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ABSTRACT. - We investigate the questions of the existence and uniqueness
of viscosity solutions to the Cauchy problem for integro-differential PDEs
with nonlinear integral term. The existence of a solution is established by
considering semicontinuous subsolutions and supersolutions and applying
Perron’s method. Uniqueness is proved for both bounded and unbounded
solutions. These results are then applied to a problem arising in Finance,
namely the stochastic differential utility model under mixed Poisson-
Brownian information.
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Nous etudions l’ existence et Funicite de solutions de viscosite
du probleme de Cauchy pour des equations aux derivees partielles integro-
differentielles dont le terme integral est non lineaire. L’ existence est obtenue
par la methode de Perron et des principes de comparaison sont prouves
pour des fonctions bornees ou non bornees. Enfin, nous appliquons ces
resultats au modele economique d’ utilite differentielle stochastique adaptee
a la filtration engendree par un mouvement Brownien et un processus de
Poisson.
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1. INTRODUCTION

In this paper, we study the existence and uniqueness of a solution to the
Cauchy problem for a nonlinear integro-differential equation of the form

where F E x ~N x R x x SN), M E x R), mt,x is a
bounded positive measure, uT ~ C(RN), Du denotes the space gradient
and D2u the matrix of space second derivatives.
We propose an extension to (1) of the notion of viscosity solutions,

whose original theory applies to fully nonlinear possibly degenerate partial
differential equations - we refer to the User’s guide to viscosity solutions [3]
for a presentation of the theory. In addition to the classical requirements
that F be elliptic:

and satisfy, for some ~ ~ R,

we shall essentially impose that M is nondecreasing with respect to the
first variable:

Most works about viscosity solutions of integro-differential equations
we are aware of treat the linear case (M(a, b) = a - b) and the
related optimal control problem (with an integral term of the form

+ z) - u(t, ~) and restrict to bounded continuous
subsolutions and supersolutions (see for instance Soner [11]). In this paper,
we allow the functions to be semicontinuous and unbounded (see Sayah [10]
for results in this direction). This extension presents the great advantage
of providing easily a solution via Perron’s method under very general
assumptions. In addition, a difficulty arises from the nonlinearity of the
integral term for proving a comparison principle. Indeed, unlike the linear
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case where comparison follows at once from the observation that, at a

maximum point (t, x) of u - v: u(t, x + z) - u(t, x)  v (t , x + z) - v(t, x)
for all z, a general M does not offer such monotonicity, even under (3).
To simplify the presentation, we shall focus on linear F, but comparison

results could be obtained for more general local operators as in Crandall,
Ishii and Lions [3]. And we shall apply these methods to the following
equation arising from the stochastic differential utility model under Poisson-
Brownian information, in Finance theory

We note here that the underlying probabilistic problem was solved by
Ma [8], using the theory of stochastic differential equations. But the results
we obtain for (4) remain of interest, since the exclusive use of PDE

arguments allows to weaken most assumptions (concerning the measure m,
the regularity of M, or the case of unbounded solutions).

In order not to obscure the main ideas of this work, we leave to the reader
very natural extensions appearing in the literature, which can be treated
within the framework we propose here. For instance, we could allow M
to depend on t, x, consider the associated optimal control problem, allow
more general jumps with size x, z) instead of z, as well as unbounded
measures (in the neighbourhood of 0) - as in Bensoussan and Lions [2],
Sayah [10], or Soner [12].
The paper is organized as follows. In section 2, we give equivalent

definitions of semicontinuous subsolutions and supersolutions of (1). We
then establish a version of Perron’s method, adapted to the Cauchy problem.
Section 3 is devoted to comparison principles for the equation with a
linear local part 0 in (4)). After obtaining a preliminary
restrictive result for bounded functions, we prove comparison for general
M and unbounded functions. The last section relates (4) to its stochastic
interpretation and uses the change of variable introduced by Duffie and
Lions [5] to obtain general existence and uniqueness results.
We close the Introduction with a few notations and conventions. Most

come directly from the theory of viscosity solutions we assume the
reader to be familiar with. Further information can be found in the
User’s guide [3]. Given an open subset H of IRM, we denote by 
Vol. 13, n° 3-1996.
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the set of the bounded continuous functions in H, and C~ ( SZ ) the set

of the continuous functions with compact support in H. is the

open ball of ~M centered at x with radius r. As a general rule, we
associate with (0, T] x R~ its relative topology; for clarity however,
we shall denote = Br(t,x) n ((0,T] x I~ N ) . With a locally
bounded function in (0,T] x (~N, we associate its upper semicontinuous

envelope u*(t, x) = u(s, ~) (and, respectively,
its lower semicontinuous envelope u*(t, x) _ - ( - u ) * ( t, x ) ) . Given
u E x and t, x E (0, T~ x (~N, we define the parabolic
superjet:

as well as its closure:

If u E x (~N), we consider its subjet ~2~-u(t, x) _
-~2~+ (-u) (t, ~) and its closure ~2’ u(t, ~) _ -7~2’+ (-~c) (t, ~). Note
that the semijets are defined at the boundary {t = T}, for technical reasons.

