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ABsTrRACT. — We study the Euler equations for a nonviscous compressi-
ble barotropic fluid in a time-dependent domain of the three-dimensional
space. We prove the existence of a unique local in time classical solution.
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REsuME. ~ On considére les équations d’Fuler pour un fluide non
visqueux, compressible et barotropique dans un domaine de I’espace dépen-
dant du temps. On démontre Pexistence locale d’une unique solution
classique.

1. INTRODUCTION

In this paper we study the Euler equations for a non-viscous compressi-
ble barotropic fluid in a time-dependent domain Q, of the three-dimen-
sional space. We assume that it is given an open bounded subset Q of R?

Classification A.M.S. : 35Q 20.
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684 P. SECCHI

with smooth boundary I' and a smooth map M:[0, T} xQ — R?, for
some T,>0, such that m(0,.)=Id (identity map on Q). For each 7, n
defines time-dependent domains Q,=n (7, Q), Q,=Q. We assume that
n(@,.):Q—Q, is a diffetomorphism for each re(0,T,]; it follows
that 3Q,=on(1,Q)=n(s,T). Let us denote by n'(y) the unit outward
normal vector to 4Q, at the point yedQ,. Set w(s,x)=n(1,x),
(t,x) € Qr,=[0,To] x O, where 1 denotes the time derivative, and define
w( ) =w(,nx)=w(,x) for y=nm(,x)eQ, xeQ.

Let us denote by u (t,y)= (uy,u,, u3)*, p(t,y) the unknown velocity and
density of the fluid at time ¢ at the point ye€,. Then the equations of
motion are

plu+@.VYu—bl+Vp(p)=0 in Dy={(5,»)e[0, TIxR*/yeQ,},

p+div(pu)=0 in D,
u.n'=w.n" on S;={(1,y)e[0, T|xR*/yedQ,},

u@,y)=uy(y), ye&,
PO.M=po(»), yeQ.

b(t,y) denotes the external force field per unit mass; the initial velocity

Uy () and the initial density py(y) are given. We assume that the fluid is

barotropic, i.e. the pressure p is a function of the density only: p=p(p).

The known function & — p (£) verifies the physical hypothesis p’ () >0 for

£E>0.

Because of the boundary condition (E);, (E) is a typical characteristic
initial-boundary value problem for quasilinear symmetric hyperbolic
systems. In a fixed domain, the compressible Euler equations (E) were
studied by D. Ebin [3] in the case of subsonic flow and by H. Beirdo da
Veiga [2] and R. Agemi [1] in the general case; see also S. Schochet [7].
The equations of Ideal Magneto-Hydrodynamics were studied by T. Yana-
gisawa [8]. The aim of the present paper is to prove the existence of a
local in time classical solution to the initial boundary value problem (E).

Before kstating our result, let us introduce the functional space

(E)

Y, (To)= () H/*1 (0, To; H* 7 (Q)). Our result reads as follows:

j=0

THEOREM A. — Let Q be an open bounded subset of R® with boundary T’
of class C®. Let e Ys(Ty) such that (¢, .) is a diffeomorphism for each
te[0,T,] and 1 (0,.)=1d. Assume that be H} ([0, T,] x R?), pe C°. Suppose

that ug, po € H? (Q) with min pq (x) >0 and that the (necessary) compatibility

xe}
conditions through order 2 are satisfied:
[Blor+w. V) w—w).nl,_4=0 on T, (1.1

for k=0,1,2. The above time derivatives are calculated from (E), , and
then expressed in terms of the initial data and their derivatives.
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Then there exists T € (0, T,] such that (E) is uniquely solvable on [0, T']
by a classical solution (u, p)e C' (D).

If the data are smoother and more compatibility conditions are assumed,
in the same way we can prove further regularity of the solution. We
remark that this result can be extended to the nonisentropic case without
any essential modification of the proof.

In order to solve (E), it is convenient to reduce it to a problem in a
cylindrical domain with variable coefficients. Let us denote by a,; (¢, x) the
entries (k, i) of the Jacobian matrix [Dn]~' (where Dn has the term D, 7,
in the i-th row, k-th column); denote by &/ = .o/ (¢, x) the transpose matrix
of (ay), & =(a,)*. Given (t,y), yef,, we have y=n(r, x) for a suitable
xeQ. Performing the change of variables (z, y) — (¢, x) we obtain

(DkEa/axlwvzvx:(Dl’DZv D3))
¢/6t - ¢[0t— (w. A V)=28/6t—w;a,; Dy,
0/0y;= a; Dy =(A V), V,=oV.
If we set u(r, x)=u(z,n(t,x)), p(t,X)=p (, N (1, %)), b(1, x)=Db (1, (1, %)),
problem (E) reduces to

[ plu+((u=—w). & V)u—bl+£Vp(p)=0 in Qr=[0,T]xQ,
p+u—w). 4 Vp+pZV.u=0 in Qo

(EN u.N=w.N on Z.=[0,T]xT,
u(0)=u, Iin Q,
pO)=po in Q,

where N(z,x) is the normal to dn(z,Q) calculated in n(1,x), ie.
N(t,x)=n"(n(t,x)). We want to write (E) as a quasilinear symmetric
hyperbolic system with a homogeneous boundary condition. Hence we
introduce the new unknown v=u—w and consider the pressure p as an
independent variable so that p=p(p), pe C>. We obtain

PP v+ (. ZV)e+w+(v. o V)w—bl+ 4 Vp=0 in Q
P /p)(p)p+o.LVpl+ AV v+ V.w=0 in Q
®) v.N=0 on Z,
2(0)=vo=u,—w(0) in Q,
p0)=po=p(py) in Q.

