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ABSTRACT. - This paper demonstrates the existence of singular minimi-
sers to a class of variational problems that correspond to a degenerate
form of cavitation and studies the stability of these singular maps with
respect to three dimensional variations.

INTRODUCTION

This paper presents an instructive example of a class of variational

problems whose minimisers are closely linked with the mathematical

phenomenon of cavitation. The first analytic study of this phenomenon
was made by Ball [ I ], motivated by earlier work of Gent and Lindley [9],
and has since been studied by a number of authors (see, for example, [12],
[13], [18], [19], [21], [22], [26], [27], [28]). The physical interpretation of
these results is that a ball of isotropic nonlinearly elastic material held in
tension under prescribed boundary displacements can lower its bulk energy
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by forming a hole at its centre, if the boundary displacement is sufficiently
large. .

This paper demonstrates the existence of singular minimisers to a simple
integral functional that correspond to a degenerate form of cavitation.
Surprisingly, this phenomenon can occur when the underlying equations
are linear. We prove global stability of these singular mappings with
respect to variations in the shape and position of the hole.
To fix ideas let B = ~ x E R3 : ~ x  1 ~ be the region occupied by an

elastic body in its reference state and let u : B 2014~ R~ be a deformation of
B. Typically, in elasticity, one requires that u satisfy a local invertibility
condition

to avoid local interpretation of matter under the deformation.
For the purposes of this example, attention is restricted to the Dirichlet

problem with radial boundary data so that the deformations u satisfy the
condition

Define the energy associated with u, denoted E (u), by

the corresponding Euler-Lagrange equations are then

The Dirichlet integral is chosen for ease of exposition but the idea of the
example extends easily to more general energy functions.

It is easily verified that the homogeneous deformation

which corresponds to a uniform dilation of B, is a solution of (4)
satisfying (2). Thus by the convexity of E

and so the homogeneous deformation is the global minimiser for the
Dirichlet problem. Now consider the related energy functional
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659A DEGENERATE FORM OF CAVITATION

Formally, the Euler-Lagrange equations for E~ are identical with those
for E (i. e. given by (4)) since det Vu is a null lagrangian 1. In fact for
fixed on sufficiently smooth spaces of functions, e. g. (B; R3), p &#x3E; 3,
the two functionals E and E~ agree up to a constant since

which is the deformed volume of B.
Thus by (6), (7) and (8)

and so again the homogeneous deformations are globally minimising for
the Dirichlet problem. In this respect E and E~ behave similarly.
However, in classes containing discontinuous maps, for example in

W1~ P (B), p  3, the two functionals behave quite differently (in fact E~
loses its convexity for large a). The reason is that, even though (8) holds
for p &#x3E; 3, for p  3 it is possible to effect a reduction in energy through
the introduction of "holes". To see why singularities might form, let u be
the radial deformation

where the absolutely continuous function r : [0, 1] -~ R is non decreasing,
non-negative, with r (0) &#x3E; 0, r ( 1 ) =1, so that in particular

Then a straightforward calculation (see e. g. Ball [I], Sivaloganathan [21])
gives

If r (0) &#x3E; 0, then u opens a hole of radius r (0) at the centre of the ball and
so

; i. e. the Euler-Lagrange equations for B det ~u are identically satisfied by all smoothB

deformations - see Ball, Currie and Olver (3], Edelen [6] and Olver and Sivaloganathan [ 16]
for details and further references.
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/. e. the deformed volume of B under u is less than that under the identity

map since I introduces a hole of volume 4 303C0 r3 (0).

Now let

then by (11)

Notice now that

and that

hence by (13) and (16), for X sufficiently large,

so that it is energetically more favourable to introduce a hole 2.
We first study the minimisers of E~ in the class of radial maps, that is

maps of the form (10). In order to obtain the existence of minimisers we
are forced to weaken the constraint (1) and allow deformations satisfying

In the class of radial maps satisfying (17), it is shown that there is a

critical value of the boundary displacement

with the property that the homogeneous map is the radial minimiser for
all ~. __ ~,Grit and such that a radial map which produces a cavity is the
radial minimiser for ~, &#x3E; ~,Grit. The radial minimisers constructed for ~, &#x3E; 

satisfy (1) away from the origin but are of the form const. x |x| in a

neighbourhood of the origin on which they are not invertible. The size of
this neighbourhood and of the cavity increases monotonically with À until,

for ~, &#x3E;__ 2 , the radial minimiser is 7~ x , i. e. the hole has filled the ball.
a x (

2 For conditions on r ensuring that see Ball [I].
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These results are qualitatively in agreement with those for the fully
nonlinear case studied by Ball [ I ], Stuart [26] and Sivaloganathan [21] (but
there is no analogue in these works of the hole filling the ball. Also, our
minimisers do not satisfy the natural boundary condition imposed in these
works that the cavity surface be traction free).

