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ABsTRACT. — For the Emden-Fowler equation —Au=2\e* in Qc=R?2,
the connectivity of the trivial solution and the one-point blow-up singular
limit is studied with respect to the parameter A>0. The connectivity is
assured when the domain Q is simply connected and the total mass

= f Ae*dx tends to 8 from below, which is a generalization for the
Q

case that Q is a ball.
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1. INTRODUCTION

In the present paper, we shall study the global bifurcation problem for
the nonlinear elliptic eigenvalue problem (P): find ue C?(Q) N\ C°(Q) and

Classification A.M.S. : 353 60.
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368 T. SUZUKI

AeR, =(0, + o0) satisfying

—Au=Ae*  (inQ) 1)
u=0 (on 8QY), )

where Q<=R" is a bounded domain with smooth boundary 0Q and A is a
positive constant.

We shall study the two-dimensional problem, but a lot of work has
been done for (P) including higher dimensional cases, for instance,
Keller-Cohen[9], Fujita[6], Laetsch[10], Keener-Keller[8], Crandall-
Rabinowitz[5]. They can be summarized in the following way: ’

Fact 1. — There exists Ae(0, +o0) such that(P) has no solution
ueC?*(Q) N\ C°(Q) for L> A, while (P) has at least one solution for 0 <A <X\.

Fact 2. — For each fixed \ the set of solutions{u} for(P), which is
denoted by S,, has a minimal element u=u, whenever S,#0. That is,
w, €5,, and u, <u holds for any ues,.

FacT 3. — There exists no triple {u,, u,, uy } =S, satisfying u; Su,<us
and uy #u, #us;.

Fact 4. — Minimal solutions {(k, u)|0<A<X} form a branch S, that
is, one-dimensional manifold, in . — u plane starting from (\, u)= (0, 0).

FAcT 5. — When n<9, S continues up to A=\ and then bends back.

Fact 6. — When n<2 and he(0, X) we have Sﬁé{z_lx}, that is, there
exists a nonminimal solution then.

In the case of n=2, the problem (P) has a complex structure found by
Liouville[12]. Utilizing it, Weston [20] and Moseley [13] have constructed
a branch S* of nonminimal solutions via singular perturbation method
for generic simply connected domains Q = R2. Their solutions make one -
point blow-up as A | 0.

One the contrary, the asymptotic behavior of solutions{u} as A | 0 has
been studied by [15]. Singular limits of (P) are classified in the following
way for the general domain Q< R2.

THEOREM 1. — Let h= <;> be the classical solution of (P), and set

E:J retdx. 3)
Q

Then { X} accumulates to some 8 tm as A | 0, where m=0,1,2, ..., + 0.
The solutions { u} behave as follows:

(@) If m=0, then |u| .~ g — 0, i.e., uniform convergence to the trivial
solution u=0 for A=0.

®) If 0<m< + oo, then there exists a set ScQ of m-points such that
ulg— + oo and |ulip G5 €0 (1), i.e., m-point blow-up.
(¢) If m= + o, then u(x) - + oo for any xeQ, i.e., entire blow-up.
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Furthermore, in the case (b) the singular limit u, = u, (x) and the location
of blow-up points ScQ are described in terms of the Green function
G=G(x, y) of —A under the Dirichlet boundary condition in Q. For
instance, if m=1 then the singular limit u, = u, (x) must be

Uy (x)=8n1G(x, ) )
and the blow-up point k€ Q must satisfy
VR (x)=0, _ (5)

where R (x)= [G (x, y)+ 2L log|x—y| ] denotes the Robin function.
n

y=x
When Q is a ball B={|x|<1} only the cases (a) and (b) with m=1
occur in Theorem 1, and for the latter case

1
k=0 and Uy (x)=8nG(x, K)=4logﬁ.
X
On the other hand all possibilities m=0,1,2, ..., + co are expected when
Qs an annulus A={a<|x|<1}, where 0<a<1, See[11] and [14].
A natural question is how these singular limits are globally related
to each other in A—wu plane. In fact if Q=B, the singular limit

1 .. .
uy(x)=4 log—| is connected to the trivial solution u=0 (Fig. 1).

| x

FiG. 1

Our purpose is to show that this phenomenon holds in more general
situations. We can prove the following theorem, which is a refinement of
our previous work [18]:

THEOREM 2. — Let Q be simply connected. Suppose that there exists a
family of classical solutions{u} of (P) satisfying E=f Le*dx T 8 mwith
Q

Vol. 9, n® 4-1992.
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A1 0. Then the singular limit in Theorem 1, uy (x)=8 n G (x, X), is connected
to the trivial solution u=0 in A\—u plane through a branch S bending just
once.