Before stating our result concerning the solvability of (P) let us introduce
k

the functional space X, (T)= (1) C/([0, T}; H* 7 (Q)).

j=0

THEOREM B. — Let Q be an open bounded subset of R*® with boun-
dary T of class C®. Let neYs(Ty) such that n(t,.) is a diffeomorphism
for each t€[0,Ty] and n(0,.)=1d. Assume that be H*(Qy,), peC®. Let

o, Po€H?(Q) such thar min[p(po(x)), p’(po (x)]>0. Assume that the
xeQ
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(necessary) compatibility conditions through order 2 are satisfied:
ot (v.N);,2o=0 on T, k=0,1,2, (1.2)

where the above time derivatives are calculated from (P), , and then expres-
sed in terms of the initial data and their derivatives.

Then there exists T'e(0,T,] such that (P) is uniquely solvable on [0,T']
by (v.p) € X, (T).

The proof of theorem B consists of the following steps. First, by means
of an iteration scheme, we construct successive approximation which are
solutions of linearized equations obtained from (P) such that the boundary
is non characteristic (¢f. Schochet [7], Yanagisawa [8]). Second, we estab-
lish uniform a priori estimates for the approximating solutions. A standard
approach gives interior estimates or estimates for the tangential derivatives
near the boundary; the crucial point (here as in all characteristic hyperbolic
mixed problems) is how to get estimates for the normal derivatives. These
are achieved by combining an estimate for the transformed vorticity, which
satisfies a transport equation, with the fact that the rank of the boundary
matrix is two. A similar idea was first introduced by Beirdo da Veiga [2].
Finally, by passing to the limit of the approximate solutions, we get the
solution of the original initial boundary value problem (P).

2. PRELIMINARIES

Let us denote with C°(Q) the space of continuous {and bounded)
functions on Q, and with C*(Q) (k positive integer) the space of functions
with derivatives up to order k in C°(Q). Given k>0, we denote by H*(Q)
the corresponding Sobolev spaces of exponent k on Q, with norm ||.]|,.
By (.,.) we denote the scalar product in L?(Q). We don’t introduce
different notations for spaces of vector- and matrix-valued functions. If X
is a Banach space, L?(0, T;X), L (0, T;X), H*(0, T; X), C*([0, T];X) are
the spaces of X-valued functions in L2, L®, H* and C* respectively.
We denote the norm of L®(0,T;H*(Q) by || the norm

k k

of X, (T)= ) C/([0, TEH* /(@) is [ Ulle.x= 2 & U/0F s+ The
P= i=0
j=0 . J
space H*(Qp)= (N H/(0, T;H*/(Q)) is equipped with the norm
j=0
k

HUHk,QTE'Z |67 U/or ||, ks 1, Wwhere -l k-

Jj=0

L?(0, T; H* 7 (Q)). Moreover, let us set ool

is the norm of

-

Il

k
Y @ U/RE) (1) ||y
j=0
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NONVISCOUS COMPRESSIBLE FLUIDS 687

k

for each Ue X, (T). For Uy = (o, po)* we set ||| Ug|lle= Y || & Ug/or ||
j=0
where ¢/ U,/0¢ is obtained from (P), , and expressed in terms of U, and
its derivatives. Finally, observe that Y, (T) = X, (T) = H*(Qp), k=3,4,5,
H*(Qp) = Y,_, (T), k=4, 5, where every imbedding is continuous. Every-
one of these spaces is an algebra. We shall make use of the summation
convention over repeated indices. We shall introduce several constants C,
Co, Cg, C, which will depend at most on the data of the problem Q, n,
vo» Po» P> Unless explicitly indicated.

Now we study the regularity of functions depending on n, which will
be useful in the sequel. For it we make use of well known tools as the
Holder inequality and Sobolev imbeddings. From neYs(T,) we have
we H? (Qr,)- Since 1 is a diffeomorphism and because of its regularity, it
follows that the coefficients a,; of [Dn]~! are in Y,(T,). On the
boundary I, in each local chart $=¢ (&, &,), since n is a diffeomorphism,
the unit vector N (z, x) can be written as

N (1, x)= Dn (2, x) 1, (x) A DN (4, %) 1, (x)
’ DN X)1 () A DN, x)]

@2.1)

where

(09/0%1) (9™ (x))
| @/E) (O~ ()]
(09/08,) (¢~ (x)) —[(89/E,) (™1 (X)) T, ()] T, (x) .
[ (84/08,) (6" (x)) —[(8/0E,) (§ ™ (x)) T4 ()] 1y (%) ]
Extend 1,, T, to the interior of Q in such a way that 1,eC’(QQ). Given

To>0, we can find >0 such that in Q,;={xeQ/dist(x,[)<28} and
for te[0,T]

T, (x)=

T, (0)=

DN (2, x) 1, (x) A DN (7, x) 1, (x)]>0. 2.2)

From (2.1) we can define N also in [0,T;]x€Q,; and obtain
NeY,(Ty,Q,;5) (this last symbol is self-explanatory). Furthermore, a
direct computation shows that on I we have

J(t, %) o (6, x)n ()=, (6, )N (t,x),  te[0, Ty, xel, (2.3)

where J=det[Dmn], n=n(x) denotes the unit outward normal vector to I’
and the scalar function Vo=V, (1, x), in each local chart =0 (&,,&,) of
I", is given by

_10°9)/38, A 0(N°9)/3, |

Vo | 0/0E, A Op/dt, |

Vol. 9, n° 6-1992.



