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ABSTRACT. - We study the existence and uniqueness of solutions as
well as their continuous dependence on given data for the boundary value
problem for a general nonlinear symmetric positive system by a Nash-
Hormander iteration scheme. Results on quasilinear systems and the exist-
ence of smooth solutions which improve known results on this subject are
also presented.
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RESUME. 2014 A l’aide de la methode iterative de Nash-Hormander, nous
etudions un systeme nonlineaire positif symetrique et un probleme de
perturbation singuliere. Nous obtenons des resultats d’existence, d’unicite
et de dependance continue par rapport aux donnees.

In this paper we shall study the nonlinear symmetric positive system

where ~(~)= (M"(~), ..., M"(x)) is defined in a domain Q in tR",

VM= 2014, ..., 20142014, , ..., 20142014, , ..., 20142014 , , and F (x, z, p) is a function
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340 K. TSO

defined in Q x [RN x [RNn. For simplicity we shall assume the boundary of
Q is smooth. By a nonlinear symmetric positive system we mean the
linearised system of (0 .1 ) at a fixed u

where Aj, j = 1, ... , n and B are respectively the N x N matrices

x, u, V u and 2014 (x, u, V M) is a linear symmetric positive system.
aZk

Suppose that Fi (x, 0, 0)=0. One is asked to solve (0.1) for small solutions
satisfying certain homogeneous boundary conditions when f is small. We
shall study the existence, uniqueness, and continuous dependence on f of
the solutions in a rather detailed way. Besides, it is intended to obtain
results under the weakest differentiability condition onf. (0 .1 ) was studied
by Moser [11] in the periodic case. He proved that when f is continuously

differentiable up to l-th order where I> max 2014+6, ’ 15 and is uniformly
small, then there exists a C2-solution of (0.1). Although we are concerned
with boundary conditions, our results clearly apply to periodic case. We’ll

show that for + 2 and f is small in the Sobolev space HB there exists

a solution of (0.1) which is small in C2 (Q).
Before going further, let’s review the linear theory of symmetric positive

systems which was introduced by K. O. Friedrich in 1958 [1] as a unified
treatment for equations of different types and was studied by many
authors. See, for instance, [ 1 ], [2], [7], [8], [14], and [15]. A first order
system on a domain Q

is called a symmetric positive system (SPS) if the N x N matrices 
j= 1, ..., n are symmetric and

n

for some If we denote the characteristic matrix L (v (x)
j=1

is the unit outer normal) a subspace N (x) defined on the

boundary of Q, of RN is called admissible to (0.3) if (ç, ~3 (x) ç) > 0 for all
and it is a maximal subspace w.r.t. this property. The boundary

value problem of SPS is: To find a solution u of (0.3) such that u(.;)
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341SYMMETRIC POSITIVE SYSTEMS

belongs to a given admissible N (x). When 811 is smooth and fi is nonsingu-
lar, the basic results on the well-posedness of the boundary value problem
can be summarised as

(a) Given f E L~ (Q; RN), there exists a unique strong solution u of the
boundary value problem. By a strong solution we mean (u, f ) lies in the
L2-closure of the graph of (v, L v) where v E C 1 (Q; RN) and v (x) E N (x).

(b) RN), then u e H’ (Q; provided b in (0.4) is sufficiently
large (depending on I and the derivatives of the coefficients). One has

Return to the nonlinear problem. Let 03A6 (u) = F (x, u, V u). Since 03A6 (0) = 0
and we are looking for solutions for small f, a first attempt would be try
to use the classical implicit function theorem. Let’s denote H~ (0; RN) the
subspace of RN) consisting of those satisfy In the

following we’ll drop RN in H~ (Q; RN) when the context is clear. By Moser’s

inequality, 03A6 maps HlN(03A9) to Hl -1 (0), l > n + 1. Consider the linearised

system (0 . 2) at u = 0. If 0) is nonsingular, and N (x) is admissible,
from (a) and (b) one knows that (0.2) is uniquely solvable. However, the
inverse map g - v is in general not bounded in view of (0 . 5). If we set up
the Picard iteration as we did in the proof of implicit function theorem,
in each step we lose one derivative and the iteration would terminate after

finitely many steps. Thus, a direct application of implicit function theorem
doesn’t work. A second attempt would be try to reduce the system to a

quasi-linear SPS for u and its derivatives by differentiating (0 . 1 ). However,
because of the presence of the boundary, we don’t know how to carry
this out. In this paper we shall use a Nash-Hormander iteration scheme
to solve (0 . 1 ). This far-reaching generalization of the classical implicit
function theorem was developed by Nash [12], Moser [10], [ 11 ],
Hormander [5], and others. We refer to the survey article by Hamilton [4]
for its other applications. For solving (0 . 1 ), a simple scheme due to
Moser [10] works as well. However, it doesn’t give the optimal result and
doesn’t yield smooth solutions (see Section 5).
We shall use the Nash-Hormander scheme to construct a sequence of

approximate solutions begining with uo = 0. In doing so it involves solving
(0.2) for u near to 0. Since from (0.4) we see that the positivity of (0.2)
involves the second derivatives of u and we don’t have any relevant a

priori bounds, in view of (0. 5) and Sobolev’s inequality we shall require f

at least belongs to HI (~2), l> ~ + 2.
2
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342 K. TSO

We denote m the smallest integer so that (Q) can be continuously
embedded in C (Q). We shall impose the following assmptions:
(Al) F (x, z, p) is continuously differentiable in

up to (m + 5)-th order.

are symmetric ( j =1, ..., n) for I 1 ~~~  1.