As for Weston-Moseley’s branch S* of nonminimal solutions, we have
a quantitive criterior for X to tend to 8wt from below ([18], Proposition 1).
Namely, given simply connected domain Q<= R2, we take a ke satisfying
(5) and a univalent holomorphic function g, :B={|x|<1}->Q with
g2, (0)=x. It follows from (5) that g,/ (0)=0. Under some generic assump-
tion for k other than |g;’ (0)/g;, (0) l #2, Weston-Moseley’s branch S* can

be constructed, of which solutions { u*} make one-point blow-up at xeQ
as A | 0. Then the relation

j re dx=8n+Ch+o()) {as 1] 0) (6)
Q
holds with
C . - K2
=g, |?+ a, |2, 7
T ‘ 1‘ k§3k—2| kl ()
where
g, (2)=x+az+ Y az" 8)
k=3

Therefore, if C<0 then S* is connected to S, the branch of minimal
solutions.

(Weston-Moseley’s branch is constructed by a modified Newton method.
The generic assumption on k stated above is related to the degree of
degeneracy of the linearized operator, and is rather implicit and compli-
cated. However, in the case that Q is convex with two axile symmetries,
say, a rectangle, that condition holds. Furthermore, we have
|g.. (0)/g,.(0)|<2 in this case. See Moseley [13] and Wente[19].)

In the previous work [18, Theorem 3] we actually showed that pheno-
menon of connectivity when Q is close to a ball. But we could not give a
quantitative criterion about how Q should be close to a ball to assure us
of such a connectivity of S* and S. In fact we have ¢,=0(k=3) when Q
is a ball in (8) and hence C/n= —|a, |*<0.

As Bandle [1] reveals, the problem (P) with =2 has a geometric
structure other than complex one. This structure will be fully utilized in
proving our Theorem 2. Namely, employing the technique of rearrange-
ment, we can reduce the theorem to the radial case Q=B. The assumption
of simply connectedness of Q is necessary in developping those procedures
of rearrangement (Proposition 9).

Annales de UlInstitut Henri Poincaré - Analyse non linéaire



ELLIPTIC EIGENVALUE PROBLEM 371

2. STRATEGY FOR THE PROOF

We recall the problem (P):

—Au=Xre* (in QcR?) ©
u=0 (on 0Q). (10)

The basic idea is to parametrize the solutions {h= (:)} in terms of

2=J A e dx. (11)
Q

This is nothing but to introduce the nonlinear operator

CIr @ C(®

Y=¥(.,%): X o X
R R
for given ¥ through
_+_ u
v = 2T N here h=<z>. (12)
Aetdx—X
o

Here, C*(Q) denotes the usual Schauder space for O0<a<1 and
Ci*(Q)={veC?>**(@)|v=00ndQ}. Then, each zero point of ¥ (., X)

represents a solution A= (:) of (P) satisfying (11).

This formulation has a geometric meaning. The solution h=<:) of (P)
is associated with a conformal mapping g from Q<R? into a two-dimen-
sional round sphere of diameter 1. Then, £'= I—J A e" dx indicates the area

Q
of g(Q) as an immersion. Therefore, we are trying to parametrize those

surfaces by their area. This idea was also taken up in [14] in classifying
radial solutions on annului. See [14] for details.
Later we shall show the following lemmas.

LemMA 1. — For each 8>0 the set {h=<;>]‘l’(h, 2)=0 for some

2el0,8m— 9] } is compact.

Vol. 9, n® 4-1992.



372 T. SUZUKI

Lemma 2. — If ¥ (h, £)=0 with some Z€[0,8m), then the linearized
operator

G @
¥ (., Z): X - X
R R

is an isomorphism.

Lemma 3. — If W(h, )=0 for some %e(0,8m) and h=(;), then

1, (p, Q)>0, where p=»re“.