688 P. SECCHI

3. THE ITERATION SCHEME

First of all we write (P) in the following matrix form:

ou 2

Ag—+ Y A,D,U+DU=F, 3.1
ot ji=1
where U= (v,, v,, 03, p)%,
p
o = . p :
Aa=AoU)=| T
p'/p
S . . 4j1
— A _ . Pz a;; . aj;
A=A;U) . . puva; 4j3 '
a; a;, a;z  (p'/p)viay

a;; Djwy a;p,Dywy a3 Dy

a.,.D.w a,D.w a;D.w
D=DU)=p(p| 1 G dpDiva )
a;;Djwy a, Diwsy a;Diw,

F=F(U)=(p (p) (b~ w), — £ V. w)*.
For the sake of brevity we introduce the differential operator
n 3
é
L(U)EAO(U)a + Y A;(U)D;+D(U)
j=1

so that we can write (3.1) as

L(U)U=F(U). (3.2)
The boundary matrix A, (U) is defined by
3
v.o/ nl <
A, (W)=Y AJ(U)nj=(p Lo )
j=1 (< m) (p'/p)v. oL n

where I 1s the 3 % 3 unit matrix. Because of (2. 3), on the boundary A, (U)
reduces to

AL(U) =Y9<pv.NI3 N >:b 0, N
mE N oip)e.N) TANE o)

because of the boundary condition z.N=0 on X, (0, is the 3x3 null
matrix). Since detA, (U)=0 on X, the boundary matrix is singular,
namely the boundary is characteristic for (P). To define our approximating
solutions, we modify (P) in such a way that the boundary is no more
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characteristic (¢f. Schochet [7]). Before of that, in order for the approxi-

mate solutions defined below to be sufficiently smooth for the computa-

tions leading to the a priori estimates, we regularize our data as follows.

Take a sequence {w™ }=_, in H°(Qq,) such that w™ —w in H*(Qg ).
t

Define n™ e Y¢(T,) as n™ (¢, x)=x+ | w'™ (s, x)ds. For any m we have
0]

n™(0,.)=1d and, for x, yeQ,
t

n™ (@t x)=n"(,y)=x—y+ J W™ (s, ) = w™ (s, )] ds

0
which gives

" (1, )= " (1,)] ‘ ,

= | X—y ' -C H wm H243. To 1172 Ix—_v ’ 2(1-C'?)|x—y ‘ (3.3)
since w™ is bounded in L?(0,T,; H*(Q)) < L?*(0,T,;C! (Q)). Take
T,e(0, To] such that 1~CT}221/2; from (3.3) we obtain that n™ is
injective and, because of its regularity, is a diffeomorphism. Correspond-
ingly. define 7™, N™ J0» y; then we have

N™(0)=n on I, &"™(0)=I; in Q
J(m) %(m)n:_\lﬁom) N on ZTl-

Observe also that from n™ e Y (T;) it follows that the coefficients af’ of
[Dn™]~* are in Y4 (T,) and N™ e Y (T,,Q,); here we have extended N™
to a neighborhood Q5 of I', as we did for N, where a priori Q;, depends

onm. Since n™ —mn in Y(T,) we can take §,=8. For m=0,1,...
consider the operator

3.4

~ 3
L™ (U)=A, (U)< + T A (U)D,+ D™ (U) (3.5)
0 52‘ J J
j=1
where
pudny . iy
{m—1} (m}
m = . pv;dj . aly
A (U)= J 02,gm D a-ér;)
. . al
afy ajy aiy (p'/p)viay ™V

(m) J(m) (m} (m) (m) (m)
ajt Djw(l) ajy Dywy a{3)Djm(1)
(m) m (m) {m) m Am
asy Djw2 a;; Djwz ay Djuz)
(m) ,(m) {m) (m) (m) (m
aiP Dy wy ajy’ D;wy a3 Dyw3

D™ (U)=p (p)

The corresponding boundary matrix is

3 (m—1) (m)
Ai:M)(U)'_:: z Ag.m)(U)nj:(pva( 7113 o ™R B >’
A (L™ (pfp)o.

j=1

Vol. 9, n® 6-1992.



690 P. SECCHI

if U=(v,p)* is such that v.N""Y=0 on I, on the boundary A"™ (U)

reduces to
W 0y N
(m) —
Al (U)IET Jom (N('"))* 0 ) (3.6)

because of (3.4),. Like A,, AM™ is a singular matrix. Second, take a
sequence {b™1®_ in H*(Qy,) such that

Hb—b(""H&QT1<y2_"', 3.7
where v is a positive parameter. Define
Fom W=(p (») (b("') — M‘,(m))’ N ALAYA w("")*.
Next, we approximate the initial data Uy=(v,, po)* e H?(Q) by functions

U§” e H3 (Q) that satisfy suitable compatibility conditions through order 3.

LemMa 3.1. — Given any v*<%HIUo|

2> there exists a sequence

{ U be_y in H(Q) such that:

(i) U satisfies the compatibility conditions of order 3 for the equations
L) U=F9(U) with respect to the boundary condition U.N©=(
on Zp,.

