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ABSTRACT. - We study the Euler equations for a nonviscous compressi-
ble barotropic fluid in a time-dependent domain of the three-dimensional
space. We prove the existence of a unique local in time classical solution.
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On considere les equations d’Euler pour un fluide non
visqueux, compressible et barotropique dans un domaine de l’espace depen-
dant du temps. On demontre l’existence locale d’une unique solution
classique.

1. INTRODUCTION

In this paper we study the Euler equations for a non-viscous compressi-
ble barotropic fluid in a time-dependent domain 03A9t of the three-dimen-
sional space. We assume that it is given an open bounded subset Q of R3

Classification A.M.S. : 35 Q 20.
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with smooth boundary r and a smooth map rl: x SZ -~ R3, for

some To&#x3E; 0, such that 11 (0,.) =Id (identity map on Q). For each t, 11
defines time-dependent domains S~~ = rl (t, Q), We assume that

rl (t, . ) : S~ -~ S2t is a diffeomorphism for each t E (0, To]; it follows

that ar~ (t, (t, F). Let us denote by the unit outward

normal vector to at the point Y E aQt. Set w (t, x) = r~ (t, x),
(t, x) E QTQ = [0, To] x Q, where ~ denotes the time derivative, and define
~’v (t, y) = u.’ (t, ~’1 (t, x)) - ~’ (t, x) for X E Q.

Let us denote by p (t, y) the unknown velocity and
density of the fluid at time t at the point Then the equations of
motion are

b (t, y) denotes the external force field per unit mass; the initial velocity
uo ( y) and the initial density po (y) are given. We assume that the fluid is
barotropic, i. e. the pressure p is a function of the density only: p = p ( p).
The known function ~ -~ p (ç) verifies the physical hypothesis p’ (ç) &#x3E; 0 for

~&#x3E;o.
Because of the boundary condition (E)3’ (E) is a typical characteristic

initial-boundary value problem for quasilinear symmetric hyperbolic
systems. In a fixed domain, the compressible Euler equations (E) were
studied by D. Ebin [3] in the case of subsonic flow and by H. Beirao da
Veiga [2] and R. Agemi [1] in the general case; see also S. Schochet [7].
The equations of Ideal Magneto-Hydrodynamics were studied by T. Yana-
gisawa [8]. The aim of the present paper is to prove the existence of a
local in time classical solution to the initial boundary value problem (E).

Before stating our result, let us introduce the functional space
k

Yk (To) = F~ Hj+ 1 (0, To; Hk -’ (S~)). Our result reads as follows:
;=o

THEOREM A. - Let 0 be an open bounded subset with boundary T
of class C6. Let r~ E Y 5 (To) such that r~ (t, . ) is a diffeomorphism for each
t E [0, To] and 11 (0,.) = Id. Assume that b E ([0, To] x R3), p E C5. Suppose
that uo, po E H3 (Q) with min po (x) &#x3E; 0 and that the (necessary) compatibility

xeQ

conditions through order 2 are satisfied:

for k = 0, 1, 2. The above time derivatives are calculated from (E) 1, 2 and
then expressed in terms of the initial data and their derivatives.
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Then there exists T’ E (0, To] such that (E) is uniquely solvable on [0, T’]
by a classical solution (u, p) E C 

If the data are smoother and more compatibility conditions are assumed,
in the same way we can prove further regularity of the solution. We
remark that this result can be extended to the nonisentropic case without
any essential modification of the proof.

In order to solve (E), it is convenient to reduce it to a problem in a
cylindrical domain with variable coefficients. Let us denote by ak~ (t, x) the
entries (k, i ) of the Jacobian matrix [Drl] - ~ (where D~ has the term Dk r~ i
in the row, k-th column); denote the transpose matrix
of ~ _ Given (t, y), Or’ we have y = ~ (t, x~ for a suitable

Performing the change of variables (t, y) ~ (t, xx~ we obtain

If we set u (t, x) = (t, x)), p (t, x) = P {~~ 11 (t, ~~))~ b {~a x) - b (t~ ’~ (~~ x)),
problem (E) reduces to

where N (t, x) is the normal to calculated i. e.

