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ABSTRACT. - Given an oriented, compact, 3-dimenional contact manifold
(M, A) we study maps f = (a, u) : C ~ R x M satisfying the Cauch-
Riemann type equation ics + = 0, with a very special almost
complex structure J related to the contact form A on M. If the energy
is positive and bounded, 0  E((u)  oo, then the asymptotic behavior
of u : C 2014~ M as Izl 2014~ oo is intimately related to the dynamics of the
Reeb vector field X~, on M. Assuming the periodic solutions of Xa to
be non degenerate, we shall show that limR~~ u(Re203C0it) = x(Tt) for a
T-periodic solution x with = T. The main result is an asymptotic
formula which demonstrates the exponential nature of this limit. Some

consequences for the geometry of the maps u : C -~ M are deduced.

Key words: Finite energy planes, pseudoholomorphic curves, contact forms.

Etant donnee (M, A) une variete de type contact, compacte,
orientee et de dimension trois, nous etudions les applications U =
( a, u) : C --~ R x M solutions de 1’ equation de type Cauchy-Riemann
ics + = 0 où  est une structure presque complexe tres particuliere,
reliee a la forme de contact A définie sur M. Lorsque Fenergie est positive
et bornee, 0   oo, le comportement asymptotique d’une solution
u : C -~ M quand z ~ --~ oo, est intimement lie a la dynamique du
champ de Reeb Xa defini sur M. Supposant que les orbites periodiques
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338 H. HOFER, K. WYSOCKI AND E. ZEHNDER

de Xx sont non degenerees, nous allons montrer que lorsque R 2014~ oo,

x(Tt), ou x est une orbite T-periodique de X~, vérifiant
T = Le principal resultat de cet article est une formule asymptotique
qui etablit la nature exponentielle de cette limite. On en deduit certaines
consequences pour la géometrie des solutions u : C ~ M.
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1. INTRODUCTION, NOTATIONS, RESULTS

We consider a compact oriented 3-manifold M and choose a contact
form A. Its existence is guaranteed by J. Martinet [11]. We recall that a
contact form A is a 1-form on M such that A A dA defines a volume-form
on M. In the following we shall always assume that the orientation of
M agrees with the one induced by this volume-form. Since the functional
~?-,-,,: TmM --~ R does not vanish, with the contact-form A there is associated
a 2-dimensional vectorbundle £ - M over M, whose fibre ~m C 
is defined by

This vectorbundle is a so called contact structure of M. The skew symmetric
form cv = cva = is nondegenerate on each fibre and hence defines
a symplectic form on the vectorspaces ~~ C TmM. We denote by (~, w)
this symplectic vector-bundle. In addition, again in view of the fact that
A A dA is a volume-form, the kernel ker dA C T M is 1-dimensional and
defines a line-bundle transversal to ç. Its fibre is defined by
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339PROPERTIES OF PSEUDOHOLOMORPHIC CURVES

This line-bundle has a distinguished section: there is a unique nonvanishing
vector-field X = X a defined by

X = Xx is called the Reeb-vector-field of A. Summarising we see that the
tangent bundle T M of M splits into the line-bundle l -~ M having the
preferred section Xa and a symplectic bundle ç - M having the preferred
symplectic form w = dA:

If (~ denotes the flow of X satisfying == X((~(~)). ?~ e M,
d d

we conclude from (1) that dt(03C6*t03BB) = 0 and = 0. Consequently
leaves the vectorbundle 03BE invariant:

Moreover, since X is time-independent we conclude from pt o cps = 
as usual,

and see that d03C6t leaves the splitting of T M invariant. With

we shall denote in the following the projection along X. It satisfies:

for every h E TmM = ~~. The symplectic vectorbundle

M has a distinguished class of almost complex structures

~: ~ --~ ~ satisfying J(m) E ,C(~~-,.z, ~?-,-z) and = -I, which are
compatible with dA in the sense that

defines a positive definite inner product on each fibre ~~ . This space of
complex structures is contractible, as is well known, see f.e. ([1], [3], [9]).
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Fixing an almost complex structure J compatible with dA we are

interested in the first order elliptic system for functions

defined by

where z = s + it E C. In order to reformulate this equation we introduce
the almost complex structure J on the 4-manifold R x M as follows:

for (h, k) E x M~. One verifies immediately using (2) that

J2(h; k) = (-h. -~). The equation (4) is equivalent to the equation

There are plenty of solutions of (5) which are not interesting to us: for
example, if x: Q~ --~ M is a solution of the Reeb field x = X(~c) on M, then

is a solution, as is readily verified. As was shown in Hofer [4], there

is, however, an interesting class of solutions singled out by an "energy
requirement". Let

and define for f ~ 03A3 the 1-form 03BBf on R x M by:

For a solution u = (a, u) of (5) one computes
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341PROPERTIES OF PSEUDOHOLOMORPHIC CURVES

which is a nonnegative integrand. Here, and also in the following, we used
the norm := gJ(h, h) for h where g J is defined in (3). Therefore,
if ic is a solution of (5), then

and we define its energy E(u) E [0, oo] by

DEFINITION l.l. - A finite energy plane is a solution ic = (a, u) of (5)
satisfying, in addition,

For the trivial solutions u defined in (6) we have = oo. Indeed,

taking a function f E ~ with f ’ ~ 0 we compute

The significance of the concept of "finite energy plane" lies in the

following result relating finite energy planes to periodic orbits of the Reeb
vectorfield X, see [4].

THEOREM 1.2. - Assume ic = (a, u) : ~ -~ f~ x M is a finite energy plane.
Then 

,

and there exists a sequence oo such that 

x(Tt) in for a T-periodic solution x(t) of the Reeb vectorfield
x(t) = X (x(t)). If this solution is nondegenerate then

with convergence in 

The first part of Theorem 1.2 has been proved in [4]. The strengthening
for a non-degenerate asymptotic limit will be proved in the present paper.
The limit x associated to a suitable sequence Rk ---+ oo will be called, in
the following, an asymptotic limit. As stated, the asymptotic limit is unique

Vol. 13, n° 3-1996.
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provided there exist a non-degenerate one. In general this should not be
case. However we do not know an explicit counter example.
As for the existence question, we recall that if M has a non-vanishing

then for every contact form A and every compatible almost complex
structure J there exists a finite energy plane. One can also show that for
the three-sphere S3 there exists a finite energy plane for every choice of
contact form and compatible J. All these results, with the exception of
the case where A is a tight contact form on S3 have been proved in [4].
Theorem 1.2 then shows that the associated Reeb vectorfields X possess

periodic solutions.