Here and henceforth, p;(p, Q) (j=1,2, ...) denotes the j-th eifenvalue
of the differential operator —~A—p in Q under the Dirichlet boundary
condition. That operator will be denoted by —Ap (Q)—p. Thus, Lemma 3
indicates that the second eigenvalue of the linearized operator for (P) with

respect to u is positive whenever 2=J he*dx<8m.
Q
Those lammas imply our Theorem 2 in the following way. First, consider
the set of zero points of ¥ in £ —# plane. Every zero point (4, £) of ¥
generates a branch of its zero points whenever 0 <X <8 r by the implicit
function theorem and Lemma 2. That branch continues up to =0 by

the compactness in Lemma 1. However, only the trivial solution h=<0>

is admitted for the problem (P) satisfying (11) with £=0. This implies
the unique existence of a non-bending and non-bifurcating branch C of
zeros of W:{(Z, h)|¥(h X)=0} in T—h plane starting from

o8y ¥

FiG. 2
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x.} L mon- i L \DYM"*?\J

A(p. S0 <0
O@UEN
X_ ,M;MMmQ \Dru.vx(‘?\, U
Mee. > 0 N
FiG. 3

Z, h)=<0, <g)) to approach the hyperplane £=8 n. On that hyperplane

Y =8 = lies the singlar limit <g m, <8 G 0(., K)))

Therefore, in the case that X tends to 8 n from below, the branch C

connects the trivial solution (O, (g)) and the singular limit
(8 T, (8 KGO(. ’ K)>>. More precisely, C={Z, h(X))|0<Z<8n} with

lim h(2)= (g) and lim 4(Z)= (8 " Go( " ")) (Fig. 2).

£l0 Ztn

Now the problem arises to represent { h(X)= <; g;) [0<Z<8r } in

A—u plane. Lamma 3 and the implicit function theorem imply that u is
locally parametrized by A unless p, (p, Q)=0, where p=A(X)e*® with
some Ze(0,8 7). However, at the degenerating point pu, (p, Q)=0 works
well the theory of Crandall-Rabinowitz[S]. That is, on account of the
convexity of f (u)=¢e" and the positivity of the first eigenfunction of the
linearized operator —Ap, (Q)—p, the family { (A (£), (X))} forms a bend-
ing branch around £=ZX which changes the solutions from the minimal
to the nonminimal (Fig. 3).

Regarding the uniqueness of minimal solutions, we see that only one
possibility of such a degeneracy p, (p, Q) is permitted, and the proof of
Theorem 2 will have been completed.

We prove those lemmas in later sections.

Vol. 9, n® 4-1992.
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3. A PRIORI ESTIMATES FOR SOLUTIONS AND EIGENVALUES

The following proposition implies Lemma 1:

ProrosiTiON 1. — If h= (;) solves (P) with X ZJ hetdx <8, then the

Q
inequality

)
|t @< —2 1og<1—8~> (13)

T
follows.

In fact we have the elliptic estimate for u and the existence of an upper
bound for A described as Fact 1 in Section 1. Therefore, the a priori
estimate (13) for |u| «(Q) implies the compactness of the solution set

SR (0)
{A|¥ (h, Z)=0 for some £€[0,8n—8]}in  x
R

throught the bootstrap

argument.
On the other hand Lemma 3 is proven by the following proposition:
ProposiTioN 2. — If the positive function pe C*(Q) N C®(Q) sarisfies
~Alogp<p (in QcR?) (14

and sz‘ pdx<4m, then
Q

v, (7, Q)Eian |V o2 dx|ve HA (@), J pvzdx=l}>l. (15)
Q Q .

We note that if h= (;) solves (P), then p=A¢" satisfies (14). Then the

following corollary to Proposition 2 implies Lemma 3.

CoroLLARY. — If p satisfies (14) with2=[ pdx<8m, then 1, (p, Q)>0
Q
Sfollows.

Proof of Corollary. — First, we note that v, (p, Q)>1 is equivalent to
Hy (2, ©)>0 because of the Dirichlet principle for p, (p, Q).

By the argument of A. Pleijel [17], the second eigenfunction Y, of
—Ap(Q)—p has two nodal domains Q, ={ +{,>0}. That is, both Q,
and Q_ are open connected sets. Their boundaries consist of a number of
piecewise C* Jordan curves by a theorem due to Cheng [5]. In fact, extend-

ing Y, outside Q through a suitable reflection, we can regard dQ as a
portion of its nodal lines {{,=0}.

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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By means of Jacobi’s argument we can show that

ﬂ1(P,Q:)51nf{J |Vv|2XmveH})(Qt),j Pvzdx=1}=u2(p,9)‘
Q:t v

+
In fact, for p=p, (p, Q) the function
@+=£VYslo, eCPQHNC° Q) NHQY)
satisfies
—AQ,=ppPs, 9:>0 (n Q) and  @.=0 (ondQ,).

