The Dirichlet problem for the equation of prescribed mean curvature

by

Guofang WANG

Institute of Mathematics, Academia Sinica, Beijing, 100080 China

ABSTRACT. – We prove that there exist at least two distinct solutions to the Dirichlet problem for the equation of prescribed mean curvature $\Delta X = 2 H(X) X_u \wedge X_v$, the curvature function H being in a full neighborhood of a suitable constant.

Key words : Equation of prescribed mean curvature, Dirichlet problem, relative minimizer.

1. INTRODUCTION

Let $\mathbf{B} = \{ \omega = (u, v) \in \mathbb{R}^2 / |\omega| < 1 \}$ be the unit disc in \mathbb{R}^2 with boundary $\partial \mathbf{B}$. We consider the Dirichlet problem for the equation of prescribed mean curvature

$$\Delta X = 2 H(X) X_u \wedge X_v, \text{ in } B, \qquad (1.1)$$

 $X = X_D$, on ∂B . (1.2)

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 9/92/06/643/13/\$3.30/

© 1992 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Classification A.M.S. : 53 A 10, 58 E 99.

G. WANG

Here, $X_u = \frac{\partial}{\partial u} X$ and $X_v = \frac{\partial}{\partial v} X$ denote partial derivative, \wedge and . are the exterior and inner product in \mathbb{D}^3 and $H_1 \mathbb{D}^3$. \mathbb{D} is a given function and

exterior and inner product in \mathbb{R}^3 and $H: \mathbb{R}^3 \to \mathbb{R}$ is a given function, and X_D is a given function of class $C^2(\overline{B}, \mathbb{R}^3)$.

If $H \equiv H_0 = \text{Const.}$, solutions to (1.1), (1.2) can be characterized as critical points of the functional

$$E_{H_0}(X) = D(X) + 2H_0 V(X), \qquad (1.3)$$

in a space of admissible functions satisfying the boundary condition (1.2), where

$$\mathbf{D}(\mathbf{X}) = \frac{1}{2} \int_{\mathbf{B}} |\nabla \mathbf{X}|^2 \, d\omega \tag{1.4}$$

is the Dirichlet integral and

$$V(X) = \frac{1}{3} \int_{B} X \cdot X_{u} \wedge X_{v} d\omega \qquad (1.5)$$

is the algebraic volume of surface X.

THEOREM 1.1 ([Hi2], [Wet1], [Wet2] and [Stf1]). – Suppose $H \equiv H_0 \in \mathbb{R}$ and let $X_D \in H^{1,2}(B, \mathbb{R}^3)$ be given. Assume that either

(i) X_{D} is bounded and

$$|\mathbf{H}_{0}| \cdot ||\mathbf{X}_{D}||_{L^{\infty}} < 1,$$
 (1.6)

or

(ii) the condition

$$H_0^2 D(X_D) < \frac{2}{3}\pi$$
 (1.7)

is satisfied. Then there is a solution $\underline{X} \in \{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$ to (1.1), (1.2) which is a strict relative minimizer of E_{H_0} in this space.

Remark 1.2. – The observation that the solutions of Hildebrandt, Steffen and Wente are strict relative minima is due to Brezis-Coron [BC].

The existence of a second solution was proved independently by Brezis-Coron [BC] and Struwe [St2] with an important contribution by Steffen [Stf2] as follows

THEOREM 1.3 [Str3]. – Let $X_D \in H^{1,2} \cap L^{\infty}(B, \mathbb{R}^3)$ be a non-constant vector, H_0 any real number different from zero. Suppose E_{H_0} admits a local minimum \underline{X} in the class $\{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$. Then there exists a solution $\overline{X} \in \{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$ of (1.1) and (1.2) different from \underline{X} and satisfying the condition

$$E_{H_0}(\underline{X}) < E_{H_0}(\overline{X}) = \inf_{p \in P} \sup_{X \in im(P)} E_H(X) < E_{H_0}(\underline{X}) + \frac{4\pi}{3|H_0|^2}, \quad (1.8)$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

where

$$P = \left\{ p \in C^{0} \left([0, 1], \left\{ X_{D} \right\} + H_{0}^{1,2} \left(B, \mathbb{R}^{3} \right) \right) \left| p \left(0 \right) = \underline{X}, \\ E_{H_{0}} \left(p \left(1 \right) \right) < E_{H_{0}} \left(\underline{X} \right) \right\}.$$
(1.9)

For variable curvature functions H results comparable to Theorem 1.1 have been obtain by Hildebrandt [Hil] and Steffen [Stf1].

THEOREM 1.4 [Hi1]. – Suppose H is of class C¹ and let $X_D \in H^{1,2} \cap L^{\infty}(B, \mathbb{R}^3)$ be given with $||X_D||_{L^{\infty}} < 1$. Then if

$$h = \operatorname{ess} \sup_{|\mathbf{X}| \leq 1} \mathrm{H}(\mathbf{X}) < 1$$

Δ

there exists a solution $\underline{X} \in \{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$ to (1.1), (1.2) such that $E_H(\underline{X}) = \inf\{E_H(X); X \in M\}$, where M is given by (2.9) below.

If variable curvature function H is sufficiently close to a suitable constant, Struwe obtained [Str4].

THEOREM 1.5. – Suppose $X_D \in C^2(B, \mathbb{R}^2)$ is non-constant and suppose that for $H_0 \in \mathbb{R} \setminus \{0\}$ the functional E_{H_0} admits a relative minimizer in $\{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$. Then there exists a number $\alpha > 0$ such that for a dense set \mathscr{A} of curvature functions H in the α -neighborhood of H_0 , the Dirichlet problem (1.1), (1.2) admits at least two distinct regular solutions in $\{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$.