(A3) f3(x; 
is nonsingular for all u ~C1 (0), I u |c1 (Q)  1.

(A4) N (x) is a smoothly varying subspace of RN for x E It is admissi-
ble to ~ (x; u), I u ~~1 _ 1. °

(A3) and (A4) together imply that the dimension of N (x) is equal to the
number of positive eigenvalues of f3 (x; 0). Consequently it is constant on
each component of the boundary.
(A5) The b in (0 . 4) is large depending F 5 

(D).

MAIN THEOREM. - (a) Existence. Suppose F (x, 0, 0) = 0 in Q and

(A 1 )-(A5) hold. There exists p > 0 such that for any f with II film + 2  P (0 . 1)
has a solution u which belongs to all small E>O.

(b) Uniqueness. For any given j in n + 2, m + 2 , there corresponds

r> 0 such that the solution is unique in {u E HN (Q) : BI u~  _ r}. Denote this
solution by u = u ( f ).

(c) Regularity. Suppose for 1 >_ o,
(A5)’ F is in (D) and b is sufficiently large depending on 1 and

y F ~Cm+5+2I 
holds. Then u( f) belongs to Hm+2+1-~N(03A9) for any ~>0 when f is in

Hm+2+1(0). In fact, we have for some
constant CE.

(d) Continuous dependence on f. Moreover, suppose that
(A5)" F is in Cm+ 6 + 21 (D) and b is sufficiently large depending on 1 and

IF (D)’

hold. Then for any y in n 2 + 1, m + 1 there exists p 1 > 0 such that for

for all small f: > o.
This paper is arranged as follows. In Section 1 we formulate the Nash-

Hörmander iteration scheme [5] where certain changes are necessary for
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343SYMMETRIC POSITIVE SYSTEMS

our application. Besides, we prove a general uniqueness result and an
estimate on the dependence of the given data. The latter was not treated
in [5]. Section 2 consists of a brief review of the linear theory of SPS’s.
Various points are clarified in order to give a better result in nonlinear
theory. The a priori estimate derived in Section 2 will then be applied in
Section 3 to give an existence theorem for quasi linear systems which
improves a previous result of Gu [3]. We shall finish the proof of the
main theorem in Section 4 where some related results are presented.
Section 5 is devoted to a proof of the existence of smooth solutions for a
special class of SPS’s. Finally, in Section 6 we give some further comments.
In particular, a recent result of Rabinowitz [13] on a singular perturbation
problem is discussed. In Appendix A we shall describe a very simple
method of constructing smooth operators which preserve homogeneous
boundary conditions.

1

Let be an ascending chain of Banach spaces satisfying
II u i~~  II u if a __ b. It is said to admit a smoothing operator if there exists
a family of linear operators Eo ~ Eoo = n Ea, a >_ 0 for such that

and

where the constants C are independent of 9 and u. From (1.1) and (1.2)
one can deduce that the norms of Ea satisfy for b >__ a, 0 _ ~,  1,

Consider two chains of Banach spaces Ea and Fa which admit smoothing
operators Sa and Ta respectively. Let and N be an of uo
for some a. We consider a Assume that there is

associated with C another map ~’ : N n E~ x Eoo -+ Fo such that

and
II - , .

hold tor u, v EN and Here ai, b1, and b2 are nonnegative
numbers. In the following theorems we shall require ( 1 . 4) and ( 1 . 5) hold
for s in a certain range. In practise is actually the (Frechet) derivative

Vol. 9, n° 4-1992.
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of C. In case 03A6 is (Frechet) twice differentiable and its second derivative
1>" satisfies

(1.4) and ( 1. 5) can be easily deduced from this estimate by Taylor’s
formula.

We also assume that ~’ (u) has a right inverse, that is, a

such that

We require that it further satisfies

for some non-negative a2, b3, and b4. The range of validity of (1.7) will
be specified below.
Under this formulation, given and f in F ~ which is small in

F~ + ~3, we shall construct a sequence of approximate solutions { to the

equation 1> (u) = 03A6 (uo) + f in the sense that uk~E~, uk tends to u in E03B2,
for any P’  P tends as k tends to 00. This
will be accomplished by a Nash-Homander scheme.

Setting 9~=2~~ k >_ o, where K is a large number to be specified and
letting

we define { ~ } as

THEOREM 1. ~ . - Let:

(a) a2 >__ (al - bl) + and al >_- b3;
> oc be a positive number satisfying

(1.10)
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(c) ( 1. 4), 
Then there exists Ko such that for each K >_ Ko, there is p > 0 so that for f
in F~ with ~f~03B2+b3~03C1, the sequence {uk} defined in ( 1 . 9) with 80 = 2K
satisfies

(i ) uk belongs to N n Eoo;
(ii) For any J3’  13, uk tends to some u in as k goes to oo,

(iii) 
(iv) ~ (uk) F~. +b3 as k goes to 00 .