(i) U (m=1,2,...) satisfies the compatibility conditions of order 3
Jor the equations L™ (U™~ D) U= F™ (U™~ V) with respect to the boundary
condition U.N™ =0 on Xy . Here U™V satisfies Um~D N™" D=0 on
Sr, (U™ D3k (0)=(*/0r) UP~Y (k=0,1,2), where (/o) UL~
denotes the k-th time derivative of U™V determined in the preceding steps
by calculating the time derivatives from the corresponding equations and
expressing them in terms of U~ 1. Moreover U™ satisfies

IUo—U |ls<y*2"™  for m=0,1,... 3.8)

Proof. — Such approximations are constructed in Rauch-Massey [6],
Lemma 3.3, for linear equations with a nonsingular boundary matrix.
The method can be extended to the present case following the arguments
of {7], p. 52, 53, if we can check the relation

Range M=Range M (A"™Y on I (3.9)

for k=0, 1, 2, 3, where M is the matrix giving the boundary condition
U.N™=0on X :

M = (N™)*, 0).

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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The range of M is R. On the other hand, on I" we have

(m) \ k (m)
(Ay = ¥e 0 N if k=1,3,
J(M) (N("'))* 0

(m) \ k (m) (m)
(A= (YO N (NTONT0) e g
3m 0 1

so that

v

k
M(Ailm))k=<_J(T)) (0,0,0,1) if k=1,3,

{m)\ k
M(Af.'"’)"=<%> M if k=2.

In both cases the range is R, so that (3.9) holds. The proof of Lemma 3.1
iscomplete. W
Now we modify the operator L™ (m=0,1, ...) given in (3.5) in order
to have a nonsingular boundary matrix: we extend the normal vector » to
be C° (Q) and consider
3
L2 (U)=A, (U)g + Z A9 (U)D;+ D" (U)

j=1
where

nI; 0
A§:>(U)EA§>(U)+8< 103 0)'

Correspondingly we take
Fo (U, U) = (p (p) (3™ — w™) + & (n. V) v, — L™V . w™)*,

where U= (v, p)* is a suitable smooth vector-function which will be speci-
fied later. The boundary matrix is now

(prv.L™ Vn+e)l, o™ n )

(m, &) =
At ( (/™ n)* (¢/p)v. ™ Vn

LemMa 3.2, — Let U=(v,p)* such that v.N™ V=0 on . For any
e>0, on ' A™=(U) is non singular. Moreover, the linear space
B™ (1,x)={U=(v,p)*/v.N™ (1,x)=0 on '} of R* is maximally non nega-
tive with respect to A™ 9 (U).

Proof. — The first part of the Lemma holds since
{m) \ 2
det AP 9 (D)= —82<“’L> .

J(m)

Vol. 9, n° 6-1992.
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If UeB"™, on I” we have
{m)
U A2 (O U=s|o*+2 500 N™p=s|o[* 20,

i.e. B™ is non negative. To show its maximality, we observe that
dim B™=3. Hence if B™ is not maximal, the maximal subspace is necess-

(m) *
arily R*. But for instance the vector U’=<%N‘"”, -1 —s) satisfies

{m) 2
Vo (—2—£)<0

’ {m, &) /17 -
(U A2 (O U= | T

(recall that | N (7, x)|=1) so that R* cannot be maximally non negative
with respect to A< (0). This gives a contradiction, 7. e. the thesis. B

We proceed now with the construction of the first approximate solution
of the iteration scheme.

LEMMA 3.3. — There exists U® =Y, pY* e X, (T,) such that
#O NO=0 on I,
@ U3 (0)= (/0 UL for k=0, 1,2, 3,

where (0%/0*) U denotes the k-th time derivative at t=0 of a solution to
problem L® (U) U=F© (U) and initial data UL,

(3.10)

Proof. — Given £>0, we consider the following linear mixed problem:
1.0 ® (G(O)) U=F©-# ([’j(O)’ [j(O)) in QTp
P NDP=0 on Iy, (3.11)
U@=UP in Q,
where U@ e H? (Q, ,) is such that
(@ 0©@/a (0)=(*/er) UL for k=0, 1,2, 3, (3.12)

and satisfies HIAJ‘O)HSYQTX§C[[U‘0°)”5. For such extension see [5]. Because
of Lemma 3.1(i) and (3.12), the compatibility conditions through order
3 hold. Because of the assumptions on p,, p(.), we can find a constant
Co>1 such that

4 C _

— LA, (U< -21, in Q. 3.13

CO 4= O( 0)— 4 4 ( )
Take y* in (3.8) small enough in such a way that from (3. 13) we obtain
2 o C
c L=AUM= Sl

o]

in Q, m=0,1, ... (3.14)
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Since U©eH*(Qq,), #@eY;(T,), wPeH®(Qr,), bPeH*(Qr,), we
have

A0, API(O®), DOOO)eX,(T)), FO9(00,T)H*@Qp).