We want to write (E’) as a quasilinear symmetric
hyperbolic system with a homogeneous boundary condition. Hence we
introduce the new unknown v = u - ~.~ and consider the pressure p as an

independent variable so that p = p (p), We obtain

Before stating our result concerning the solvability of (P) let us introduce
k

the functional space Xk (T) = (~ C’ ([0, T] ; Hk -’ (S2)).
j = o

THEOREM B. - Let 0 be an open bounded subset of R3 w~ith boun-

dary r of class C6. Let rl ~Y5 (To) such that ~ (t, . ) is a diffeomorphism
for each t E [0, To] and ~ (0, . ) = Id. Assume that b E H3 (QTO), p E C5. Let
vo, Po E H3 (Q) such that min [p (po (x)), p’ (po (x))] &#x3E; o. Assume that the

xe!1
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(necessary) compatibility conditions through order 2 are satisfied:

where the above time derivatives are calculatedfrom (P) 1, 2 and then expres-
sed in terms of the initial data and their derivatives.

Then there exists T’ E (0, To] such that (P) is uniquely solvable on [0, T’]
by (v, p) E X3 (T’).
The proof of theorem B consists of the following steps. First, by means

of an iteration scheme, we construct successive approximation which are
solutions of linearized equations obtained from (P) such that the boundary
is non characteristic (cf. Schochet [7], Yanagisawa [8]). Second, we estab-
lish uniform a priori estimates for the approximating solutions. A standard
approach gives interior estimates or estimates for the tangential derivatives
near the boundary; the crucial point (here as in all characteristic hyperbolic
mixed problems) is how to get estimates for the normal derivatives. These
are achieved by combining an estimate for the transformed vorticity, which
satisfies a transport equation, with the fact that the rank of the boundary
matrix is two. A similar idea was first introduced by Beirao da Veiga [2].
Finally, by passing to the limit of the approximate solutions, we get the
solution of the original initial boundary value problem (P).

2. PRELIMINARIES

Let us denote with CO (0) the space of continuous (and bounded)
functions on Q, and with Ck (Q) (k positive integer) the space of functions
with derivatives up to order k in CO (0). Given k &#x3E; o, we denote by Hk (Q)
the corresponding Sobolev spaces of exponent k on Q, with norm 
By ( . , . ) we denote the scalar product in L2 (SZ). We don’t introduce
different notations for spaces of vector- and matrix-valued functions. If X

is a Banach space, L2 (0, T; X), L 
°~ (0, T; X), Hk (0, T; X), Ck ([o, T]; X) are

the spaces of X-valued functions in L2, L~, Hk and Ck respectively.
We denote the norm of L°° (o, T; Hk {~2)) the norm

k k

of Xk (T) = n cj (jo, (~)) T- The

j=o j=o
k

space Hk (QT) = n Hj (0, T; (~)) is equipped with the norm

j=o
k

where I~ -112~ k- j~ T is the norm of

j=O k

Moreover, let us 
j=o

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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k

for each UEXk(T). For Uo = (vo, po)* we 
j=o

where ~jU0/~tj is obtained from (P)1,2 and expressed in terms of Uo and
its derivatives. Finally, observe that Yk (T) c Xk (T) c Hk (QT), k = 3, 4, 5,
Hk (QT) c (T), k = 4, 5, where every imbedding is continuous. Every-
one of these spaces is an algebra. We shall make use of the summation
convention over repeated indices. We shall introduce several constants C,
Co, Co, Ci which will depend at most on the data of the problem Q, 11,

vo, po, p, unless explicitly indicated.
Now we study the regularity of functions depending on rl, which will

be useful in the sequel. For it we make use of well known tools as the
Holder inequality and Sobolev imbeddings. From T) E Y 5 (To) we have
w E HS (QTO). Since rl is a diffeomorphism and because of its regularity, it
follows that the coefficients aki of [D~] -1 1 are in Y 4 (To). On the

boundary r, in each local chart ~ _ ~ (~1, ~2), since rl is a diffeomorphism,
the unit vector N (t, x) can be written as

where

Extend il, i2 to the interior of Q in such a way that ii E CS (S~). Given
we can find b &#x3E; 0 such that in and

for 

From (2 . 1 ) we can define N also in X and obtain

(this last symbol is self-explanatory). Furthermore, a

direct computation shows that on F we have

jeer, (2 . 3)

where J = det n = n (x) denotes the unit outward normal vector to T
and the scalar function in each local chart § = § (~1, ~2) of
r, is given by

Vol. 9, n° 6-1992.
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3. THE ITERATION SCHEME