2. VISCOSITY SOLUTIONS AND PERRON’S METHOD

In this section, we extend the definition of semicontinuous viscosity
solutions to integro-differential equation (1). As usual, we give an intrinsic
definition (depending only on the functions and on their semijets) as

well as an equivalent one that involves test functions. We also show
that Perron’s method still works for (I): the existence programme then
amounts to establishing a comparison principle and finding a subsolution
and a supersolution. As most of the results in this section use the classical
viscosity solution techniques, we shall insist on the treatment of the integral
term and sketch the remaining arguments.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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First of all, we have to make sure that the integral term is well defined
and has some regularity. Consequently, we assume at least that

for every (t, x) E (0,T] x mt,x is a bounded positive measure on IRN

and lim h(z) ms,y(dz) = h{z) mt,x(dz) provided h E (5)
s,y-t,x / 

’ ~
Because we wish to consider unbounded solutions, we must strengthen

the preceding requirement that m be a bounded measure. We shall assume
that, for every ( t, x ) E ( 0, T ~ x I~ N , there is some nonnegative continuous
&#x26; satisfying

The next lemma clarifies how (5) and (6) can be combined. First, it states
that (5) is still true for continuous functions that are bounded by ~. (This
extends the well-known observation that when m is a probability measure
(mt,~(I~N) - 1), (5) holds for functions in Cb((~N).) Second, it says that,
if h is semicontinuous, then the integral term has the same semicontinuity
(as a function of (t, x)).

LEMMA 1. -Letm satisfy (5 ) and 03C6 E T] x RN x be locally
bounded. Assume that for some (t, x) E (0, T~ x there are r~ > 0 and
some nonnegative  E C(~N) satisfying (6) such that

Then

Remark l. - For later use, we note that the preceding lemma implies
that if m satisfies (5) and if, for every (t, x) E (0,T] x IRN, there is some
continuous ~ > 1 satisfying (6), then (t, x) ~ ?TLt,x is continuous.

Proof. - We first assume that cp has compact support in (0, T] x (~ N x (~ N .
We can find E > 0, a nonnegative function x E such that x - 1
on and a nonincreasing sequence of ~n E x x

Vol. 13, n° 3-1996.
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such that p. From (5), we deduce that, for every n,

Sending n -~ oo, we conclude by Lebesgue’s monotone convergence
theorem that 

When the support of cp is no longer compact, we construct, for n large
enough, ~~ E x x nonnegative such that
xn = 1 on n , T~ x x For (s, y) E one has

By the preceding paragraph, as (s,y) -~ ( t, ~ ) , the upper li-
mit of the first expression in the right-hand term is smaller

--~

f z~~(z) From (6), we deduce that

Sending ~ --~ oo, we use Fatou’s lemma and obtain the inequality we
claimed. D

The preceding lemma is the motivation for the following requirement on
upper semicontinous functions that we shall be considering:

for every (t, x) E (0, T] x RN, there are 03A6 E > 1

satisfying (6) and ~ > 0 such that, for

Since M is nondecreasing, observe that, if -

(t, x, u(t, x)), (7) and the proof of Lemma 1 imply that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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The fact that semicontinuity is preserved in the nonlinear integral term
will be used extensively. Let us mention immediately that, in practice,
the construction of 03A6 (depending on (t, x)) in (6) imposes very natural
and simple conditions on m and on the asymptotic behaviour of u

and M. For instance, if u is locally bounded and bounded from

above, we shall assume that t, x H is continuous and choose

~ - max(l, u(s, y))). In a similar way, we require
that a lower semicontinous function satisfy

for every (t, x) E (0, T] x there are 03A6 E > 1

satisfying (6) and r~ > 0 such that, for

s, y, z E (8)
We can now define the notion of semicontinuous subsolutions and

supersolutions of (1) which is a straightforward adaptation of [3].

