B~, ) , for p > 0. Just looking at the normal

form (2) and using the relation (4) to compute we can observe that,
the set of points in which are carried by the local map into the union of
C1 and C2 are just two bands (nearly vertical ones). Now, it can be proved
that these two bands are contained into two bands B~ r~ which are fenced
by the same stable manifold of the boundary of B,~ . D
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boundary of B p.

Fig. 5.

The map ~r~ restricted to B~ looks like a horseshoe map. Indeed, we
have the picture (g) below for 
The problem here is related with the image of L (in the picture, it is

denoted by L’ ) which does not cross the whole set L (but it cross N and
M). The same observation holds for N. Finally M cross L,N and M itself.
Recall that the boundary of all these bands are part of stable manifold of
periodics orbits of ~r~ .

LEMMA 3.4. - For  > 0 small there exists a 03C0 -invariant nearly vertical
contractive foliation .~’~ defined in U The boundaries

of these bands are part of .~’~. The one dimensional foliation map induced
by ~~ has the form

with f (0) > 0; f (1)  l; f (a) = f (b) = 1; f (c) = f (d) = 0. The function
f is a differentiable map and 1 > ~ > 1 , for some constant ~. If we
define 0394f as

then it is a Cantor set, f restricted to 0 f is a topologically transitive map
and 0 f. Moreover, 0 f is an hyperbolic set for f and 0 and
1 are preperiodics points of f (see picture (h) below)..
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Fig. 6.

Proof. - First, let us explain how the proof works. We apply the arguments
given in [2] and [15] to a appropriate extension of 7!-~, in order to
obtain a C1, 03C0ext -invariant foliation Fext  defined in a band which
will contain B~ . The boundaries of B~, B1 and B~ will be leaves of
.~’~~t. Finally, the above-mentioned foliation restricted to will define a
foliation for which the statement of the Lemma 3.4 holds. To start with
the proof, one takes a band which is formed by adding two small
bands B1 and B2 to B~ . Now, we define the map as being equal
~r~ on B~ . Moreover, the image sets Bi’ of Bi (i = 1,2) under are

as in the picture (g) above. One can choose this extension map in such
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a way its derivative has the same hyperbolic properties attached to the
corresponding derivative 
To continue, we fixed a C1-foliation R~ on suitable bands B2xt,

B3xt and which have the following properties:
1) is contained in Bi (B2xt is contained in B2), the left (right)

boundary of is contained in the boundary of (B2xt).
2) B3xt and are contained in the interior of B~ and B~ respect.
Now, there exists a finite set of differentiable functions 0 : [-1,1] -~ R

such that the union of the boundaries of Bixt (i = 1,.., 4) is equal to
the union of the graph of the functions lying in the above-mentioned
set of differentiable functions. Define B as the set of continuous maps
p : B~xt --~ ~ - 1,1 ~ such that

1) cp(q) = q lies in the union of the bands Bixt ( i = 1, .. , 4 ) .
2) y) = 8’(~) for all y and 8.
It follows that every cp E B define a vector field on by setting

Let us write the expression of the 03C0ext -induced graph transformed operator
defined on B. It is the following

where the functions are the entries of as these of

(see §2). It follows that a fixed point po of T induce a continuous 
invariant foliation by integrating the corresponding vector field ~03C60. Now,
we endow B with the supremum norm. The main told for the existence of
such a fixed point is that T is a well defined contracting operator on B. It is
well defined because of one can prove the continuity of T(p) and moreover,
T(B) C Band T is a contraction because of computations which are similar
to these given in §2. These computations are based on hyperbolic properties
of the entries ....etc. which are still valid when ~c > 0 (see also
the next section). To prove that po is a C1-map we can still proceed as in
the proof of the Proposition 2.3. Indeed, the operator is defined
as that given in §2, except it is equal to in Bixt t ( i = 1, .., 4).
Now, it can be proved that the foliation map, induced by 7!-~, is in fact a

expansive map because the function is large. Hence the hyperbolicity
of 6 f follows. The transitivity and the density of the periodics orbits is
obtained through the next facts
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b) Every I~ has the form In = where the I’s is a closed
interval and for every i E {I,..., there exists a interval J c In such
that f l (J) _ [0,1] for some positive integer I. Observe that the collection

is like a Markov partition (see [14]) of D

COROLLARY 3.5. - The maximal invariant set given by

is a hyperbolic basic set for ~r~, p > 0 small..
Now the Proposition 3.2 follows by using the Lemma 3.3, Lemma 3.4

and the Corollary 3.5.

Let us start with the proof of the Theorem I. First, we introduce some
notations. Take a function f as in Lemma 3.4 and set D f = "domain of f " ==

[0,1] B Io (recall the proof of the Lemma 3.4). We set index everywhere
i. e. and so on.

There are also defined the critical points c~ associated to the parameter
Jl = 0 (see remark before the Lemma 3.1). Set ci = 7ro(c+) and so we
have the next picture

Graph of fo

Fig. 7.

Here "b" represents the lift which is part of the stable manifold (notice
that Yo is a Saddle-node Lorenz vector field) of the saddle-node singularity
0 given above (see the proof of the Lemma 3.3).