In case 03A6 can be extended to a continuous map from N to Fo, then u
is a solution of 0 (u) _ ~ (uo) + f. Such iteration scheme was used originally
by J. Nash in this study of isometric embedding of riemannian manifolds.
Its present form is due to Hormander [5] where the reader is referred to
for a detailed discussion. Theorem 1.1 is somehow a simplified version of
Theorem 2.2.2 in [5]. We modify it in such a way that it applies to
Sobolev spaces. The main change is due to the fact that we don’t have a
characterisation of Sobolev space as in Theorem A. 11 in [5]. The result is .

an "infinite loss of derivative" for the solution. Compare Lemma 1.2 with
Theorem A.Il in [5]. Also we point out that due to our choice of 8k the
condition (iv) in Theorem A.10 in [5] which involves the derivative of Se u
in 03B8 is not needed. Such choice was used in [6].
We begin the proof of Theorem 1.1 with

LEMMA 1.2. - Suppose for some 6 > 0 and 0 __ j ~ k,

I(,

Letting Uk = 03A30394jwj, then for 03B2" B we have
0

m ~ ~ m - - ~ ~ ~- o",+

and

for 0 _ s  s*. Here constants C only depend on 13, and the smoothing
operators

~roof : - Clearly ( 1 . 13) follows from ( 1 . 12) for s> ~3 or s By
(1 3) it holds for J3"  s  ~3. Similarly, when s > 13

Vol. 9, n° 4-1992.
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and when s  fi" the same estimate follows trom (1 . 2). Again by ( 1. 3)
(1.14) holds for [3‘  s  (3.

Q.E.D.
Since = uo + we immediately deduce from this lemma that

for 0  s  s*. Here constants C also depend on ~u0
Fix r3", 13  13, such that it is greater than a and (1 . 10) and ( 1. 11) holds

for ~3" in place of P. We shall use induction to show that (1.12) holds for
all k with 8 being a constant multiple Let’s suppose that
(1.12) has been established for k and we are going to prove it for k + 1.
First we observe that for sufficiently small 1/ uk + 1 belongs to N in
view of (1 . 13)~. Hence for sufficiently large belongs to N and Wk+ 1
is well-defined. We estimate the quantities involved in the definition of
wk + ~ as follows:

CLAIM :
t)t t - - -7" ~ B...., . -~.

where L (s) = s + al - f3" + bl - f3 and s = s* - b2 ~.
For, using (c) and then (1 . 12), (1 . 15) and (1 . 16), we have

where L (s) = max

By ( 1.10) L (s) = a ~ - (3" + s + b 1- ~3. Similarly, using (1.5) instead of
(1. 4) we have the same estimate on Here our claim is established.
As a consequence we have

since by the choice of s* L (S) > 0. We claim:

For, we have
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and

Combining these estimates ( 1.17) follows. By ( 1 . 7), (1.17), ( 1. 15), (a)
and ( 1.11 ) we have

for some e>0. On the other hand, by (1. 7) we have

where C2 depends on 80 = 2K. Therefore for those K satisfying
C1 2 -tK _ 2 -1, (1.12)o and ( 1. 12)k + 1 follow after we set

C2 ~ ~ ~ ., f ~ ~ a + b3. By induction we conclude that it holds for

Now Theorem 1.1 follows easily. (i) has already been proved above. To
prove (ii ) notice

.. ~ .. ~

As a 1  is a Cauchy sequence in Eal. For any P’  j3 which satisfies

(1.11) when is replaced take 03B2" = 1 2 (P+ P3 in Lemma 1.2. (1.15)
shows that {uk} is bounded in E03B2". Using ( 1. 3) we conclude that it is a
Cauchy sequence in Letting k go to 00 in (1. 15)~, we obtain (iii).
Finally to prove (iv) we write

Hence

Since L(jV+~)0, ))0(~+i)-~(Mo)-/~+~ tends to zero as k goes
to 00 . The proof of the theorem is completed.
Remark 1.3. - An examination of the above proof shows that (i)-(iv)

still hold if the assumptions are relaxed to
(a) The smoothing operators Se and Te mapEo and Fo to Eml and

Fm2, mz >_ s* + b4, ~2~~*+~3 respectively. Note that N n Eoo appearing
in (i ) should be replaced by N n E . ..

(b) For Uo in E*s and f in F03B2+b3, 03A6 : N ~ E*s ~ Fo and

( 1. 4) and ( 1. 5) hold for (a1 - b1)+~s~. More-
over, 03A8 : N n E*s x Fm2 ~ Ei satisfying ( 1. 6) and ( 1 . 7) in a1 _ s  s* .

Vol. 9, n° 4-1992.
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Remark 1.4. - The solution constructed in the above proof actually
enjoys a regularity property, namely, 1 

for on

the condition that ( 1 . 4), ( 1 . 5) hold in and ( 1 . 7) hold in
To see this observe that if ( 1 . 7) holds in ~~:~*+8,

instead of obtaining ( 1. 18) we have

for s in s* + E]. Since we have shown that (1. 12) holds for all k >_ o,
( 1.19) holds for all By a further restriction on s we may assume
that Ls is equal to j3~ for some natural number L. Since we also have

in the same interval, we conclude that

holds for all j> 0 in s* + E] where

Using ( 1.12)’ instead of ( 1.12), we can follow the same line (replacing ~3,
~3" and s* by ~3" + E, and s* + 2 E) leading to ( 1.19) to obtain

in ~+2s]. Again we can choose 82 such that 6 J - (p+2~) 1
in s* + 2 E]. Repeating this argument finitely many times we conclude

where 8L is a constant multiple in

s* + 2 (31] for In view of Lemma 1.2 and u belong to
Notice that we also have for some con-

stant C depending on [i’ and j31.
Next, we consider an operator C depending on a parameter. We suppose

that for small 8, ~ (u, E) satisfies all assumptions in the formulation of
Theorem 1.1. In particular, (1.4), (1.5) and (1.7) should hold uniformly in
s, E for some So. Then by Theorem 1.1, for ~3’  (3, and f , i = 1, 2,
which are small in F13+b3’ the Nash-Hormander scheme i= 1, 2,
beginning with the same uo, converges to ui in Ep, provided K is sufficiently
large. In the following we want to estimate ul - u2 in terms of and