DEFINITION 1. - A locally bounded function u E U,S‘C ( ( 0, T] ] x 0~ ~ )
satisfying (7) is a viscosity subsolution of ( ~ ) if, for all x E I
u(T, x)  uT (x) and, for all (t, x) E (0, T ) x ~N, (p, q, A) E 

A locally bounded function u E LSC((0, T] x I~~) satisfying (8) is a

viscosity supersolution of ( 1 ) if, for all x E ~N, u(T, x) > uT (x) and, for
all (t, x) E (0, T) x (p, q, A) E ~2~-u(t, x):

u E C((0,T] x I~N~, satisfying (7) and (8), is a viscosity solution of (1)
if it is a viscosity subsolution and a viscosity supersolution of ( 1 ).

Remark 2. - It is equivalent to require that a subsolution

(resp. supersolution) satisfy (9) (resp. (10)) for (p, q, A) E

(resp. P’ u(t, ~)). Indeed, consider a sequence

(tn,xn) E (~, T) x I~~ as well as E with

(t, p u(t, x), p, q; A) ~ taking the
upper limit in (9) (written at as n -~ oo, and using the upper
semicontinuity of the integral term as well as the continuity of F, we
conclude that (9) holds at (t, x) for (p, q, A). An analogous statement is
true for supersolutions.

This remark will be particularly useful for establishing uniqueness for (1).
The existence programme needs the following equivalent definition.

Vol. 13, n° 3-1996.
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DEFINITION 2 (Equivalent). - A locally bounded function u E

x If~’~’) satisfying (7) is a viscosity subsolution of (1) if for

all x ’~(Z’, :~) C uT(:C) and, for all (t,x) E (O; T) x E

C2((O,T~ x such that u(t,a;) _ u on (O,T~ x 

we have:

A locally bounded function u E x satisfying (8) is a

viscosity supersolution of (1) if, for all x E ~L{T,:z;) >_ and, for

all (t; s~ E (O, T~ x c~ E x such that u(t,x) = 

u on (O,T~ x ~N/(t,x), we have:

We briefly justify the equivalence between the two 
definitions. Regarding

the subsolution property, we first observe that Definition 1 at once

implies Definition 2 because of the monotonicity 
of M and the fact that

E ~2,+z‘~t; .~~. Conversely, since 

~(z), one can use the upper semicontinuity of the left-hand term to find 
C((0, T] x such that u  ~o and x + z), u(t, ~)) _ + 1

- we leave the details to the reader. Next, given (p, q, A) E 7~z’+~L(t, x),
we construct a nonincreasing sequence of functions E C2 such that

then reads

oo, where we have used Lebesgue’s monotone convergence 
theorem

to take the limit. And (9) is shown, proving thus our claim.

We momentarily assume that we have established 
a generic comparison

principle for functions that lie between 
a subsolution 1!-. ~ C((0, ~ x 

and a supersolution v 6 C((0,T] x R~). And we check that the powerful
Perron’s method introduced by Ishii [7] extends to integro-differential
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equations (following mainly his argument) so as to obtain a viscosity
solution of ( 1 ) ~c E C ( ( 0, T ~ x (~ N ) with 1!  ~c  v. Taking advantage
of a particular property of the Cauchy problem observed by Barles and
Perthame [I], we are in fact able to improve the tractability of Perron’s
method by not requiring that ~c and v coincide at the boundary {t = T}.
Of course we have to make sure that the solution satisfies integrability
conditions (7) and (8) and therefore we ask that:

for every ( t, x ) E (0,T] ] x RN , there are 03A6 E C(RN), 03A6 > 1

satisfying (6) and r~ > 0 such that for s, y, z E B~ ( t, x ) x ( ~ N ,

PROPOSITION 1. - Let F E C((0,r] x I~N x R x I~N x SN ) be elliptic,
M E C(R x R) satisfy (3), m satisfy (5) and ~cT E C(I~N ). Assume
that there are _~c, v E C ( (0, T] x ~ N ) respectively a viscosity subsolution
and a supersolution of ( 1 ) such that  v on (0, T] x ( 12)
holds. Assume also that the following comparison principle holds: if
u E U,S’C((o, T] x and v E LSC((o, T] x (~N) are respectively a
subsolution and a supersolution of ( 1 ), with ~c  v and v > u then ~c  v
on (0,T] x Q~N.

Then there is a unique viscosity solution u E C( (o, T] x I~N ) satisfying
(7) and (8) such that u  U  v on (0,T] x I~N.

