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ABSTRACT. - We prove partial regularity for vector-valued minimizers

u of the variational integral / [/ (x, u, Du) + g (x, u)~ dx, where f is

strictly quasiconvex, of polynomial growth and continuous, but where g is
only a bounded Caratheodory function. We present an elementary proof for
the special case of strict convexity and quadratic growth of f (x, u, .) .
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Nous donnons la preuve d’une regularite partielle pour
des minimiseurs a valeurs vectorielles de l’intégrale variationnelle

(x, u, Du) + g (x, i~)] dx, ou f est strictement quasiconvexe, a

croissance polynomiale et continue, mais of g est seulement une fonction
bornee de type Caratheodory. Nous presentons une preuve « elementaire »
pour un cas special de convexite stricte et de croissance quadratique de
.~ (x~ u, .).
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256 C. HAMBURGER

1. INTRODUCTION

We are interested in the regularity for the minimizers of the variational
integral

defined for vector-valued functions u : SZ -~ (~N, where !1 is a bounded
domain in > 2, N > 1, and where Du (x) E denotes the

gradient of u at the point x E H. The functional I (u, H) is well-defined
for u E (~ N ) , with exponent q > 2, if we admit as integrands
Caratheodory functions F (x, u, P) : ~2 x ~N x Nxn -~ R of polynomial
growth in P, i.e. functions which are measurable in x, continuous in (u, P)
and which satisfy the growth condition

DEFINITION 1.1. - We call u E RN) a minimizer of I if

I(u, Z (u + cp, supp 03C6) for every 03C6 E Co (03A9, RN) .

The problem of regularity for the minimizers of I has been intensively
investigated over the last 10 years [G-G2] [El] ] [E-G 1 ] [F-H] [G-M] [A-F]
[G3]. In the thus established partial regularity theory for vector-valued
minimizers one requires the integrand F (x, u, P) to be of class C2 in P,
strictly quasiconvex, and to satisfy the coercivity and growth conditions

In addition one assumes that F (x, u, P) be Holder continuous in (x, u).
By partial regularity of a minimizer u E (S~, (~N ) we mean Holder
continuity of the gradient Du except possibly on a closed set of Lebesgue
measure zero.

It is the aim of this paper to extend the partial regularity theory to
variational integrals with possibly discontinuous integrands of the form
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where f (x, u, P) as well as fp (x, u, P) are Holder continuous in (x, u),
but where g (x, u) is only measurable in x and Holder continuous in u.

Furthermore, for the special case when the integrand F (x, u, P) is of
quadratic growth (q = 2) and strictly convex in P,

for some q > 0 and all ( E we present an elementary proof
based solely on elliptic estimates for linear systems of P.D.E. with constant
coefficients.

The general idea in the proof of partial regularity is to compare the
minimizer with a solution of a constant coefficient operator equation, for
which standard elliptic estimates are available. For the direct proof this
comparison is carried out on an arbitrary ball under a Dirichlet boundary
condition; for the indirect proof it is shown that a sequence of blow-up
functions wm E I~N ), rescaled to the unit ball B, converges
weakly to such a solution.

We start with a short account of the development of the partial regularity
theory for vector-valued minimizers, see also [G2]. Assuming quadratic
growth and strict convexity in P for the integrand F (x, u, P) and using
a direct argument, M. Giaquinta and E. Giusti [G-G2] proved partial
regularity for minimizers u E (H, I~ N ) .
The next step came with the work of L. C. Evans [El]. For integrands

F (P) depending solely on the variable P, he gave an indirect proof
of partial regularity for minimizers replacing strict convexity by strict

quasiconvexity. Partial regularity for minimizers was shown to hold also
true if the integrand F (x, u, P) depends on all the variables, provided
that one assumes, besides strict quasiconvexity, that F be coercive. Various
proofs were given for this result, some direct [G-M], some indirect [F-H],
and some allowing for a weaker form of coercivity [Ho], or assuming no
growth condition for Fp p [A-F] [G3]. In all cases a Caccioppoli inequality
holds for the minimizer u, which gives rise to a reverse Holder inequality
with increasing supports for Du - Po, for constant Po E Nxn. The direct
proofs depend on this reverse Holder inequality, and also the indirect proofs
make use of the Caccioppoli inequality.