Here the α -neighborhood of H₀ is defined as

$$[H-H_0] \stackrel{\Delta}{=} \operatorname{ess} \sup_{\mathbf{X} \in \mathbb{R}^3} \left\{ (1+|\mathbf{X}|) (|\mathbf{H}(\mathbf{X})-\mathbf{H}_0|+|\nabla \mathbf{H}(\mathbf{X})|) + |\mathbf{Q}(\mathbf{X})-\mathbf{H}_0\mathbf{X}|+|\nabla \mathbf{Q}(\mathbf{X})-\mathbf{H}_0\operatorname{id}| \right\} \leq \alpha, \quad (1.10)$$

where Q is given by (2.3) below.

In this paper, we improve Theorem 1.5 and obtain that

THEOREM 1.6. – Suppose $X_D \in C^2(\mathbb{B}, \mathbb{R}^3)$ is non-constant, and suppose that for $H_0 \in \mathbb{R} \setminus \{0\}$ the functional E_{H_0} admits a relative minimizer in $\{X_D\} + H_0^{1,2}$. Then there exists a number $\alpha > 0$ such that if $[H - H_0] < \alpha$, E_H admits two solutions in $\{X_D\} + H_0^{1,2}$.

From the proof of Theorem 1.5 [Str4], we have a relative minimizer of $E_{\rm H}$ for a full α -neighborhood of H_0 and another "large" critical point of $E_{\rm H}$ for $H \in \mathscr{A}$. We call the former S-solution and the latter L-solution.

First, we show that the S-solution is also a "strict" relative minimizer its $E_{\rm H}$ —energy is less than that of the L-solution—provided that $[{\rm H}-{\rm H}_0]$ is small enough. Next, we give *a priori* estimates for solutions of the Dirichlet problem—which are of crucial importance to our result though they are not given explicitly. Then, we can use the solutions obtained by Struwe in [Str4]—the L-solutions—for a dense set \mathscr{A} in $\mathscr{H}_{\alpha} = \{ H | [H - H_0] < \alpha \}$ to approximate a solution of E_H for any $H \in \mathscr{H}_{\alpha}$ which is different from the S-solution.

The author would like to thank his supervisor Prof. Wang Guangyin for his constant encouragement and useful suggestions. He also would like to thank the referee for pointing out a few mistakes in the 1st and 2nd versions of this paper.

2. PRELIMINARIES

For variable curvature function H, solutions to (1.1), (1.2) can be characterized as critical points of the functional

$$E_{H}(X) = D(X) + 2V_{H}(X)$$
 (2.1)

in the space $\{X_{D}\} + H_{0}^{1,2}(B, \mathbb{R}^{2})$. Here, the H-volume introduced by Hildebrandt is given by

$$V_{\rm H}(X) = \frac{1}{3} \int_{\rm B} Q(X) \cdot X_u \wedge X_v \, dw,$$
 (2.2)

where

$$Q(x_1, x_2, x_3) = \left(\int_0^{x_1} H(s, x_2, x_3) ds, \\ \int_0^{x_2} H(x_1, s, x_3) ds, \int_0^{x_3} H(x_1, x_2, s) ds \right). \quad (2.3)$$

We list some useful lemmas.

LEMMA 2.1 (Isoperimetric inequality, cf. [Wet1]):

$$36 \pi (V(X))^2 \leq D(X)^3,$$
 (2.4)

for $X \in H_0^{1, 2}(B, \mathbb{R}^3)$.

LEMMA 2.2 ([BC], [Str4], Prop. 3.1). – Suppose $X_D \in C^2(\overline{B}, \mathbb{R}^3)$ is nonconstant, and suppose that for $H \equiv H_0 \neq 0$ the functional E_{H_0} admits a relative minimizer $\underline{X}_0 \in \{X_D\} + C^2 \cap H_0^{1,2}(\overline{B}, \mathbb{R}^3)$. Then there exists a radius $\mathbb{R} > 0$, a function $\overline{X}_1 \in \{X_D\} + C^2 \cap H_0^{1,2}(\overline{B}, \mathbb{R}^3)$ with $D(X_1 - \underline{X}_0) \ge \mathbb{R}$, and a continuous path $p \in C^0([0, 1]; \{X_D\} + C^2 \cap H_0^{1,2}(\overline{B}, \mathbb{R}^3))$ connecting $X_0 = p(0)$ with $X_1 = p(1)$ such that the estimates

$$E_{H_0}(X_1) < \inf \{ E_{H_0}(X); X - \underline{X}_0 \in H_0^{1,2}, D(X - \underline{X}_0) \le R \} \le E_{H_0}(\underline{X}_0)$$
(2.5)
$$< \inf \{ E_{H_0}(X); X - \underline{X}_0 \in H_0^{1,2}, D(X - \underline{X}_0) = R \}$$
(2.6)

$$\leq \inf \{ E_{\mathbf{H}_0}(\mathbf{X}); \mathbf{X} - \underline{\mathbf{X}}_0 \in \mathbf{H}_0^{n/2}, \mathbf{D}(\mathbf{X} - \underline{\mathbf{X}}_0) = \mathbf{K} \}$$
(2.0)
$$\leq \sup \{ E_{\mathbf{H}_0}(\mathbf{X}); \mathbf{X} \in p([0, 1]) \}$$
(2.7)

$$\sup \{ E_{H_0}(X); X \in p([0, 1]) \}$$
 (2.7)

$$< E_{H_0}(X_0) + 4 \pi/3 H_0^2$$
 (2.8)

hold.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

DEFINITION 2.3:

$$\mathbf{M} = \{ \mathbf{X} \in \{ \mathbf{X}_{\mathbf{D}} \} + \mathbf{H}_{0}^{1, 2} (\mathbf{B}, \mathbb{R}^{3}); \mathbf{D} (\mathbf{X} - \underline{\mathbf{X}}_{0}) \leq \mathbf{R} \},$$
(2.9)

where \underline{X}_0 and R are as in Lemma 2.2.