/i~/2* We need some further assumptions, namely, the inverse W (u, E) in
(1.6) is also a left inverse, i. e., ~F(M, 8)0’(M, 8)g=g, gEF and it satisfies

and
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where (i =1, 2) in a certain range of s. For the applications in
this paper C is thrice continuously differentiable and satisfies estimates of
the following form

as well as

It is not hard to see that ( 1 . 4), (I 5), ( 1 . 20) and ( 1 . .20)’ are consequences
of these estimates and Taylor’s formula.

In the following we recall that ~i"  ~i has been fixed in the beginning of
the proof of Theorem 1.1. ..

THEOREM 1.5. - Let y be a positive number less than In addition to

the hypotheses in Theorem 1.1 we assume: . 

.

(a) + b4, a2 + b2, and 
(b) The function W defined in ( 1.24) (replacing y’ by y) satisfies

and

in a_s_s*;
(c) ( 1.26)-( 1.29) hold (in ( 1.26) and ( 1.27) y’ appearing on the left hand

side of the inequalities should be replaced by y) in al _- s  s*;
(d) validity of (1.4) in al __ s _ s* -~- b3, (1.7) in al _ s _ s* + bl + b3, (1.20)

in (al-bl)+-_s_s*+b3, and (1.21) in (al -bl)+ ssfor f:, -_Eo;
(e) (Recall that b2~ .)

Vol. 9, n° 4-1992.
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Then there exists p ~ > 0 such that for f , i = 1, 2, in F 00 with ~. fi ~ ~ ~ + b3 ~ P
+ we for any y’"(,

_ - .. , , ,~ _ ~ « _ .. ,..,

Proof The proof of this theorem is similar to that of Theorem 1.1.

For a given y’ y which satisfies 

W(~)+(~+~4"P")~~’’y~ ( 1 . 26) and ( 1.27), we shall establish the
~ * ~ ~. _

for all j>0 where 81 will be chosen as a constant multiple of

+ !t~i "~2 In case (1.22) has been proved up to k, as before
we deduce

for Taking s=y’ and then letting k go to infinity, as and
tend to ul and u2 respectively in EY, we see that the theorem

follows. As before (1.21) will be established by induction. Hence assuming
~ 1.22~ J, ~ j _ ~, are valid we are going to establish it for k + 1.
We estimate the difference in errors as follows: Write

Using ( 1.4), ( 1.12) and ( 1.23) the Fs-norm of the first four terms in

~ e1,k - e2,k ~s are bounded by C 03B403B41 03B8Mk (s)-1 in (al - b1)+ E s ~ where
(S-t-b~-~’)++a~-~, (s+b2-~")~~.

Similarly, using (1.20) instead of (1.4), the last two terms are estimated
by C 6 ~~ - E2 ~ o~ f5~- ~ in (a~ - b~)+  s __ s where

Next, using (1.21) we have

where

and
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Letting

and restricting 8 and 03B41 to be less than 1 we conclude

for b~2 ~) + ~~~~- Under (e) it follows as before

for all s > {b1, b~~}+. Write

Using (1.7), (1.25) and then (b) we have

for some ~>0 in Also by (1.7), (1.4) and then (1.7) again we
have

provided

and

VoL 9, n~ 4-1992.
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Finally, using ( 1.7), ( 1.20) and then ( 1.7) again we have
. - - . "’"

provided

and

Combining these estimates we arrive that
I"" t - 1 A _. - - I I... ~ - _ , , 1 ~

in ai _ s _ s~‘. On the other hand, we also have

in a 1 _ s __ s* . Therefore, letting

we conclude ( 1.21 ) for j=0 and j=k+ 1 simultaneously. The proof of
Theorem 1.5 is completed... .

Remark 1.6. - For the applications in Section 4 and Section 6 we shall
take ~=~(=~),~=~(=~),~=0, and y’  ~3" - max ~b, b4~ . Under
these conditions ( 1.26)-( 1. 29) can be combined into a single inequality:

Remark 1.7. - Theorem 1.5 remains valid if some conditions are

relaxed. Namely, it is sufficient to assume uo belongs to ES and the
smoothing operators Sa and Te map Eo and Fo to and F m4 where
~3~~*+~~+max{~i+~ b2~ and m4 >__ s* + 2 b3 + bl respectively.
Remark 1. 8 . - In case fi belongs to Fy + £ + b3, in the above proof instead

of (1.30) we have

in Therefore, assuming ( 1.4), (1.5), (1.7), ( 1.20) and (1.20)’
hold in suitably larger. range (more precisely, replace s* therein by
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s* + 2 we can argue as in Remark 1.4 that

In the following we formulate a general uniqueness theorem based on
Moser [10]. Let M an open set in E~ for some u.. Suppose that
1>: M ~ F~ and 1>’: M x E, - > m, satisfies (1.5)s for

whenever u and v in M. Furthermore, we suppose that O’ (u) has a left
inverse ’~ 1 : M x Fo such that