We are not concerned in the following with the existence question. Rather
we assume the existence of a finite energy plane and the aim is to describe
precisely its asymptotic behaviour as Izl --~ oo. We shall assume, however,
that the T-periodic solution x ( t) guaranteed by the first part of Theorem 1.2
is nondegenerate. This requires that it has only one Floquet multiplier equal
to 1, and hence is isolated in the set of periodic solutions of the Reeb
vectorfield having their periods close to T. We reformulate the second part
of Theorem 1.2 as follows

THEOREM 1.3. - Let f = (a, u) : ~ --~ ~ x M be a nonconstant, finite
energy plane as in Theorem 1.2, with an asymptotic T-periodic orbit x(t)
which is nondegenerate, then

moreover the convergence is in 

The theorem allows us to study, for R large, the finite energy plane in
a tubular neighborhood of its limit x(t). It is convenient to consider the

holomorphic cylinder v = f o p = (a, v), with the biholomorphic map
cp: R x ,S’1 --~ C B ~0~ defined by cp(s, t) = Then v(s, t) --~ x(Tt)
as s - oo in C°° (Sl ). We shall construct local coordinates R x 1R2 in a
tubular neighborhood of x(t). In these coordinates the map v is represented
by (a, v) = (a( s , t) , 03B8(s, t) , z ( s , t) ) : x R x R2. If T = kT,
k > 1, where T is the minimal period of the periodic solution x(t), then
19(s,t+ 1) _ ~ ( s, t) -f-1~, while the other functions a, z are 1-periodic in t.
The main contents of this paper is the proof of the following asymptotic
description of a non degenerate finite energy plane.

THEOREM 1.4. - There exist constants c E R and d > 0 such that
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for all multi-indices ,~, with constants M = M,~. Moreover, we have the
asymptotic formula for the transversal approach to 

where t) -~ 0 as s -~ oo uniformly in t for all derivatives.

Here ~c: [so, oo) ~ I~ is a smooth function satisfying tc(s) ~ ~  0

as s ~ oo. The number ~ is an eigenvalue of a selfadjoint operator
A in L2 (,S’1, (~2 ) related to the linearized Reeb vectorfield X along the
limit orbit x (t). The operator is defined by A = - ~.To at - ,S’~ (t), with

,S’~ (t) = + 1) a symmetric, 1 periodic, smooth 2 x 2 matrix function
defined by where m = E R x R~.
Moreover,

is an eigenvector of A belonging to the eigenvalue ~  0.

From this asymptotic description of ic we shall deduce, using the similarity
principle, the following global consequences

THEOREM 1.5. - Let u = ( q, u) : I~ x M be a nonconstant

finite energy plane with nondegenerate asymptotic periodic orbit x(t). Let
P = ~x(t) ( t E I~~ c M. Then the sets

consist of finitely many points.
This means that the map u: M intersects its limit x(t) in at

most finitely many points. Moreover, the tangent map T u has maximal
rank except at finitely many points, using that 7r o is

complex linear, in view of the identity 7r o Tu o i = J o 7r o T u.
These results will be important in a series of applications of holomorphic

curves methods to problems in low-dimensional topology and Hamiltonian
dynamics, see ([5], [6], [7], [8]). There we will use holomorphic curve
methods in symplectisations to construct open book decompositions for
certain three-manifolds, [7], as well as global surfaces of sections for
Hamiltonian flows on three-dimensional energy surfaces, [8]. In particular
it turns out that a Hamiltonian flow on a strictly convex energy surface in
R4 has either precisely 2 or infinitely many periodic orbits, see [8].

There are three technical ingredients to any application. The first is a

complete description of the behavior of finite energy planes at infinity,
which is the same as the behaviour of a finite energy surface near a
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non removable singularity. This is the contents of the present paper. The
second ingredient is the study of embedding properties of finite energy
surfaces and their projections into the contact manifold. Here methods from
algebraic topology like intersection theory, Maslov indices and winding
numbers combined with the asymptotic analysis from the present paper
will play a crucial role, see [5]. The third ingredient is a Fredholm theory
and implicit function type techniques in order to describe families of finite
energy planes, see [6].

2. PERIODIC ORBITS OF Xa
AND LOCAL COORDINATES NEAR THE ENDS

We consider a T-periodic solution for the Reeb vectorfield

x = Then x ( 0 ) _ ~ ( T) and for the linearization of the flow

~pt we have

Hence 1 is an eigenvalue of E The periodic
solution in called nondegenerate if this is the only eigenvalue equal to 1 of

the linear map Since dpT leaves the splitting X(x(O)) m 
invariant this is equivalent to the requirement that

has no eigenvalue equal to 1. Dynamically a nondegenerate T-periodic
solution is isolated on M in the set of periodic solutions having periods
close to T. In order to study the asymptotic behaviour it is convenient in the
following to consider a cylinder instead of a plane. Let cp: R x 5~ 2014~ C B ~0~
be the biholomorphic map defined by

where = R/Z. If ic = ( a, u) is a finite energy plane, we define the
cylinder

by
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In what follows we will use a letter a to denote a map C 2014~ R and a map
R x R obtained by composing a with p. Then v = (a, v) satisfies

A solution v of (7) satisfies the estimate

from which one derives estimates for all derivatives

For a proof of these crucial estimates, based on a "bubbling off ’ analysis
and elliptic estimates we refer to Hofer [4].

In order to prove Theorem 1.3 we start with

PROPOSITION 2.1. - Let u be a finite energy plane and assume there exists
a sequence (Rk) such that -~ x{Tt) in C°° (,S’1, M). Assume
further that x is a non-degenerate T-periodic solution of x = X (x). Then
given any S1-invariant C~-neighbourhood W of x(T.) in M)
there exists Ro > 0 such that E W for all R > Ro.
The S1-action on M) is the one induced by the operation of S 1

- on itself. Here we view M as being embedded in some Rn. The Frechet
space C°° {,S’ 1, Rn ) is equipped with a translation invariant and S1-invariant
metric d which we restrict to the subspace M). The proof will
follow from Theorem 1.2 and the estimates (8) using the assumption that
the periodic solution x is isolated. We work with v. Let (sk ) be the sequence
defined by via = Rk. We have, by assumption,

Define the closed subset S of the loop space of M by

In view of the estimates (8) S is a compact set of M). We need
the following
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LEMMA 2.2. - Let x be aT-periodic non-degenerate solution of
x = X(x) and S a compact family of loops in M). Denote by
xT E C°° M) the associated loop t ~---~ x(Tt). Then, for a given open
S1-invariant neighbourhood W of xT there exist two open S1-invariant
neighbourhoods U and V and numbers b, ~ > 0 satisfying

and

for all yES n (i7 B V).