LEMMA 2.4 [BC]. – For $H_0 \in \mathbb{R} \setminus \{0\}$. Suppose that E_{H_0} admits a relative minimizer $\underline{X}_0 \in \{X_D\} + C^2 \cap H_0^{1,2}(\overline{B}, \mathbb{R}^3)$. Then there is $\delta > 0$ such that

$$\int |\nabla \varphi|^2 + 4 \operatorname{H}_0 \int \underline{X}_0 \cdot \varphi_u \wedge \varphi_v \ge \delta \int |\nabla \varphi|^2, \quad \text{for all } \varphi \in \operatorname{H}_0^{1,2}. \quad (2.10)$$

Let

$$\mathbf{P} = \left\{ p \in \mathbf{C}^{0} ([0, 1]; \left\{ \mathbf{X}_{\mathbf{D}} \right\} + \mathbf{H}_{0}^{1, 2} (\mathbf{B}, \mathbb{R}^{3})), p(0) = \underline{\mathbf{X}}_{0}, p(1) = \mathbf{X}_{1} \right\}$$

and set

$$\gamma_{\mathrm{H}, \rho} = \inf_{p \in \mathrm{P}} \sup_{\mathrm{X} \in \mathrm{im}(p)} \mathrm{E}_{\mathrm{H}, \rho}(\mathrm{X})$$

where $E_{H,\rho}(X) = (1+\rho) E_{H/(1+\rho)}(X)$. Using Lemma 2.2 we have (see [Str4], (3.5))

$$\begin{split} E_{H,\rho}(X_{1}) &< \inf \{ E_{H}(X); X - \underline{X}_{0} \in H_{0}^{1,2}, D(X - \underline{X}_{0}) \leq R \} \leq E_{H,\rho}(\underline{X}_{0}) \quad (2.5)_{\rho} \\ &< \inf \{ E_{H}(X); X - \underline{X}_{0} \in H_{0}^{1,2}, D(X - \underline{X}_{0}) = R \} \\ &\leq \inf \{ E_{H,\rho}(X); X \in p([0,1]) \} \quad (2.6)_{\rho} \\ &\leq E_{H}(\underline{X}_{0}) + \beta \leq E_{H,\rho}(\underline{X}_{0}) + \beta \quad (2.8)_{\rho} \end{split}$$

and

$$\mathbf{E}_{\mathrm{H},\,\rho}(\underline{\mathbf{X}}_{0}) < \gamma_{\mathrm{H},\,0} \leq \gamma_{\mathrm{H},\,\rho} \leq \gamma_{\mathrm{H},\,\alpha} < \mathbf{E}_{\mathrm{H}}(\underline{\mathbf{X}}_{0}) + \beta, \tag{2.11}$$

for $\rho \in [0, \alpha]$. Here X₁, X₀ and P are as in Lemma 2.2, α is small enough and fixed and $\beta < 4\pi/3 H_0^2$ is independent of H. Moreover, we have

LEMMA 2.5. – There exists a constant number ϵ_0 independent of α such that

$$\begin{split} E_{H_0}(\underline{X}_0) + \varepsilon_0 &< \inf \left\{ E_H(X); X - \underline{X}_0 \in H_0^{1,2}, D(X - X_0) = R \right\} \\ &\leq \inf \left\{ E_{H,\rho}(X); X - \underline{X}_0 \in H_0^{1,2}, D(X - X_0) = R \right\} \\ &\leq \sup \left\{ E_{H,\rho}(X); X \in p([0,1]) \right\} \\ &< E_H(\underline{X}_0) + \beta - \varepsilon_0 \leq E_{H,\rho}(\underline{X}_0) + \beta - \varepsilon_0 \end{split}$$

provided that α is small enough, where \underline{X}_0 , R and p are as in Lemma 2.2.

Proof. - Set

$$\epsilon_{0} = \frac{1}{4} \min \left\{ (\mathbf{E}_{\mathbf{H}_{0}}(\underline{\mathbf{X}}_{0}) + 4\pi/3 \,\mathbf{H}_{0}^{2} - \sup \left\{ \mathbf{E}_{\mathbf{H}}(\mathbf{X}); \, \mathbf{X} \in p([0, 1]) \right\} \right\}, \\ (\inf \left\{ \mathbf{E}_{\mathbf{H}_{0}}(\mathbf{X}); \, \mathbf{X} - \underline{\mathbf{X}}_{0} \in \mathbf{H}_{0}^{1, 2}, \, \mathbf{D} \left(\mathbf{X} - \underline{\mathbf{X}}_{0}\right) = \mathbf{R} \right\} - \mathbf{E}_{\mathbf{H}_{0}}(\underline{\mathbf{X}}_{0}) \right\}$$

It is easy to see that Lemma 2.5 follows from Lemma 2.2 for α small enough.

Q.E.D.

LEMMA 2.6. – There exists a constant c independent of α such that if $H \in \mathcal{A}$ (see Theorem 1.5),

 $D(X-\bar{X})>c,$

where $X(resp, \overline{X})$ is the S-solution (resp. L-solution) to (1.1), (1.2).