We have

THEOREM 1.8. - Let ~,, ~,’ and ~, be three positive numbers such that
+ max ~.‘ and ÀJl’ satisfy (1.33), (1.36), and

( 1 . 3 8) .
(b) ( 1. 5) holds for 0~s~ and ( 1.7) holds for s=03BB.
Then there exists ~ > 0 such that f O (u~) _ ~ (u2) for ul and u2 in

(u : then 

Proof - We shall show that if II ul - u2 ~ (~, is sufficiently small, then
Applying ( 1. 5) to u 1, u2, and we have

for 0 _ s  ~, where C depends on R. In case

( 1 . 7) gives

Let where for some large K to be specified later. We
shall prove by induction that for some 8 > 0,

By induction hypothesis, if (1.35)~ holds,

for ~, __ s __ ~,’. Consequently, if

from (1.34) it follows that

Vol. 9, n° 4-1992.
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Thus, if

for 8 (4C6)"’ and K so large that 2C5 03B8 ’- 0~03B4, (1.35) holds for k + 1.
On the other hand, (1.35) holds for j = 0 is sufficiently small.
Hence by induction (1.35) is valid for all j. In particular, taking s = ~ in
(1.35) and then let j tend to 00 we conclude ]] w Ik = O.

Q.E.D.

2. LINEAR SYSTEMS

In this section we collect basic results on linear SPS’s for noncharacteris-
tic boundary.

Consider a SPS in a domain Q:

where

for some Here u (x) is an N-vector, A~(x) are N X N symmetric
matrices (/=1, ..., n), B (x) is a N x N-matrix and I(x) an N-vector.
Recall that a smoothly varying subspace N (x) defined on aS~ is called
semi-admissible to (2.1) if

and is admissible if it is further a maximal subspace with respect to (2.3).
Throughout this section we shall assume f3 is nonsingular and A’,

~ j =1, ..., n and B are at least in e 1 (SZ) .
LEMMA 2. 1. - Suppose N (x) is semi - admissible. Then for any

~ W II - 1~_ II /"’" ,,"

Proof-. Apply Green’s theorem and then use (2.3).
Q.E.D.

THEOREM 2.2. - Suppose A} and B are in Hl (S2) where I is an integer
~ m + 1 and N (x) is semi-admissible. Then for any HlN-solution u of (2.1 )
for f E Hl (Q), we have

.-- / n ~ 1
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for 0 m I provided b is sufficiently large (depending on I, 1 and B ( 1).
The constants Cm also depend on the same quantities.

Proof - (2.4) provides a stronger result for (2.5) in case ~=0.
For m > 0 we first localise the problem. Cover Q by open sets (in ~)

Vi {i >_ o) where V003A9 and Vi U for in such a way that each

Vi (i ~ 0) intersects at most M many other V/s. Suppose further that each
Vi has been chosen so thin that a normal coordinate can be introduced.
In other words, there is a diffeomorphism cpi from a rectangle
R= 1, to Vi such that - y is the distance
of cp~ (x’, y) to If we set F = F then u satisfies

in R for some symmetric matrices A-~y= 1, ..., n. Since N (x) = N (cp (x))
is smooth, we can find an orthonormal matrix O (x’, 0) such that 03BE~N
(x) iff i~~ ~ 1= ... r)~=0 0)i~ and I is the dimension of

N (x). If we extend O (x’, 0) to Vi by setting O (x’, /)=0(x~ 0) and then
change the dependent variable u (x) to M(~)=9(~)M(~), u satisfies

in R. For sufficiently large b, this system is still a SPS. Furthermore, the
boundary condition which is now simply t?~(.x-)= ...M~(~)==0 is still
semi-admissible. Consequently we may assume (2.1) is defined in Rand
N (x) = {(~ ..., ~’= ...~==0}.

Let R’ = -p’~~0, p’p}. We claim

For, let p be a nonnegative smooth function compactly supported in R
and equal to 1 on R’. Applying

to (2.1 ), we find that u satisfies

where

Since w remains in N(x), we may apply Lemma 2.1 to obtain
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The last step follows trom the following well-known inequality: ror any
f, g in HI (Q),

II /> II t ~- ~~~ /I/>I n tt . I I "/>11 "

To estimate the normal derivatives we apply to the equation and
use the nonsingularity of j3 to express D°°’~ u in terms of the other terms
which consists of derivatives up to m-th order (but up to order
in y) of u, derivatives of the coefficients and f up to m-th-order. By using
interpolation inequality [7], p. 465, in a standard way, we have

Combining (2.7) and (2.8) we obtain (2.6). A corresponding interior esti-
mate for Vo holds by a similar argument. Going back to Q, we see that
(2.5) holds if b is sufficiently large (so that the I ~ u ~ I m in the right can be
absorbed to the left).

Q.E.D.

Remark 2.3. - If I in the above theorem is replaced by a real number
s > 1 then

1 _ t _ s and so > n/2. (2. 5)’ can be obtained by the above argument except
we now use a fractional Leibniz rule [16], Lemma 1.1, to estimate hand
then apply (4.3).