Proof. - The uniqueness statement follows readily from comparison. For
every (t, x) E (0,T] x we define

v(t, ~)
= is a subsolution of (1) with u  v on (o, T~ x 

We first note that 11:.  v*, v*  v, because of the continuity of ~c, v, and
therefore (12) implies that integrability condition (7) (resp. (8)) is fulfilled
for v* (resp. v*). We shall show that v*, v* are respectively a subsolution
and a supersolution of (1). Once this is proved, comparison will imply
that v*  v* on (0, T] x The reverse inequality holding obviously, we
shall first conclude that v E C((0, T] x and then that v is a viscosity
solution of (1), with u  v  v, as asserted. As a matter of fact, we begin by
establishing that v* (resp. v*) is a subsolution (resp. supersolution) of (1)
with generalized boundary condition, that is to say with the inequality

Vol. 13, n° 3-1996.
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u( T, x)  uT(x) in Definition I (resp. u( T, x) > uT(x)) relaxed to
r

for (p, q, A) E ~2~-u(T, x), if u(T, x)  UT(X), respectively). We conclude
by observing that a subsolution (resp. supersolution) to the Cauchy
problem with generalized boundary condition is indeed a subsolution (resp.
supersolution) in the sense of Definition 1, reproducing here the proof given
by [1, Proposition 5], for the sake of completeness.
We first prove that v* is a subsolution of (1) with generalized boundary

condition. Let (t, x) E (0, T] x f~N and consider a sequence sn, such
that _ (t, x, v* (t, x) ), un being a subsolution
of (1) for every n. If § E C2 is such that v* (t, x) _ and v*  ~
on (0, T] x x), there is a sequence of local maxima (tn, of

(for n large enough) such that _

(t, x, v* (t, x) ) . In addition, tn  T for large n, unless t = T and

v* (T, x)  UT(X), for uT is continuous. But, when tn  T, one has

where we have used (3) together with the inequality Un  ~; letting n ~ oo
and invoking Lemma 1, we conclude, as claimed, that

We now assume that v* is not a supersolution of (1) with generalized
boundary condition, so that there is (t, x ) E (0,T] x and § E C2
with v* (t, x) _ ~(t, ~~, v* > ~ on (0,T] x x), v* (T, x)  
if t = T and

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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First, we observe that v* (t, x)  v (t, x) . Indeed, v* (t, x) = v (t, x)
would imply that E 7~2~-v(t, ~); but the
fact that v is a supersolution contradicts (13). Therefore, for bl > 0
small enough, § + v on B+~1(t, x) and 03C6(T, y) + 03B41 ~ uT(y) if

(T, y) E B~ ( t, x ) n ~ t = T}. The continuity of the integral term (Lemma 1
and (12)) provides ~2, b2 > 0 such that

for all s, ~, b E (t, x) x ~0, b2~ . Lastly, we obtain 83 > 0 for which v* >
~~-b3 on (t, x) for r~o = r~2). Setting bo = b2, b3) > 0,
we define

The preceding construction guarantees that w E x 

u  w  v on (0,T] x IRN. We claim that w is a subsolution of (1)
with generalized boundary condition. Indeed, let (s, y) E (0, T] x (f8N
and x E C2 be such that w(s, y) = X(s, y) and w  x on

(0,T] x Then, it is clear that, whether w(s, y) = v*{s, ~) or
not, ~), ~), y)) belongs to P2>+v*{s, ~) or ~2~+(~ +
bo ) {s, y) . The fact that v* is a subsolution and ( 14) then imply (9). Finally,
observe that w*(t, x) > + bo) > v*(t, x); hence there
is (s, y) such that w(s, y) > v(s, y). We thus obtain a contradiction with
the definition of v once we know that w, as a subsolution of (1) with
generalized boundary condition, satisfy w(T, x)  on We now

prove this inequality.
So, let u E U,S’C( {o, T~ x (~N ) be a sub solution of ( 1 ) with generalized

boundary condition and suppose that u(T, x) > for some x E 

Fix ~ > 0 so small that + z), u(s, y)) ~ 03A6(z), for s, y, z E
x ~N, and u(T, ~) > for y E For E > 0, we

choose oo as E 2014~ 0 such that

and consider (tE, a maximum point of u(s, y) - CE(T - s)
on Since = 0, jtE - ~’~ = 0 and
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u(T, xE) > u(T, x) > when tE = T, we conclude that (9) should
hold at (-CE, 2I ) E for E small enough, which
would contradict our choice of The argument for the supersolution
proceeds exactly in the same way. D