Proof. – It follows the proof of Theorem 1.5 ([Str4], Theorem 3.1) and Lemma 2.5.

Q.E.D.

3. THE "STRICT" RELATIVE MINIMA

In this section, we will prove that the S-solution to the Dirichlet problem for the equation of prescribed mean curvature H is a "strict" relative minimum in the space $\{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$, provided that $[H-H_0]$ is small enough. Here $H_0 \neq 0$ is a constant with the property that E_{H_0} admits a relative minimizer $X_0 \in \{X_D\} + C^2 \cap H_0^{1,2}(B, \mathbb{R}^3)$.

LEMMA 3.1. – There exists a constant number $\alpha > 0$ with the property that if $[H-H_0] < \alpha$ there is a constant $\delta > 0$ depending only on α and X_D such that

$$\int |\nabla \phi|^2 + 4 \int Q(\underline{X}) \phi_u \wedge \phi_v \ge \delta \int |\nabla \phi|^2, \quad \text{for any } \phi \in H^{1,2}_0. \quad (3.1)$$

Here $\underline{\mathbf{X}} = \underline{\mathbf{X}}_{\mathbf{H}}$ is the S-solution to (1.1), (1.2).

Proof. – Let \underline{X}_0 be the small solution of E_{H_0} in the space $\{X_D\} + H_0^{1,2}$. By Brezis-Coron [BC]-see Lemma 2.4-there exists a constant $\delta_1 > 0$ such that

$$\int |\nabla \phi|^2 + 4 H_0 \int \underline{X}_0 \phi_u \wedge \phi_v \ge \delta_1 \int |\nabla \phi|^2, \qquad \phi \in H_0^{1, 2}.$$
(3.2)

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Thus for any $\phi \in H_0^{1,2}$

$$\begin{split} \int |\nabla \phi|^2 + 4 \int Q(\underline{X}) \phi_{\boldsymbol{u}} \wedge \phi_{\boldsymbol{v}} \\ &= \int |\nabla \phi|^2 + 4 H_0 \int \underline{X}_0 \phi_{\boldsymbol{u}} \wedge \phi_{\boldsymbol{v}} \\ &+ 4 \int (Q(\underline{X}) - H_0 \underline{X}) \phi_{\boldsymbol{u}} \wedge \phi_{\boldsymbol{v}} + 4 H_0 \int (\underline{X} - X_0) \phi_{\boldsymbol{u}} \wedge \phi_{\boldsymbol{v}} \\ &\geq (\delta_1 - 2\alpha) \int |\nabla \phi|^2 + 4 H_0 \int (\underline{X} - X_0) \phi_{\boldsymbol{u}} \wedge \phi_{\boldsymbol{v}}. \end{split}$$

Therefore, Lemma 3.1 follows from the following

LEMMA 3.2. – For any $\varepsilon > 0$, there exists a constant $\alpha > 0$ with the property that for any curvature function H with $[H-H_0] < \alpha$, if \underline{X}_H is the S-solution to (1.1), (1.2), then

$$\left\|\underline{\mathbf{X}}_{\mathbf{H}} - \underline{\mathbf{X}}_{\mathbf{0}}\right\|_{\mathbf{L}^{\infty}} < \varepsilon.$$
(3.3)

Proof. – If the Lemma is false, we may assume that there exist $\varepsilon_0 > 0$ and a sequence $\{\underline{X}_i\}$ of the S-solutions of E_H with $H = H_i$ and $[H_i - H_0] \rightarrow 0$ as $i \rightarrow 0$ such that $\|\underline{X}_{H_i} - \underline{X}_0\|_{L^{\infty}} \ge \varepsilon_0$. Noticing that $X_i \in M$, we know that $D(\underline{X}_i)$ are bounded uniformly in *i*. Thus we may assume that $\{X_i\}$ converges to \underline{X} weakly in $\{X_D\} + H_0^{1,2}$ for some $\underline{X} \in \{X_D\} + H_0^{1,2}$. It is easy to see that $\underline{X} \in M$ (see [Str4]). Recall

$$\mathbf{M} = \{ \mathbf{X} \in \{ \mathbf{X}_{\mathbf{D}} \} + \mathbf{H}_{0}^{1, 2} (\mathbf{B}, \mathbb{R}^{3}); \ \mathbf{D} (\mathbf{X} - \underline{\mathbf{X}}_{0}) \leq \mathbf{R} \}.$$

But then

$$E_{H_{0}}(\underline{X}) \geq \inf_{\substack{X \in M \\ X \in M}} E_{H_{0}}(X)$$

$$= \inf_{\substack{X \in M \\ i \to \infty}} E_{H_{i}}(X)$$

$$\geq \lim_{\substack{i \to \infty \\ i \to \infty}} \inf_{X \in M} E_{H_{i}}(X)$$

$$= \lim_{\substack{i \to \infty \\ i \to \infty}} E_{H_{i}}(\underline{X}_{i}).$$
(3.4)

Hence, by Theorem 4.5 below, $\underline{X}_i \to \underline{X}$ strongly in $\{X_D\} + H_0^{1, 2}$ and uniformly in \overline{B} and $E_{H_0}(\underline{X}) = \lim_{i \to \infty} E_{H_i}(\underline{X}_i)$ by (3.4). We have

$$\mathbf{E}_{\mathbf{H}_0}(\underline{\mathbf{X}}) = \inf_{\mathbf{X} \in \mathbf{M}} \mathbf{E}_{\mathbf{H}_0}(\mathbf{X}) = \mathbf{E}_{\mathbf{H}_0}(\underline{\mathbf{X}}_0).$$

Hence the uniqueness of the small solution of E_{H_0} in $\{X_D\} + H_0^{1, 2}$ [BC] shows that $\underline{X} = \underline{X}_0$. Therefore, $\underline{X}_i \to \underline{X}_0$ uniformly in \overline{B} which contradicts

the above assumption. This completes the proof of Lemma 3.2.