Proof. - We find an open 51-invariant neighbourhood U of xT, U C W,
such that for every loop y E U satisfying  |03C0|2 dt = 0, we have that

y*03BB is near to T, and y(S1) is close to Recall that s1x*03BB = T.
Therefore, y(S1) belongs to a periodic orbit of the Reeb vectorfield X,
which corresponds to a fixed point of the Poincare map associated to the
distinguished T-periodic solution ~r. Clearly, if U is small enough we have

y(Sl) = {x(t) | ] t E R}, provided y E U and  |03C0|2 dt = 0, by our

non-degeneracy assumption. Next take an 51-invariant neighbourhood V
such that there exists a number é > 0 with Bê(V) c U. By the compactness
of S, the map y -  |03C0|2 dt is bounded away from 0 on S n (U /V).
This completes the proof of the lemma. D

Proof of Proposition 2.1. - In view of Lemma 2.2 we have

for all y~S n (U / V). We know that ~ x(T.) with x being a T-
periodic non-degenerate orbit of X. Hence we may assume that E U

for all k. If our assertion is wrong we find a sequence (s~) such that
v ( s ~ , ~ ) ~ V. Eventually taking suitable subsequences we may assume that

In view of the uniform gradient estimate of v in (8), the solution v needs a
uniform time in order to travel through the set !7 B V: there exists an ~ > 0
and [ak, b~~ C s~~ with bk - a~ > ~ for all k such that
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Hence we compute

There is an infinite sequence of such k’s and we, therefore, find

This contradicts the assumption

The proof of Proposition 2.1 is complete. D

We shall study the finite energy cylinder v = ( a, v ) : R x x M as

introduced in the previous paragraph. We know by the previous discussion
that given any 51-invariant neighbourhood W of x (T ~ ) in M) we
have v ( s , ~ ) E W for all s large enough. Hence we can study the solution
v : R x M for large s, say s > so locally in a tubular neighborhood of
the periodic solution x. For this purpose we shall first introduce convenient
local coordinates in M near the periodic solution x (t) . The coordinates
will be given by

where the periodic solution is on S1 x {0~, f is a positive function and
f . Ao is a contact form with

being the standard contact form on S 1 x R2. Since S 1 = we work

in the covering space and denote by (~, ~, ~) E R3 the coordinates,
~ mod 1. Recall first that if ~p: (N, -~ (M, ~) is a diffeomorphism
between two contact manifolds satisfying = then the corresponding
Reeb vectorfields are transformed into each other by

as is easily verified. Hence cp maps the solutions of X~ onto the solutions
of Xx: for the flows we have ~pt o cp = cp o for all t E R. This will

be used in the proof of
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LEMMA 2.3. - Let (M, ~) be a 3-dimensional contact manifold, and let x(t)
be a T-periodic solution of the corresponding Reeb vectorfield x = Xa (x)
on M. Let T be the minimal period such that T = kT for some positive
integer k. Then there is an open neighborhood U C S1 x 1~2 of S1 x ~0~ and
an open neighborhood V C M of P = ~~(t) ~ t E ~~ and a diffeomorphism
p: U -~ V mapping ,S’1 x ~0~ onto P such that

with a positive smooth function f : U --~ I~ satisfying

for E ~.

Proof. - Let V be a local diffeomorphism mapping 5’~ x f 0}
onto P such that the contact structure is transversal to Sl x f 0}.
By J. Martinet [II], we find a local diffeomorphism 7 2014~ U’ in the local

coordinates, where U and U’ are open neighborhoods of S1 x f 0~ C S1 x ~2,
satisfying x {0}) = S1 x {0~ and

with a nonvanishing smooth function g : U --~ R. Denoting in the covering
space (~, ~, g) E R3 the coordinates, the function g is periodic in ~ of
period 1. The Reeb vectorfield X903BB0 associated with the contact form gAo
on S1 x R2 is computed to be

By construction, in view of the remark previous to the Lemma this

Reeb vectorfield is tangential to the periodic solution (a(t), 0, 0) =
(po o ~pl)-1(x(t)), where a(t + T) = a(t) + l. Recall that T is the minimal
period of x ( t) . As usual, we work in the covering space R of S 1 = R/Z.
Therefore

and
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Finally, we define a diffeomorphism p2: Sl x f~2 -~ Sl x f~2 leaving
S 1 x ~ 0 ~ invariant, by

where = so that + 1) = + 1. Then the composition
cp = po o pi o cpz is a local diffeomorphism S1 x ~z ~ M mapping the

periodic solution ,S’1 x ~0~ onto x,(t,). It satisfies p*A = fAo, with the
function f defined by

The function f satisfies f (r -I- 1, x, y) = f (~9, :~, y) and a computation,
using (11) shows that f = T and f03B8 = fx = fy = 0 at every point
(~9, 0, 0) E S1 x ~0} as desired. This finishes the proof of the Lemma. D

From now on we shall work in the local coordinates (r, ~r;, y) E R x R2,
~ mod 1 with the contact structure

with a smooth and positive function f : R x I~ 2 -~ R, defined near R x ~ 0 ~
and periodic in ~: f (~, x, ~) = f (~9 -~- l, x, ~) and satisfying (10). The
Reeb-vectorfield X = Xa (~9, x, y) E R3 is periodic in ~9, satisfies

and is given by

The contact plane ~~-,-~ at m = E 1~3, defined by ~~,-,, _ ~ 1~ E f~3 (
~~.,.L (I~) = 0~, is the two dimensional plane

where

at the point m = (~, x, ~) . Since
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at m = (~, x, y) we find that the symplectic structure ( ~.r.,-,, ® ~r,-,, is, in the
basis ei, e2 of ~m given by the skew symmetric 2 x 2-matrix SZ ( ~, .r, y) :

where

is the standard symplectic structure of R2.
Given to us is an almost complex structure j.r,.t, : ~,r-,~ -~ Çm compatible with

and induced by the diffeomorphism cp: !~3 --~ M of Lemma 2.3:

where J is the almost complex structure chosen in Theorem 1.2. Since 
is compatible with it is, in the basis el, e2 of represented by a
2 x 2-matrix M = M(m) depending smoothly on m and satisfying

The second condition is, in view of f > 0, equivalent to MT Jo M = Jo,
hence equivalent to det M = 1. The last condition requires the inner product
g(z, z’) = (SZz, M z’) = z’), for the coordinates z, z’ E (~2 of ~.m,,
to be positive definite. It is equivalent to f2T M > 0 and hence, since

f > 0, equivalent to

Finally, as in the introduction, we shall denote by 7r: the projection

along the Reeb vectorfield X onto the contact planes. It is given by the
formula

for k E R~.
If now v = x S 1 --~ M is the positive energy cylinder of

Theorem 1.2, we write in our local coordinates

for some so > 0 large. We shall use the notations
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Working, as usual, in the covering space R of S1 = R/Z, the functions
a(s, t), x(s, t) and y(s, t) are I-periodic in the t variable. The function

~9(s, t), however, represents a map from S1 onto S1 and satisfies

~9(s, t + 1) = ~(s, t) + k. Indeed, this follows from the fact that
for any sequence sn - oo there is a constant c E [0,1) such that

u(sn, t) -~ ~(Tt + c) as n -~ oo. Here ~(t) is the T-periodic solution
of ¿ = X (~) and T = kT with the minimal period T. In view of

X (~, 0, 0) = T (l, 0, 0) we find that ç(Tt) = (Tt /T, 0 , 0) = (~t, 0, 0)
and the claim follows. By construction, these functions solve the equation

At the point (a, E 1f84, the J is given by

where 7r = is the projection as in (13). More explicitely we therefore
can write the equation (14) as follows:

with 03BB = 03BBu and 7r = 7r u’ Note that X(u) ~ 0. Abbreviating the partial
derivatives

we next express the equation (17) in the basis ei,e2 of the contact plane
~.~. In view of (15) and (16) and using the formula (13) we obtain for
(15)-(17) the equations
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Here M = M(u) is the 2 x 2 matrix which represents the almost complex
structure ju in the basis (el , e2 ) of ~u . For the derivatives of {} we find
the additional equations

where x = ~ ( s, t). In view of the definition A = f . Ao we can rewrite (18)
and find

with x = x(s, t).
We need the following lemma which will be a consequence of

proposition 2.1 and a standard bubbling-off argument as given in [4].