3. COMPARISON RESULTS

We now turn to establishing comparison principles. As mentioned in
the Introduction, we begin by considering the version of (1) with a linear
local term

and we assume that

the standard hypothesis for comparison to hold for viscosity solutions
of linear partial differential equations. At first, we impose the restrictive
conditions

which actually guarantee comparison for bounded subsolutions and

supersolutions of the more delicate stationary problem. But it is well-

known, in the case of the Cauchy problem with no integral term, how
requirement (17) can be relaxed to a Lipschitz regularity in a (uniformly
in (t, x)) - this corresponds to the observation that, in (2), the requirement
A > 0 for the stationary problem can be relaxed to A E (~. More

precisely, we shall prove that the comparison principle holds for bounded
functions when g and M are locally Lipschitz; and, provided they are
globally Lipschitz, we shall allow the functions to be compared to have
an exponential or polynomial growth, depending on whether 03C3 and bare
bounded or not.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Considering first bounded from above (resp. below) subsolutions (resp.
supersolutions), we require that

which, as said before, imply integrability condition (7) (resp. (8)). We can
now state the following comparison principle for bounded functions, whose

proof, for the most part, mimics the classical argument of [3] for viscosity
solutions of nonlinear partial differential equations. We just mention that,
for technical reasons, we have to allow M to depend on t (an extension that

presents no difficulty but involves some more cumbersome expressions),
and thus we assume (18) to hold uniformly for t e (0, T~ .

PROPOSITION 2. - Let a, b E C ( ( 0, T] x f~ N ) satisfy (16), g E

C((0, T] x ~N x R) satisfy (17), M E C((0, T] x R x R) satisfy (3) and (18),
m satisfy (5) and (19), and uT E Let u E USC((0, T] x I~~)
be a bounded from above viscosity subsolution of (15) and v E

T] x bounded from below viscosity supersolution of (15).
Then

Proof. - We argue by contradiction and thus assume that

> 0. We fix ~ > 0 small enough so

that N = u(t, x) - v(t, x) - t > 0 and for 8 > 0, we set

which is positive for 8 small enough. Following the general viscosity
solution technique, we consider a global maximum point (tE, xE, ~E) E
(0, T] x R~ x R~ of u(t, x) - v(t, y) - 7 - b~x~2 - It is a classical

and easy exercise (see [3, Lemma 3.1]) to check that, along a subsequence,
(ts, xs, xs), for some (ts, E (0, T) x a

maximum point of ~c(t, x) - v(t, x) - t - b~x~2, and that

In addition, one has

Theorem 8.3 of [3] then provides (pE, AE, BE) e R x IRN x SN x SN
such that

Vol. 13, n 3-1996.
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and, under (16),

The observation that tE  T for c small enough and the fact that u and v
are respectively a subsolution and a supersolution of (15) then yield

and

We substract those two inequalities and take the upper limit as E -~ 0, with
Lemma 1 in mind, to conclude that

where the last inequality follows from (18) and the observation that
~(ts, xs) >_ v(ts, xs) for b small. Remarking that, for z E I~N,

we use ( 19) and the continuity of M to bound from above the last expression
in (22) by (for some R depending on the

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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upper bound of u and the lower bound of v), which goes to zero as 6 -~ 0.

We also note that (16) implies that, for some C > 0 independent of 8,

Recalling (17) and (21), we send 6 -~ 0 in (22) and conclude that

which contradicts our hypothesis that N is positive. D

Remark 3. - A careful inspection of the above proof shows that, instead
of requiring (9) (resp. (10)) to hold at every E (0,T) x it just
need be true when the set {y e x) > v(t, y~} (resp. ~y E

> v(t, x)}) is not empty. Indeed, as m(ts, xb) > v(ts, xb) for
6 small enough, (20) implies that, for e small enough, u(tE, ~E) > v(tE, yE)
and yE E 

Remark 4. - We wish to mention that condition (19), which was used in
an essential way, is optimal. Indeed, consider the linear equation

which has v(t, x) = T - t as a solution, whatever m we choose. For Q > 0
arbitrary, C > 0, we define = (with 8x denoting
the Dirac measure at x). We claim that, for C large, u(t, x) = 
a bounded subsolution of the equation, while comparison does not hold, for

~c(t, x) - v(t, x) = T > 0. We first observe that u(T, x) = 0
on (~ N and we compute

for C large.
We now relax (17) and (18) as follows: for a, b, c, d e [-R, R],

Vol. 13, n° 3-1996.
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and obtain the following general comparison principle for bounded
subsolutions and supersolutions.