Then from Lemma 3.2 we can apply the theory for linear non characteris-
tic hyperbolic mixed problems and show the existence of a unique solution
U=U%eX,(T,) (¢f Rauch and Massey [6] and Appendix A in
Schochet [7]). (3.10), follows from (3.11);, (3.12). The proof is
complete. B
Given U, we define the approximate solutions for m=1, 2, ... by
means of the iteration scheme:
L™ &m) (U<m— 1)) Um = Fim. &) (U(m— 1)’ fj(m)) in QT’
o™ N™=0 on X, (3.15),,
U™ @0)=U in Q.
Here U™ = (2™, p™)*, U™eH®(Qy,) is such that
(8 U™ /ar*) (0) = (8%/or*) U™ for k=0,1, 2,3, (3.16)
and satisfies || U™ lls, or, SCIUS |is; €, 1 0 is chosen in such a way that

el (1. VO™ o, e, CIUSP [, 227" C || Ul (3.17)

4. UNIFORM ESTIMATES AND PROOF OF THEOREM B

We define an invariant set for the iteration scheme. For, set
E =3{|Uy|ll,, E,=2C*(E,) (|| Uo |||y + R), where C*>1 is a nondecreas-
ing function of E; which will be specified in (4.25),

R=sup {{l[ 5 ffz, ¢, + 1 w12, 7,
Il ™V w21, el V) D 7, < + 00

(interpolation inequalities yield the boundedness of R). Define
S(M={U=(v, p*/UeX, (D), | Ul +=E,, | U5, r<E, }.
LemmA 4.1. — There exists T>0 such that, if (3.15), has a unique

solution U® e S(T) for k=0, ...,m—1, then (3.15),, has a unique solution
U™ again in S(T).

Proof. — First of all, since U®eX, (T,) we have
O =Uo o+ U =g [ll5, r S [TUC = U 5, 1+ [[ U~ Us |5
. . 1
SO ., T+y* < IO s, 1, T+ S Voo

Vol. 9, n° 6-1992.



694 P. SECCHI

. 1
If T<T, is such that ||| UQ|||;.«, TS EIHUO il we have

U= Uolll2,v=l1 Vol U =Uollls, r = Uo s
from which U©@ ¢S (T).
For UeS(T), let us assume that U (0) is such that

2 C o
C—I4§A0(U(O))§7014 in Q.

0

Since we have
1U@®~UO o @=]Ullcc@nt=C|| Ull,.1t=CE,1,

there exists T, e (0, T,] small enough such that

CLOI4§A0(U(I))§COI4 in Q,- 4.1
Take now U™ VeS(T) with T<T,. Because of (3.14) applied to
U, Ugm-b verifies (4.1). Since U™ VeX, (T), #™eY;(T),
wmeHS (Qq), b™eH*(Qq), we have A, (U™ D), Al (Uim=b)
D™ (UM~ Dye X, (T), Fomem (U -1, T e H* (Q,). Lemma 3.2 and the
results for linear non characteristic hyperbolic mixed problems yields the
existence of a unique solution U™ e X, (T) of (3.15),. Let us show now
the key a priori estimates.

First we observe that, since w™ — w in H> (Qy,), then wm | plm - ogtm
N are bounded respectively in H*(Qr,), Ys(To), Y4(To), Y, (To, Q).
Since U™ YeS(T), we have that A (U™™Y), A{m= (U~
D™ U™~V are bounded in X, (T), F™ 2 (U™~ ™) is bounded in
H?*(Q;). An explicit boundedness in terms of ||| U™~ V||, 1, [||U™ Y ||l;
will be necessary and will be pointed out later. Given >0 such that (2.2)

holds [we shall definitely choose it in (4.19)], consider a partition of unity
h

{¢;}i_o in Q, namely ¢;eC7 (R? with ), ¢;(x)=1 in Q; the compact
=0

support Q; of @;, j=1,...,h, is such that Q;NT# &, Q;NQ < Q;; the

support £, of ¢, does not intersect I'. Assume that €;(j+#0) is contained

in a sufficiently small neighborhood of a point (x},x},x})eQ,NT such

that in it ;N T can be represented by the equation

x3=\J,1j(x1,x2).

In Q;(j#0) we introduce the standard change of independent variables
z=¥;(x)

lexl—x’i, zz=x2—x§, Zszxs—\l’j(xlsxz)
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and assume that
Y.(Q) < {zeR|z|=1}, Y, QNQ)={zeR?|z|<1, z;>0}.

We change the dependent variables ¢; U by an orthogonal matrix-valued
function H{”(z, x) which transforms the boundary space B™(z, x)
(see Lemma 3.2) into a new boundary space B constant on
{zeR¥/|z|<1, z;=0}. We construct H{(,x) as in Lemma 3.1 of
Ikawa [4]. Since B™ (1, x) is the linear space of vectors U in R* orthogonal
to (N™(1,x),00*eY4(T,,Qs), we can find an orthogonal base
&M (t,x)={ e (t,x), ...,eM(1,x)}eY5(T,) (i=1,2,3) of B™(z, x) in
Q,. This is possible when Q; is sufficiently small. This base of B™ (s, x)
and the vector e{™ (z, x)=(N‘"" (t,x)*,0) form an orthonormal base of R*.
Define H{™ (¢, x) by

H (2, x)=[ef (1, %)), &

SO

H{™(z, x) is a unitary matrix with coefficients in Y(T,,Q;), bounded
uniformly in Y, (T,,Q;) with respect to m. If we set V=H' (¢, x) U, then
UeB™(z, x) is equivalent to V,=0. In every Q; we consider as a new
dependent variable the functlon Om=MHM o U(”‘))~(1 z), where for a
function w(x) defined in Q;NQ we denote by w(z) the function
w(z)=w(¥;(x))=w(x). The new unknown UY" satisfies the system (for
the sake of simplicity we write U instead of I~J§"", H instead of H{™)