It was again L. C. Evans who in collaboration with R. F. Gariepy [E-G 1 ]
showed that, for the case of an integrand F (P), a Caccioppoli inequality is
not needed. Instead they devised a technique for establishing convergence

in of a sequence of blow-up functions wm E (B, I~~),
Vol. 13, n° 3-1996.
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which are known to converge only weakly. A key estimate for this

procedure is

where Z~.,.L ( ~ , Br) are suitably rescaled variational integrals on a ball of
radius r  1, or, equivalently,

where Io is the limit functional of the sequence Im.
In the present paper we pursue the ideas of L. C. Evans and R. F. Gariepy

further and apply them to the general case of an integrand F (x, u, P)
depending on all the variables. While L. C. Evans and R. F. Gariepy were
able to use strict quasiconvexity directly in proving convergence in 
of the sequence of blow-up functions satisfying (1.2), we instead rely
on the following technique.

First we show that the estimate ( 1.2) is also valid for the case of
an integrand F (x, u, P) where F (x, u, P) and (x, u) 2014~

Fp (x, ~c, P) are Holder continuous. Thus we may admit discontinuities
of x - F (x, u, P) that do not propagate to Fp (x, u, P), as for the
above mentioned class of integrands of the form (1.1). We point out that
our continuity assumption for the integrand stands in marked contrast to
the standard hypothesis that (x, u) 2014~ F (~, u, P) be Holder continuous
without imposing any condition on Fp (x, u, P).
The estimate (1.2) involves a sequence of functionals Im rather than a

fixed functional. We can however express the rescaled functionals Im by
means of suitably chosen functions Y m as a fixed functional

whose integrand G (Y) . ((, () is quadratic in (. Moreover, the functions
Ym converge in L2 to a constant function Yo. Thus we have the estimate

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



259VARIATIONAL INTEGRALS

We now distinguish two cases. In the special case that G (Y) is bounded
and uniformly positive,

which in terms of the original integrand F (x, u, P) amounts to quadratic
growth and strict convexity in the variable P, we deduce with the help of a
simple convergence lemma that in then follows easily
that w solves a linear elliptic system with constant coefficients. We thus
obtain an elementary partial regularity proof for minimizers in the spirit of
L. C. Evans and R. F. Gariepy [E-G 1 ] which does not use a Caccioppoli
inequality or the involved higher integrability theorem of F. W. Gehring,
M. Giaquinta and G. Modica.

This elementary proof does not generalize to minimizers of quasiconvex
functionals, as the convergence lemma fails in this context-we illustrate
this fact by a counterexample. We note, however, that such an elementary
type of partial regularity proof works for solutions of nonlinear elliptic
systems [H].

In the general case we assume F (x, u, P) to be strictly quasiconvex,
coercive and of polynomial growth in P with exponent q > 2. By virtue
of the higher integrability theorem, we then deduce from a Caccioppoli
inequality a reverse Holder inequality for Du - Po, for constant Po E 
This leads to a uniform bound of ~Dwm ~ in for some c > 0, which
allows us to prove that w is a weak solution of a linear elliptic system
with constant coefficients. Knowing the regularity of w, we can finally
deduce from (1.3) that this manner we establish

partial regularity for minimizers of quasiconvex variational integrals with
discontinuous integrands of the form (1.1).

For the integrand F (x, u, P) : SZ x I~N x p~N x n ~ ~ we shall assume
the following hypotheses, for an exponent q > 2.

HYPOTHESIS HI. - We suppose that F (x, u, P) is of class C~ in P, and
we assume that Fp p is continuous and of polynomial growth:

HYPOTHESIS H2. - We suppose that u -~ F (x, u, P) and (x, u) -
Fp (x, u, P) are Holder continuous in the sense that

Vol. 13, n° 3-1996.
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for all x, 1)~
for 0  b  1 and for a nondecreasing function I~ ( s ) ; note that
t 2014~ ~ (s, t), for fixed s, is concave and bounded.

HYPOTHESIS H3. - We suppose that F (x, u, P) is uniformly strictly
quasiconvex

for some 03B3 > 0 and all (xo, x RN x and cp E
~N).