PROPOSITION 3. - Let a, b e C( (0, T~ x ~N ) satisfy (16), g e
C((0, T] x f~N x f~) satisfy (23), M E x f~) satisfy (3) and (24),
m satisfy (5) and (19), and ~c~ E Let u E USC((0, T] x ~N)
be a bounded from above viscosity subsolution of (15) and v E
L5’C((0, T] x bounded from below viscosity supersolution of (15).

Then

Proof - Setting R = we define MR(a, b) _
M~~R~~)~ ~rt~b)~ and 9~t~t~ ~; a) - 9~t~ ~; ~rt~a)~, with ~R(~) -
min(max(a, -R), R). We choose C1, C2 > 0 depending only on R such
that gR(t, x, b) - gR(t, x, a)  Cl (b - a) when b > a, MR(a + h,; b + h) -
MR (a, b)  for h > 0 and M(a, c)  MR(a, c)  MR (b, M(b, c)
for a  b, a G R, b > - Rand c E [-R,R]. In particular, u (resp. v)
satisfies (9) (resp. (10)), with g~, MR instead of g, M, at every (t, x) such
that u(t;.x;) > -R (resp. t;(~,.r) ~ R) and thus when u(t, x) > v(t;y)
(resp. ~u(t, ;y) > v(t, x)) for some y E 
For K > 0 to be determined below, we set

A straightforward computation establishes that u’(t, x) - eK(t-T)u( t, x)
and v’(t, x) - are respectively a subsolution and a

supersolution of (15) with M’, g’ instead of M, g when u’ (t, x) > v’ (t, y)
(resp. u’(t, y) > v’(t, x)) for some y E B1(x). Remark that M’
satisfies ( 18), g’ is continuous and for a  b

for the choice K = 1 + Ci + C2 We apply
Proposition 2 and Remark 3, and conclude that ~c’  v’ on (0,T] x ~N,
which yields u  v. D

Comparison for unbounded solutions requires the "local" regularity
conditions (23) and (24) to be global, and thus we shall assume
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We have to distinguish whether 7 and b are bounded or

notice that this condition follows from (16) provided a(t, 0) and b(t; 0) are
bounded on (0,T]. In the first case, (19) is strengthened to

for some A > 0; this corresponds to the asymptotic behaviour for

subsolutions and supersolutions

respectively. (Note that under (26) and (28), a function satisfying the

first inequality in (29) fulfils the integrability condition (7) with ~(z) _
C depending on ( t, x ) . ) Our first unbounded comparison

principle is the following:

PROPOSITION 4. - Let a, b E satisfy ( 16), g E

C((0, T] x I~N x I~) satisfy (25), M E x I~) satisfy (3) and (26),
m satisfy (5) and (28), and uT E Let u E USC((0, T] x (~~) be
a viscosity subsolution of (15) and v E L,S’C( (0, T] x be a viscosity
supersolution of (15), that satisfy (29) respectively.

Then

Proof - Replacing, if necessary, u (and v) by u’(t, x) = 
(and v’), for some constant K chosen as in the proof of Proposition 3, we
assume, without loss of generality, that g and M satisfy respectively (17)
and (18) (and we drop the dependence on t of the new M for convenience).
For C > 0, we set

and we compute
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for C large enough.
This implies that, for ~ > 0, u - ~w is a bounded from above sub solution

of (15). Indeed, using (17) and (18) yields g(t, x, u(t, x) - x)) >
g(t, x, u(t, x)) as well as 
M( u( t, x-~-z)-~~w(t, x-~-z)-w(t, x)], u(t , x)); therefore, given (p, q, A) E
~2~+u(t, x), we conclude that

One would prove similarly that v + ~w is a bounded from below

supersolution of (15). Proposition 2 then implies that u - v + ~w on

(0,T] x RN and we conclude that u ~ v after sending ~ ~ 0. D

Remark 5. - Although this section is not concerned with the question of
existence, we shall need later a solution of (15). So we just sketch how
to obtain one that satisfies

under the hypotheses of Proposition 4 and the additional one:

We suppose, without loss of generality, that g and M satisfy (17) and (18)
respectively and redefine C so that the expression within brackets in (30)
is greater than 1 (instead of 0). For every integer n > 1, we define

x) = Cn(T + 1 - t) + x) and easy computations give
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In view of the asymptotic behaviour of g and uT, one can choose Cn so that

9(t~ W ~) ~ Cn + n w(~~ x), C‘n + x) and wn + 1

on (0,T] x Bn(0). Since, for every n, wn is a supersolution of (15), it

is not hard to check that v = min wn is a continuous supersolution and
satisfies the first inequality in (29). One constructs similarly a continuous
subsolution to (15) satisfying the second inequality in (29). We then invoke
Proposition 1 to obtain a solution with the required asymptotic behaviour.
A similar analysis extends to the case when a and b are unbounded but

satisfy (27). In addition to (19), we shall assume that, for some n E (0, oo ),

and require the subsolutions and supersolutions to be compared to satisfy
the asymptotic condition:

respectively (which, as before, implies integrability condition (7) for u
and (8) for v).