THEOREM 2.4. - Suppose A’ and B are in Hl (S2), I> m + I and N (x) is

admissible. Then for (2.1) has a unique solution u in 

provided b is sufficiently large (depending on I, le1 and B 
Proof. - This theorem was proved in [2] under the assumptions that

the coefficients are smooth and N (x) is stable. By stable we mean all

subspaces close to N (x) is also admissible to (2.1 ). However, these two
additional conditions are not necessary. In view of the a priori estimate
(2.5) the conditions on coefficients can be removed by an approximation
argument. On the other hand, it is easy to construct symmetric matrices
X’, j =1, ..., n such that N (x) is admissible and stable with respect to
the system

Apply Gu’s result to this system we obtain HN-solution Mg. By (2.5) we
may pass to weak limit and conclude the solution u of (2.1) is in Hk (0).

Q.E.D.

Remark 2.5. - There are other proofs of the differentiability of sol-
utions, e. g. [7], [14], and [15]. However, in all of those arguments the
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largeness of b involes the bounds of the derivatives of coefficients with
order higher than one. Thus, they don’t give the best result.

3. QUASILINEAR SYSTEMS

In the following we study quasi-linear systems. We’ll follow the formula-
tion of Gu [3]: Consider

where Aj are symmetric and I is the N x N identity matrix.

THEOREM 3. 1. - Suppose u = 0, ~ (x; 0) is nonsingular and N (x) is

admissible to (3 . 1 ), for all u small in C 1 (fi). Then there exists a solution u
for (3 . 1 ) in H~ (0), I> m + 1 provided b is sufficiently large depending on

I A’ (x, z) ‘c and I f (x, z) c in x in S~ and z I  1.

Remark 3. 2. - This theorem is an improvement of Theorem 1 in [3]
where the largeness of b is required to depend on z) and

J (x~ Z) Ie! +m.
Proof. - By Theorem 2 . 4, for every u E Hl (Q), lull small, the system

admits a unique solution (Q) when b is sufficiently
large. Denote the map M2014~ by v = T (u). Then using the mean
value formula and Moser’s inequality it is not hard to verify that
(a) T(B)cB where small and

for some Oyl if b is large
enough. Hence, by extending T to a continuous map on the Hl-1-closure
of B and then applying contraction mapping principle, we conclude that
there exists a fixed point u of T in HN 1 (Q) which is obviously a stong
solution of (3. 1). Furthermore from (a) we see that u actually belongs to
HlN (0). .

Q.E.D.

4. PROOF OF MAIN THEOREM

LEMMA 4 . 1. - Let N (x) be a smooth subs pace of RN for x~~03A9. Suppose
that locally it can be represented as ~ (~i, ..., çN): ~1+ 1= ... = çN = 0 }
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where l = dim N (x). Then for s >__ 1 ,

Therefore, there exists Sa: HN (Q; RN) ~ HsN (03A9: RN) so that ( 1 . 1 ) and ( 1 . 2)
hold. (For notation see Appendix A.)

Proof - It follows from the fact that

and

plus a partition of unity argument. (Here H5 (Q) is the completion of all
continuously differentiable functions which vanish on 9Q under the

H1-norm.) The last assertion follows from Lemma A in Appendix A.
Q.E.D.

(b) (Moser’s inequality). Suppose F(x, z) is defined for (x, 
Then for u~Hs(03A9) (s > 1), ~ u~s0~R,

where C (s, so) also depends on ~ u + 1 and the derivatives of F up to order
~s~ + 1 over tis domain. (Here [s] = s -1 when s is an integer.)

See Appendix B for a proof.

Proof of the Main Theorem. - We shall take H~ (Q), Fs= HS (Q)
and apply the results in Section 1. By Lemma 4.1, FS and F~ both admit
smoothing operators. Let 0 (u) = F (x, u, Vu). We choose a in

n 2 + 2, m+2). By Sobolev’s inequality we may fix a H03B1N-neighborhood
of 0, N, such that u fc2 ~~~ --1 for u in N. Hence (A 1) and (A 5) are

applicable.
Let P==~+2. We verify (1.4)-(1.7) as follows: By (4 . 4), we have

where ~>M/2 +1. By Taylor’s formula (1.4) and ( 1 . 5) are valid for

~1=~2~ 1 and a 1 > ~/2 + 1. We pick a 1 in and ~*=~+4. By
(A 1) (1.4) and (1.5) hold in [0, ~ + 3]. On the other hand, since

l u c2~~1, we infer from Theorem 2 . 2, Theorem 2 . 4, and Remark 2. 3
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that the inverse of ~’ (u), u E N, exists and satisfies

if ~’ (u~ v = g. Notice that Moser’s inequality has been used in the last
step. Taking we have

Substituting (4. 6) into (4. 5) we see that (1.7)~ holds for 
where b3 = 0 and b4 = I . We can fix a1 = a2 and verify that the hypotheses
of Theorem 1 .1 and Remark 1. 3 are fulfilled, concluding the existence of
a solution u in Hm+2-~N(03A9), E > 0, for any sufficiently small ~ f H,;;+ 2 . The
solution further satisfies ~u~ m+2-~~C~~f~m+2.
Now, for 11 in (n/2 + 2, m + 2), close to  and in Theorem 1 . 9

we can choose and For a further restriction on p,
we deduce that there is r > 0 such that (0.1) has a unique solution in

To prove the regularity of u we appeal to Remarks 1.3 and 1.4. It

suffices to make sure ( 1. 4) and ( 1 . 5) hold in 0 _ s __ s + 21 and (1.7) holds
in 0  s __ s* + 21. But this follows from (A 5)’.