Hence

j |V<p¢|2dx=uj P oL dx.
Q4 Q4

On the other hand for any v,eCP(Q.), the function
Ny =v,/0+€C(Q.) is well-defined so that

Li]Vvide

=| {o1|Vn:P+2¢:n:Ve. . Vno+ni|Vo.|}ax

Q4

=j (02 |V, [+ 0. VL. Vo, +n} | Vo, [P} dx
Q3

=j (02|, P-niV. (0. Vo.)+nd|Vos [} dx
Q4

= {QilvniIZ_ni¢iA¢i}dx

Q3

=J 9% {IWH’WM@WXEHJ pv} dx.
Q4 Q4

Therefore, we have
J |Vvi|2dxguj poidx  [veHg QL]
Q4 Q4

This means that
=1, (0, Q=p, (2, Qu)-

Vol. 9, n® 4-1992.
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On the other hand we have X= J.

Q

pdx+ J. pdx<8mn. Therefore,
+ Q-

either J‘ pdx<4m or f pdx<4m holds so that p,(p, Q2)>0 by
Q4 Q-
Proposition 2.

Propositions 1 and 2 are known when p is real analytic. For instance,
see [18], Proposition 2 and [3], p. 108, respectively. That is enough for
showing Lemmas 1 and 3. However, we shall perform the proof here,
because it is necessary for us to describe that of Lemma 2.

4. ALEXANDROV-BOL’S INEQUALITY
AND ITS CONSEQUENCES
It is well-known that the relation (14), i.e.,

—Alog p<p (inQcR?) (16)
implies Alexandrov-Bol’s inequality

l(aQ)Z%(Sn—m(ﬂ))m(Q), a7

where ds denotes the line element,

z(an)=j p\%ds  and @ m(Q)= J pdx. (18)
o Q

An analytic proof is given in Bandle [2] when p is real analytic. In the
present section, we just refine her argiment and show (17) even for non-
real analytic p, to prove Proposition 1 in more general situations.

PropoSITION 3. — If a positive function pe C2(Q) N C°(Q) satisfies (16),
then the inequality (17) holds.

Proof of Proposition 3. — Let h be the harmonic lifting of log p, that
is,
—Ah=0 (inQ) (19)
and
h=logp (on 09Q). (20)
For each subdomain @wc=Q with sufficiently smooth boundary, the

inequality
2
{J e"/zds} g4njehdx (21)
oo [
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holds true. This is essentially due to Z. Nehari [16].
In fact, there exists an analytic function g=g (z) in Q such that ]g’
and hence

J e"/zds=f
) oo
Je"dx=j

Therefore, (21) is nothing but an isoperimetric inequality for the flat
Riemannian surface g ().
Now, we introduce the function g=pe ™", which solves

~Alog g<ge"  (in Q) 22)

2= gh

g’ |ds=the length of g (0w) as an immersion
and

2 dx=the area of g(0w) as an immersion.

gl

and
g=1 (on 0Q). (23)
We shall derive a differential inequality satisfied by the right continuous

and strictly decreasing functions

K@= P qe" dx (24

J{g>1}

and

n()= et dx. (25)

J{g>r}

In fact, co-area formula implies

h h
-K' ()= ﬁ—ds=tj Cds=—1p' ()  (aer. (26
|Va| (a=n |V4|

{g=t}

On the other hand, Green’s formula gives

1
J (—Alog q)dx=f Mds=—J |V q|ds (a.e.t>1),
{a>1} tq=1y 9 ta=1}

because of Sard’s lemma and the fact that d{g>t}={g=1} for t>1.
Hence we have from (22) that

lf 1Vq|ds§Jﬁ gt dx=K () (aet>1), 27)
{ga=t)

J {a>1)

Vol. 9, n® 4-1992.
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Therefore, we get from Schwarz’s inequality and (21) that

ds

1 e
—K(t)K’(t)g—f |Vq|ds.tf
P Jig=ty (=1 |V 4]

g{J eh/ldg}zg4nj et dx
(q=t} {g>1}
=47p (f) (a.e.t>1). (28)

In particular,
d 1 2
E{u(t) t—K(t)+§K(t) }
=p(t)+$K(t)K’(t)§0 (a.e.t>1). (29

Here, we note that
K{@+0)=K (¥ and K{(—0)=K ().
On the other hand, the function

j(t)EK(t)—u(t)t=J (g—1nedx

{q>1t}
is continuous as j(t+0)=j(#)=j(t—0). In fact, j(t+0)=/j(¢) is obvious

and j()—j(—0)= (g— et dx=0.
{g=1}
Therefore, (29) implies that

= o0

[u(z)r—K(rHiK(r)Z] - —«{u(l)—K(l)+iK(1)2}§o. (30)
8n 8n

t=1
However, we have

KM-pD=jl)= (q—l)e"dxéj (q—l)e"dx=m(ﬂ)“J e"dx
{g>1} Q Q
as well as
K1) =m (@),
so that
m(Q)—Lm(Q)ng e"dx. (1)
8n a

Combining the inequalities (31) and (21) with ©=Q, we see that

1 1 2
m(Q)"—g-;m(Q)zér{Lﬂp”zds} ,

T
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because A=1log p on dQ. This is nothing but (17).
The following theorem implies Proposition 1 of the previous section.

