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ABSTRACT. - We construct global strong solutions of the Navier-Stokes
equations with sufficiently oscillating initial data. We will show that the
condition is for the norm in some Besov space to be small enough.

RESUME. - Nous construisons des solutions fortes globales des equations
de Navier-Stokes, pour des donnees initiales suffisamment oscillantes. Cette
condition se traduit en terme de norme petite dans un certain espace de
Besov.

INTRODUCTION

We are interested in the following system, for x E R3 and t > 0,

with initial data ~c(x, 0) _ the sake of simplicity, we suppose
that v = 1; a simple rescaling allows us to obtain any other value. Local
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existence and uniqueness in the Sobolev space and the Lebesgue
space are known, if s > 1 / 2 and p > 3 (see [4]). We have global
solutions for small initial data in L~(R~) (see [9] or [4]) and H! (R3)
(see [4] and [5]), or in L~(R~) n with p > 3 (see [1]). We shall
extend the results of [4], for s > 1/2 and p > 3. By adapting the auxiliary
spaces used in [4], we shall prove the existence and uniqueness of global
solutions in provided the initial data are small in a sense which
will be made precise later, and in up to additional conditions on
uo. Let us define the homogeneous Besov spaces 

DEFINITION 1. - Let us choose ~ E a radial function so that
Supp J  1 ~- ~~, and ~(~) = 1 for  1. Define 

the convolution operator with and 0~ _ ,5’~+1 - ,S’~.
Let f E S’(Rn), a E R, 1  p, q  +0oo, f E if and only if

The reader should consult [12], [2], or [ 16] where the properties of Besov
spaces are exposed in detail. Let us see how homogeneous Besov spaces
arise. If we want to construct a global solution, it is useful to control a
norm remaining invariant by the If this can
be achieved in a Besov space with a  0 and therefore bigger than the
usual space where we want to obtain a solution, we will have weaker
assumptions on uo.

Let us give the results in the case of Sobolev spaces. BC denotes the
class of bounded continuous functions.

THEOREM 1. - There exists an universal constant ~3 > 0 such that, if
s > 2, uo E HS(~3), ~ ~ uo = 0 and

then there exists a unique solution u of ( 1 ) such that

Moreover, the following properties hold for u:
u(’, LZ is decreasing, and for every t > 1,
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. For every t > 1,

. For every t > 0,

. If s E (1,3/2], for every t  1,

Note that the space B4, ~4 is invariant under the scaling 
and ift c B-1/44,~ . It is very interesting that we do not need a small H1 2-
norm to obtain a global solution (see [4]). On the other hand, if we want
to include the case 1/2, u is unique in the space

which was used in [4], the starting point of the present work. The weak
condition (2) is the only remaining obstacle to the problem of existence
of global smooth solutions to the Navier-Stokes equations, and we remark
that ,~ does not depend on s. The decay estimates (4) can be found in [8],
in a slightly different context. We recall it here as a natural consequence
of the construction of u.

In the Lebesgue spaces, the analogue is

then there exists a unique solution u such that
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The restriction p > 3/2 is due to technical considerations, and we could
probably obtain 1 instead of 3/2, by sligthly modifying the Besov space
involved.

PROPOSITION 1. - The constant satisfies:

PROPOSITION 2. - In Theorem 2, we can replace uo E LP n 2~ ~ by
u0 ~ Lp ~ L3, and if p > 3 by L2 ~ Lp.

If uo E Hs , s > 1/2, then as H 2 C B4, ~4, we have a natural candidate
for the useful Besov space. On the contrary, if we take LP, we may use

3 3
two different Besov spaces: the first one is B2p2p,~, as LP ~ B2p,~. But
this space is not invariant by the rescaling. The "right" space is B-(1-3 2p)2p,~ , 2p >,
but unfortunately Lp~ B-(1-3 2p)2p,~ . This explains the additional condition
imposed on uo in Theorem 2. Both spaces coincide only when 1- ~- = ~-,
which means p = 3. The reader should refer to [9] and [4] for details.

Proofs. - We first reformulate the problem in order to obtain an integral
equation for u. This is standard practice, and was first employed by Kato
and Fujita (see [10] [11]), and very often used since (see [7] [6] [15]).
All these authors use semi-group theory, but in the present case, we do
not need this formalism, for the exact expression of the heat kernel in R3
allows us to obtain directly the estimates we need (see [9]). Let P be the
projection operator from (L~(R~))~ onto the subspace of divergence-free
vectors, denoted by and R~ the Riesz transform with symbol 
We easily see that

where a =: ~~ is well-known that Q~ can be extended to a bounded

operator from ( Lp ) 3 onto PLP, 1  p  +00, and from 

s > 0. Note that P commutes with S( t) = whereas on an open
set H, we need to introduce the Stokes operator -PA and the associated
semi-group. Note that
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Using P, (1) becomes an evolution equation

We replace (u ~ V)u by V . (u @ u) to avoid problems of definition, and
this is possible only because V . u = 0. It is then standard to study (10)
via the corresponding integral equation

in a space of divergence free vectors. The integral should be seen as a
Bochner integral. In the general case of evolution equations, a solution
of (11) might not be a solution of (10). However, in the case of the