HYPOTHESIS H4. - We suppose that

for all (x, u, P) E H x ~N x Nxn, where F (P) is a function which is
strictly quasiconvex at Po = 0:

for some q > 0 and for all 03C6 E C~0 (Rn, RN).
Remark. - Hypothesis H4 is fulfilled for example if F (x, u, P) is

coercive

Our main result is contained in the following theorem.

THEOREM 1.1. - Let the integrand F satisfy Hypotheses Hl , H2, H3 and
H4, with exponent q > 2, and let u E (SZ, (~N) be a minimizer for
the variational integral I.

Then there exist an open set no c Q, whose complement has Lebesgue
measure zero, and a positive number ao  2 b such that the gradient Du is
locally Holder continuous in SZo, with any exponent 0  a  ao:

Moreover, the regular set is characterized by
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Remark. - We have

where ~ 1 is the higher integrability constant appearing in Theorem 4.2.
We also state a special case of Theorem 1.1, for which we provide an

elementary proof.

HYPOTHESIS H3*. - We suppose that F (x, u, P) is uniformly strictly
convex in P

THEOREM 1.2. - Let the integrand F satisfy Hypotheses Hl , H2 and H3 *,
with exponent q = 2, and let u E (Q, ~N ) be a minimizer for the
variational integral I.

Then there exists an open set SZo C SZ, whose complement has Lebesgue
measure zero, such that the gradient Du is locally Holder continuous in SZo,
with any exponent 0  a  2 b.

2. A DECAY ESTIMATE FOR THE EXCESS

In the sequel all constants c may depend on the data n, N, q, ~y, r, b, K ( . )
and on the number L from the proof of Proposition 2.1. The Landau symbol
o ( 1 ) stands for any quantity for which o (1) = 0. We write

Br (xo) _ {x E Rn : (x - x0 |  r}, and B = Bl (0) for the unit ball.
We denote the mean value by

In this section we assume Hypotheses HI, H2, and either of H3 or H3*,
with q > 2. We let u E (H, f~ N ) be a minimizer for the functional I.
We choose any positive number cx  ao, where ao is given by (1.4), and
we define the excess of Du on the ball Br (xo) C C H:

(in the case of Theorem 1.2 we choose any positive number a  2 b) .
Theorems 1.1 and 1.2 follow in a routine way from the following

proposition, see [Gl, pp. 198-199] [El, Section 7] [F-H, Section 6].

Vol. 13, n° 3-1996.
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PROPOSITION 2. ~ . - Let L > 0 and ]0, 1 ~ be given. Then there exist
positive constants c1 (L) and ~ (L, T) such that if

then

Proof - We determine the constant ci (L) later on. If the proposition were
not true then there would exist a sequence of balls Bm = Brm (xm) C C 03A9
such that

but

We set

and we define the rescaled functions

for each m and for all z E B. Notice that

Then (2.1) and (2.2) become

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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From (2.7) we immediately have

Since 0 as m -~ oo, and a  ~ 8, it follows from (2.9) that

We infer from (2.5) and (2.9) by the Poincare inequality that

It follows from (2.9), (2.11) and (2.6) that, on passing to a subsequence
and relabelling, we have

We let M (B) denote the space of real-valued Radon measures on B
with finite mass. We define the positive measures

which are uniformly bounded in (B) by (2.9). Hence there exists
a further subsequence, which we again relabel and index by m, and
~c E M (B) such that

Since > 0, this implies that

for every compact set K c B, i.e. the functional ~c -~ is sequentially
weakly* upper semicontinuous on nonnegative measures.

Vol. 13, n° 3-1996.
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Proof. - Given e > 0, there exist an open set V c B, such that K C V
and  ~ (K~ + e, and a function with supp f cc V,
0  f G 1 and y = 1 on K, see [R, Thms. 2.14(c) and 2.12]. By
weak*-convergence

and (2.14) follows. D

Because M (B)  oo, we have  (aBr) = 0 for all but at most countably
many r E ~ ]0, 1[.
Now suppose that we can show that w E is a weak

solution of the following linear system of partial differential equations with
constant coefficients:

We infer from HI and (2.6) that

and from H3 or H3* that (2.15) is elliptic, see [E2, Ch. 3]:

Fpp (xo, uo, Po ) . (~l~~~ ~l 0 ç) ~’Y~~1~~~2 for all q E I~N~ ~ E ~’~.