We have only to take p=»Ae* for the solution A= <;> of (P).

ProposITION 4. — If a positive function pe C?(Q) N C°(Q) satisfies (16)
and £ = f pdx <8, then the inequality
Q

E -2
maxp= (1 - —) max p 32)
a 8 oQ

holds.

Proof of Proposition 4. — As in (30), we can derive from (29) the
estimate

j(r)sK(t)—u(r)réginK(t)z (12 1) (33)
or equivalently,

K@*f 1 1 : :
(= ; {K—(t) Sn} (t=1). (34)

Setting

_B@ k@ 3

10 K() 8=’ (33)

we have
J+0)=J (). ' (36)

Furthermore, we note that

K(-0-K@O=| glde=t(u-0=n(®)z0
{a=1}
to deduce
PN S ORI
=03 0-wO-na-0) SO zo

because of (33) and p()—p(—0)= —J et dx <0.

{g=1}

Vol. 9, n® 4-1992.
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On the other hand we have
. —1 K'(?)
Y (H= u(){K() . } KO 3

(@ (0 _pr@OK @ _ 38
> O K () 0 (a.e.t>1) (38)

by (34) and (26). The relations (36)-(38) imply for 7,=maxgq that
Q

= W _ 1 1 1<t<
im 1= tim & O 170,23 0= u(){K() .- } (i) (39)

t1to t T1ig

However,

J(t)>K(‘)2{L_L}2
= ¢t |K@® 8=

(8
1Y%

K@
by (34), of which right hand side tends to (1 - 8—()—>
n

2
(1— 2—) ast| 1.
8n

In this way, we obtain
2 -2
to=maxpe_h§<l——> ,

so that

>\ "2 -2 > -2
maxp§<1——> maxe’< 1—E maxe’=[1——] maxp,
a 8T a 8n 20 8m 2Q

where the maximal principle for the harmonic function 4 is utilized.

5. SPHERICALLY DECREASING REARRANGEMENT

In this section we shall give an outline of the proof of Proposition 2
described in paragraph 3. We follow the idea of C. Bandle, employing
some new arguments.

Proof of Proposition 2.

%
Step 1. — We introduce the cannonical surface A*= <;*) for given
Te(0, 8m), as u* e C2(Q*) N C°(Q*) and A*>0 solve ’
—Au*=)*e" (nQ*={|x|<1}<=R?), (40)
u*=0 (on 6Q) 41

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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and
j A*e*dx=X. (42)
Qt
Here, we note the following proposition.

u*
*

PRrOPOSITION 5. — The solution h* = (l ) of (40) with (41) is parametrized
by T= J A*e* dxe (0,8 ). In other words for each € (0,8) there exists
. Q* . u* .
a unique zero h* = (k*) of
Cire(@% C(@QY

\}l*:\l]*(.’z): X .= X
R R
with
Au* +1* e
v, D= ST

J AMe“dx—X
Qt

*

This fact is well-known. We can give the solution h*=<:*

) explicitly.

In fact,

* — 9 * u* = 8"1 S
P () =A% e (x) (P (43)

holds for some p=p(X)e(0, + c0). We furthermore have

lim p(Z)= + o0, lim p(X)=0 (44)
zZlo0 X18n

and
—Alog p*=p* (in Q%). (45)

See [18] for the proof, for instance.
- By virtue of (45), we can show that the equality holds in Alexandrov-
Bol’s inequality (17), when p=p* and Q is a concentric disc of Q*.

Step 2. — We shall adopt the procedure of spherically decreasing
rearrangement. Namely, given a domain Q<R? and a positive function

Vol. 9, n® 4-1992.
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peC?(Q) satisfying (16) and m(Q)= J pdx<8m, we prepare the cannoni-
Q

%
cal surface h*= <;*> such that = f p*dx=m(Q).
Qiﬂ
For given non-negative function v=v(x) in Q and a positive constant
t>0 we put Q,={v>1}. We can define an open concentric ball Q of Q*
through

J p* dx=j pdx=a(t)el0, 8 ). (46)
QF o3
Then, Bandle’s spherically decreasing rearrangement v* of v is a non-
negative function in Q* defined as

v* (x)=sup {¢|xeQ}F}. 47

It is a kind of equi-measurable rearrangement, and the relation

Jpvzdx=-[tzd(—a(t))=f p* o2 dx (48)
Q Q*

holds true.