Q.E.D.

If H is sufficiently close to H_0 , we have

PROPOSITION 3.3. – If $H \in \mathcal{A}$ and X is the L-solution to (1.1), (1.2), then $E_H(X) > E_H(\underline{X})$, where \underline{X} is the S-solution to (1.1), (1.2).

Proof. – Let $\phi = X - X \in H_0^{1, 2}(B, \mathbb{R}^3)$. Noting that $X = X + \phi$ and X satisfy the equation (1.1), we have

$$E_{\mathbf{H}}(\mathbf{X}) = E_{\mathbf{H}}(\mathbf{X} + \boldsymbol{\varphi})$$

$$= \frac{1}{2} \int |\nabla(\mathbf{X} + \boldsymbol{\varphi})|^{2} + \frac{2}{3} \int Q(\mathbf{X} + \boldsymbol{\varphi})(\mathbf{X} + \boldsymbol{\varphi})_{\boldsymbol{u}} \wedge (\mathbf{X} + \boldsymbol{\varphi})_{\boldsymbol{v}}$$

$$= E_{\mathbf{H}}(\mathbf{X}) + \frac{1}{2} \int |\nabla \boldsymbol{\varphi}|^{2} + \frac{2}{3} \int Q(\boldsymbol{\varphi})(\mathbf{X}_{\boldsymbol{u}} \wedge \boldsymbol{\varphi}_{\boldsymbol{v}} + \boldsymbol{\varphi}_{\boldsymbol{u}} \wedge \mathbf{X}_{\boldsymbol{v}})$$

$$+ \frac{2}{3} \int (Q(\mathbf{X} + \boldsymbol{\varphi}) - Q(\boldsymbol{\varphi})) \boldsymbol{\varphi}_{\boldsymbol{u}} \wedge \boldsymbol{\varphi}_{\boldsymbol{v}}$$

$$+ \frac{2}{3} \int Q(\boldsymbol{\varphi}) \boldsymbol{\varphi}_{\boldsymbol{u}} \wedge \boldsymbol{\varphi}_{\boldsymbol{v}} + O(\boldsymbol{\alpha}) \left(\int |\nabla \boldsymbol{\varphi}|^{2}\right)^{1/2} \quad (3.5)$$

by (1.10). Testing (1.1) with φ we get

$$0 = \int \nabla \phi \nabla (\underline{X} + \phi) + 2 \int H (\underline{X} + \phi) \phi (\underline{X} + \phi)_{u} \wedge (X + \phi)_{v}$$

$$= \int |\nabla \phi|^{2} + 4 \int Q (\underline{X}) \phi_{u} \wedge \phi_{v} + 2 \int Q (\phi) \phi_{u} \wedge \phi_{v}$$

$$+ O (\alpha) \left(\left(\int |\nabla \phi|^{2} \right)^{1/2} + \int |\nabla \phi|^{2} \right) \quad (3.6)$$

by (1.10). From (3.5), (3.6) it is clear

$$\begin{split} \mathbf{E}_{\mathbf{H}}(\mathbf{X}) &= \mathbf{E}_{\mathbf{H}}(\mathbf{X}) + \frac{1}{2} \int |\nabla \varphi|^{2} + 2 \int Q(\mathbf{X}) \varphi_{u} \wedge \varphi_{v} \\ &+ \frac{2}{3} \int Q(\varphi) \varphi_{u} \wedge \varphi_{v} + c \alpha \left(\left(\int |\nabla \varphi|^{2} \right)^{1/2} + \int |\nabla \varphi|^{2} \right) \\ &= \mathbf{E}_{\mathbf{H}}(\mathbf{X}) + \frac{1}{6} \left(\int |\nabla \varphi|^{2} + 4 \int Q(\mathbf{X}) \varphi_{u} \wedge \varphi_{v} \right) \\ &+ O(\alpha) \left(\left(\int |\nabla \varphi|^{2} \right)^{1/2} + \int |\nabla \varphi|^{2} \right) \end{split}$$

By Lemma 3.1, we get

$$\mathbf{E}_{\mathbf{H}}(\mathbf{X}) - \mathbf{E}_{\mathbf{H}}(\mathbf{X}) \ge \delta \int |\nabla \varphi|^2 - c \,\alpha \left(\left(\int |\nabla \varphi|^2 \right)^{1/2} + \int |\nabla \varphi|^2 \right). \quad (3.7)$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Therefore, from Lemma 2.6 we have

$$E_{H}(X) > E_{H}(X)$$

provided that α is small enough.

Q.E.D.

PROPOSITION 3.4. – If $\alpha > 0$ is small enough, for $H \in \mathcal{H}_{\alpha}$ there exist a $\rho_0 > 0$ and a dense set A in $[0, \rho_0]$ such that if $\rho \in A$, then $E_{H/(1+\rho)}$ admits two distinct regular solutions in $\{X_D\} + H_0^{1,2}$, one is the S-solution \underline{X}_H and the other is the L-solution \overline{X} with

$$E_{H}(\underline{X}_{0}) < \gamma_{H, 0} \leq (1+\rho) E_{H/(1+\rho)}(\overline{X}) \leq \gamma_{H, \alpha} < E_{H}(\underline{X}_{0}) + \beta,$$

where $\gamma_{H, 0}$, $\gamma_{H, \alpha}$ and β are given in section 2 and \underline{X}_0 is the small solution of E_{H_0} .