Hence, from the theory of linear elliptic systems [G 1, Thm. 2.1,
Remarks 2.2, 2.3, pp. 77-79], (2.5) and (2.9), we conclude that w E
C°° (B, I~N ) and

On the other hand, if we also know that

then it would follow from (2.8) and (2.9) that

If we now choose ci (L) > 1 + C2 (L), we obtain a contradiction to
(2.16). This proves the proposition. D
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The remainder of this work is devoted to proving (2.15), (2.17) and

(2.18). To this end we set

By HI and (2.6), we note the estimate

and we also define the functionals

for w E (B, I~N ) and measurable subsets U c B.
We next show that wm is, to order zero as m -~ oo, a minimizer for Zm :

LEMMA 2.1. - For cp E have

where

Proof. - On rescaling we obtain from the minimality of u that

Vol. 13, n 3-1996.
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and it follows that

By virtue of Hypothesis H2, we estimate the term (I) as follows (using
(2.6), Jensen’s inequality in combination with the concavity of cv ( ~, ~ .),
(2.11) and the inequality c.~ ( ~, t)  

For the term (V), we first use Holder’s inequality and the boundedness
.).

The estimates of (II), (III) and (IV) are similar. D

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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We end this section with introducing some further notation. We first

define the set

for s = n + N + 2 Nn, and the function spaces

for p > l.

We next define the symmetric bilinear form G (Y) on for

Y = (x, ’~~ P, Q) E 3), by

By Hypothesis HI, the bilinear form G (Y) depends continuously on Y E 
and satisfies the growth condition

for all Y = (x, u, P, Q) 6 
We also define the corresponding quadratic functional with 0  r  1,

by

for Y E Lq (B, ~ ) and w E (B, I~’~ ) .
By (2.19) we observe that

and hence

for the functions Ym E Lq (B, ~ ) defined by

Vol. 13, n° 3-1996.
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By (2.10) and (2.12), we notice the convergence

to the constant function with value

Now (2.25) and (2.28) imply that

3. AN ELEMENTARY PROOF IN A SPECIAL CASE

In this section we assume Hypotheses HI, H2 and H3*, with q = 2.
We note the estimates

Now we fix some r e ]0, 1 with (~B03C4) = 0 (recall that a.e. r e ]0, 1 [
satisfies this condition). We let 0  s  r and ( e Co (Br) be a

cut-off function with 0  ~  1 and ( == 1 on Bs. We then set

~ _ ~ (w - wm ) E Wo ’ 2 (B, (~N ) in (2.21), for which

Using (2.20) and (2.13), this yields

By Lebesgue’s dominated convergence

and so we infer by (2.12) and (2.14) that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Bearing in mind ~c = 0 in the limit as s -~ r-,

and using the notation (2.23) and (2.29), we finally obtain

Remark. - The above method works also for q > 2. Since we do not
know that w E we would set p = ~ (iu~ - wm ) in (2.21), where the
smooth functions w~ ~ w in as 1~ -~ oo.

We next apply the following lemma, whose hypotheses are satisfied by
(3.1), (2.27), (2.12) and (3.2). Thus we conclude (2.17).

LEMMA 3.1. - Let  be a closed subset Let G (Y) be a symmetric
bilinear form on depending continuously on Y E  and satisfying

for some 0  03B3 ~ F  ~, and all Y E 2), 03BE E 

Define the corresponding quadratic functional ~r, with 0  r  1, by

Suppose that

Then

Proof - The assumption (i), together with the continuity of G, implies that
G (Ym (z)) -~ G (Yo (z)) for a.e. z E B. Hence, by Lebesgue’s dominated
convergence, we conclude that

Vol. 13, n° 3-1996.
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Now we fix some r e ]0, 1[ such that (iii) holds. Then we have