The following proposition can be proven, which is referred to as the
decrease of Dirichlet integral:

PROPOSITION 6. — If v=v(x) is Lipschitz continuous on Q, v=0 in Q,
and v=0 on 0Q, then the inequality

J |,Vv|2dx;J‘ |V o* |2 dx (49)
5 o

holds.
From this proposition, it follows that

v, (p, Q)=inf{f |Vo|>dx|veH}(Q), J pvzdx=l}
LJo Q

2v, (p*, Q%) =inf {J

Q

|Vv]2dx|veH(1,(Q_*), j

Q

pv*?dx= 1}, (50)

provided that m(Q)= J pdx=%X= J p*e(0, 8w). Hence the proof of
o .

Proposition 2 will be reduced to the radial case.

Originally, Proposition 6 was proven for real analytic functions by
C. Bandle.
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Proof of Proposition 6. — The function a=a(f) in (46) is right-continu-
ous and strictly decreasing in >0. Since v=0 in Q, co-area formula gives

, p
—a' (1= ds (a.e.t>0) (51)
(o=0y |V 2]

and

—if |Vv[2dx=f |Volds  (ace.t>0). (52)
dt Jo, to=1)

From Schwarz’s and Alexandrov-Bol’s inequalities we obtain

/ 2
—EJ |Vv|2dx§<J. p”zds) /(j P ds)
dt Q, {v=t} {v=t} lV'U[

=l({v=t})*/—d (O2@n—a())a@)/—a () (a.e.t>0). (53)

Here, the function j(f)= — j |Vo|?dx is continuous and strictly
Q;

decreasing in t€l. To see this, we have only to note that v is Lipschitz

continuous so that

j(O—j@—0)= |Vo[?dx=0.
{v=t}

Therefore, j () is absolutely continuous and hence

Vol?dx=1| dt 4 Vol?dx
|Vl
lo 0 dt Jo,

gr dt@@n—a(t)a(t))—a'(r). (54)

o

On the other hand, v*=1v*(x) is a decreasing function of r=|x|. There-
fore, equalities hold at each step in (53) for Q=Q* and v=1v*. Therefore,
we have the equality in (54) for this case, in other words,

L*IVv*|2dx=Lwdt<—»%L*Wv*}zdx)

= r dt(8n—a()a(ty —a (1. (55)

0
This means (49).

Step 3. — We finally show that v, (p*, Q*)>1 in (50), or equivelently,
u; (p*, Q*)=the first eigenvalue of — Ap(Q*)—p*>0, under the assump-

tion of X=| p*dx<4m.
Q‘
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This has been done by C. Bandle from the study of

—Ap=Ap*(e  (in Q*={|x|<1cR?) (56)

and
o=0 (on 0Q*) (&)
for p*(r)= 8u with r=|x|. By the separation @=® (r)e™® and the

(*+p?
transformation &= (u—r?)/(n+r?) of variables, the problem is reduced to
the associated Legendre equation

[(A-E) D) +[2A—m?/(1-EH] D=0
p-1 , - (58)
(g“_ pt1 <§<1>

with
®(1): bounded and ® (§,)=0 (59)

Let @ solves (58) with A=1, m=0 and ®(1)=1. Then, the relation
v, (p*, Q*)>1 is equivalent to ® (§)>0(§,<&<1). Since such a ® is given
as Py (§)=¢&, we see that v, (p*, Q*)>1 is equivalent to §,>0, or u>1.

From (43) we see that p>1 if and only if 2=J‘ p*dx<4m. Thus the
n*
proof has been completed.
This fact, however, can been proven more easily if we note that the

*
bending of {h* = ( :* >} in A—u plane occurs at £=4r in Proposition 3.

In fact, then ¥ <47 indicates that p is a minimal solution, from which
follows p, (p*, Q*)>0.

Concluding the present section we show that the inequality (50) can be
regarded as an isoperimetric inequality for the Laplace-Beltrami operators.
In fact, take a round two-dimensional sphere S of area 8 m. Its cannonical
metric and the volume element are denoted by do and dV, respectively.
Let1:S—>R?U { o } be the stereographic projection from the north pole
neS onto R? U { co } tangent to the south pole seS.