First of all we write (P) in the following matrix form:

where

For the sake of brevity we introduce the differential operator

so that we can write (3.1) as

The boundary matrix An (U) is defined by

where 13 is the 3 x 3 unit matrix. Because of (2. 3), on the boundary An (U)
reduces to

because of the boundary condition 7). N = 0 on LT (03 is the 3x3 null
matrix). Since on the boundary matrix is singular,
namely the boundary is characteristic for (P). To define our approximating
solutions, we modify (P) in such a way that the boundary is no more

Annales de 1’Institut Henri Poincaré - Analyse non linéaire
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characteristic (cf. Schochet [7]). Before of that, in order for the approxi-
mate solutions defined below to be sufficiently smooth for the computa-
tions leading to the a priori estimates, we regularize our data as follows.
Take a in such that u~~m~ -~ w’ in 

-t

Define as ~(m)(t,x)=x+0w(m)(s,x)ds. For any m we have

~(m) (0,.) = Id and, for x, y e Q,

which gives

since is bounded in L2 (0, To; H3 (Q)) c L2 (0, To; CI (~2)). Take

To] such that 1- &#x3E; 1/2; from (3 . 3) we obtain that is

injective and, because of its regularity, is a diffeomorphism. Correspond-
ingly, define -.sa~~m~, N~~‘~, J~m~, then we have

Observe also that it follows that the coefficients of

are in YS (T1) and E YS {T1, ~2s); here we have extended 
to a neighborhood of r, as we did for N, where a priori depends
on nl. Y 5 (T 1) we can take ~m &#x3E;__ b . For m = o, 1, ...
consider the operator

where

The corresponding boundary matrix is

Vol. 9, n° 6-1992.
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if U = (v, p) * is such that on ~T, on the boundary 
reduces to

because of (3.4)g. Like An, is a singular matrix. Second, take a
sequence { b~m&#x3E; ~ m = o in H4 (QT 1 ) such that

where y is a positive parameter. Define

Next, we approximate the initial data by functions
E HS (Q) that satisfy suitable compatibility conditions through order 3.