It should be stressed that (7) is not necessarily intended to model the
stored energy of an elastic material: in particular, any material character-
ized by (7) does not have a natural state. Rather, the interest in this
functional is that it gives a lower bound for the energy and subsequently
on the properties of a class of polyconvex stored energy functions (see
concluding remarks). Also, the transparent nature of our example yields
insight into the behaviour of more complex nonlinear energy functionals.
Theorem 2.4 studies the stability of the radial minimisers with respect

to smooth variations (which allows movement of the position of the hole
once formed). It is proved in particular that, if uo is the radial minimiser,
then amongst all admissible variations [see (2.4)], cp E WQ~ P (B), p &#x3E; 3,

Thus, in this class, it is energetically more favourable to produce a hole
at the centre of the ball.
Theorem 3. 3 examines the stability of the radial cavitating maps with

respect to variations in the hole shape. It is shown that, in the class
C1 0 }), the radial minimiser is the global minimiser amongst defor-
mations satisfying an appropriate invertibility hypothesis (3 . 1 ). The proof
of this result relies on the classical isoperimetric inequality.

I remark finally that I know of no existence or regularity theory for
minimisers of integral functionals of the form (7) on maps satisfying (17).
(See Ball and Murat [2] for some of the problems encountered in trying
to obtain existence theories in p  3; see Evans [7], Fusco and
Hutchinson [8] for regularity results for minimisers of certain polyconvex
energy functionals; and see Muller [15] for interesting properties of map-
pings satisfying ( 17).)

Further results relating to stability of cavitating equilibria can be found
in James and Spector [15] Sivaloganathan [23], [24], and Spector [25].

RADIAL MAPS

Let u : B --~ R3 be a radial deformation so that

Vol. 9, n° 6-1992.
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where r : [0, 1] 2014~ R, then a straightforward calculation gives

(see e. g. [1]).
In order that u satisfy (5) and (1), we require that r lies in the set

~~ _ ~ r E W 1 ° 1 ((o, 1 )) : r ( 1 ) _ ~,, r’ (R) &#x3E; 0 a. e. R 

(see e. g. [1]).
This set, although convex, is not strongly closed and hence not weakly

closed (the constraint r’ &#x3E; 0 a. e. can be lost in the strong limit: just

consider +03BB(1-1 n) R~[0,1], &#x3E; nEN, &#x3E; then con-

verges in W1,1((0,1)) to the constant function with valued which does

not lie in ~ ). Thus in general one does not expect Ia to attain a minimum
on ~~ (we shall see later that for large X it does not). If however we define
let on

~~,=~rEWI~ ~ ((0,1)): r(1)=~,, a.e. (1.3)
then let does attain a minimum as demonstrated by Proposition 1.1.

PROPOSITION 1 . 1. - For each a, ~, &#x3E; 0 the functional Ix attains a minimum
on 

Proof. - We give a sketch of the proof: let (rn) be a minimising sequence
for let then,

i 

1 2 {Yn)2 dR  let (rn)  const., V n E N for each m E N. ( 1. 4)

Thus given m~N there is a subsequence of (r’n) converging weakly

in L2(1 m, 1 ) to some x E L2(1 m, 1 ). Repeat this process inductively choos-

ing subsequences for a monotone increasing sequence of integers (mi) and

take a diagonal sequence which we again denote by then rn L~ (1/m, 1)
Cl) for each m E N (x is well defined by uniqueness of weak limits

and non-negative for example by Mazur’s Theorem). Now define
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then it is easily verified that

Hence rnC([03B4, 1])Y r for each 03B4~(0,1) and so r (R) &#x3E;__ 0 on [0, 1], it then follows
from the non-negativity of x that Now, standard lower semi-
continuity results imply that

for ( 1. 6)
so that

Hence by the monotone convergence theorem

and so r is a minimiser of let on ~~,.