Let ®*<S be a ball (or boul, more precisely,) with the center seS, and
—Ag(0*) be the Laplace-Beltrami operator in o* under the Dirichlet
boundary condition on dw*. Then the injection 1:®* — R? transforms
—Ag(0*) into —A/p* in Q*=1(w*) under the Durichlet boundary condi-
tion.

Since the Gaussian curvature of S is 1/2, the radial function p*=p* (| x|)
satisfies

—Alog p*=p*  (inQ¥), (60)
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and
2=J p*dx=J av. (61)
Q* m*
If 1* denotes the pull-back by 1, the relations ‘
J |d(1*v)|2dV=J |Vol|*dx (62)
o* Q*
and
J‘ (*v)*dV= j p*v*?dx (63)
o* ) Q*

hold, and hence v{1 (p*, ©*) is nothing but the first eigenvalue of — Ag(0*)
under the Dirichlet boundary condition on dw*. This consideration reveals
the reason why the assoicated Legendre equation has arisen in the study
of (56).

In fact, let us take the variable y= x/R, where R denotes the radius of:
Q*={|x|<R}. Then the positive radial function p¥(y)=R? p* (x) satisfies
for QF={|x|<1}<=R? that

—Alog pt=pt  (inQ}) (64)

Furthermore, we have for ve H} (Q*) that

f |Vo|*dx j‘IVvllzdy
r == : (65)

Jp*vzdx J proidy
o o

where v, () =v(x). Hence the eigenvalue problem for —Ag(w*) is reduced
to that of —A/p* on the domain of unit ball:

—Ap=Ap*o (in Qf={|y|<1}<=R? (66)

and
o=0 (on 0Q%). 67)

Hence we note that

J pfdy=f p*¥dx=Xe(0, 8 m). (68)
o* Q'

For M*=p¥ |01 €R,, the function p¥ is realized as p¥=21*e", where
u*=u*(|y|) solves

—Aur=A*e" (in QF) (69)
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by (61) and
u*=0 (on 0QF). (70)
Therefore, it holds that
8
O)=—m 71
pT(» (P E+ 7 (71)

with a constant p>0, as we have seen in Proposmon 5. The parameter p
is determined by (68).

In this way the eigenvalue problem for — Ag(0*) is reduced to (66) with
(67) through those transformations. Via the usual separation of variables
for —Ag(®*), or three-dimensional Laplacian

2 2 2
e (Ze 202
Oxi O0x5 0x3
the associated Legendre equation arises, and so does in (66) if the inverse
transformation, §=(u—r?)/(u+r?), is applied.
From those considerations, we see that the spherically decreasing rear-
rangement described here is nothing but the Schwarz symmetrization on

the round sphere. Namely, given a domain Q = R? with sufficiently smooth
boundary and given a positive function pe C?(Q) N C° (Q) satisfying

—Alogpsp (inQ) (72)
and :

Z,=f pdx<8m, (73)
Q .

we take a ball ®*<S so that

j AV=X. (74)

Then, for a non-negative function v in Q we define a function
v*:0* > (— 00, + o] through the relation

v* (x)=sup { t|xebm‘, 3 (75)
where @, =S denotes the open concentric ball of ®* such that

j dV=J pdx. (76)
o {v>t}

The following propositions are the consequences of the present section:

ProrosiTioN 7. — For each continuous function  : R — R we have

j p(p°vdx=j Vev*dVv (77)
Q o*
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ProposiTION 8. — If v is Lepschitz continuous on Q, v=0 in Q and v=0
on 0Q, then the relation

J |Vv]2dxgj |do* 2 av (78)
Q o*

holds.

6. ANNULAR INCREASING REARRANGEMENT

Now we can perform the proof of Lemma 2.
First we note that the lemma is obvious when £=0. In fact, then

h= ( g ) follows from ¥ (4, 0)=0 and hence

C2+a(ﬂ) Ca(Q)

+ u u 0

4%k 0)= [ ATHe ¢ =<§ lfl!l>: x o ox
f?»e".dx fe“dx R R
Q Q

In the case of X>0 we have A>0 from ¥ (h, £)=0 with h=<;>, S0
that W (h, £)=0 is equivalent to ® (4, £)=0, where
Ci @ C©@

O=0(., %) X - X
R, R
with
Au+tdre* O y
D (h X)= je"dx—% for h=<k)' (79)
Q

Hence the isomorphy of d, ¥ (h, X) is reduced to that of 4, ® (k, £) when
z>0.
The linearized operator