LEMMA 3 . 1. - Given any *  1 Do 1112’ there exists a sequencey ’Y 
2 

~~~ o ~~~2 R’

in H 5 (Q) such that:
(i) satisfies the compatibility conditions of order 3 for the equations

L~°~ (U) U = (U) with respect to the boundary condition U. N(O) = 0
on 

(ii) (m =1, 2, ... ) satisfies the compatibility conditions of order 3
for the equations (U~m -1 ~) U = (U~m -1 ~) with respect to the boundary
condition U. = 0 on Here U(m-1) satisfies U(m-1). N(m-1) = 0 on

(0) _ (k = 0, 1, 2), where 
denotes the k-th time derivative of determined in the preceding steps
by calculating the time derivatives from the corresponding equations and
expressing them in terms of &#x3E;. Moreover satisfies

Proof. - Such approximations are constructed in Rauch-Massey [6],
Lemma 3.3, for linear equations with a nonsingular boundary matrix.
The method can be extended to the present case following the arguments
of [7], p. 52, 53, if we can check the relation

for k = 0, 1, 2, 3, where M is the matrix giving the boundary condition
U . = 0 on ~T 1:

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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The range of M is R. On the other hand, on r we have

so that

In both cases the range is R, so that (3 . 9) holds. The proof of Lemma 3 .1
is complete..
Now we modify the operator L(m) (m = 0,1, ... ) given in (3 . 5) in order

to have a nonsingular boundary matrix: we extend the normal vector n to
be C~ (Q) and consider

where

Correspondingly we take

where IJ = (v, p)* is a suitable smooth vector-function which will be speci-
fied later. The boundary matrix is now

LEMMA 3 . 2. - Let IJ = (v, p) * such that on r. For any
&#x3E; o, on h is non singular. Moreover, the linear space

(t, x) = { U = (v, p)*/v . (t, x) = 0 on h ~ ofR4 is maximally non nega-
tive with respect to £~ (LJ).

Proof. - The first part of the Lemma holds since

Vol. 9, n° 6-1992.
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If U E B~~‘?, on r we have

i. e. B(m) is non negative. To show its maximality, we observe that
dim = 3. Hence if is not maximal, the maximal subspace is necess-

arily R4. But for instance the vector U’ = 03C8o J(m)N(m), -1-~)* satisfies

(recall that (t, x) ~ = 1 ) so that R4 cannot be maximally non negative
with respect to (U). This gives a contradiction, i. e. the thesis..
We proceed now with the construction of the first approximate solution

of the iteration scheme.

LEMMA 3 . 3. - There exists = (v~°~, p(O»)* E X4 (T1) such that

where denotes the k-th time derivative at t= 0 of a solution to
problem L~°~ (U) U = {U) and initial data 

Proof - Given E &#x3E; o, we consider the following linear mixed problem:

where IJ~°} E H 5 is such that

and For such extension see [5]. Because
of Lemma 3 . 1 (i) and (3 .12), the compatibility conditions through order
3 hold. Because of the assumptions on p ( . ), we can find a constant
Co &#x3E; 1 such that

Take y* in (3 . 8) small enough in such a way that from (3.13) we obtain

Annales de l’Institut Henri Poincare - Analyse non linéaire
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Since LJ~°~ E HS (QT1)~ E Ys (Z’~)~ E H6 (QT1)~ E H4 (QT1)~ we
have 

A (U~°~), £~ (IJ~°~), (IJ~°~) E X4 E~ (U~o&#x3E;~ H4 (Q-rl)-
Then from Lemma 3 . 2 we can apply the theory for linear non characteris-
tic hyperbolic mixed problems and show the existence of a unique solution

(ef Rauch and Massey [6] and Appendix A in
Schochet [7]). (3 . 10)2 follows from (3 . 11 ) 1, (3 .12). The proof is
complete..
Given U~°~, we define the approximate solutions for m = 1, 2, ... by

means of the iteration scheme:

Here U~m} _ (v~m~, p~m~)’~, E H s (QT ~ ) is such that

and satisfies is chosen in such a way that

4. UNIFORM ESTIMATES AND PROOF OF THEOREM B

We define an invariant set for the iteration scheme. For, set

E1~3 Do 1112’ E2 --_ 2 C* (E1) Do 1113 + R), where C* &#x3E; 1 is a nondecreas-
ing function of E 1 which will be specified in (4. 25),

(interpolation inequalities yield the boundedness of R). Define

LEMMA 4. I. - There exists T &#x3E; 0 such that, if (3 . 15)k has a unique
solution E S (T) for k = 0, ..., m - l, then (3. 15)m has a unique solution

again in S (T).

P~oo, f : - First of all, since E X4 (T 1 ) we have

Vol. 9, n° 6-1992.
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from which E S (T).
For U E S (T), let us assume that U (0) is such that

Since we have

there exists small enough such that

Take now with Because of (3.14) applied to
&#x3E; verifies (4.1). Since (T),

E H6 (QT)’ E H4 (QT)~ we have Ao (Utm -1 ~), £m~ (Utm -1 ~),
(Utm -1 )) E X4 (T), Em~ (Ut~ -1 ~, E H4 (QT). Lemma 3 . 2 and the

results for linear non characteristic hyperbolic mixed problems yields the
existence of a unique solution E X4 (T) of (3 . 15)m. Let us show now
the key a priori estimates.

First we observe that, since - w in HS (Q ) then 
are bounded respectively in H~ (QTO), Y5 (To), Y~ (To), Y~ (To, ~s)~

Since we have that Ao (CJtm -1 ~), £m~ (Utm - i ~),
