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ABSTRACT. - This paper addresses the necessary conditions for a function

K(x) on Sn to be the scalar curvature function of a metric pointwise
conformal to the standard metric on sn. The well known necessary
conditions are: K(x) is positive somewhere and satisfies the Kazdan-Warner
type condition (see the text below). It has remained an outstanding problem
for many years whether the above necessary conditions are also sufficient.

Recently W. Chen and C. Li ([ChL]) proved that the above conditions
are not sufficient by producing changing sign functions K which satisfy
the above conditions, but are not scalar curvature functions of any metric
pointwise conformal to the standard metric on Sn. In their construction, it is
essential that K changes sign. In fact, for n = 2, it follows from the results
of [XY] that for the class of positive nondegenerate axisymmetric functions
the Kazdan-Warner type condition is actually necessary and sufficient. This
brings up a natural question that whether this is a general fact, or it is only
so for axisymmetric functions. In this note we answer the above question
for 2  n  4 by producing a family of positive functions K which satisfy
the Kazdan-Warner type condition, but nevertheless are not scalar curvature
functions of any metric pointwise conformal to the standard metric on Sn.

Nous construisons certaines fonctions positives sur Sn,
2  n  4, qui satisfont les conditions de type Kazdan-Warner, mais
telles qu’ elles ne sont pas les courbures scalaires des metriques conformes
a la metrique standard de sn.
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INTRODUCTION

Let ( S n , go ) be the standard n - sphere. The following question was
raised by Professor L. Nirenberg: which function K(x) on S~ is the Gauss
curvature of a metric g on S~ pointwise conformally equivalent to go ?
Naturally one may ask a similar question in higher dimensional case,

namely, which function K(x) on S" is the scalar curvature of a metric g
on 8n conformally equivalent to go ?

For n = 2, if we write g = the problem is equivalent to finding a
function v on S~ which satisfies the following equation

For n > 3, if we write g = the problem is equivalent to finding
a function v on sn which satisfies the following equation

where c ( ) n = n 2 Ro = n ( n - 1) is the scalar curvature of go and4(n - 1)
O9o denotes the Laplace-Beltrami operator associated with the metric go.
A necessary condition for solving (1) or (2) is that K be positive

somewhere. For n = 2, this follows from integrating (1) on S2 . For n > 3,
this follows from multiplying (2) by v and integrating by parts on S".
Kazdan and Warner discovered in [KW] another much more significant
condition by exploiting centered dilation conformal transformations of 8n
which asserts that a solution to the problem should satisfy

for X being gradients of first order spherical harmonics. Here dY9 =
e2vdV90 for n = 2 and dY9 = for n > 3, dV90 is the volume
element of go. Bourguignon and Ezin generalized it in [BE] by exploiting
the full conformal transformation group of sn which asserts that a solution
to the problem should satisfy

for any conformal Killing vector field X of S". We recall that a vector
field X on Sn is called a conformal Killing vector field if there exists a
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one parameter family of conformal diffeomorphisms pt (-E  t  E) of

sn such that ~Po = identity and X = 

In the following we say that a function K on sn satisfies the Kazdan-
Warner type condition if there exists some positive function f on sn
satisfying

for any conformal Killing vector field X of sn.
For convenience we introduce stereographic projection coordinates of

sn. Let P be the south pole and we make a stereographic projection
to the equatorial plane of sn. Let x = sn and let

y = (~1, - - ~ , denote the stereographic projection coordinates of
x. It is easy to see that

and

The set of all conformal Killing vector fields of sn forms a linear space
of dimension (n + 1)(n + 2)/2 and ~Xi 11  i  (n + 1)(n + 2)/2} forms
a basis, where Xi = for 1  i  ?~ + 1 and Xi are generators of
rotations for n + 2  i  ( n + + 2)/2.
We know that if K does not satisfy the Kazdan-Warner type condition

then there is no solution to (1) (n = 2) or (2) (n > 3). It is natural to

ask whether or not (1) (n = 2) or (2) (n > 3) has a solution for any
function K on sn which is positive somewhere and satisfies the Kazdan-
Warner type condition. Extensive study has been made and various existence
results have been obtained (see the references in the end and the references
therein). Nevertheless the above question had been left open for quite
some time. Some interesting results have been obtained for axisymmetric
functions K. We say that a function K is axisymmetric if K = K(9)
where cos 03B8 = For n = 2, X. Xu and P. Yang constructed in [XY]
some changing sign axisymmetric functions K and proved that they satisfy
the Kazdan-Warner type condition but (1) has no axisymmetric solution.
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For n > 3, Bianchi and Engnell constructed some positive axisymmetric
functions K and proved that they satisfy the Kazdan-Warner type condition
but (2) has no axisymmetric solution. However they did not know whether
or not (1) (n = 2) or (2) (n > 3) has a solution.