PROPOSITION 5. - Let a, b E C( (o, T~ X satisfy (16) and (27),
g E C((o, T] x H~N x satisfy (25), M E x ~) satisfy (3) and (26),
m satisfy (5), ( 19) and (31 ), and ~cT E ~’(~N ). Let u E ~’~ x ff~~ )
be a viscosity subsolution of ( 15) and v E L,S‘C( (o, T] x (~N ) be a viscosity
supersolution of (15), that satisfy (32) respectively.

Then

Proof - The proof goes exacly the same way as the one of Proposition 4
and we just have to explain how to modify w. We first remark

that (19), (31) and Holder’s inequality imply that, for all p e (0, n],
J’ (i+j’~)p/2 C, which yields
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Hence, setting w(t, x) = + we deduce that

for K large. D

Remark 6. - An argument analogous to Remark 5 gives a solution
to (15) satisfying = 0, under the
assumptions of Proposition 5 and x, = 0
and _ 0. 

4. APPLICATION TO STOCHASTIC DIFFERENTIAL UTILITY

In this section, we apply the results of the preceding sections to the
stochastic differential utility model due to Duffie and Epstein [4] under
mixed Poisson-Brownian information. As in the Dekel-Chew model (see
[4, example 5]), we restrict ourselves to M E x) satisfying (3) and

As a matter of fact, the assumption that Mi (a, a) = 1 is just required for
the stochastic interpretation but plays no role from the PDE point of view.
Besides, that M(a, a) = 0 is not a restriction since we may replace the
functions M and g respectively by

Before stating precise results, we wish to illustrate briefly how (4)
is related to the stochastic differential utility model, which solves a

particular forward-backward stochastic differential equation adapted to
the filtration generated by a Brownian motion and a jump process (see
Pardoux and Peng [9] for the Brownian information case). In order to
avoid technicalities and not to make too many restrictive assumptions,
we keep this discussion very formal, and refer to Ma [8] for a rigorous
presentation of the stochastic model. Let W be a Brownian motion for
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t E [0, T] and, given x E ~N, consider tc(t, x, A) a right-continuous with
left-hand limits orthogonal martingale measure (for A a borel set in R~)
that is independent with the Brownian motion and whose characteristic is

given by x, A) = f; fA ds - we refer to [6] for a presentation
of these notions. Given (t, x) E (o, T] x we suppose that there is a

unique adapted right-continuous solution (which is a Markov process) of
the equation

for s E ~t, T ~ . If v is a smooth function, Ito’ s formula reads

On the other hand, the stochastic differential utility solves the backward
SDE

with UT = 2GT(XT) and ~cr = 

(Zr, (dz) (see [4, section 7],
where (33) is used in an essential way). We now apply Ito’s formula to

u(t, x) = Ut, which we assume is smooth. Remarking that the Markov
property for X and uniqueness yield that Us = u(s, Xs~~), we first identify
ZS = and rs(z) = + z) - 
for s > t. Plugging these expressions into ~cs and equating the absolutely
continuous~ terms, we let s ~ t to conclude that u should satisfy

which is (4) with b(t, instead of b(t, x).
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We now return to the study of equation (4). In order to get rid of the
quadratic term (aDu, Du), we consider the change of variable used by
Duffie and Lions [5]

which is strictly increasing in a. The domain of the inverse mapping of W,
is denoted by -a = W(a) and j3 = W(a).