(Utm -1 ~) are bounded in x3 (T), Em~ (Utm -1 &#x3E;, is bounded in

H 3 (QT) . An explicit boundedness in terms I I ( 2, I Utm -1 &#x3E; I I ~ 3, T
will be necessary and will be pointed out later. Given S &#x3E; 0 such that (2 . 2)
holds [we shall definitely choose it in (4.19)], consider a partition of unity

h

inQ, namely with L cp~ (x) =1 in Q; the compact
;=o

support Q~ of cp J, j =1, ... , h, is such that r 7~ 0, Qs; the
support Qo of cpo does not intersect r. Assume that is contained
in a sufficiently small neighborhood of a point (xi, x2, x3) E ~J (~ r such
that in it S2~ (~ h can be represented by the equation

In ~2~ ( j ~ 0) we introduce the standard change of independent variables

Annales de l’Institut Henri Analyse non linéaire
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and assume that

We change the dependent variables by an orthogonal matrix-valued
function x) which transforms the boundary space (t, x)
(see Lemma 3.2) into a new boundary space B constant on

2-3 ==()}. We construct as in Lemma 3 . 1 of
Ikawa [4]. Since (t, x) is the linear space of vectors U in R4 orthogonal
to (N~m~ (t, x), 0)* E YS (T1, ~s), we can find an orthogonal base

(t, x)={e(m)i1 (t, x), ..., e(m)i4 (t, x)} E Y5 (T1) (Z = 1, 2, 3) of (t, x) in

Qj’ This is possible when Q~ is sufficiently small. This base of B(m) (t, x)
and the vector form an orthonormal base ofR4.
Define Hjm) (t, x) by

(t, x) is a unitary matrix with coefficients in YS (T1, bounded

uniformly in Y4(T1,Oj) with respect to m. If we set x) U, then
x) is equivalent to V4 = o. In every Q~ we consider as a new

dependent variable the function cp~ U~m~) ~ (t, z), where for a
function w (x) defined in 03A9j~03A9 we denote by w (z) the function

The new unknown satisfies the system (for
the sake of simplicity we write U instead of D), H instead of 

where

The new boundary space is now B = ~ so that the new

boundary condition is

Applying time and tangential derivative operators with

2, to the equations (4 . 2), multiplying by D03B1tan U

Vol. 9, n° 6-1992.
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and integrating in space we obtain

We integrate now by parts the second term in the right-hand side of (4.4).
We obtain

since Aj are symmetric. Since

we have

Observing now that U E B, since the boundary space B(m) (t, x) is non
negative with respect to (Lemma 3 . 2) we get

Hence from (4.4)-(4. 6) we obtain

Summing over all (X, a  3, we obtain

Annales cle l’Institut Henri Poincaré - Analyse non linéaire
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ai are non decreasing functions of E2,

Integrating (4 . 7) in time between 0 and t and using (4 . 1 ) we obtain

where a2 (t) E L2 (0, T), a; (t) E L°~ (0, T) are non decreasing functions of E2.
In the same way we obtain the interior estimate

where a3 (t) E L2 (0, T), a3 (t) E L~ (0, T) are non decreasing functions of E2.
The next step is to find a priori estimates for the normal derivatives. If

the boundary matrix were non singular, this would be obtained by invert-
ing it in a neighborhood of the boundary and representing the normal
derivatives in terms of tangential derivatives. In our case the boundary is
characteristic so that this is not possible. In any way, we observe that the
rank of the original boundary matrix An is 2. This suggests that we could
express two of the four first order normal derivatives of U by means of
the other two first-order normal derivatives and of tangential derivatives.
On the other hand, we know that the vorticity satisfies a first order

symmetric system. Combining in a suitable way the information coming
from these two properties we obtain the estimates for the normal deriva-
tives. More precisely we proceed as follows. In (3. 15)m the equations for
the velocity have the form (p~m ’ 1 &#x3E; - p ( p~m -1 ~))

Dividing by and introducing the Eulerian coordinates
(t, y) - (t, (t, x)) gives

where etc., since ~/~t ~ ~/~t+(w(m). vy),
~x ~ Taking the curl of (4 . 10) gives (~~m~ (t, y) - rot (t, y))

Vol. 9, n° 6-1992.
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where 1. o. t. means terms with zero and first order derivatives of 

[observe that rot ( 1 /(p~m -1 &#x3E;) V p-~m~ = V ( 1 /( p~m -1 &#x3E;) n because of rot

V=0]. Changing again the independent variables from (t, y) to (t, x) gives
[we set ~~m~ (t, x -_- ~~m’ (t~ (t~ x)) = ~ (t, y , ~ ~ ~c ~ V n 

where now 1. o. t. means terms with zero and first order derivatives of

(~B ~).
Applying a derivative operator Det (in space-time) with a  2 to (4.11),

multiplying by Det ~~m~ and integrating over Q gives

Integrating by parts in the second term in the left-hand side of (4.12) we
obtain

~(m- I)since rand ~’ ’

Hence from (4 . 12), (4 . 13), adding over all a with a I  2 and integrating
in time between 0 and t, we can obtain

where a4 (t) E L2 (0, T), a4 (t) E L XJ (0, T) are non decreasing functions of E2.
(4 . 14) gives an estimate for ~~m~ _ V n which in each S~~ can be