CANDIDATES FOR THE MINIMISER

It is easily verified that, formally, the Euler equation for let is
7

A minimiser of let on ~~ does not necessarily satisfy this equation since
there may be sets of non-zero measure on which its derivative is zero and
where a corresponding differential inequality would then be satisfied. The
only solutions of equation (1.8) satisfying r { 1 ) _ ~, are of the form

where AeR is a constant.
We now construct candidates for the minimiser of let by smoothly

piecing together a solution of the form ( 1. 9) on a subinterval [Ro,1 j of
[0, 1] together with a constant function on [0, Ro], where Ro is suitably
chosen. More precisely let

Vol. 9, n° 6-1992.
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where r is given by ( 1 . 9) and Ro is chosen so that r’ (Ro) = 0. A straightfor-
ward calculation then gives

and if and only if

The first inequality in (1.13) ensures that r’ ( 1 ) &#x3E;__ 0 and the second ensures
that F given by (1. 9) is convex so that there exists a point Ro E [o, 1] with
r’ (Ro) = 0. Notice that the choice A = X gives Ro = 0, and the corresponding
map r is then the homogeneous map which corresponds to (5).
We next examine the minimising properties of the maps r which we

have constructed. In particular, we show that given any cavity size there
is a unique member of the family ( 1 . 10) which minimises let’

PROPOSITION 1. 2. - Let [3 E [0, ~,], ~, &#x3E;_ 0, and let

 A ~03BB is chosen such that
1 - -

and

then

PYOO . - First observe that for A in the range 2 ~,, ~, for each (3 E [o, ~,]
there is a unique value of A satisfying ( 1 . 15).

Since Y (o) = r (o) it follows that

~o r2 (R) r’ (R) dR = ~o r (R) Y’ (R) dR,
Annules de I’Institut Henri Poinoare - Analyse non linéaire
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hence it is sufficient to prove that

To see this let

then the righthand side of (1.17) equals

on using ( 1. 14) and the fact that r satisfies ( 1 . 8) on [Ro, 1] this becomes

Since cp ( 1 ) = 0 and r’ (Ro) = 0 it follows that the above expression equals

By ( 1.18), since by assumption, it follows that

thus since cp (0) = 0 [as r (0) = r (0) = a] it follows that

Thus by ( 1 . 19) and ( 1. 20), ( 1 . 17) then follows and hence the proposition.
The last proposition implies that, in searching for a minimiser of let on

d1, it is sufficient to look in the class of maps defined by ( 1 . 14), we
study this in the next Theorem.

Vol. 9, n° 6-1992.
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THEOREM 1 . 3. - Let - 3 4 , a then:
(i) ~03BBcrit, r (R) - 03BB R is the global minimiser of let on 

ii I 2 &#x3E; ?~ &#x3E; ~, crit then
a

with R 2 / 303B103BB 4 -1 1/3 , is the lobal minimiser o_f’I on A

( iii ) I .f ~, _ &#x3E;_ 2 then
a

is the global minimiser of let on 

Proof - By proposition 1. 2, in order to determine the minimiser of Ia
on it is sufficient, for each ~, &#x3E; 0, to determine the minimiser of let in
the class of mappings of the form (1 . 14). To this end we first calculate
the value of let on a mapping of the form (1.14) and then minimise over
admissible values of A.
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For a and X fixed we now examine the behaviour of F as a function
of A. Firstly its turning points are solutions of

1. e.

We next evaluate F at these points:

in order to facilitate comparison with the energy of the homogeneous
map (R) = ~, R note that

and write (1 . 23) as

Vol. 9, n° 6-1992.
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We next calculate

From the definition of F (1.21) and the above calculations (1.24)-(1.26)
we obtain the following schematic graphs for the various regimes of ~.

In interpreting these pictures, one should note the following points:
(i) The value A=~ corresponds to r being the homogeneous map ~R.

(ii) As discussed at the beginning of this section, the admissible values

of A are restricted to lie between 2 303BB and 03BB [see (1.13)].

(iii) The value A=2 303BB corresponds via (1.16) to Ro= 1 and hence by
(1.14) the corresponding ~ is the constant function with value ~.

(i) ~~-=~

In this case the only admissible minimum at A = ~, i. e. ar r --_ ~, R.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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In this case the only admissible minimum is at A = 4 i. e. to r given
3 oc

by (ii) in the statement of the theorem.