As W is strictly increasing, if v is a subsolution (resp. supersolution) of (4),
the function u = ~ (v) is a subsolution (resp. supersolution) of

with the notations

In the case of bounded viscosity solutions, an application of Proposition 1
and Proposition 3 readily yields an existence and comparison result. Indeed,
we first observe that the functions ~ -1 and ~’ ( ~ -1 ) are locally Lipschitz
continuous on (a, hence M is locally Lipschitz continuous on (a,,(3).
Moreover, the preceding remark, together with (25) and

imply that g satisfies (23) (for a, b E (cxR, ,C3R)).
THEOREM 1. - Let a, b E C( (o, T~ x satisfy (16), g E

C((o, T] x 6~N x l~) satisfy (25) and (35), M E x satisfy (3)
and (33), m satisfy (5) and (19), and u~ E 

Comparison. Let u E T] x be a bounded from above
viscosity subsolution of (4) and v E L,S’C((o, T] x be a bounded
from below viscosity supersolution of (4).

Then

Existence. There is a unique bounded viscosity solution of (4).
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Proof. - Supposing min v  max u (or comparison is trivial), we

extend 9 and M for a, b by truncation so that they coincide

on c and satisfy (23) and (24). We then

apply Proposition 3 and Remark 3 to obtain comparison. As far as the
existence is concerned, one may observe that, for K sufficiently large,
w(t, x) = exp K(T + 1 - t) is a supersolution of (4) thanks to (25)
and (35), while -w(t, x) is a subsolution of (4). Therefore, we may invoke
Proposition 1 to obtain a bounded solution of (4). D

We now turn to the unbounded case and require that 9 and M satisfy (25)
and (26) respectively. When these regularity
assumptions allow to extend 9 and M for a, b E ~a, ,~~ and then for

a, b E R x R by truncation (with possibly infinite values for g). We keep
the notations 9 and M for these extensions and we assume that they are
well defined and continuous on (0, T] x RN x R and R x R respectively.
In addition we require that, for some r~ > 0,

This implies that g(t, x, ~3)  0 (or equivalently lim g(t, ~, a)
~’(a)  0). In particular, ,~ is a supersolution of (34) (a is a subsolution),
which property ensures that a solution with boundary data within ~c~, ,~~
remains in ~a, Our first result concerns the case when a and b are

bounded and allows some exponential-like behaviour of the solutions:

THEOREM 2. - Let a,b E X satisfy (16), g E

C((0, T~ x ~8N x satisfy (25) and (36), M E C(R x R) satisfy (3),
(26) and (33), m satisfy (5) and (28), and uT E 

Comparison. Let u E USC((0, T] x be a viscosity subsolution

of (4) and v E LSC((0, T] x be a viscosity supersolution of (4),
that satisfy (37) respectively.

Then

Existence. Assume that
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Then, there exists a unique solution of (4) satisfying

Proof. - Comparison and existence follow respectively from Proposition 4
and Remark 5 when a = - oo and ,~ = oo. In the case a > - o0 or ,~  oo,

one combines the arguments of Proposition 3 and Proposition 4 to obtain
comparison. Perron’s method (Proposition 1) and the fact that ~3 is a

supersolution (a is a subsolution) then provide a solution U E [a, ,~~ to (34)
- or with the required growth when solution to (4) is
then given provided U E ( a, ,~), to whose proof we now turn.
When ,~  oo, for E > 0, v > 0, we set ,~ - +

x) with the same w as in the proof of Proposition 4 and the C of
assumption (36). Easy computations then prove that wE is a supersolution
to (34) for E small, v arbitrary. Given x E RN, we choose v (depending on
x) so small that  > for all t E (0, T~ and we remark that
for some R > 0 (depending on x), vw(T, y) > 1 for y E We then

fix E > 0 so that on BR (r) and use the comparison principle
to deduce that U ( t, x )  for all t E (0,T]. By the definition of v,
we conclude that U(t, x)  /3, as claimed. The case a > -oo is treated
similarly. D

When a and b have linear growth, we are in the context of Proposition 5
and Remark 6 and we require the subsolutions and supersolutions to satisfy
respectively

Note that our hypotheses on a and b are suited for applications in Finance,
where stock prices, which are to determine the utility function, follow a
geometrical Brownian motion. With this interpretation in mind, one can
choose = ,ub_x (z), for some ~c > 0, that models a risk of default
of the underlying assets (and which choice fulfils our assumptions).

THEOREM 3. - Let a, b E C( (o, T~ x satisfy (16) and (27),
g E C((0, T] x x R) satisfy (25) and (36), M E C(R x R) satisfy (3),
(26) and (33), m satisfy (5), (19) and (31 ), and ~cT E 

Comparison. Let ~c E USC((0, T] x be a viscosity subsolution

of (4) and v E LSC((0, T] x be a viscosity supersolution of (4),
that satisfy (38) respectively.

Then
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Existence. Assume that

Then, there exists a unique solution of (4) satisfying
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