In a recent paper [ChL] Chen and Li proved that for an axisymmetric
function K( 0) (1) (n = 2) and (2) (n > 3) have no solution at all

if K(9) is monotone in the region where K is positive. In particular,
there are many changing sign functions K on S n (n > 2) satisfying the
Kazdan-Warner type condition, but (1) (n = 2) and (2) (n > 3) have
no solution. In their construction, it is essential that K changes sign. In
fact it follows from the results of [XY] that for the class of positive
nondegenerate axisymmetric functions the Kazdan-Warner type condition
is actually necessary and sufficient for (1) (n = 2) to have a solution. This
brings up a natural question that whether this is a general fact, or it is only
so for axisymmetric functions.

In this note we answer the above question by producing some

positive functions K which satisfy the Kazdan-Warner type condition, but
nevertheless (1) (n = 2) and (2) (n = 3, 4) have no solution. The basic idea
for constructing these functions is the following. Using some compactness
results for solutions of (1) (n = 2) and (2) (n = 3, 4), we produce a
family of functions K for which (1) (n = 2) and (2) (n = 3, 4) have no
solutions. We then show that these functions satisfy the Kazdan-Warner
type condition. There are actually many such functions, but for simplicity
we only present some with certain symmetry of sn.

STATEMENT AND PROOF OF THE RESULT

Let denote the set of functions h on sn which satisfy

and .~’2 denote the set of functions f on sn which satisfy

PROPOSITION 1. - For n > 2, h E f E .~2, we have
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Proof. - For h E it is easy to see that Xi(h)(~ ~ ~ , -xi, ~ ~ ~) _
_~Z(h)(... ~ xi~ ...)~ ~ ~ E 1  z  n, and X,(~)(-.r) =

V x E Sn, n + 2  z  (n + 1 ) (n + 2)/2. (5) follows

immediately.

First we fix 8 > 0 small and construct a function ho E n .~’1
with the following properties:

and the equality holds if and only if x = (o, ~ ~ ~ , 0, ~ 1 ) .
The construction of ho is elementary and we leave it to the readers.
Now for 0  E   b, we construct a family of functions {h~} ~

G°°(Sn) satisfying the following properties:

Set

Obviously 1/2  KE  5/2 for E small and Ko does not satisfy the
Kazdan-Warner type condition.

PROPOSITION 2. - For 2  n ~ 4 and E > 0 small enough, there exists
some smooth positive function ~E E .~’2 such that
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Proof of Proposition 2. - It is elementary to see that Xn+1 (KE) E F2
and near the south pole ( ~/ close to zero)

It follows that changes sign and therefore there exists some
smooth positive function fE E ~’2, such that, (6) holds for i = n + 1.

For 1  i  n and n + 2  i  ( n + + 2)/2, (6) follows from
Proposition 1.

The following is our main result.

THEOREM. - For 2  n  4 and E > 0 small enough, (1 ) for n = 2 and
(2) for n = 3, 4 have no solution for K = KE.
The above Theorem and Proposition 2 show that for E > 0 small enough,

KE are positive smooth functions on sn (2  n  4) which satisfy
the Kazdan-Warner type condition, but nevertheless (1) (n = 2) and (2)
(n = 3, 4) have no solution at all. The following is a proof of the Theorem,
modulo the statements of the relevant compactness results, for which we
refer to the Appendix.

Proof of Theorem. - As noted earlier, Ko does not satisfy the Kazdan-
Warner type condition, so (1) (n = 2) and (2) (n = 3, 4) have no solution
for Ko. By the compactness results (for n = 2, 3, see Theorem A in the
Appendix; for n = 4, see Theorem 0.8 in [L3]), (1) (n = 2) and (2)
(n = 3, 4) have no solution for KE for all E > 0 small. In fact for all K
lying in a C2 neighborhood of Ko, (1) (n = 2) and (2) (n = 3, 4) have
no solution. This proves our Theorem.