written, introducing again the independent variables z =’~’ J (x), as

Annales cle l’Institut Henri Poincaré - Analyse non linéaire
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(~~m~ n U~m~) ~ for j =1, 2, 3. Considering the first two com-
ponents we have more explicitly (U stands for H for 

Isolating the normal derivatives ~U ~z3 ives

where "tan" contains the tangential derivatives of (4. 15) and lower order
terms. Consider (4.2). We multiply it by H* and isolate the normal
derivatives obtaining

Consider now the linear system with unknown formed by (4.16)
aZ3

and the third and fourth row of (4. 17). We write it in the form

where the matrix A of the coefficients is given by

We compute A for t = 0, x e f. Since

Vol. 9, n° 6-1992.
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we obtain

whose determinant is I2]. Consider and
take x~0393 such that and such that the segment between x
and x is all contained in Applying the mean value theorem we can
obtain

Since the coefficients of A are bounded in

uniformly in m we can find a constant C~ such that

uniformly in m. Then there exist and b &#x3E; © such that, 

Hence we can invert A in (4.18) and express ~U ~z3 in terms of the right-
aZ3

hand side in [0, T] x Hence we obtain

for each and We use (4.20) to estimate

20142014 by means of the right-hand side. First we take the secondly
~3
the L2-norm of tangential derivatives of first order, then the L2-norm of
one normal derivative and so on. We obtain for each ~e[0,T]

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where C2 is a non decreasing function of E1, since no derivative of 
is contained in A. At this step an essential tool is the estimate (see (4. 6)
at p. 56 of [7])

where kl + k2 &#x3E; o. Taking account of (4 . 21 ), we obtain for each t E ~0, T]
the estimate

where C3&#x3E; 1 is a non decreasing function of E1. From (4.8) for
j =1, ... , h, (4 . 9) and (4 . 14) we have

where

and as (t) E L2 (0, T), as (t) E (0, T) are non decreasing functions of E2.
The Gronwall’s lemma yields

where

[see (3 . 17)]. Since from (3 . 8) ’ ~ ~ Do 1113 + Y~‘ c (3/2) I ~ ~ 3, we
can find a non decreasing function C* (E1) such that

Vol. 9, n° 6-1992.
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The function C* (E1) is used for the definition of the set S (T). Then from
(4 . 24) we can find T~ E (0, T~] such that for T  T~

Now, directly from the equations (3. 15)m, not integrating by parts, we
have

where a6 (t) E L°° (0, T); using (3 . 8), (4. 26) gives

Finally we take such that, for 

namely E S (T). We have shown that S (T) is an invariant set, for any
T  T 5’ The proof of Lemma 4 .1 is complete..
Next we show that the converges in Xo (T) for a

sufficiently small T.

LEMMA 4. 2. - There exists T’ E (0, TS] such that

Proof. - We consider the difference which satisfies the

equations

where TTs. We multiply (4 . 28) by and integrate over Q.
Since U~" ~ e S (T), taking account of (3 . 7), (3.8), (3.17) we obtain
by means of a standard energy estimate

Taking now such that C~ e~8 T’ T’  1/2 we obtain

oo

where £ because of (3.8). This estimate gives (4.27). The

proof is complete..

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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From Lemma 4. 1 and Lemma 4.2 we can deduce that there exists a

function U such that converges to U in

for any small b &#x3E; o. Accordingly, U E C 1 (QT.) because of Sobolev imbed-
dings. Passing to the limit in (3 . 15)m for m - co we see that U is a
classical solution of (P). The uniqueness follows from standard energy
estimates. In order to remove b &#x3E; 0 and obtain U E X3 (T’) we proceed as
in [8]. Since converges to U in C° ([0, T’]; H3 -s (SZ)) and

m = 0, 1 , ..., since (H 3 - s (SZ))’ is dense in (H 3 (Q))’ we
can show that

where Cw means weak continuity. Applying the tangential mollifier for
the principal part of the equations for U corresponding to (4.2), carrying
out estimates for (H~ cp~ U) ~ similar to (4. 8) ( j =1, ..., h), taking account

T-  E2, we obtain

for t, s E [0, T’], j =1, ... , h. Accordingly we have from (4.29)
(Hj U) E C° ([0, T’]; L2 (S2)), for j =1, ..., h. Furthermore, proceed-

ing as for (4.14), (4 . 21) we show that U E C° ([0, T’]; H3 (Q)). Since

cp° U E C° ([0, T’]; H3 (SZ)), we have U E C° ([0, T’]; H3 (Q)). Directly from
the equations of (P) we get (T’). The proof of Theorem B is

complete.

4. PROOF OF THEOREM A

First we observe that the data uo - w (0), p (t, x) = (t, x)) and
11 satisfy the assumptions of Theorem B. The compatibility conditions
( 1. 2) follow directly from (1.1). Hence there exists a unique classical
solution (v, p) of (P) on the time interval [0, T’]. Performing the change of
variables (t, x) ~ (t, y) it is easily checked that the
functions p (t, y) = p (p (t, x)) are a classical sol-
ution of (E) on the same time interval [0, T’].
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