Al OaU ZA’Z—U+DU F' in [0,T] % R3 4.2)
t z

i=1 J
where

Ay=[HA, (U<"*—1>)H*]~
A= [HA‘“ em) (U0~ D) JH*}

Xy

JH

'\H o~
D'= [HDH* ~HA (U ) HY = H* —HA[™ (U‘"“”)H*%—H*} :
t X,

F = I:HAim, £m) (U(m— 1)) um 07% +H ?; Eom EM)J .
k

The new boundary space is now B={VeR*/V,=0} so that the new
boundary condition is

U@,z2)eB  if z,=0. 4.3)

Applying time and tangential derivative operators Dg,, =870 03! 032 with
|o| =0 +a; +0o,<3, 0,<2, to the equations (4.2), multiplying by Dz O

tan
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and integrating in space we obtain

0, D, 0)

tan

d
—(AyD
pAGT
: ~ 0 ~
(6?0 Dz, U, D&, U)—2 (A’a D, U, D, U)
J

2y ( DL, [(A)) AT DL, T, D:af)

IBl+lyi=ialiBl21 Zj
—2(A; DL (AY) ™ 1(D’U F), D¢ U). 4.4)

tan

We integrate now by parts the second term in the right-hand side of (4.4).
We obtain

2<A' ‘ pz, T, Di, ﬁ)
]

~ A o
= A, DC! n U D:an U : ;zan U D:tlan (4 N 5)
ta 6
z3=0

J

since A are symmetric. Since

VZ3:<— ﬂlj_j’ - éj&, 1>:(1+|V\h‘;12)1/2n)
x4 0

X,
we have
=[(1+|V ;)2 HAL = H*] ",

Observing now that D%_UeB, since the boundary space B™ (, x) is non
negative with respect to A (Lemma 3.2) we get

A’ D:an

U.D:

tan

U=o0. (4.6)

Hence from (4.4)-(4.6) we obtain

d. ., . Ay L=\ (oA -
E(AO tanU Dtan )§( o1 ODtanU Dtan ) (a ! ?anU D?anU>

“Jj

-2 Z (A, DPan[(A) 1A]—“ tanU D:tlant]>
[Bi+ivi=tal.{Biz1 Zj 5

—2(A; D; (Ay) (D' U—F), D, ).

lan
Summing over all «,

d ~
ZZEIIZ (Ao D%, U, DL, U)=la, 0| U [+ @, ORI T3 00 4.7
a3

Annales de U'lnstitut Henri Poincaré - Analyse non linéaire



NONVISCOUS COMPRESSIBLE FLUIDS 697

where || U5, o= Y. | Ollja;r a1 (0eL?(0,T), @} (t)eL* (0, T), a, and
la{=3

a; are non decreasing functions of E,,

R (=16 @ [fle+ I ) il .
™YW @ [l + el 1.9) 2™ O

Integrating (4.7) in time between 0 and r and using (4. 1) we obtain
ITOs @=ColllTOlls. n

+f [a, (D [[JU™ () [[|s + a5 ()R ()] ds  (4.8)
0

where a, (1)e L? (0, T), a5 ()L™ (0, T) are non decreasing functions of E,.
In the same way we obtain the interior estimate

190 U™ 02 £Co | 0 U™ )
¥ j (a3 O[] U™ ()]s + a5 ) RP G s (4.9)
0

where a5 (1)e L?(0,T), a5 (r)eL* (0, T) are non decreasing functions of E,.

The next step is to find a priori estimates for the normal derivatives. If
the boundary matrix were non singular, this would be obtained by invert-
ing it in a neighborhood of the boundary and representing the normal
derivatives in terms of tangential derivatives. In our case the boundary is
characteristic so that this is not possible. In any way, we observe that the
rank of the original boundary matrix A, is 2. This suggests that we could
express two of the four first order normal derivatives of U by means of
the other two first-order normal derivatives and of tangential derivatives.
On the other hand, we know that the vorticity satisfies a first order
symmetric system. Combining in a suitable way the information coming
from these two properties we obtain the estimates for the normal deriva-
tives. More precisely we proceed as follows. In (3. 15),, the equations for
the velocity have the form (p™~U=p (p™~ 1))

p(m— 1) [é(m) + (v("‘_ 1 ggim—1) V) ot + ('v("') g™ V) w(m 4+ ‘;.(m) — b(m)]
+AMVp™te (n.V)o™=g, (n.V)d"™,
Dividing by p“” " and introducing the Eulerian coordinates
(t,y)=(t,n"™ (z, x)) gives
_('n)+(w(m) V) 17”‘)-!-(5("' 1 gm- 1)(Jg(rn)) 1 V) m)
+ (E(m) V) wim 4 W(m) — B+ (1/(p(m 1)) Vlj(m)

&/ (P ™) (. (L)1) T = (e, /(p™ D) (n. (™) V) gt (4.10)
where v(7,y)=0v(t, N (1, x))=v(1,x), etc., since 8/8t — &/ét+ (W™, V),
A™V, - V,. Taking the curl of (4.10) gives (™ (1, y) =rot 2™ (1, )
C(M)+[W(m)'v+ m—1) &{(m U(&i(m))—

+ (&, /(P D)y n. (™) VID™
=10t [B — wm + (¢_/(p™~ D) (n.(Z™) 1 V) ™)+ 1. 0. 1.
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where 1. 0.t. means terms with zero and first order derivatives of (¢'™, p'™)
[observe that rot (1/(p™~ 1) Vpm™=V(1/(p™ ") A Vp'"™ because of rot
V=0]. Changing again the independent variables from (¢, y) to (¢, x) gives
[we set £ (7, x)=C™ (£,n™ (£, x))=T™ (1, y), (M= ™V A o]

C(m)+[v(m~1)‘d(m—1)V+(£m/p(m—1))n.v]c(m)
=AMV A B =W+ (e, /(P D) (1. V) I+ 0. t.=K  (4.11)

where now 1.o.t. means terms with zero and first order derivatives of
@™, p™).