4
In this case the only admissible minimum is again at A = 2014.

3a

Notice, however, that in this regime the constant map r~03BB

correspondin g to A=2303BB) has less ener gy than the homo g eneous map
( corresponding to A = ~,).

Vol. 9, n° 6-1992.
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In this regime the only admissible minimum is at A =2 303BB which corre-
3

sponds to the constant map 
Remark 1 . 4. - Notice than in case (iii) in the above Theorem the map

r~03BB, corresponds via (10) to the map u(x)=03BBx |x|, i. e. the hole has

completely filled the ball.
For the remainder of this paper, given we will refer to the

radial map given by ( 1 . 1 ) and (ii ) [or (iii)] of Theorem 1 . 3 as the radial

cavitating map.
Though the results of Theorem 1.3 are qualitatively in agreement

with those for the fully nonlinear case studied in Ball [I], Stuart [26],
Sivaloganathan [21], the following differences should be noted: (i ) the
radial cavitating maps are not invertible in a neighbourhood of the origin
where they do not satisfy the radial equilibrium equation ( 1 . 8) (rather, a
corresponding differential inequality holds in this neighbourhood); (ii ) if
one were to view (7) as the stored energy functional for an elastic material,
which may be inappropriate since materials characterised by (7) do not
have a natural state, then the radial cavitating maps give rise to a radial
Cauchy stress of magnitude u on the cavity surface. Notice also, that by
the scaling arguments used in the introduction, changing the boundary
displacement X whilst keeping u fixed is equivalent to fixing À and

varying a.
The example treated in the theorem also appears to have connections

with the earlier studies of point defects in elasticity: the region BRo (0)
could be associated with the classical notion of a defect core.

Annales de l’Institut Henri Poincaré - Analyse non lineaire
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Finally, it is interesting to note that the ideas of this section can be
extended to prove the existence of cavitating equilibria for stored energy
functions with slow growth (see [24]).

THREE DIMENSIONAL STABILITY OF RADIAL MAPS

In this section we study the stability, with respect to smooth three

dimensional variations, of the radial maps given by ( 1 . 10) studied in the
last section, that is we take

where

and

DEFINITION 2.1. - Given any deformation u of B, we will say that

cp E W6’ P (B), p &#x3E; 3 is an admissible variation of u if for almost all x E B

for all non negative 8 sufficiently small (depending on x).
Remark 2 . 2. - If u is given by (2 . 1 )-(2 . 3), then this condition is only

a restriction on p on BRO (0) since det V uo (x) &#x3E; 0, V x e BBBRO and (2 . 4)
is then automatically satisfied on this set for any choice of cp. The notion
of admissible variation reflects the fact that on sets where uo is not

invertible, only variations which do not reverse the local orientation are
admissible.

Remark 2 . 3. - Notice that uo given by (2 . 1 )-(2 . 3) satisfies uo ~~B = ~. x,
UoEWl. 2 (B) n C ~ (BB~ 0 J) and that

where r is given by (2.2). (The fact that and that the

pointwise derivative coincides with the distributional derivative follows,
for example, from Ball [1]).

Vol. 9, n° 6-1992.
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The next theorem concerns the stability of cavitating maps with respect
to smooth variations.

THEOREM 2. 4. - Let uo be defined by (2 . 1 )-(2 . 3) then

for all admissible variations cp E Wo~ P (B), p &#x3E; 3.
The proof of this result requires the next Lemma and is given following

it.

LEMMA 2. 5. - Let uo be defined by (2. 1 )-(2. 3) then, for any p &#x3E; 3,

Proof - We prove the result for cp E Co (B), the claim of the lemma
then follows by density.

First notice that

det V (uo + p) = det V uo + (Adj V + uo, x (Adj V + det V cp, (2 . 8)
where Adj ~u0 denotes the adjugate matrix of Vuo. Since cp is smooth
and vanishes on ~B it follows that

We next prove that

We again use the divergence structure of subdeterminants:
by remark 2 . 3, uo is in C~ (BE ( 0 )) and Adj V uo (B) so that

where we have used the form Uo, and r is given by (2.2). From (2.5)

and (2.2) we see that ~u0| is Oj 20142014 ) as x~0 and hence the second
integral on the right-hand side of (2.11) converges to zero as 8 2014~ 0. Notice
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also that the first integral in (2 . 11 ) is also zero since (p has compact
support in B. Combining these two facts then yields (2 . 10). An analogous
argument gives

The claim of the Lemma (2 . 7), now follows from (2 . $)-(2 . I a) and (2. 12).
Remark 2.6. - The claim of the lemma is intuitively clear: if the

variation cp is smooth then it can introduce no further "holes" hence the
deformed volume of B under 00 is the same as that under uo + cp.
We now give the proof of Theorem 2.4.