LEMMA 2.4. - As s 2014~ 00

uniformly in t, for all derivatives c~ = (cxl, a2). Moreover,

uniformly in t, provided ( > l.

Proof. - First we recall from [4] that for a finite energy plane v = (a, v)
all the partial derivatives of v, and the partial derivatives of a satisfying
lal ( > 1 are uniformly bounded. (Here we view M as beeing embedded
in some Rn). In addition, we recall from [4] that every sequence t),
with s~ -~ oo, possesses a subsequence converging with all its t derivatives
uniformly to a T-periodic solution of X. By Proposition 2.1 we, therefore,
conclude that the statement for the functions x(s, t) and y(s, t) hold true
for all the derivatives in time, i.e. for a = (0, k), k > 0. That it holds
true for all derivatives follows from the equations (19) and (20) together
with the second statement.

In order to prove the second statement, i.e. the statement for the functions
a and {) we argue by contradiction. If the assertion is wrong, we find a

sequence tk) with s,~ ~ oo and tk ~ to E ~0,1] satisfying
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for some e > 0 and some multi-index a of order at least 1. We can always
add a real constant to a and an integer to {) so that still the equations (18)
and (19) hold. This will also not affect our assertion. Define a sequence
of functions ((ak, bk)) by

Eventually taking a subsequence the above sequence has a C~loc-convergent
subsequence, whose limit we denote by (a, b). The map (a, b) is then defined

. on R x R, and a is 1-periodic in t while b satisfies b(s, t + 1) = b(s, t) + k.
Moreover, it solves the equation

on R x R. Indeed, this follows from (19) and (20) taking into account that
,~(~, o, o) = T, x2(~, o, o) = x3(~, o, o) = 0, and that (~(s, t), ~(s, t)) ~
(0,0) as s 2014~ oo. Hence, the function f (s + it) = + iTb(s, t) is

holomorphic on C. Since its first derivative is bounded, the function f is
linear, and hence

with real constants c and d. Recall that T = kT. Consequently, since

> 1, we deduce that

Clearly (22) contradicts (21). This completes the proof of the lemma. D
If X = (Xi, X 2 , X 3 ) is the Reeb vectorfield, we next introduce

Since X (t, 0, 0) _ (1/T, 0, 0) we have Y(t,O) = 0 and, therefore, by the
mean value theorem

with the matrix function
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In particular,

where the righthand side is evaluated at (t; 0, 0). Introducing

and the matrix functions

we can represent the equation (19) in the form

for z = z(s, t). In order to simplify the presentation we assume now that
the almost complex structure M is given by

i.e. M agrees with the standard symplectic structure, which is a constant
matrix. We shall reduce the case of a general M to this special case later on.
Next we will show converges exponentially to 0 as

s --~ oo. Define the operators A ( s ) in (f~ 2 ) by

By Lemma 2.4, for every sequence sn -~ oo, there is a sequence cn E [0, 1]
such that

in Introducing the matrix

we conclude, using Lemma 2.4, that
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oo in For any c E R the matrix ,S~(t) is symmetric. Indeed

where the last matrix is evaluated at (kt + c, 0, 0). This allows to introduce
the selfadjoint operators A~ in L2 (,S’1, 8~2 ) by

with domain of definition ~V 1 ~ 2 ( S 1 ) . Since the inclusion

W l, 2 ( S 1 ) -~ L2 ( S 1 ) is compact, the resolvent of ~4~ is compact. Hence the
spectmm consists of isolated eigenvalues of multiplicity at most 2,
which accumulate at +oo and - oo . The spectmm ~r ( A~ ) does not depend
on the value of c. Observe that A~ is a relatively compact perturbation of
the selfadjoint operator -Jo-r whose spectrum is the set 27rZ.
LEMMA 2.5. - The periodic solution x(t) _ (kt, 0, 0) e R3 of the Reeb

vectorfield X is nondegenerate if and only if

Proof. - Let pt denote the flow of X = (Xl, Y). Then the derivative
d03C6t along the solution x(t) = (kt, 0, 0) leaves the splitting 1R3 = R x R2 =

~’,.t, m = (kt, 0, 0), invariant. Hence it is of the form:

where R(t) is the resolvent solution satisfying = dY(kt, 0, 0)R(t)
and R(0) = I. If the solution is degenerate, then 1 is an eigenvalue
of R(l). Let e E R~ be a corresponding eigenvector. Then w(t) = R(t)e
is 1-periodic and solves the equation

or, equivalently,

and hence w E ker(A~ ) . Conversely if Q ~ w E then

w(t + 1) = w(t) is a solution of (27) and (26). Hence R(t) w(0) and
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w(t) are solutions of (26) having the same initial condition w(0) and
therefore w(t) = R(t)w(O). Consequently = w(1) = w(0) and
hence 1 is an eigenvalue of I3(1) so that :z(t) is degenerate. ll
We shall use Lemma 2.5 in order to prove

LEMMA 2.6. - Assume the periodic solution x(t~ _ (kt, 0, 0) of the Reeb
vector field X is non degenerate. Then the function z(.s, t) _ (.x,(s, t~. ~(~s, t) )
converges exponentially to zero in there exist sl > 0 and r > 0 such that

for s > s1.

Proof. - We shall denote the )-norm by ) ) ) ) . In view of Lemma 2.5
we have the estimate > for all ~ E DAc~ and all c E [0,1].
The constant 80 > 0 is independent of c. Consequently, in view of (25),
we find constants 61 > 0 and si > 0 such that

for all ~ E R2) and for all s > sl. We introduce the smooth
function g(s) by

We differentiate g twice. In view of (24), we have zs = A ( s ) z ( s ) .
Abbreviating z = z ( s ) , we obtain the formula

Since S~ (t) is symmetric, we conclude from (25) that t) - S* (s, t) ~ -~
0 as s --~ oo uniformly in t. Using Lemma 2.4 we conclude from (23) that

( -~ 0 as s -~ oo, uniformly in t. Consequently, denoting by O(s)
a positive function converging to 0 for s ~ oo we can estimate

Choosing s 1 sufficiently large we find a constant 8 > 0, such that

Since g ( s ) is bounded, we deduce

and the Lemma is proved. D
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We will now use the exponential estimate of z in order to finish the
’ proof of Theorem 1.3. Recall that a and ~9: oo ) x f~ ~ R are smooth

solutions of

Moreover f (~9, 0) - T and we can write

Define the 1-periodic functions ex)) x ,S’ 1 -~ R by

We have that

for > 1 as s 2014~ oo, uniformly in t. The equation (28) becomes

Abbreviating

we can write the equation (29) in the form

with a smooth function h: [si, oo) x 6~ 2014~ R satisfying, in view of the
exponential estimate of the exponential estimate

for some constants M and r > 0. Integrating the equation (30) over the
interval [0, 1] we obtain
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for s > s 1. In particular, we have

LEMMA 2.7. - If the periodic solution x(t) = (kt, 0, 0) of X is non

degenerate, then there exists a constant ~9o E ~ such that

as s -~ oo, uniformly in t, for all derivatives a.
Without loss of generality we shall put later on ~90 = 0.