We have used (iii) for the first term, and (3.5) and (ii) for the second and
third terms. Therefore

and we have proved (3.4). D

The one remaining task is to show (2.15). By virtue of (3.4) and
Lebesgue’s modified convergence, we can now proceed to the limit as
m --~ oo in the inequality (2.21), for ’P E Co (B, In this manner

we deduce that

Io (w, Io (w + p, supp (/?) for every p e Co (B, (~N ),

i. e. w E ( B, ~ N ) is a minimizer for the functional Io . It follows that
w is a weak solution of the Euler equation associated with To:

This finishes the proof of Theorem 1.2. D

Example 3.1. - The following example illustrates that Lemma 3.1

becomes false if we weaken strict positivity of G (Y) to nonnegativity
and strict rank-one-positivity

for all Y and ( E E ~N~ ~ E ~n.
We let n = N = 2 and we define the bilinear form

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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for Y [-1, I], ( E (~2 x 2, which is clearly nonnegative but strictly
rank-one-positive. We define the functions wm E ( B, R~) on the unit
ball B C R~ by

for a sequence of numbers rm -~ 0, where r == x ~ and

Then

hence also Dwm  0 weakly in L2 (B, R2x2). We also define the functions
Ym E L2 (B, ~ ) by

for which

Remark. - Lemma 3.1 should be compared with [E-G2, Thm. 1]. Example
3.1 shows that this theorem does not generalize to uniformly strictly
quasiconvex integrals of the form I (Y, w) = f F (x, Y, Dw) dx under
the hypotheses that weakly in and

4. THE GENERAL CASE

Here we assume Hypotheses HI, H2, H3 and H4, with q > 2. We need
a simple algebraic lemma, essentially proved in [El, Lemma 5.2] or [Gl,
Lemma 3.1, p. 161], and the higher integrability theorem of F. W. Gehring,
M. Giaquinta and G. Modica [Gl, Prop. 1.1, p. 122].

LEMMA 4.1. - Let f : [ 2 r, r] --~ [0, oo[ [ be bounded and satisfy

for 2 r  t  s  r, where A, B, C are nonnegative constants and
0  e  1.

Vol. 13, nO 3-1996.
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Then there exists a constant c = c (8, q) such that

THEOREM 4.1. - Let SZ be a bounded open set in f~’~, and let g E ( SZ )
and f E (SZ) be nonnegative functions with 0  s  1  t  oo.

Suppose we have

for every ball Br (xo) C C SZ. Then g E (SZ) for ~  ~0, and

for any ball Br (xo) ~~ 03A9 and 0  o  r, where ~0 = ~0 (n, s, t, b) and
c = c(n,s,t,b, ~,~).
The next theorem is proved in [G3, Prop. 2.2 and (2.18)], cf [G-Gl,

Thm. 4.1 ] .

THEOREM 4.2. - Let u E q ( SZ, I~ N ) be a minimizer for the variational
integral I, whose integrand F satisfies Hypotheses Hl and H4.

Then Du E (SZ, for ~’  ~l, and

for any ball BR (xo) C C SZ and 0  r  R, where ~1 = ~l (n, N, q, r )
andc= c(n,N,q, ~~-,, R,~’). 

’~

The corollary to the following theorem provides a uniform bound in
for the gradients of the blow-up functions 

THEOREM 4.3. - Let u E W1~ q (SZ, be a minimizer for the variational
integral I, whose integrand F satisfies Hypotheses Hl , H2, H3 and H4. Let

where ~l is the higher integrability constant of Theorem 4.2.
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Then, for every 0  c~  ao, there exist positive constants ~ and c ( R )
such that

holds for any ball BR (xo) C C SZ and Po E with Land

L, and 0  o  R.

COROLLARY 4.1. - In terms of wm E (B, f~N ), we have, for
0  r  1,

Proof of Corollary 4.1. - Substituting (2.4), xo = R = rm, o = rrm
and Po = Pm in Theorem 4.3, and using (2.6) and (2.9) yields

Proof of Theorem 4.3. - We fix BR (xo ) C C SZ and Po C subject
to the conditions L and  L, where uo = Then, for

(x, u, P) E n x IRN x we set

Clearly F is strictly quasiconvex, and F (x, u, 0) = 0. Moreover, we have
the estimates