Proof of Theorem 2 . 4. - Let cp E Co (B) be an admissible variation (the
result for an admissible variation cp E Wo~ P (B), p &#x3E; 3, will then follow by a
density argument). By Lemma 2.5 and the definition of Ea, (7), it is
sufficient to prove that

To see this notice that

and that

(since ~uo = 0 on An easy calculation gives

substituting this into (2 . 15) and using the divergence theorem gives

Vol. 9, n° 6-1992.
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where we have used the fact that uo is C~ 1 across by construction.
Analogous arguments to those used in the proof of Lemma 2. 5 show that
the second term in (2 . 18) converges to zero as E -~ 0. In order to prove
(2. 13), it is therefore sufficient, by (2. 14), to prove that the first term in
(2. 18) is non-negative. This follows on observing that for almost all x we
can write

Hence

But

Hence

Finally observe that, since cp is on admissible variation,

for almost every x E BRO for E &#x3E; 0 sufficiently small, hence, differentiating
with respect to s and noting that det V uo = 0 on BRO, we obtain

almost everywhere on 

A straightforward calculation gives

almost everywhere on BRo

and (2. 22) then becomes

for almost every x E BRO-

It now follows from (2 . 24) that (2.21) is non-negative, hence (2.13) and
the Theorem follow.
Remark 2.7. - The use of the invertibility condition in the proof of

Theorem 2.4 is the three dimensional analogue of the argument used in
the proof of the corresponding radial result Proposition 1 . 2.

Notice that in Theorem 2 . 4 the maps allow movement of the

hole once it has formed at the origin; thus every radial map of this form (no
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matter the hole size) is stable in this respect. However, by Theorem 1. 3, the
radial cavitating map has the least energy out of all the radial maps.

THREE DIMENSIONAL STABILITY OF RADIAL MAPS:
VARIATIONS IN HOLE SHAPE

The class of variations considered in Theorem 2.4 does not allow
different shapes of holes, we next examine stability of the radial cavitating
maps with respect to variations in hole shape. By Remark 2. 3 the radial
maps (2 . 1)-(2 . 3) are in C1 (BB{ 0 ~), we will prove stability of these radial
minimisers in an appropriate subclass of this space.

DEFINITION 3 . 1. - We say that u~C1(BB{ 0}) satisfies the invertibility
condition (I) if, for each R E (0, 1), the restriction of u to the sphere of
radius R, SR, can be extended as a C~ diffeomorphism of BR.

Remark 3.2. - In particular mappings satisfying the above condition
have the property that they are invertible on SR for each R. We will
require also the following observation: if u satisfies (I) then given Re(0,1)
there exists a diffeomorphism u of BR agreeing with u on Hence

Notice that the cavitating equilibria given by (2.1)-(2.3) clearly satisfy
(I). Moreover, if u ~aB = 7~ x then

THEOREM 3 . 3. - Let ~, &#x3E; 0 and let u be the radial map

Vol. 9, n° 6-1992.
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where r is the radial minimiser given by Theorem 1. 3. Then u is the globa
minimiser of E a on

Asmooth?~ 
.

u satisfies either (I) or

Proof. - Let SR, Re(0,1], denote the sphere of radius R, let

u E ¿(smooth and define

Let (RJ in (0,1] be a sequence satisfying

without loss of generality, assume that R~ -~ R as n -~ x .
Notice that

so we can choose Ae 2 303BB,03BB] such that the radial deformation Uo, given
_3 

by (2.1)-(2.3), produces a cavity of area ~.
We will first assume that R&#x3E;0 so that

by continuity. The proof now proceeds in three stages:

Step 1. - We first prove that

It follows from the convexity of the Dirichlet integral, on using the facts
~u

that u ~B~~o ~B~~~ and 2014~ =0 on ~B~ thatIn

We next obtain a lower bound on

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Since the integrand is invariant under orthogonal changes of coordinate,
choose ti, t2, n, to be an orthonormal basis on the sphere of radius R
(with tl, t2 tangent to SR and n normal to SR). Then

Hence using (3. 7)

The last inequality follows from the definition of a since

is the deformed surface area of the sphere SR. Expression (3.5) now
follows by (3 . 6) and (3. 8).