Navier-Stokes equations without external forces, it is true without any extra

assumptions. Actually, the solutions of (11) are C°° ( (©, x 1~3 ) and
verify the equations (1) in the classical sense, as we recover easily the

pressure up to a constant by

The reader should refer to [7] [10] or [13] for proofs.We remark that
since a solution of (1) is necessarily a solution of (11), uniqueness for
(11) guarantees uniqueness for (1). We aim to solve (11) by successive
approximations, with the following lemma:

LEMMA 1. - Let E and F be two Banach functional spaces, endowed with
the norms ~ ~ ’ . ( j = ~ ~ ’ . ( _ ~ ~ ’ ~ B a continuous bilinear operator

from F x F -7 E and F x F - F:

and define the sequence Xo = 0, Xn+1 = Y + B (Xn, Xn), where Y belongs
to E and to F. If
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then the sequence converges in both spaces E and F, and the limit X
sastisfies

and

The proof is left to the reader. Note that the value of q has no influence
on the convergence. Now we have to study the following bilinear operator

In order to simplify the notations, we limit ourselves to the following
scalar operator

s)V. is a matrix of convolution operators, the components are
all operators like (17), with

LEMMA 2. - E and 0 E L1 n L°°.
This can be easily seen on the Fourier transform of O.
In what follows, C denotes a constant which may vary from one line

to another.

Proof of Theorem 1

PROPOSITION 3. - Let 1/2  s  3/4, then there exists a solution u
of (11) such that

where w(t) = t3~g-s/2 if 0  t  1 and w(t) = if t > 1.
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We want to apply Lemma (1) where E and F are defined by the norms

If we use Holder and Young inequalities for B( f, g), A being the operator
with symbol !,

We shall then verify that, for all t > 0,

Easy calculations actually show that for t  1,

and for t > 1

The continuity at t = 0 comes from the estimate when t  1. In order

to include the case s = 1 /2, we have to impose u ( ~ L4 = 0
(see [4]). Note that the constant ~ of Lemma 1 is

Therefore, if satisfies condition (13), we obtain u E

PROPOSITION 4. - We have
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Let G = -~oo), B is bicontinuous from G x F to G:

Let

for t  1, 13  and for all t

G being a Banach space, we can use a contraction argument to show
that the sequence defined previously converges in G. It is sufficient that

2  1, which is true as p  ~y and u verifies (15). Therefore,
we proved (24) and hence Proposition 3, and shown that ]] ~c( ~, t) ( L2 is

uniformly bounded.
We now show (6): the following estimation is verified by the heat kernel,

We have

Let us denote W( f, t) = Vi ~~ f(., s) !!oo. then

Let

then, as 14  2~y, we have 2W(S(t)uo, t)14  1. Therefore,

Now we can prove (4) as follows:
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where

If we take q such that 2q = 1 -+- ~, ~ > ~, using interpolation and (28)
we get, for t > l, 

and

On the other hand, we know by (26) that Vq > 2,

Therefore, as u sastisfies ( 14), we will improve (30) in the following way: let

The term Bi can be handled very easily, so that > 0,

Now, we split in three parts. By (31 ) we have
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as

We remark that the exponent 1 /4 cannot be improved, as it does not

depend on and ,~.

LEMMA 3. - Suppose that for 0  p

then

and there exists v > 0 such that

By (31 )

and, by (28) and (29)

We can start with  = 1/6 - ~, and obtain any exponent ~ > 1/4. Thus,

We constructed u for s  3/4. Now we will see that if s > 3/4, u as above
is actually in We limit ourselves to the bilinear form (17), as the term
S(t)uo satisfies at least the same estimates.
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LEMMA 4. - Let f, g E Hs(If~3), 3~4  s  3/2,

For a proof see the Appendix. Suppose now that s > 3/4, and u is the
solution of Proposition 3 for s = 3/4. Then, if ~  1 /4, we obtain for t  1

using Lemma 4 and the boundedness of f in H3~4, so that

which gives the continuity at zero. For t > 1, we have by (29)

which allows us to improve (22), for s  3/4

Then

and,

and

then, for all t
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We have thus obtained u E H 4 +’~ . By applying the same argument we can
reach the value s > 3/2, as

with ~ + 3/2 - s  1. Before dealing with the case s > 3/2, let us briefly
show (7) . By Sobolev’s injection theorem (see [14]), if s  3/2 then

with 1/p = 1/2 - s/3. If s = 1 + c~, a  1/2, we obtain, for t,  1

For small t, B ( f , g) is bounded and tends to zero as t goes to zero. Now
we treat the case where s > 3/2, using the following estimate
LEMMA 5. - Let f, 9 E Hs (~3), s > 3/2,

For a proof, see the appendix. We will then show

LEMMA 6. - Let s > 3/2, for all t > 0

This can be achieved by successive iterations, starting from the previous
estimate for s = 2, and applying Lemma 5. Let us see how it works at
each step. Let ~  1, we first treat the case t  1.

and as f and g are bounded in L°° and in Hs,

For t > 1,
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by using Lemma 4. Then