Proof. – Proposition 3.4 follows from the proof of Theorem 1.5 (*see* [Str4]) and Proposition 3.3.

4. CONVERGENCE OF SURFACES OF PRESCRIBED MEAN CURVATURE

As in [Pc], we can also establish a convergence theorem of surfaces of prescribed mean curvature with the Dirichlet boundary condition. Let $H: \mathbb{R}^3 \to \mathbb{R}$ satisfy

$$\frac{\mathrm{H} \in \mathrm{C}^{1}(\mathbb{R}^{3}, \mathbb{R})}{\|\mathrm{H}\|_{\mathrm{L}^{\infty}(\mathbb{R}^{3})} + \|(1+|\mathrm{X}|)|\nabla \mathrm{H}(\mathrm{X})\|_{\mathrm{L}^{\infty}(\mathbb{R}^{3})} < +\infty. }$$

$$(4.1)$$

THEOREM 4.1. – Let H_i satisfy (4.1) and $||H_i||_{L^{\infty}} \leq K$ uniformly, and $H_i \rightarrow H$ a.e. on \mathbb{R}^3 . Suppose $X_i \in \{X_D\} + H_0^{1,2}(B, \mathbb{R}^3) \cap C^2(\overline{B}, \mathbb{R}^3)$ is a sequence of solutions to (1.1), (1.2) with $H = H_i$ and $\int_B |\nabla X_i|^2 d\omega \leq c$ uniformly. Assume that $X_i \rightarrow X$ weakly in $H^{1,2}(B, \mathbb{R}^3)$ for some function $X \in \{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$. Then $X_i \rightarrow X$ strongly in $\{X_D\} + H_{0, loc}^{1,2}(B \setminus S, \mathbb{R}^3)$ where S is a finite subset of \overline{B} . Moreover, X satisfies

$$\Delta \mathbf{X} = 2 \mathbf{H} (\mathbf{X}) \mathbf{X}_{u} \wedge \mathbf{X}_{v}, \quad in \ \mathbf{B}, \\ \mathbf{X} = \mathbf{X}_{\mathbf{D}}, \quad on \ \partial \mathbf{B}.$$

$$(4.2)$$

Proof. – The proof is similar to that of Proposition 2.6 in [Str4], thus we only sketch it. Set

$$\mathbf{S} = \bigcap_{\mathbf{r} > 0} \left\{ w \in \overline{\mathbf{B}} / \lim \inf_{i \to \infty} \int_{\mathbf{B} (w, \mathbf{r}) \cap \mathbf{B}} |\nabla \mathbf{X}_i|^2 \ge \mu_0 \right\}$$
(4.3)

where μ_0 is a constant like μ_0 in [Str4]. By the same argument of [Str4] or [Pc], we have (by taking subsequence)

$$X_i \rightarrow X$$
 strongly in $C^1(\overline{B} \setminus S, \mathbb{R}^3)$,

and S is a finite subset of \overline{B} . Moreover, X satisfies (4.2).

Q.E.D.

then $X \equiv const.$

The Lemma easily follows from [Wet2]. For the convenience of the reader we give a complete proof.

Proof of Lemma 4.2. – Note that $X_u \cdot (X_u \wedge X_v) \equiv 0$ in \mathbb{R}^2_+ , from (4.4) we have

$$X_u \cdot \Delta X = 0$$
, in \mathbb{R}^2_+

It's easy to see that

$$0 = \mathbf{X}_{u} \cdot \Delta \mathbf{X} = \mathbf{X}_{u} \cdot \operatorname{div} \nabla \mathbf{X}$$
$$= \operatorname{div} \left\{ \left((1,0) \nabla \mathbf{X} \right) \nabla \mathbf{X} - \frac{1}{2} (1,0) \left| \nabla \mathbf{X} \right|^{2} \right\}.$$

By Stokes' formula, we have

$$\int_{\partial \mathbb{R}^2_+} n \, ((1,0) \, \nabla \, \mathbf{X}) \, \nabla \, \mathbf{X} - \frac{1}{2} n \, (1,0) \, | \, \nabla \, \mathbf{X} \, |^2 \, d\omega = 0 \tag{4.5}$$

where n = (-1, 0) is the outer normal to \mathbb{R}^2_+ at $\partial \mathbb{R}^2_+$. Since $X \equiv \text{const.}$ on $\partial \mathbb{R}^2_+$, $\nabla X = (\nabla X \cdot n)n$ on $\partial \mathbb{R}^2_+$. Hence, from (4.5) we get

$$\int_{\partial \mathbb{R}^2_+} |\nabla \mathbf{X}|^2 \, d\omega = 0.$$

Therefore $X_n \equiv 0$ on $\partial \mathbb{R}^2_+$. By the argument of Wente [Wet3], $X \equiv \text{const.}$ in \mathbb{R}^2_+ .

Q.E.D.

LEMMA 4.3. – Let $[H-H_0] < \infty$. If $X \in H_0^{1,2}(\mathbb{R}^2, \mathbb{R}^3)$ satisfies $\Delta X = 2 H(X) X_u \wedge X_v$ in \mathbb{R}^2 , and is non-constant then

$$E_{\rm H}({\rm X}) \ge \frac{4\pi}{3\,{\rm H}_0^2} - c_0\,[{\rm H} - {\rm H}_0], \tag{4.6}$$

where c_0 is independent of H and $[H - H_0]$.