Step 2. - It is a consequence of (3 . 5) that

We next prove that

We may suppose, without loss of generality, that u satisfies (I), otherwise
(3.10) follows trivially. To see this first recall that, by the classical

isoperimetric inequality, for a given surface area the sphere encloses the
maximum volume (see e. g. Osserman [17] and the references within). Thus
by Remark 3.2, and since u~ was chosen to have the same cavity area as
u (~BR), it follows that

In obtaining (3 .11 ) we have also used the facts that det V u &#x3E; 0, by assump-
tion, and that det Vuo=0 on BRO.

Step 3. - Steps 1 and 2 imply that, for each u E there exists a
radial map uo E given by (2 . 1 )-(2 . 3) (with an appropriate choice
of A) that satisfies

Vol. 9, n° 6-1992.
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Since Theorem 1. 3 gives the global minimiser in the class of radial maps
this completes the proof of the Theorem in the case R &#x3E; o.

If R = 0 then proceed as in the case R &#x3E; o, defining a by (3 . 2), the only
difference being that one requires an approximation argument to obtain
(3 . 10) in step 2.

Remark 3.3. - The main point of the restrictions on is to

ensure that we can apply the isoperimetric inequality in step 2. An instruc-
tive example of the situations that can occur is given by

where r (R) = (~, - c) R + c and c is a constant. Then

If c &#x3E; 0 then u produces a hole of radius c, u c: À B and

which is the deformed volume of B. However, if - ~,  c  0 then again
~, B but this time

If we write u = uo + (p in the above theorem and if p satisfies (2 . 4) on B
then, as in the proof of Theorem 2.4, it can be demonstrated that the

stronger result

in fact holds. These results easily extend by density to the Sobolev spaces
W1,p(BB{0}).

In extending this work further it would be interesting to isolate minimal
measure theoretic conditions under which the claims of Theorem 3. 3 are
valid to a class of maps containing in this respect the work of
Sverak [27] may be useful. It should be noted however that some restriction
on the number of singular points is necessary: otherwise, given any cavitat-
ing deformation of B, it is possible to construct deformations with the
same energy, in which an infinite number of holes are formed, by exploiting
the scaling properties of the energy functional (this is implicit in the work
of Ball and Murat [2], see also [24]). It would be natural if the results
of Theorem 3 . 3 could be obtained through the use of symmetrisation
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arguements such as those of Polya and Szego [20] but I have so far been
unable to do so.

Concluding Remarks. - It is interesting to note the apparent connection
between the problem studied in this paper and the interesting work of
Brezis, Coron and Lieb [5] on liquid crystals (see also Hardt, Kinderlerer

and Lin [10]). In these works the authors study minimisers of f 2014 1 V u 12
amongst maps u : B~ S2 (in the liquid crystal problem the unit vector
u (x) represents the orientation of the crystal molecule at the point x). In

particular, under appropriate boundary conditions, x is the global
~ ~ ~ ~ ~ 

x (
minimiser for this problem in HI (B; S2) (see [4], [5], [11] ] and [14]). It

appears from Theorem 3 . 3 that minimisers to our problem may behave
like minimisers to this constrained problem for large boundary displace-
ments (or equivalently for large values of (x).

Finally we remark that, as pointed out in the introduction, the energy
function (7) is not necessarily to be interpreted as the stored energy of an
elastic material. Rather it may be useful in giving lower bound properties
of certain nonlinear materials (and in studying the qualitative properties
of minimisers). To demonstrate this consider, for example, the following
class of polyconvex stored energy functions studied by Ball [1] in his work
on cavitation:

where the superlinear function h : (0, oo ) -~ R~ is C~ and convex with

h (8) - oo as 8 -~ 0, 00. Then for the Dirichlet boundary value problem
with boundary condition (5), for each X

The functional on the righthand side is (up to a constant depending on À)
of the form (7). By the results of Ball [I], E exhibits cavitation for large
boundary displacements. The results of Theorem 3. 2 then imply that this

cannot occur if Àh’ (03BB3)  4 3.

3 See Stuart [27] for an alternative approach to estimating the critical displacement for
cavitation.
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This approach to studying the properties of nonlinear stored energy
functions is further extended in [24].
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