Vol. 13, n° 3-1996.
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We now fix some ball Br (yo) CC BR (xo). We let ) r  t  s  r,
and we let ( E Co (Bs (~/o)) be a cut-off function with 0  ~  1, ~ - 1
on Bt (yo) and ~D~~  c (s - t) 1. We set

for which

The strict quasiconvexity of F at 0 asserts that

On the other hand

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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while from the minimality of u

Combining (4.1), (4.2) and (4.3) we obtain

and further, by Hypothesis H2,

We now fill the hole, that is, we add c times the left hand side to both
sides and we divide the resulting inequality by 1 + c. Setting

Vol. 13, n ° 3-1996.
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we thus obtain

By means of Lemma 4.1, we deduce the following Caccioppoli inequality
with error term

Applying the Poincare-Sobolev and Holder inequalities results in

Therefore, for s = 2* /2  1, we have proved that

for all B,. CC BR (xo) . Invoking Theorem 4.1 we finally arrive at

for all 0  ~  0  o  R and r = 2 ( o + R). Here the constant c
also depends on Rand ~-.

For ~  ~’  ~1, where ~1 is the constant from Theorem 4.2, we next set

(Since a ~ cxo as (~, ~’~ ~ (0, and c~ --~ 0 as ~’ - ~ --~ 0, any value
c~ E ~ ]0, is attained in this manner.) Then, using the Holder, Jensen and

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Poincare inequalities, the boundedness and concavity of 03C9 (L, . ) , Theorem
4.2 and the estimate cv (L, t)  cts, we control the last term of (4.4) by

LEMMA 4.2. - The function w E (B, l~N ) is a weak solution of the
linear elliptic system

In particular, we conclude that w E C°° (B, 

Proof - Since Y -~ G (Y) is continuous at the point Yo E  and
satisfies (2.22), there exists a continuous, bounded and concave function

x (t), with x (0) = 0, such that

for all Y = (x, u, P, Q) E ~.
We let cp E Co (B, and we choose r E ]0, 1[ such that

supp p C C Br. We then write (2.21) as

using (2.29), (2.24) and the functions

By (2.27), we observe that

Vol. 13, n 3-1996.
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Clearly (4.6) is equivalent to

On account of (4.5), we estimate the term (III) as

Here we have used the Holder and Jensen inequalities, the boundedness
and concavity of x (t), Corollary 4.1 and the limit (4.7). The term (IV) is
estimated in the same way. Therefore, by (2.12), we infer from (4.8) that

This implies that

LEMMA 4.3. - We have the limits

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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In the proof we shall make frequent use of the fact that the function w
and its gradient Dw are bounded on compact subsets of B.
We fix some r E ]0, 1 [ with  (~Br) = 0 (recall that a.e. r E J 0, 1 satisfies

this condition). We let 0  s  r and ( E Co (Br) be a cut-off function
with 0  ~  1 and ( = 1 on Bs . Setting p = ~ ( w - w~ ) E ( B , 
in (2.21) and using (2.20) and (2.13) yields

Since by Lebesgue’s dominated convergence

it follows by recourse to (2.12) and (2.14) that

Letting s -~ r-, so that --~ = 0, we obtain by (2.29)
that

According to Hypothesis H3, (2.19) and (2.24), we have

for 03C6 E (B, and Ym = (xm, m, Pm, 03BBm D03C6 E Lq B, b§J ). .
Here we w), where ( E Co (Br) is the same cut-off
function as before, for 0  s  r. Then

Vol. 13, n° 3-1996.
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for which we note, by (2.12), the limit

We consider the difference

On account of (4.5), the Holder and Jensen inequalities, the boundedness
and concavity of x (t), (4.13), Corollary 4.1, (2.12) and (2.9), we estimate
the term (I) as

and similarly for the term (II). Hence we conclude from (4.11 ) and (4.14)
that also

We now insert p = ~ (w~-,-L - w) in (4.12). By (2.22), (2.13) and (2.12),
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this gives

The estimate for the term (iv) is now routine.

Thus we infer from (4.16), using (4.15), (2.12) and (2.14), that

Since 2014~ 0 as s -~ r-, we conclude that

The last equation implies

and we have shown that (4.9) and (4.10) hold. D

In view of Lemmas 4.2 and 4.3, the proof of Theorem 1.1 is now

complete. D
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