Remarks. - We want to point out the following: for all small Jl > 0
there exists an almost horizontal tangency line 1,~, which is close to ci. It
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will contain a Cantor set formed by tangency points of .~’~ (the strong
unstable foliation associated to the hyperbolic set H~ given in Corollary 3.5)
with the almost vertical foliation found in the Lemma 3.4. Also l  - ci

0+ in the Hausdorff topology. Let us denote [e~, h~] the convex
hull of K~ . Then e,~ and are accumulated by the unstable manifold of
some fixed point of in H~ .
Back again to the proof of the Theorem I, take Y = ~ Y~ ~ ~,, E ~ _ 1,1 ~ in the

residual set given in Lemma 3.1 for a small neighborhood U of the initial
family X. We shall prove that and 0~ _ ~ fw (see notation in Lemma
3.4) have a cross point for positive parameter values ~ 0+, that is
two curves E K~ and I(p) E ~~ such that t(~c) - has a unique
zero in a small neighborhood of  = k and (t - ~ 0. It is clear
that such a cross point give us a quadratic unfold in Jl = 
The boundary points of every are points in ~~ because 0 and 1

are preperiodics points of f,. Also when  ~ 0+ such a boundary points
move on, with positive speed, to points which are preimage points of b
under the map f o (see the picture above). This implies that the intervals

are closing on (when ~ -~ 0+). It can be proved that the speed of
such a closing goes to zero 0+ but it is positive for  > 0
(see Proposition 3.2 (c)). The same is true for the speed of convergence
of e~ and to ci.

Let p > 0 be small and look at [e~, h~] . If e~~ * or * are in the same

gap for all ~c* E (0, ~u) then ci meet xo = 0 for some f o-iterate (this is a
contradiction), thus e~~ * has to change of gap. In this case we must have a
cross point and so we are done. Suppose now that e~ does not belong to
any gap of 0394 , for parameters Jl which accumulates  = 0. In that case we
must have a gap of ~~ in the interval (e~,, ci). Using again that e~ --~ ci
and the f o-orbit of ci does not meet xo = 0, we can show that there exists
a cross point (in fact two of them). That finishes the proof of the Theorem I
because now the Proposition 2.1 applies. D

4. PROOF OF THE THEOREM II

In this section, a proof of the Theorem II will be given through the
following short steps: First, a slightly modification (due to Newhouse [ 10])
of the maps given in [12] is considered. These maps, which will be

called Plykin maps, naturally generate nontrivial axiom A attractors (see
Lemma 10 below). Next, a initial one-parameter family of vector fields X
is constructed, in such a way H-l, H-2 of §2 together another additional
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hypotheses hold. Finally, it will be shown that for any arc Y = 
close to X and Jl > 0, generates a poincare map 7r~ which will be
indeed a Plykin map in its domain.

Let us consider a domain D as follows:

Fig. 8.

So it is about a plane disk with four holes. A vertical foliation 
together with a horizontal foliation (Fh) are depicted above. Both foliations
generate a coordinate system which we denoted by (xo, yo) in the sequel.
We say that a diffeomorphism F : D -~ Int(D) is a Plykin Map iff it

sends the set D into itself in the following geometrical way

Fig. 9.
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Moreover, F has the following form, with respect to the above-mentioned
coordinate system {xo, yo):

with ] > ~y; ~ Igyo ] and  ~ for some fixed positive
constants A small and 1 > 1.

Now, using arguments which can be found in [2] and [12], we obtain
the following Lemma.

LEMMA 4.1. - Let F be a Plykin map with domain D. Then the set OF
defined by

is a nontrivial axiom A attractor for F..

Proof. - First, we shall prove the existence of a C1-strong stable foliation.
We proceed as before (see the last section). Consider the set of trial foliations
~ ( ~,1 ) : ~ cp ~  E ~ and define the graph transformed operator as follows

where again A, B,... etc. are the entries of DF. Now the same computations
as that in §2 shows that (  E if  E and T is a contraction on the

above set of trial foliations. As before, we can show that the corresponding
fixed foliation, which exists because of the contracting map theorem, is

actually a Next we use the criterium of Hirsch and Pugh [5] ] to
prove that the foliation map is indeed a expanding map. Notice that the
inequalities below hold because of F is a Plykin map

with E, /3 being small constants. Then propositions 4.7 and 4.10 of [5] apply
in order to obtain that OF is in fact a hyperbolic set. Finally, we consider
the branched manifold [20] generates by the invariant foliation found above.
The quotient map generates by F in such a branched manifold will be a
expansive map so the set OF is a nontrivial basic set (i.e. is a

transitive map). This finishes the proof of the Lemma 4.1. D

Now, a initial vector field is defined. Once more, we use the scheme

given in §3. Let us consider a domain Do as that given in the pictures
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above but containing the square ~-1 /2,1 /2~ 2 . In addition, we consider the
three dimensional set Do x ~ 1 ~ which is still denoted by Do and a vector
field Xo satisfying the following assumptions:

PL-l) The hypotheses H-1,H-2 of §2 hold for Xo.
PL-2) The map 7ro (see H-2) is also defined in the whole set Do. The

image set 1ro(Do) is contained in Do as follows

Fig. 10.