Applying a derivative operator D* (in space-time) with || <2 to (4.11),
multiplying by D*{™ and integrating over Q gives

1 d
~ iD* (m) |2
e
+ ("D LMY+ (g, /p™ V) n. V) D™, D)
= _(Du (v(mfl)_ﬂ(m—l)v) c(m)_(v(m—l)'y(m—l)v) Dac(m)’ D C_:(M))
= (D% (5,,/p™ V) (1. V)L™
_(gm/p(m—l)) (I’IV) D c(m), Dac(m))_*_(Da K, Dac(m)). (4 12)

Integrating by parts in the second term in the left-hand side of (4.12) we
obtain

%f [v(m—l).&i(m—l)n_*_ (gm/p(m—l)) lnIZ]IDaC(m) |2
T

1
— S DTV A+ (/9™ V) DAL, D)
1
2 = i V™ Ut (e, mfp ™ I) DL, DL (4.13)

W(m—l)
9]
J(m—l)

Hence from (4.12), (4.13), adding over all o with |a|<2 and integrating
in time between 0 and r, we can obtain

e @1l =Co 1™ O ]2
+jt[a4 @[T (s)][ls+ a4 ()R (] ds  (4.14)

0

since o™~V gm-Vp= pm-1 N™~V=0 on I' and ¢,/p™ P>0.

where a, (£)e L? (0, T), a4 ()e L® (0, T) are non decreasing functions of E,.
(4.14) gives an estimate for ("™ =™V A o™ which in each Q; can be
written, introducing again the independent variables z='¥;(x), as
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(™ [Dz]*)"V, A (H; U™~ for j=1, 2, 3. Considering the first two com-
ponents we have more explicitly (U stands for U™, H for H™)

~ 0z;
m—{ 7
- (axk)
R e - B
J

5 0z 0z; 0z, } 4.15)
(2
0x,

i bj
~6U 0H,, 0H;5\™ ~
X{(ai’g)H _akl)H <§(’g) P ﬂ) ) Uz}-
J

z; z; 0z,

. ... ou |
Isolating the normal derivatives — gives
Z3

() wa-awm” ‘;ﬂ—cm an”

Xk Zs

(%> (@3 Hy —aP H,

Xy

(4.16)

3

Z3

where “tan” contains the tangential derivatives of (4. 15) and lower order
terms. Consider (4.2). We multiply it by H* and isolate the normal
derivatives obtaining

(A‘"‘ “m ’623H*> U _ —H*(A’ aa_U + Z A'Z_U+D 0- F’). (4.17)

6xk 623 j=1 j

Consider now the linear system with unknown H*GE formed by (4.16)
Z3

and the third and fourth row of (4.17). We write it in the form

AH* —(C("" gm0, 0)*+ “tan”, (4.18)
0z,
where the matrix A of the coefficients is given by
0 —ay 0
alsfay o ~dy 0
a0 0 PV Ve, @
. 1 -
ary a4y a5 (p'/p)m Vo DY

We compute A for =0, xeI'. Since

X, 0x,
akt)(o) Skv
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we obtain
0 -1 - @ 0
Ox,
oy
1 0 - 0
AOEAn:o,xer: 0x,
0 0 8,,,(1+|V\Ilj]2)”2 |
oy 1 )
0x, dx,

whose determinant is det A= —[1+|V{;]|?]. Consider xeQ;NQ; and
take xeI such that dist(x,x)<6 and such that the segment between x
and x is all contained in ;. Applying the mean value theorem we can
obtain

[detA(t,x)]

g]detA(O,E)l—[HgdetA +][VdetA][Co((—zT)} e+ =]

c®@n

Since the coefficients of A are bounded in
Co([0, T; H* (@) N C* ([0, T]; H*(Q))

uniformly in m we can find a constant C, such that

+[|VdetAfco g, =C,
c® @n

lﬁdetA
ot

uniformly in m. Then there exist T;€(0, T,] and >0 such that, if T<T;,

|det A (z, x)]gl—Cl(T2+6)g% in [0, T]x O, (4.19)

Hence we can invert A in (4. 18) and express i in terms of the right-
hand side in [0, T] x Q5. Hence we obtain -

g =HA @M, T4, 0, 0)*+“tan”] (4.20)

for each re[0,T] and z=%¥;(x), xeQ; N Qs We use (4.20) to estimate

au . . .
—— by means of the right-hand side. First we take the L?-norm, secondly

0z,
the L2-norm of tangential derivatives of first order, then the L2-norm of
one normal derivative and so on. We obtain for each [0, T]

18]

lo“z

SCEDIIE™ M+ O™ s, 1o+ RE (4.21)
2

3
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where C, is a non decreasing function of E,, since no derivative of U™~ 1
is contained in A. At this step an essential tool is the estimate (see (4.6)
at p.56 of [7])

ritkaThs T Gritkaths T

051 0252 0243
+C(g,) [”! u l“kl +hy+ks. tan T ”! U ”Ih +hyth3- il

where &k, +4,>0. Taking account of (4.21), we obtain for each re[0, T]
the estimate
)

<0 U I+ Co ) (IE s+ T O s +RE), (8.2

J

=&

0281 9242 053

5U(»m’