For t > 1,

and using Lemma 5 we deduce the estimate for from the estimate for s :

This achieves the proof of the existence of u E BC ( [0, -~-oo ) , Hs ) . Now,
we observe that, as we have local existence and uniqueness for s > 1 /2
(see [4]), our solution is unique by applying this theorem on intervals

covering [0, oo). In the case s = 1/2, it is necessary to establish uniqueness
directly, (see [4] or [11]). The reader should refer to [11] or [7], in order
to see why a solution of (11) is actually a solution in the classical sense.
We can nevertheless make a few remarks. By the same process we use to

gain the regularity s - 3/4, we can establish, independently of s, estimates
in Hr, r > s : for all t > 0, there exists 7r(r) > 0

and is holderian on every interval provided t 1 > to > O.This

provides the regularity in the space variables. As for regularity in time, it

suffices to use the relation, which can be established without knowing (10)

and the following lemma, (see [ 11 ] or [7] for a proof).

LEMMA 7. - Let = ~o e ~t s~° f (s)ds, t E ~0, T], f E C’~([o, T], B),
r~  1; B a Banach space. Then u E Au E 

and

for all v  r~.
We then obtain the C°° regularity of u, for t > 0, with a bootstrap

argument. Let us see how condition (13) can be expressed on Uo in terms
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of Besov spaces. We set  ~3, where ~3 has been chosen so that
our scheme converges in F. Remember that

Therefore, as 3/8 - inf(s, 3/4)/2  1/8,

and

LEMMA 8. - Let uo E S(R3), a > 0, and 03B3 > 1; supt S(t)uo 
is a norm on which is equivalent to the classical dyadic norm.
We refer to [4] or [12] for a proof. In our case, except for s = 3/4, the

condition on uo is equivalent to

Thus, as H 2 C B4, ~4 and C $4 (~/4-inf(s,3/4)) ~ uo belongs to
both Besov spaces. If u is a solution with initial condition uo, À2t)
is a solution with as initial data. The condition (44) is independent
of A for the norm is invariant by scaling. And (43) can be forced by
a suitable choice of A. For s = 3/4, we know that H 4 C L4, and we
conclude in the same way. This ends the proof.

Proof of Theorem 2. - We introduce as before two Banach spaces
E = BC([O, +(0), LP) with the natural norm

and F vith the norm

then, we see that

where -
j
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which gives the continuity of B from F x F ~ F and F x E 2014~ E, with
constants and 

and a simple rescaling shows both quantities are bounded. Then if we use
the same sequence as before, Lemma 1 gives us the convergence in F, and
we obtain the convergence in E by acontraction argument, as r~(p)  
we obtain 1. The continuity at t = 0 comes from a slight
modification of (45), as we can replace I f by f ( . , 
which tends to zero with t. Actually, the value of could

only be zero: the first term ui = S(t)uo tends to zero, for if we consider a
sequence of Co functions ( v~ ) ~ which approximate uo,

By Lemma 8 the condition on uo becomes,

where 03B4(p) ~ 1/03B3(p). This proves 3Proposition 1. Proposition 2 results

from the inclusion of L3 in B-(1-3 2p)2p,~. Note that for p = 2, we impose
the condition 

which is equivalent to the condition (2). For a general uo E L2, we only
know

In other words, we do not know enough on low frequencies, and a sufficient
condition is (2), of which uo E L3 or uo E H 2 with small norms are
particular cases. We obtained existence and uniqueness in a ball of F with
Lemma 1 and uniqueness in the whole space can be obtained directly as
in [11] or [4]. As in the Sobolev case, it is possible to obtain estimates on
Lq norms of ~c( ~, t), q > p, in order to show the C°° regularity for t > 0.
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APPENDIX

We recall that if rP E S(Rn) is a radial function so that Supp  ~ {|03BE| 
1 -f- ~~, and ~(~) = 1 for  1, we define the

convolution operator with and Aj = Sj. Then

and f(x) E if and only if, Vj,

where £ ~~  1. We will show the two following inequalities, which are
homogeneous variants of well-known inequalities:

for s  n , 2

for s > 2 ,

Let us start with the first case: we will use a paraproduct decomposition
(see [3]): for f, 9 E S,

The second sum is, by reordering the terms, a finite sum of terms like

S2 = ~~ We will treat only S2, . as the other ones are of

the same kind. The Fourier transform of S2 is supported in an annulus

(2~-1 (1 - 2~), 2~+1 (1 + 2~)~. Using Bernstein’s lemma,

Then,
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and

is a convolution product between ll and l2, therefore in l2. For j > 0,

if

is in l2 for the same reason as ~~ . This gives

where E l ~ . Then, if is associated to g,

and as E ll C lz, ,Sl E The terms of the first sum in (51)
are like 51 = ~~ and in this case we only know that the

support of the Fourier transform of is in {~~~  C2~}, and

LEMMA 9. - If u C L1, supp ic C 1-~ 2s, then

This comes from

then, applying Lemma 9 to 

As E this ends the proof. The second inequality can be proved
by the same estimates, except that we have a better estimate for ~~,5’~(f)~~~
and both bounded by 
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