In addition, the map ~r~ has the following form 

with

a) The function fo is a Lorenz unidimensional map (i.e. satisfies (c) and
(d) of H-2 §2) when it is restricted to [-1,1]. Besides this property, it is a
expanding map in the whole branched manifold induced by 0" (see [20])
which is showed below

b) The following inequalities hold: ] > -y and

 ~, where the constants A and q are

as these in the definition of a Plykin map given above.
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PL-3) It is defined a flow-defined function from a small fixed
neighborhood of the set ~ o ~ ~ z > 0 } (see notation in §3) to Do. It carry
the lines x = cnt., z = cnt. in this set into lines xo = cnt. in Do in a specific
contractive way. Moreover, the curves y = cnt. in the above considered
neighborhood are carried into lines yo = cnt. in Do.
To construct the open set in the statement of the Theorem II, we set Xo

in a one-parameter family X as that in (1) §2. We suppose
that Xo is generic, in the sense of the Theorem 2.2 §2 and so nearby arcs
Y are as these in (2) §2. As was pointed out before, every arc Y generates
a one-parameter family of maps ~~r~ ~~E ~_ 1,1~ and our goal here is to prove
that 03C0  is a Plykin map when  > 0.
The Lemma below will be used to obtain estimates related to the

derivative of the local map induced by Y. Recall the notations
in the Theorem 2.2 §2.
LEMMA 4.2. - Suppose that a > 0 is arbitrary. Then there exists a constant

80 > 0 such that if we define, for ~c, 0 > 0

then, for any real number M > 0 there exist po, Ao > 0 such that

Proof. - It can be proved that for every E > 0 there exist bo > 0 and
v > 0 such that

if (z, ) E [ - 03B40, 03B40] x (0, v]. Then Lemma 4.2 follows provided it holds
with  + az2 instead of (see the arguments in [3]). Now

n~ 1 ,

then, it follows that

therefore, all we need to check is the case z E (0, A], where we choose A
better than 80. It must be proved that the quantity
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is large. For this purpose, it is easy to prove that

Suppose that 0  z  Then

for some small positive number E. Choose VI > 0 such that > M

for 0  v  vi , with R = ~r / 2 - E - arctg(l) > 0 and we are done. Now,
suppose that 0 > z > Then 0   1. On the other hand

for some ç E [0,1]. Therefore cos2(arctg(ç)) is bounded away from zero

and so

for some fixed positive constant K. But

and this last expression is large, if A is small. D

COROLLARY 4.3. - There exist M > 0 and ~co > 0 such that

if 0  t  To and tc E (0, *

The next Lemma deals with the one-parameter family of poincare maps
~r~ : ~ ~  0 ~ -~ R given by = 

where the functions x(TO, xo, tc), z(TO, p) are respectively the first and

the last component of x,. Observe that To is defined as the solution of

x(t, xo, p) E Here, ~yo comes from the definition of ~o (see beginning
of §3). With this in mind, there are defined two positive numbers s  and

(s~ > t~,) such that ~r~(s~) _ (1, -8’) and ~r~(t~) _ (e, -8).
LEMMA 4.4. - There exist two small positive number b, b’ (b > b’) such

that the following hold: there exists a positive number M such that
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for all small tc > 0 and xo E ~t~,, s,~~. .
Proof - It is easy to see that (denoting z = etc)

where C+ comes from the definition of Therefore, it follows that

Finally, we choose M > 0 such that + B) > M for all ~ > 0,
where B = (and so it does not depend on p, z). This
concludes the proof of the Lemma 4.4.D 

°

Proof of the Theorem II. - As was pointed out before, we must prove
that 7r, is a Plykin map for small parameter J-L > 0. A straightforward
computation shows that

where again are the entries and  ., . > denotes the

scalar product in R2. Here, is the continuation of the map 
showed before (see PL-3). It follows from PL-3 that

a)  >= 0

b) ‘  > ‘ is bounded away from zero

c) Leo I is small .

d) bo = 0
for every unitary vector U which belongs to the direction. Now,

using Lemma 4.2 and the Corollary 4.3 above we obtain IYTxo / ~ ~ (~r~ )’ (xo ) ~ ~ ]
is a bounded function. i goes to infinity, if xo goes
to zero because of the Lemma 4.4. In addition, ] and ] are

bounded, with small bounds. This finishes the proof of the Theorem II
because of Lemma 4.1 applies. D

Very recently a separation (i. e. there exists a codimension one separating
lamina, see 31) between the set of Morse-Smale flows and those Axiom A
fields exhibiting a solenoid-like attractor (see [16]) was proved to exist by
Shilnikov and Turaev, in the space of flows of any n-dimensional manifold
with n > 4. The methods given in this research can be applied in order to
prove the following statement: There exists a separation between the set of
fields displaying a multidimensional Lorenz attractor and the set of Axiom A
flows with an attractor of solenoid type, in the flow’s space of any manifold
of dimension greather or equal than four.
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