Finally, to prove the continuous dependence of f we use Theorem 1. 5
and Remarks 1.6-1.8. This is because, due to uniqueness, u (f) is the
solution constructed by the Nash-Hormander iteration scheme. By (A 5)"
(1=0) and Taylor’s formula we know that ( 1. 21 ) holds in 
Notice that (1.20) is not needed. Thus, for any y in (ai, m -f- 1 ) we can
choose a suitable p" so that all conditions in Theorem 1.5 are satisfied.
Consequently for a further restriction on the smallness of n f Hm + 2 we
have t) u(f1)- u(f2) ~03B3-~~C~~f1-f2~03B3, ~>0, whenever ~f1-f2~ y is small.
Finally be Remark 1.8 we further obtain

The proof of the Main Theorem is completed.
Remark 4. 3 . - Sometimes it is also interesting to look at Problem (0. 1)

in a different way. One may consider it as a perturbation of a linear SPS:
p (u, s) = L u + s G (x, u, V u) where it is assumed that C (u, E) satisfies

(A 2)-(A 4) as well as
(A 6) b is large depending on the of the coefficients of L;
and

(A 7) G belongs to (D).
When 8=0, we have a trivial solution M=0. We would like to know

whether there is a unique solution E) = 0. To this end we choose
~==~+2, By a suitable choice of 2/s and X
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Theorems 1 . 1, 1 . 5, and 1 . 9 apply provided L and G are in (Q),
~*==p+2. Thus, for sufficiently small Eo > 0, there is a family of solutions
u (E), I E _ co, starting from u (0) = 0 and is unique u  r ~ for
some small r. In particular, when G (x, 0, 0) is not equal to zero, there is
no zero solution in { u : II u ~+2 ~ } for E in [ - Eo, Eo], E not equal to zero.
By embedding theorem each belongs to and the 
from [201480, Eo] to C 1 (Q) is continuous.

5. SMOOTH SOLUTIONS

As it is well-known, even for linear SPS’s the smoothness of solutions
depends on the positivity of b. In general, when b is larger, the solution is
more regular [11], p. 293. One doesn’t expect to have smooth solutions.
However, in [11] Moser studied a special class of SPS and established
analyticity of their solutions. In this section we show a corresponding
result for smooth solutions.

Consider
v’ /* 2014y B /" /f’8 1’B. B

under the assumptions
(H1) (5 . 1 ) is positive symmetric at u = o. There exists b > 0 such that

(x; 0) is positive definite.
(H3) 
for some and 11 ERN. By Gårding’s inequality, it follows from
(H3) that there exist C2 > 0 such that

(H3) (A’ (x; u) Wj, wk) ~ C II 1 W ~20
for all small C2-functions u. It is also noted that from (H2) no boundary
condition is needed.

THEOREM 5. 1. - Suppose that (H 1)-(H3) hold for u = 0 and that
F (x; 0) = O. Then for f E Ceo (Q) with small I s >_ m + 2, there exists a
C~-solution u for (5.1). -

Proo_ f. - Choose N to be a small HY-n’d of 0 for some y >_ m + 2 in
which hold uniformly. We consider the linearised problem for
(5 . 1): 

_

u E N n and g E Coo (S~). In view of Remark 1 . 5 it suffices to

show (a) (5 . 2) is uniquely solvable in C~ (Q) and (b) the solution v satisfies

(5.3)
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Differentiating (5 . 2) and then taking L2-product with derivatives of v,
one can derive without difficulty that

after using (H;), of course. Then (5.3) follows from (5.4) in a familiar
way. To prove that (5 . 2) has a C~-solution we shall show that for any I,
(5.2) has a H~-solution. From the uniqueness of solution [see (2.4)] and
Sobolev embedding theorem we conclude that this solution must be in
C~° (Q). In view of Theorem 2 . 2 we may fix a sufficiently large b 1= bi (I)
such that L + b 1 I is uniquely solvable in H~(Q). Define ~ by

We claim that there exist Rm, 0 _ m __ I, such that

For, by (2.4)

We may take Suppose now that R,~,, has been
chosen. Applying (5.4) to (5. 5) we have

So we can take The claim is proved. Since
~ vn ~ is uniformly bounded in HZ (0), by passing to a weak limit we
conclude that the solution v of (5 . 2) belongs to HZ (0).

~ 

Q.E.D.

6. FURTHER COMMENTS

6.1. In [13] Rabinowitz studied the singular perturbation problem

where is a uniformly elliptic operator where c is posi-
tive. The coefficients F and u are supposed to be periodic in

x=(xi, ..., Adapting a method from [11] he proved that if F and
aU’s are in H~, />2~+28, there is an Eo > 0 such that of all 8 (4 . 1 )
has a solution u (s) which is C3 in x and continuous in E with u (0) = 0. In
fact, we may regard (6 . 1 ) as a perturbation problem for a third-order
symmetric positive equation L u = 0. Comparing with (0 . 1 ), we see that
the positive definiteness of aij and the positivity of c correspond to the
positivity of b in (A 5). The largeness of b now is replaced by the smallness
of 8. The third order terms, which correspond to A’’s, vanish identically.
This does no harm since no boundary conditions are imposed. Actually,
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it should be kept in mind that such results hold only when the boundary
is empty. Otherwise, we have to restrict the class of perturbation to avoid
boundary layer phenomena as we have done before. Along the same line
as in the proof of our main result, Rabinowitz’s result can be sharpened,
namely, it is required that L and F are I many times continuously differenti-

able in D, the unit ball in IRn x R x [?" x IRn x x IRn2, for l > n + 16, and
also are of period one, say, in x. Then the solution u (6) would be in
C8 (fR") and the map 6 - u (s) from [2014So, 80] to C4 is continous.