APPENDIX

We first state the compactness results that we need for solutions of (1)
(n = 2) and solutions of (2) (n = 3).

THEOREM A. - For n = 2, 3, let K E C2(sn) satisfy for some constants
Ki,d > 0 that
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Then for all solutions v of (1 ) for n = 2 and (2) for n = 3, 0  a  1,

Where C depends only on Kl , a and the modulo of continuity
sn.

We remark that, for n = 3, it follows from (8) and standard elliptic
theories ([GT]), C for a solution v of (2).
For n = 2, Theorem A was established in [H] (Theorem 3 there) and in

[CGY] (Theorem 2 there). For n = 3, Theorem A was established in [L 1 ]
(Theorem 0.4 there) based on [Sc2], [BC], and was established in [CGY]
(Theorem 2 there) by somewhat different approach. Certain compactness
results of similar type for n > 4 have been established by the second author
more recently. See [L2-3] for details.

For readers’ convenience, we give some ideas of a proof of Theorem A.

Idea of a proof of Theorem A. - Let us take this opportunity to clarify
the meaning of Theorem 3 in [H]. For a fixed K > 0 on S~ satisfying the
conditions listed in Theorem 3 of [H], there are apriori estimates for all
solutions of (1). In order to obtain uniform estimates for solutions of (1)
for a family of K’s, condition (7) above should replace the lower bound
condition for at the critical points of K. This remark seems to apply
also to Theorem 2 in [CGY]. The proof in [H] essentially works to prove
Theorem A (there were some errors in the proof of Theorem 3 in [H]
on the line below equation (20) and the fifth line below equation (20) on
p. 700 of [H], caused by oversimplification in the process of transcribing
the manuscript into typing. The following sketch is the original correct
version). It is easy to see that we only need to estimate maxg2 v. Suppose,
on the contrary, that there exist a sequence of Kj satisfying the conditions
in Theorem A, and corresponding solutions vj such that max Vj --~ oo.

Let Qj be such that = maxvj, and tj = For
each j, we use the stereographic projection coordinates with Qj as the
south pole to define

here and in the following we will use a point on S~ and its appropriate
stereographic coordinates interchangeably. Then Uj satisfies
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From our choice of we have = 0 and 

log 1 2 t2. The corresponding formulas in [H] were computed using
the same coordinates as here. But some errors occurred when they were
translated into the abstract notation there. If, after subtracting a subsequence,

Q, then elliptic theory implies that, away from converges
uniformly to a solution u of

The last inequality follows from the Gauss-Bonnet theorem and the Fatou’s
lemma. From the classification of solutions of the above equation, we
know that u - 0. To conclude global uniform convergence, we note that
convergence of u~ to u away from -Q and the Gauss-Bonnet formula
imply that

This implies that for any E > 0, we can find a small neighborhood Bs ( - Q )
of - Q such that ~  6. Under this small integral condition, by

a now standard pointwise estimate, u~ has uniform L°° bound near -Q,
and thus uniform global L°° bound on S~. Then it is easy to conclude

that u~ -~ u uniformly in C2 (subject to a selection of a subsequence).
The remaining essentially repeats the proof in [H]. The main idea is to
make use of the Kazdan-Warner condition, expanding and singling out the
leading terms to show that the above blow up can not happen. Note how
condition (7) above comes in. When we have a sequence of Kj to deal
with, we can no longer conclude that the possible blow up point Q is

a critical point of the Kj’s anymore. Instead, we can conclude that the
gradient of the Kj’s near Q is small, thus the condition (7) allows the
original argument to go through.
To establish Theorem A for n = 3, we only need to establish

Since the rest follows from standard elliptic theories.
Suppose the contrary of (9). Then for some d > 0, there exists a sequence

of C2 functions {Ki} which converge in C2 norm to some positive function
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and a sequence E C3(S3) of solutions of (2) with K replaced by Ki
with the following properties:

Let qi E S~ be a maximum point of vi. It is proved by R. Schoen [Sc2]
that there is precisely one isolated simple blow up point. See Definition 0.3
in [L2] for the definition of isolated simple blow up points and also a proof
of the above fact under the present hypotheses. This gives strong estimates
for Vi (see Proposition 2.3 and Lemma 2.4 in [L2]). Using this information
and the Kazdan-Warner identity, we reach a contradiction.
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