Proof. - In view of (31 ), the meanvalues of the (in the variable t) periodic
functions ~(s, t) - kt over t E [0,1] is a Cauchy sequence. By Lemma 2.4,
c~~ ~~~s, t) - kt] --~ 0 as s -~ oo, if 1, uniformly in t. It follows that
~(s, .) - kt --~ ~o in COO(R) as s -~ oo, as claimed in the Lemma. D
With Lemma 2.4 and Lemma 2.7 the proof of Theorem 1.3 is complete.
We also observe that with these Lemmata, putting ~o = 0, we have

as s --~ oo. Abbreviating in the following

we have

in Summarizing we consider a finite energy cylinder v =
(a, v): R x x M and assume that it is nondegenerate in the
sense of Theorem 1.2: there exists a nondegenerate T-periodic solution
x(t) of the Reeb vectorfield x = ~ ( x ) such that v(s, . ) -~ ~ as s -~ oo in
C°° . The period is T = kT, with the minimal period T. Then there are local
coordinates in a tubular neighborhood of x C M in which the cylinder is
represented by the functions

for some large so > 0.
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The functions u(s, t) = (~z(.s, t) , ~(s, t), x(s, t), y(s, t)) are periodic in t
except ~9 which satisfies ~9(s, t + 1) _ ~9(s, t) + k. The convergence to the
periodic solution becomes

and (a, u) satisfy as s -~ oo the properties of Lemma 2.4. The functions
solve the equations

where z = ( x , ~ ) . Here f = f(t, z ) : f~ 3 --~ R is smooth, I-periodic in t and
satisfies f(t, 0) = T and df(t, 0) = 0. Moreover ,S’(s, t) -~ ,~~ (t) as s -~ o0
in C°°. The matrix is periodic in t, symmetric and satisfies 0 ~ 
Our aim is to prove the following result about the asymptotic behaviour of

nondegenerate finite energy planes locally near the limit periodic solution.

THEOREM 2.8 (Asymptotic behaviour of nondegenerate finite energy
planes). - Assume the functions (a, u): [so, oo) x 8~ --~ 1~4 meet the above
conditions. Then

either

(i) There exists c E ~, such that .

or

(ii) There are constants c E B~, d > 0 and Ma > 0 for all a = ( a 1, a2 ~ E
N x N such that

for all s > so, t E R. Moreover

Here 0 is an eigenvector of the selfadjoint operator corresponding
to a negative eigenvalue ~  0 and ~y: ~so, oo) -~ f~ is a smooth , function
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satisfying ~ ~ as s -~ oo. In particular e (t) ~ 0 pointwise and the
remainder r(s, t) satisfies

for all derivatives a = (cxl; cx2), uniformly in t E R.
We point out, that the first alternative does not occur if the data (a, u)

is the restriction of a finite energy plane in view of its global properties.
Indeed, if (i) holds we have v ( s, t) = (T s + c, x (t) ) for all s > so, where
x is a solution of the Reeb vectorfield X. Since the original equation is
translation invariant (in s), v(s, t) = (Ts + c, x(t)) for all (s, t) E I~ x 
and hence is a trivial solution. We conclude that v*dA = 0 (introduction),
contradicting 

in Theorem 1.2.

Remark 2.9. - We have assumed above, that the representation of the
given almost complex structure in namely the matrix M(m) agrees
with the standard structure Jo (in the bases (el, e2) of ~). This is no loss
of generality as we shall demonstrate next by a change of coordintes in

Recall by (12), > 0, i. e. is a positive definite matrix,
which, in addition, is symplectic. Define, in the coordinates z E R2 of 
at the point m = (~9, x, y), the new coordinates z’ E (~2 by

Then T = T(m) is symmetric and symplectic, so that T JoT = Jo, and
we claim that

Indeed with T also T-1 is symmetric and symplectic: = Jo.
Since, by definition, T-2 = - Jo M and J-10 = - J0 = J6, we have
T-1 = and hence = J0TT-2 = 
We have proved

which is equivalent to (34). Introduce now
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and define ç by

Using (34) and (35) one derives from the equation (24) for z(s, t) that £
is a solution of the equation:

where

The equation has the same form as (24). Moreover, from T (s, t) ~ Too(t)
as s ~ oo in where

we find that -~ S~ (t) as s -~ oo in where

The dot denotes the derivative of Too in t, and dY(m) is the restriction
of the linearized Reeb-vector-field along m = ( I~t, 0, 0 ) , as
introduced above. Since JdY is symmetric, as we have seen, one verifies
that is symmetric, using that Too is symmetric and symplectic.
Hence the operator

is selfadjoint, and, as before, 0 ~ if and only if the periodic solution
of the Reeb vectorfield X is non degenerate. This follows immediately from
Lemma 2.5, observing that the linear and periodic vectorfield in z E R2:

is, by the periodic transformation z = (t)(, transformed into the vector
field

It follows that Theorem 2.8 holds true for ~(s, t) replacing z(s, t) in the
statement, and hence, by formula (36), also for the original z(s, t), for
every almost symplectic structure compatible with A.
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3. PROOF OF THE ASYMPTOTIC FORMULA (THEOREM 2.8)

We shall consider the smooth function (a, ~9, z ) : [so , oo ) x R -~ R4 which
meets the assumptions of Theorem 2.8, i. e. solves the equations (32)
and (33) and has the asymptotic properties as described in Lemma 2.4.
In the following we shall denote by z ( s ) the periodic function z ( s , t )
and abbreviate L2 == L2 ( S ~ ~ . We start investigating the alternative (i) of
Theorem 2.8. Recall that the period of the limiting periodic solution 
of the Reeb vector field satisfies T = kT with the minimal period T. In
order to simplify the notation in the proof we assume

furthermore we often drop the index in J = Jo. We begin with a proposition
concerning the L2-convergence of (~, y). It is of course related to our

previous discussion. However the conclusion is now somewhat stronger,
since we have convergence of u(s, .) as s ~ oo.

PROPOSITION 3.1. - Assume I~ -~ R4 solves the

equations (32) and (33) and has the asymptotic properties of Lemma 2.4.
--~ 0 as s -~ oo. If

for some s* > so, then

for all s > so and t E R with some constant c E R.