Proof - Let ES = F~ be the subspace of HS (tR") consisting all periodic
functions of period 1. We 8)=LM+sF(~; u). It is readily seen

that for b 1= b2 = 3, a 1 > ~ + 3, ( 1. 4), ( 1. 5), ( 1. 20) and ( 1. 21 ) hold.
2

The linearized equation of (4. 1) is

By Proposition 2 . 36 in [ 13], for sufficiently small 80 which depends on k,
the uniform ellipticity of aij, and the ~-norms of Land F in u BC3  1,
we have 

.

Let’s take oc = m + 4 and let N be a H03B1-neighborhood of the origin which
contains ~ u : ~ 1 ~ . Taking k = m + 3 in (6 . 3) we have

" ,......... ....

Hence we may take b3 = 0, b4 =1, and a~ >_ m + 1 in (1.7). To solve (6 . 2)
we use elliptic regularization. Add vA where A is the Laplacian to (6. 2).
From elliptic theory the modified equation has a Hk+2-solution v03BD which
satisfies (6 . 4) uniformly in v for small v. See [13] for the proof of this
fact. Letting v go to 0 we obtain a solution for (6.2). Thus, (1.6) holds.
Now for ~ >_ m + 8, we choose y=P-4, and a;’s all equal to f3 - 5.
One can verify that all assumptions in Theorems 1 . 1, 1. 5, and 1.9 are
satisfied. Therefore, for some small 80 >0, there exists a family of solutions
for (6 . 1 ) starting from M(0)==0 which satisfies ( 1 ) each belongs to

(2) u (s) is unique in { M: ~ u f ~ _ ~ _ r } for some small r, and (3) e - u (e)
is continuous from [-so, Eo] to E~, _ 4 for any By embedding
theorem we deduce the desired result.
6. 2. In general, we may use the same method to study the perturbation
problem for non-coercive boundary value problems introduced by Kohn
and Nirenberg [7] provided the perturbations do not change the "type"
of the boundary value problems.
6. 3 So far we have only considered the case of non-characteristic bound-
ary. When the boundary is characteristic, the situation would be much
more complicated. It is because we do not have much information for the
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linearized problem, espectially the differentiability of solutions, on which
the Nash-Hormander scheme relies heavily. However, some results are still
available for a simple non-coercice boundary value problems, namely,
degenerate elliuptic-parabolic equations. See [ 18].
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APPENDIX A

SMOOTHING OPERATORS

We begin with a description of an interpolation method used in [9].
Let X and Y be a pair of Hilbert spaces with X densely embedded

in Y. It is known that then there exists a strictly positive self-adjoint
operator S such that

the domain of S. Let A be the square root of S. Define interpolation
spaces between X and Y by

Then {Y, X}o = Y and {Y, Each {Y, is a Hilbert space
under the inner product (x, Y)s=(ASx, AS y)y. For the proofs of the above
facts we refer to [9] and [ 17] .

Let S = be the spectral resolution of S. We define a map T

f82
from Y to X for 6~ 1 by Tex= 1 x.

LEMMA A .1. - For a//6>l,
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The proof of (b) is similar.
Q.E.D.

An Example. - Let Q be a bounded domain with smooth boundary.
Let

where b~, x (x) E Coo (aS~), j = 1, ..., k, be differential operators on 
is called a normal system if 0 __ m 1  m2  ... mk and if for any normal
vector v (x),

Denote

Then we have

if there doesn’t exist a number ~,, j= 1, ... , k such that 

See [17], 1.15 and 4.33.

By applying Lemma A. 1 we conclude that there exist smoothing oper-
ators which preserves normal boundary conditions.

APPENDIX B

Let ] o) and 1B !l1) be two Banach spaces. A1 A0 continu-
ously. For and define

and the interpolation spaces (0  e  1, 1 _p  co)

LEMMA B . 1 [9]. - Let a E Ao, 0  e  1 and 1 _p  ~. Suppose for each
t > 0, there exists a = ao (t) + al (t), ai (t) E Ai, i = 0, 1 with i ~ ai (t) Iii  (t)
such that

Then aE[Ao, and
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LEMMA B. 2 [ 19]. - Let aEAo and ar E A 1 satisfy

for some t > 0. I. f ’ a E [Ao, (0  8  1, 1 _ p  oo ), then

Proof of (4. 3). - When s is integral, (4. 3) follows from Gagliardo-
Nirenberg inequality. When s is not an integer, let 1= max ([s] + 1, m). For
each t > 0, choose f and gt in HZ (Q) according to Lemma B . 2. Then

by (B. 4) and the interpolative characterisation of Sobolev spaces. Using
Lemma B .1 (4. 3) follows.

Q.E.D.

Proof of (4 . 4). - For simplicity we may assume F (x, z) = F (z) and z
is a scalar. For s > 1 ,

Hence

by (4. 3). If then (4. 4) follows after applying the integral Moser
inequality to the right hand side of (B. 5). Otherwise keep applying (4 . 3)
to F~B i = 1, 2, ... finitely many times we again obtain (4 . 4).

Q.E.D.
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