Proof. – It is easy to prove this lemma, we omit it.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Proposition 4.4. – Let $[H-H_0] < \infty$

$$\beta_{\rm H} \ge \frac{4\pi}{3\,{\rm H}_0^2} - c_0\,[{\rm H} - {\rm H}_0],\tag{4.7}$$

where

 $\beta_{\rm H} = \inf \{ \lim_{i \to \infty} \inf (E_{\rm H_i}(X_i) - E_{\rm H}(X)); X_i \text{ are critical points of } E_{\rm H_i} \\ and X_i \to X \text{ in } H^{1, 2} \text{ weakly but not strongly} \}.$

Proof. – For any such sequence {X_i}, using Theorem 4.1, we see that X_i → X strongly in {X_D} + H^{1,2}_{0, loc} (B \ S, ℝ³) where S is a finite non-empty subset of B and is defined by (4.3). There are two possibilities: either, (i) S ∩ ∂B = φ; or, (ii) S ∩ ∂B ≠ φ. In case (i) from Section 3 of [Pc], we have a function X₀ ∈ H^{1,2}₀ (ℝ², ℝ³) satisfying ΔX₀ = 2 H (X₀) X_{0u} ∧ X_{0v} in ℝ² and

$$\lim \inf_{i \to \infty} (E_{H_i}(X_i) - E_H(X)) \ge E_H(X_0) \ge \frac{4\pi}{3H_0^2} - c_0 [H - H_0]$$

by Lemma 4.3. Therefore, $\beta_{\rm H} \ge \frac{4\pi}{3 \,{\rm H}_0^2} - c_0 \,[{\rm H} - {\rm H}_0]$. In case (ii), using the same argument in [BC2] and Lemma 4.2, we also have a "blow up" function X satisfying $\Delta X = 2 \,{\rm H}(X) \,X_u \wedge X_v$ in \mathbb{R}^2 and

$$\lim_{i \to \infty} \inf_{0 \to \infty} (E_{H_{i}}(X_{i}) - E_{H}(X)) \ge E_{H}(X_{0}) \ge \frac{4\pi}{3H_{0}^{2}} - c_{0}[H - H_{0}]$$
Q.E.D.

THEOREM 4.5. – Let α be fixed as in section 3 and $[H_i - H] < \alpha$ and $H_i \rightarrow H$ a.e. in B. Suppose $X_i \in \{X_D\} + H_0^{1,2}$ is a sequence of solutions to (1.1), (1.2) with $H = H_i$ and

$$\left| \mathbf{E}_{\mathbf{H}_{i}}(\mathbf{X}_{i}) \right| \leq c < \infty$$

uniformly in i. Then

$$D(X_i) \leq c_1$$

uniformly for another constant number c_1 . Moreover, assume $X_i \to X$ weakly in $H^{1,2}(B, \mathbb{R}^3)$ for some $X \in \{X_D\} + H_0^{1,2}$, then X is a critical point of E_H in $\{X_D\} + H_0^{1,2}$ and either (i) $X \to X$ strongly in $H^{1,2} \cup L^{\infty}(B, \mathbb{R}^3)$ with

(1)
$$X_i \to X$$
 strongly in $H^{1/2} \bigcup L^{\infty}(B, \mathbb{R}^3)$ with
 $E_{\mu}(X) = \lim \inf E_{\mu}(X_i)$

$$E_{\mathrm{H}}(\mathrm{X}) = \lim \inf_{i \to \infty} E_{\mathrm{H}_i}(\mathrm{X}_i),$$

or

(

ii)
$$E_{H}(X) \leq \lim_{i \to \infty} \inf_{i \to \infty} E_{H_{i}}(X_{i}) - \frac{4\pi}{3H_{0}^{2}} + c_{0}[H - H_{0}].$$

Proof. – Let X_i be the S-solution of (1.1)-(1.2) with $H = H_i$ in $\{X_D\} + H_0^{1,2}(B, \mathbb{R}^3)$ (see § 3) and $\varphi_i = X_i - X_i \in H_0^{1,2}$. By (2.7), we have

$$-c+\delta\int |\nabla \varphi_i|^2 \leq \mathbf{E}(\mathbf{X}_i)-\mathbf{E}(\mathbf{X}_i),$$

where δ depends only on α and X_D . Note that $E_{H_i}(X_i)$, $E_{H_i}(X_i)$ and $D(X_i)$ are bounded uniformly. Hence, $D(X_i) \leq c_1$ uniformly for some constant c_1 .

Assume that $X_i \to X$ weakly in $H^{1,2}(B, \mathbb{R}^3)$. Now there are two possibilities either, (i) $S = \emptyset$, or, (ii) $S \neq \emptyset$ by Theorem 4.1.

In case (i) $X_i \rightarrow X$ strongly in $H^{1, 2} \cap L^{\infty}$ (see [Str4] or [Pc]). In case (ii)

$$\lim_{i \to \infty} \inf_{\mathbf{H}_{i}} \mathbf{E}_{\mathbf{H}_{i}}(\mathbf{X}_{i}) - \mathbf{E}_{\mathbf{H}}(\mathbf{X}) \ge \beta_{\mathbf{H}} \ge \frac{4\pi}{3\mathbf{H}_{0}} - c_{0} [\mathbf{H} - \mathbf{H}_{0}],$$

by Proposition 4.5. This completes the proof.

Q.E.D.

Remark 4.6. – For the Dirichlet problem Theorem 4.5 gives a priori bounds which are of crucial importance to our results.