Proof. - The first claim is an immediate consequence of Lemma 2.4.
Assume 0, then z ( s * , t ) = 0 for all t E R and we pick a
t* E R such that z t s * , t* ) = 0. Since z ( s, t) solves the partial differential
equation (33) there is an open neighborhood D C R2 of the zero (s*, t* )
of z, on which z can be represented as

Here ~: D 2014~ GL ( C ) is continuous and holomorphic
function. (This is the generalized similarity principle for which we refer to
H. Hofer and E Zehnder [9]). Since (s* , t*) is a cluster point of zeroes of
z we conclude that h - 0 on D and hence z(s, t) = 0 on D. Consequently
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z(s, t) = 0 for all s > so and t E ~. We conclude from the equation (32),
using that

By Lemma 2.4, we can expand into Fourier series in t:

The coefficients solve the equations

whose solutions are all periodic. In view of the asymptotic behaviour
i.e. Lemma 2.4 we, therefore, conclude ak{s) = bk(s) - 0, 0,

ao(s) = const and bo(s) = 0, as claimed in the proposition. D

For the remainder of this section we shall assume that 0 for

all s > so. We know that 2014~ 0 as s ~~ oo. Using the assumption
0 / we shall derive an exponential formula.

LEMMA 3.2

for a smooth function a: [so, oo) ~ R satisfying a(s) _ ~  0

and A E 

Proof. - We assume 7~ 0 and abbreviate ~~ ~~ _ ~~ (~Lz. Introduce
the smooth function

Differentiating in s, using that z solves the equation (33) we obtain
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abbreviating J - Jo. Denoting by (~, ~) the scalarproduct we
conclude from (~, ~~ = 1 that ~~5, ~~ = 0, and inserting the above equation
we find

so that

We have to show that the smooth function a converges as s 2014~ oo

to a negative eigenvalue of Dropping the subscript we recall that

A = A~ = Jd dt - S~ (t) and write

Then, by the previous --~ 0 as s -~ oo in Denoting
by the prime the derivative in the s-variable we can write the equation (37)
for ~ and the smooth function a in (38) as

We differentiate this function. Using the selfadjointnes of A and the identity
(ç, (A + ~)~ - aç) = 0, we obtain

In view of = 1, we have the estimates:

where 0 ( s ) 2014~ 0, as s -~ oo . Consequently

Next we claim that a is bounded

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



365PROPERTIES OF PSEUDOHOLOMORPHIC CURVES

for some C > 0. Arguing by contradiction we assume that a is not bounded
from above. Then there is a sequence sn -~ oo such that a(sn) -~ oo. On
the other hand if a ( s ) > b > 0 for all s large, then --~ +00 in

view of (39) which contradicts ||z(s)|| ~ 0, as s ~ oo. Hence there exists
another sequence sn -~ oo such that cx (s,’,.z )  6 and so the function c~ has

an "oscillatory" behaviour as s 2014~ oo. 27rZ it follows

from Kato’s perturbation theory for isolated eigenvalues of selfadjoint
operators [10], that there is an L > 0 and an integer m, so that every
interval of R having length equal to L contains at most m points of the

spectrum 03C3(A = - Jd dt - Boo) belonging to the perturbed operator A.
Consequently there are spectral gaps of fixed size: there is a sequence

rn -~ oo and a constant d > 0 satisfying

Hence by the oscillatory behaviour of a we find a sequence Tn 2014~ o0

satisfying Q(Tn) = rn and c~’ (Tn )  0. It then follows from (43) that

-~ ~ as n - oo. Since, by (40), ~’ = Aç - + 6-, we can

estimate

Here we have used, that ~ ~ ~ ( ~ = 1 and that for the resolvent of a

selfadjoint operator ||(A - )-1 ] = Using (46) we

conclude from (45) that ~~~ ’ ( T n) ~~ - > ~ > 0 contradicting --~ 0

as m ~~ oo. This contradiction shows that a is indeed bounded from above.
The same argument shows that a is also bounded from below, proving
the claim (44).

There exists a sequence sn - oo such that ( - 0. Indeed,
otherwise, for all large > b > 0, hence a’ > b2 in view of (43),
and a(s) > ~2{s - so) + a(so), so that -~ oo, in view of (39).
This contradicts 2014~ 0. Since a is bounded, the sequence a(sn) has
a convergent subsequence, limn~~ 03B1(sn) = 03BB and we conclude from (46)
that A E ~ {A) . Since a is bounded, every sequence a(Tn), Tn ~~ o0
possesses a convergent subsequence, limn~03B1 a (Tn ) and we claim that

~c = A. Indeed, if  A, then a has again an oscillatory behaviour
and we can pick   v  A satisfying v / a(A), and a sequence

oo satisfying a(sn) = v and c~’ { sn )  0. Consequently, in view
of (43), ~ ~ ~’ (sn ) ~ ~ 2014~ 0 and hence, in view of (46), v E r(~4), contradicting
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v ~ 03C3(A). We have proved that lims~~ 03B1(s) = 03BB and A E a(A). Clearly
A  0, since otherwise ||z(s)|| ~ +00. But then A  0 in view of our

assumption 0 ~ r(~4). This finishes the proof of Lemma 3.2. D
For the solution z = z ( s , t ) of the equation (33) we have, in view of

Lemma 3.2, the formula

The exponential decay of z as s -~ oo will be concluded from the C°°
bounds of 03BE and a in the next Lemma.

LEMMA 3.3. - Define, as in Lemma 3.2,

Then, for every ,~ = E i~ x N and j E N:

Proof. - By (40) the 1-periodic smooth function ~: [so, oo) x I~ -~ (~2
solves the partial differential equation

The smooth functions S and a satisfy

for all multi-indices /3. The supremum is taken over all S 2: so and t E R.
Recall also that the constant matrix Jo satisfies JJ = -1. In order to
establish at first Wk,2loc-estimates for 03BE we make use of the following well-
known a-priori estimate for the elliptic operator 9. If B c f~2 is a disc of

radius R > 0, k > 1 an integer and p > 1, then there exists a constant
M = M(k,p, R) such that

for every (/? E C°° {1~2 ) having its support in the interior of B. For a proof
we refer to E. Stein [12] or to C. Abbas and H. Hofer [1].
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We fix in the following p = 2 and an integer R > 2 and define for every
x* E 1R2 a monotone decreasing sequence of closed discs centered at x*
and having radii Rj, j > 0:

Then D ... D B x * R . With ~ ~ > 1 we denote a

sequence of bump-functions 03BEj e satisfying 03BEj ~ 1 on Dj
and having supports in the interior of the larger discs moreover,

0  ~~  1. Abbreviating ~~ _ ~ and Do = D we conclude from (49)

Using 9(~) = (c~~)~ + ~(d~) and the equation (48) for ~, namely
~~ _ 20145’~ 2014 a~, we can estimate

where the constant C depends on sup~S~ and Now, by
definition of ~, the Lz-norm over the time ~~~(s)~~Lz~s~ = 1 for all s, and
hence (2R)2 independently of the choice of the center x* of
the disc D. Consequently there exists a constant Ci > 0 independent of
:~*, such that for all discs

From (42) we conclude that ci for all s > so. Using the
a-priori estimates

for all k > 1, one finds, proceeding inductively, constants Ck > 0 such that

These constants do not depend on x*. Here one uses crucially that
the derivatives are bounded on the whole space. The estimate