J

O™ flls =l @0 U™ |5 + 2 (IHfJ}"" s, ot

J

I3

where C;>1 is a non decreasing function of E,. From (4.8) for
J=1,...,h,(4.9) and (4.14) we have

O™ Ol <o [lfeo U @]l + C5 B (e @
o X 1T O .+ R)

j=

+f las &) || U™ () [[|s + a5 () RE ()] ds,  (4.23)
0

where
R=sup {6 |, 2, + 1w .,
APV w1t 00 V)], 7, )

and a5 (1)eL?(0,T), a5 (1)eL*(0,T) are non decreasing functions of E,.
The Gronwall’s lemma yields

Ul < T [C+Co T2, (4.24)
where
Cy= ” as ”LZ (0, Ty

CE=co [l 0o U™ (O) [ +C5 (E1)<IHC‘"’) Ofl+co X 1107 O o+ R),

Co=le e o.5500 {157 s, ’

W, op, TV |y o +Co

Uolls}

[see (3.17)]. Since from (3.8) || U {3 <[ U llls +v* < B3/2) ||| Uy lIf> we
can find a non decreasing function C*(E,) such that

CE = C* B[ Us s + R1. (4.25)
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The function C* (E,) is used for the definition of the set S(T). Then from
(4.24) we can find T, (0, T;] such that for TET,

llUu™|l];. 1 =2 C* E) ||| Uolls + RI=E,. (4.26)

Now, directly from the equations (3.195),, not integrating by parts, we
have

21U I, Sae O U s+ R]

where a¢ (£)e L® (0, T); using (3.8), (4.26) gives
O™, r= 1Ol + |l @6 llue 0,1 [E2 + RI T
§(3/2)|HU0H[2+ |[a6HL°°(O,T)[E2+R]T'
Finally we take T, (0, T,] such that, for T<Ts,,
U™ 223} Uo [l,=E,,

namely U™ eS (T). We have shown that S(T) is an invariant set, for any
T=Ts. The proof of Lemma 4.1 is complete. H

Next we show that the sequence { U™ }2_, converges in X, (T) for a
sufficiently small T.

LemMa 4.2. — There exists T' (0, Ts) such that
Y U™ =U il <+ 0. 4.27)
m=1

Proof. — We consider the difference U™ — U™ -1 which satisfies the
equations
Lo em) (U(m— 1)) (U(M) — U(M~ 1))
= F0mem) (U('"_ 1)’ U(m)) — Lo e (U("' - l)) ym—v (4 28)
4 L(m— 1, &y, 1) (U(m— 2)) U(m— 1) F(mf Log,_y) (U(m—Z)’ U(m— 1))’ .
(@™ =™ D). N™=0 on X,
where T<T,. We multiply (4.28) by U™ —~U"™~1 and integrate over .
Since U™, U™~V e S (T), taking account of (3.7), (3.8), (3.17) we obtain
by means of a standard energy estimate
[[Um =0 Do, = UG = U™ g
+C, ST 4 T U= —U"= ||y ).
Taking now T’ < T; such that C,¢“8T T'<1/2 we obtain
m ym_— yim-1 IHO, S (1/2) H yim-b . ym-2) H]O, oty

0

where Y «, <+ oo because of (3.8). This estimate gives (4.27). The
m=1

proofis complete. W
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From Lemma 4.1 and Lemma 4.2 we can deduce that there exists a
function U such that U™ converges to U in
X;_5(T) = CO([0, T, H* (@) N C* ([0, T'; H2™* ()
for any small 8>0. Accordingly, Ue C* (Qy.) because of Sobolev imbed-
dings. Passing to the limit in (3.15), for m — oo we see that U is a
classical solution of (P). The uniqueness follows from standard energy
estimates. In order to remove 0>0 and obtain Ue X;(T") we proceed as
in[8]. Since U™ converges to U in C°(0,T]; H* ®(Q)) and
U™ 5.+ <E, m=0,1, ..., since (H*7?(Q))" is dense in (H?(Q)) we
can show that
UeC, (0, T H (@) (4.29)

where C,, means weak continuity. Applying the tangential mollifier for
the principal part of the equations for U corresponding to (4.2), carrying
out estimates for (H;o; U) similar to (4.8) (j=1, ..., k), taking account
of ||| U||l. <E,, we obtain

Il(H] (ij)~(t)_(Hj(pj U)~(S) H3.tan§c ' t_S’

for 1, s€[0, T, j=1,...,h Accordingly we have from (4.29)
D2, (H;9;U)eC°([0,T']; L*(Q)), for j=1, ..., h. Furthermore, proceed-
ing as for (4.14), (4.21) we show that ¢,;UeC°([0,T']; H*(Q)). Since
0, UeC’ ([0, T}, H* (), we have UeC°([0,T']; H*(Q)). Directly from
the equations of (P) we get UeX;(T’). The proof of Theorem B is
complete.

4. PROOF OF THEOREM A

First we observe that the data u, —w (0), p(po), b(t, x)=5(1,m (¢, x)) and
7 satisfy the assumptions of Theorem B. The compatibility conditions
(1.2) follow directly from (1.1). Hence there exists a unique classical
solution (v, p) of (P) on the time interval [0, T']. Performing the change of
variables (#,x) —(¢,y) where y=n(t,x) it is easily checked that the
functions u (1, y)=v (s, x)+w(,x), p(t,y)=p(p(t,x)) are a classical sol-
ution of (E) on the same time interval [0, T"].
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