5. PROOF OF THEOREM 1.6

For any curvature function H with $[H-H_0] < \alpha$, there exists the S-solution X_H to (1.1), (1.2). On the other hand, by the results of Struwe [Str4] and proposition 3.3 there exists a sequence of $H_i = H/(1 + \rho_i)$ tending to H such that E_{H_i} admits the L-solution $X_i \in \{X_H\} + H_0^{1.2} \cap C^2(\bar{B}, \mathbb{R}^3)$ with

$$\mathbf{E}_{\mathbf{H}}(\mathbf{X}_{0}) < \gamma_{\mathbf{H},0} \leq (1+\rho_{i}) \mathbf{E}_{\mathbf{H}_{i}}(\mathbf{X}_{i}) \leq \gamma_{\mathbf{H},\alpha} < \mathbf{E}_{\mathbf{H}}(\mathbf{X}_{\mathbf{D}}) + \beta$$

(see [Str4] or Prop. 3.4), where $\rho_i > 0$ tends to 0 and $\gamma_{H, 0}$, $\gamma_{H, \alpha}$, β and X_0 are as in section 3.

Now from Theorem 4.5, $X_i \rightarrow X$ weakly in $H^{1,2}(B, \mathbb{R}^3)$ (by taking subsequence) and X is a critical point of E_H in $\{X_D\} + H_0^{1,2}$ with the property that either,

(i) $X_i \rightarrow X$ strongly in H^{1, 2}, or,

(ii) $X_i \rightarrow X$ weakly but not strongly in $H^{1, 2}$.

In case (i) $E_{H}(X) = \lim_{i \to \infty} \inf_{(1 + \rho_i) \in H_i} (X_i) \ge \gamma_{H, 0}$. In case (ii),

$$\begin{split} \mathbf{E}_{\mathbf{H}}(\mathbf{X}) &\leq \lim \inf_{i \to \infty} \left(1 + \rho_i \right) \mathbf{E}_{\mathbf{H}_i}(\mathbf{X}_i) - \beta_{\mathbf{H}} \\ &\leq \gamma_{\mathbf{H}, \alpha} - \beta_{\mathbf{H}}. \end{split}$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Therefore, from (2.11), Lemma 3.2 and Proposition 4.4 it is easy to see that in any case

$$\mathsf{E}_{\mathbf{H}}(\mathbf{X}) \neq \mathsf{E}_{\mathbf{H}}(\mathbf{X}_{\mathbf{H}}).$$

This completes the proof of our theorem.

Q.E.D.

Remark 5.1. – From (3.7) and Lemma 3.2 case (ii) in the proof of Theorem 1.6 cannot in fact happen for small α .

Remark 5.2. – We expect that for small α if $[H-H_0] < \alpha$, E_H satisfies the Palais-Smale condition in $(-\infty, E_H(\underline{X}_0) + \beta_H)$. Here \underline{X}_0 is the S-solution of E_H in $\{X_D\} + H_0^{1,2}$ (B, \mathbb{R}^3).

REFERENCES

- [BC] H. BREZIS and J.-M. CORON, Multiple Solutions of H-Systems and Rellich's Conjecture, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 149-187.
- [BC2] H. BREZIS and J.-M. CORON, Convergence of Solutions of H-Systems or How to Blow Bubbles, Arch. Rational Mech. Anal., Vol. 89, 1985, pp. 21-56.
- [He] E. HEINZ, Uber die Regularität schwacher Lösungen nicht linearer elliptischer Systeme, Nachr. Akad. Wiss. Göttingen, Vol. II, No. 1, 1986.
- [Hi1] S. HILDEBRANDT, On the Plateau Problem for Surfaces of Constant Mean Curvature, Comm. Pure Appl. Math., Vol. 23, 1970, pp.97-114.
- [Hi2] S. HILDEBRANDT, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie, Teil I. Fest vorgegebener, Rand. Math. Z., Vol. 112, 1969, pp. 205-213.
- [Pc] F. PACARD, Convergence of Surfaces of Prescribed Mean Curvature, Nonlinear Analysis. Theory, Methods & Applications, Vol. 13, 1989, pp. 1269-1281.
- [Stf1] K. STEFFEN, On the Existence of Surfaces with Prescribed Mean Curvature and Boundary, Math. Z., Vol. 146, 1976, pp. 113-135.
- [Stf2] K. STEFFEN, On the Non-Uniqueness of Surfaces with Prescribed Constant Mean Curvature Spanning a Given Contour, Arch. Rat. Mech. Anal., Vol. 94, 1986, pp. 101-122.
- [Str1] M. STRUWE, Plateau's Problem and the Calculus of Variations, Lecture Notes, Princeton University Press (in press).
- [Str2] M. STRUWE, Non-Uniqueness in the Plateau Problem for Surfaces of Constant Mean Curvature, Arch. Rat. Mech. Anal., Vol. 93, 1986, pp. 135-157.
- [Str3] M. STRUWE, Large H-Surfaces via the Mountain-Pass-Lemma, Math. Ann., Vol. 270, 1985, pp. 441-459.
- [Str4] M. STRUWE, Multiple Solutions to the Dirichlet Problem for the Equation of Prescribed Mean Curvature, preprint.
- [Wet1] H. C. WENTE, An Existence Theorem for Surfaces of Constant Mean Curvature, J. Math. Anal. Appl., Vol. 26, 1969, pp. 318-344.
- [Wet2] H. C. WENTE, A General Existence Theorem for Surfaces of Constant Mean Curvature, Math. Z., Vol. 120, 1971, pp. 277-288.
- [Wet3] H. C. WENTE, The Differential Equation $\Delta x = 2 H x_u \wedge x_v$ with Vanishing Boundary Values, *Proc. A.M.S.*, Vol. **50**, 1975, pp. 59-77.

(Manuscript received December 12, 1990; revised January 6, 1991.)