~ c~ ~ cx ( s ) ~ I  ck for all s > so follows at each iteration step using the
equation (42) for a. Finally, by means of the well-known Sobolev-

embedding theorems we deduce from the uniform Wk,2loc-estimate (50) the
pointwise estimates for j > 0:
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for  j, and for all s > so and t E R. This finishes the proof of
Lemma 3.3. D

Recall that and A  0. We deduce from Lemma 3.3
and the representation (47) for z:

COROLLARY 3.4. - Let 0  r  I ~ I, then

for all derivatives with constants M = 

PROPOSITION 3.5. - Recall that a( s) -~ ~ as s ~ oo with ~ C 0 and
.~ E There exists an eigenvector e(t + 1) = e(t) of = ~e

satisfying = 1 and

Proof. - In view of the previous Lemma it is sufficient to prove the

convergence in We start with

LEMMA 3.6. - Let E C the eigenspace of belonging to
A E Then

where the distance is taken in the 

Proof of Lemma 3.6. - Arguing by contradiction we assume that

E) > ~ for some ~ > 0 and for a sequence sn ~ ~. Since,
by Lemma 3.3, the derivatives of are uniformly bounded, there is
a constant c > 0, such that

Therefore we find intervals around sn, In = ~s.n - d], with some
d > 0, such that

We claim that there exists a sequence Tk E such that

as ~; ~ oo . Indeed, we recall, using (46) and = 1, that
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Therefore it is sufficient to prove -~ 0. If not, then we have
> b for s E In, all n, with some 8 > 0. Hence a’ ( s ) > b2 in

view of the estimate (43), s E In and hence, by the mean value theorem
+ d) - d) I > 2db2 > 0 for all n, which contradicts the

convergence a( s) ~~ A as s - oo and proves the claim (52).
Now, by Lemma 3.3 we know that C and hence, since

W 2, 2 ( S 1 ) is compactly embedded in we find a subsequence
which converges in Wl,2 such It follows from

= 1 that = 1 and, in view of (50), that Aooe = Ae, so that
e E E. This contradicts (51 ) and hence the Lemma 3.6 is proved. D

LEMMA 3.7. - There exists e E E, i.e. Aooe = Ae such 1

and

Proof. - Let P denote the orthogonal projection of L2 (Sl) onto the
eigenspace E of Aoo, and define

Recall that, by (40), ~ solves the equation ç’ = 0152Ç. Using
= we find for ((s) the equation

From Lemma 3.6 we conclude

as s ~ oo. Therefore ~~~(s)~~ > 2 for large s and we define the smooth
function r~ by 

This function satisfies the differential equation

Using that ~r~’, r~~ = 0 we find, inserting the equation (53) for (’ that
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Since, in the L2-norms, = (~rl~~ = 1 and ~~~~~ > 2 we find the estimate

where é(S, t) = 5(s, t) - S~(t). By definition, 5(s, t) = t), z(s, t))
and Soo(t) = N(t,0) for a smooth matrix function N. Therefore we can
estimate:

with the t-periodic function ~ ( s , t ) _ ~ ~ s , t ) - t. We shall prove below that
~ ~ ~ ( s ) ~ ~ L2  Ce-rs for some r > 0. Consequently we find together with
the exponential estimate (47) for z, that

for some r > 0. Take any sequence sn -~ oo, since is, by Lemma 3.3,
bounded in W~~2 (s1 ) it possesses a subsequence converging in 
such e E W 1 ~ 2 ( S 1 ) . From Lemma 3.6 we conclude that e E E
and it remains to prove the uniqueness of this limit. Assume e

and -~ ~ in tV~(~), then, by (54), -~ e and e’ in

L2(Sl). Using (55) we can estimate in L2

00. Hence e = e’ and the proof of Lemma 3.7 and, therefore, also
the proof of Proposition 3.5 is finished. D
As a consequence of Lemma 3.7 and the C°° bounds of Lemma 3.6

we have t) ~ e(t) as s ~ oo in Now define r(s, t) =
~(s, t)-e(t). Using the equation (40) for the derivative of ~ in the s-variable,
the convergence a ( s ) -~ A, and ( A - ~ ) e = e, we deduce inductively that
c~~ r ( s, t) -~ 0 as s -~ oo, uniformly in t, for all derivatives. Recalling
formula (47), we have established the asymptotic formula for the function z
in theorem 2.8. It remains to demonstrate the exponential decay of the
functions a - T s and {) - kt. Again, for simplicity of the notation, we
assume T = k = T = 1.

4. END OF THE PROOF

We shall now use the exponential estimate of z (Corollary to Lemma 3.3)
in order to derive the desired exponential estimate for the functions a and {)
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by means of the maximum principle. Recall that a and ~9: [so , oo) x R - R
are smooth solutions of

Moreover f (t, 0~ - 1 and we can write

Introduce the 1-periodic functions a, b: x 9~ ~~ R by

By Lemma 2.4,

as s 2014~ oo, uniformly in t. Moreover we have by our preceeding discussion
that

as s --~ oo uniformly in t. The equation (56) becomes

Hence, abbreviating

we can write the equation (57) in the form

with a smooth function h: [so, ~) x S1 ~ R satisfying, in view of the
corollary to Lemma 3.3, the exponential estimates

for constants M = M~, and 0  r  j ~ j . Our aim is to deduce similar
estimates for w. We start with a simple
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LEMMA 4.1. - Assume v: ~so, (0) x -~ ~2 is smooth, bounded and solves

for some r > 0, where the norm is the If v satisfies
Vt (s, t) --~ 0 as s --~ oo uniformly in t, and moreover has vanishing mean
values,

then:

for rand p  2.
Proof. - We first show that E L2 implies E L2, the

norm denoting the We make use of the following pointwise
identities for a function w = t):

Since v has mean values zero we can estimate ~(~)~  !!~(~)!!. Using (59),
integrating by parts, and observing that the integral of the derivative of
a periodic function over a period vanishes, and v solves the equation
vs + JOVt = g, we obtain

where ( , ), denotes the inner product in L2 ( S 1 ) . E L2 we
conclude for the limits s -~ oo :

Take now an increasing sequence of monotone increasing functions
R satisfying = s for 0  s  n, 0  ~yn ( s )  1 for
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s E R, and = const for s > n + 1. Let p > 0 and define the

sequence vn = v as

Then v is smooth, bounded, satisfies --~ 0 as s - oo, has mean

values zero and E L2 . Differentiating we obtain

If 0  p  r we conclude, in view of the exponential decay of g, for n > so

Hence

with a constant M independent of n. Let p  1/2; taking the limit as
?T, 2014~ oo we conclude that ( E L2 as claimed. D

By means of the maximum principle we shall deduce

LEMMA 4.2. - If 0  p  r and p  2 , then a solution w of (58) satisfies

with constants M = M,~, for all derivatives o~~ = ~al ~~2 satisfying ,~l > 1,
fl2 > 0.

Proof. - Let w be a solution of (58) and abbreviate

If ,~1 > 1, the mean values of v over a period vanish, moreover v solves
the equation

with g = and hence (g(s. t,) ~ G for some M > 0. We can

apply Lemma 4.1 and conclude, in view of that
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for every p  r and p  1/2. Define

Due to (60) there exists, for given 6 > 0, an increasing sequence sn --~ oo,
satisfying 0  such that ~~~p(sr,,) ~~ -~ 0 and ~~ --~ 0

and, therefore

uniformly in t. We shall conclude that G C, for some C > 0. For
this purpose we compute the Laplacian

From vs + J0vt = g we derive vtt = gs - Jogt, so that

where R(s, t) = Jogt) is, in the sup norm, arbitrarily small for s

large, in view of the exponential decay of g. Set now

then

By (62) we estimate

for every p > 0. Hence

Choosing  = 1 2 we conclude, using p  2 , that

for some constant a > 0. In view of (61), we know, in addition, that

~ ( s n , t )  1 for all t and n large. Choosing 8  7r we have verified the
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assumptions of a version of the maximum principle for the cylinder due to
A. Floer and H. Hofer in ([2], Proposition 8). We conclude that 1/;( s, t)  C
for some constant C and for all (s, t). Consequently ePs t) ]  M as
claimed in the Lemma.

Having proved the estimates for the derivatives we finally turn to the
estimates of the functions and first claim, that there exists a constant c E R
such that

uniformly in t. Indeed, from  Me-Ps, and the equation (57),
we find  Me-Ps, so that

for s, o- -~ oo, uniformly in t. Hence, a(s, t) ~ c(t) as s -~ oo, with
a continuous and periodic function c(t). Similarly for fixed t, T we have
~a(s, t) - a(s, T) ~ --~ 0, as s 2014~ oo. Hence c(t) == c must be a constant
as claimed in (63). Define

and

Then w - u has vanishing mean values over a period and hence

Using the equation Wt + ~To ws = h we obtain, since the mean value of a
derivative in t vanishes,

Integrating we find, using u( 8) 2014~ 0, as s 2014~ oo,

Consequently,

and hence, ~u(s)~  Me-Ps. Together with (64), we see that t)~ 
Me-Ps, as desired. To sum up, we have demonstrated:
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PROPOSITION 4.3. - Assume (a, d, z) meets the assumptions of Theorem 1.2.
Then there exists a constant c E (~ such that for 0  p and p  1 /2,

for all derivatives ,~, with constants M = M,~.
This completes the proof of Theorem 2.8 about the asymptotics of

nondegenerate finite energy planes. We shall use now the asymptotic
formula in order to derive some global properties of nondegenerate finite
energy planes.

5. INTERSECTIONS OF THE FINITE ENERGY
PLANE WITH THE "LIMIT CYCLE"

If (a, u): C -7 R x M is a finite energy plane, which is nondegenerate
as in Theorem 1.2, then -~ p(Tt) as R -~ oo. Here p(t) is
a periodic solution of the Reeb vectorfield x = X (x) associated to the

_ 

contact structure A on M. The period T is positive and we assume that
T = 1 (for notational convenience). It turns out that outside of a large
disc the energy plane does not hit the "limit" periodic solution p. We shall
abbreviate P = ~p(t) ~ ] t E I~~ c M.

THEOREM 5.1. - If (a, u) : C -7 R x M is a nondegenerate finite energy
plane as described in Theorem 1.2, then there exists an R > 0, such that

(i) u(z) ~ P if ~z) >_ R
(ii) R,

where = -~ projection onto the contact
plane.

Proof. - The proof is an immediate application of the asymptotic formula
in Theorem 2.8. We argue by contradiction and assume, in the cylinder
variables (s, t) E R x that u(sn, tn) E P for a sequence sn ~ oo. We
may assume that tn -~ t* E Sl. In the local coordinates near P, we then
have u = 1R3 and z(sn, tn) = 0. By the formula

we have
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Since r(s, t) -~ 0 as s --~ oo we conclude that e(t* ) = 0. This contradicts
the fact, that the eigenfunction e{t) does not vanish and proves statement (i).

Similarly one proves the second statement. We assume that
= 0 for a sequence sn ~ oo. Hence for sn large u(sn,tn) is

in our local coordinate neighborhood of the periodic solution. We can write
u(t, s) = (d, z) and us(s, t) = {~s, zs). Since = with

the Reeb vectorfield X, we have

and hence, at 

Since 0) = 0, we can write X2 (~, z) = Rz, with a matrix function
R = z), so that, at tn)

Inserting the asymptotic formula in Theorem 2.8 the exponential terms
cancel, and we find

Recall now that a(s) -~ ~  0, and r(s, t), rs(s, t), t), x(s, t) -~ 0
as s -~ oo. We conclude Ae(t*) = 0, contradicting again e(t) ~ 0. This
finishes the proof of Theorem 5.1. D

Using the generalized similarity principle we shall deduce from
Theorem 5.1 the

THEOREM 5.2. - The sets

consist of finitely many points.

Proof - In order to prove the first statement we argue by contradiction
and assume that there is an infinite sequence zn E ~ such that u(zn ) e P.
By Theorem 5.1 we can assume that zn -~ z* E ~ and u(z*) E P. By
Darboux’ s theorem there is an open neighborhood of ~c ( z * ) E M on which
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we find coordinates (d, x, ~) _ (d, z) E (~3, in which the contact form ~
is represented as

and in which ~c(z* ) corresponds to the origin 0 in 1~3. Using the cylinder
coordinates (s, t) E R x ,S’l, the map u ( s, t) = (~(s, t), z(s, ~)) E R x IR 2
satisfies, in our local coordinates, the equations

where ~I (s, t)2 = - l. This is proved as in Section 3; this time f = 1 and
= (1,0,0). By assumption, we know that

for a sequence --~ ( s * , t* ) . Consequently, by the generalized
similarity principle [9], there is an open neighborhood D of (s*, t*) on
which the solution z of the equation is represented by z ( s, t ) 
where z = s + it, ~: D ~ is continuous, and h: D -~ ~2 ^-_’ C
is holomorphic. By assumption, z* = s* + it* is a cluster point of zeroes
of the holomorphic function h. Therefore, h - 0 and hence z - 0 on D.
Consequently u(s, t) E P for all (s, t) in the open set D. We have proved,
in particular, that the set of points z = (s, t) which are cluster points of zj
satisfying E P is an open set in I~ x Sl . It is clearly also a closed set
and hence agrees with R x Sl so that u(s, t) E P for all (s, t) E R x S’l.
This contradicts Theorem 5.1.
The second statement is proved similarly. Note that in the above local

coordinates the Reeb vectorfield X is constant, X (z9, z) _ (1,0,0). Hence,
the condition 0 = 03C0us = us - 03BB(us)X(u) becomes, in our local coordinates
(u = (d, = 0. Introducing ( = zs we find, by differentiating (65) in
the s-variable, that ( solves the equations

Moreover, ~(sn, tn) _ ~(s*, t*) = 0 for a sequence (sn, tn) --~ (s*, t*).
Hence, by the generalized similarity principle [9], ~ - 0 in an open
neighborhood of ( s * ; t* ) = 0. Consequently = 0 in an open
neighborhood of z * E C.

Arguing as before this leads to a contradiction to the second statement
in Theorem 5.1. The proof of the Theorem 5.2 is complete. D
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