At+dher e\ (@) C* (@)
d,® (h, )= . T} x o X (80)
Jge .dx ¥ R R
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L?(Q)
has a natural self-adjoint extension in  x , which is denoted by —T
R
H§ () NH? ()
with the domain D(—T)= X . By wirtue of the elliptic regu-

R
larity the isomorphy of d, ® (h, X) is equivalent to that of T.
The operator T is associated with the bilinear form A=A(.,.) on
H (Q)
< -
R

AG ”)=J V”~Vde‘f {he*owtekw+etvp}dx—Zrp/A?,  (81)
Q Q

H; (Q)
where §=<v> and n=<w> arein  x . That is,
K p R
AE n=<TEn)
H; (Q)
holds for e D (T) and ne x , where
R

{E, n>=J‘ vwdx+kp

for é=< U> and n=<w>. See Kato [7], for instance, as for the bilinear
K p '
for associated with a self-adjoint operator.

Since X =J Ae*dx, we have
Q

A, n)=f Vv.dex—f xe"<v+ 5) <w+ 3) dx (82)
Q Q A A

for §=(v> and n=<w>. We put
K p

H! (Q)={veH" (Q)|v=Const.on dQ },
to see the isomorphy of the mapping
H; (Q)

g:(i)e < vt SeH!@) (83)
R

Annales de I'Institut Henri Poincaré - Analyse non linéaire



ELLIPTIC EIGENVALUE PROBLEM 389

for each A>0. Therefore, T= —d, ® (h, X) is an isomorphism if and only
if A, has no zero spectrum, where A, denotes the self-adjoint operator in
" L2(Q) associated with the bilinear form B ! @ xul @ With

B (v, w)=f Vv.dex—j powdx (84)
Q Q
for p=2Aeé*.

The spectrum of A, is composed of eigenvalues: 6 (A,)={p;(p, Q) }2 21
with — oo <p, (p, Q)<u2@ Q)<... We have

~ 1
ul(p’ Q)=1nf{B(’l), U)IUEHg _WJ pdx<0, (85)
Q

because (= eH! (Q) and |{[2=1.

1/2
On the otlhgcztrl and we can prove the following proposition.
ProposITION 9. — If a positive function pe C?(Q) N C°(Q) satisfies
—Alogpsp (nQ) (86)
with

EEJ pdx<8m, (87)
Q

then we have ,
Kzinf{f [Vv'zdx[veHcl (Q),J pvzdx=1,f pvdx=0}>1. (88)
Q Q Q

By virtue of Courant’s mini-max principle, (88) implies that

Ha (p, Q)= sup

X1 <H} (Q), codim X; =1

Xinf{f ]Vv["dx—f poldx|veX,, |v|L2=1}>0.
Q Q

Hence Lemma 2 follows.
We finally give the

Proof of Proposition 9. — First -we note that K in (88) is nothing but
the second eigenvalue for the following eigenvalue problem (E.P.): To
find pe H!\ {0} and K eR such that

JV(p.Vvd)c=Kf povdx for any veH} (Q). (89)
Q Q
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In fact, the first eigenvalue and eigenfunction of (E.P.) are 0 and

{=Const. #0, respectively. Hence the second eigenvalue of (E.P.) is given

by the value K of (88). ‘
In particular, the minimizer ¢ e H! () of K in (88) satisfies

—Ap=Kpo (in Q) (90)
and
o0
@=Const. (on 0Q), — ds=0, on
a0 OV

where v denotes the outer unit normal vector on 3Q.

Let {Q;};., be the nodal domains of ¢, that is, the set of connected
components of { @ #0}. Then, 8Q; consists of a number of piecewise C2
Jordan curves by Cheng’s theorem [4]. We have

0
J —(p(pds=0 Sor each iel 92)
o, OV

from (91).

In fact, each 0Q; is composed of some portions of nodal lines {e=0}
and/or the boundary Q. That is, 0Q;=y, U vy, with y,<dQ and
v1={@=0} If YoMy, #, then Yo<{9=0} and hence ¢=0 on 3Q,.

Therefore, it holds that J 0} %(E ds=0. Otherwise, y,=0Q follows from
o0; v

Yo7 because Q<=R? is simply connected and 9Q has only one com-

ponent. Therefore, in this case we have also that

0P J I5l0) J‘ o
O —ds=| @—ds= — ds=0.
J;Qi ov Y0 ov ° ,GQ o0 ov

By virtue of Pleijel’s argument [17], this fact (92) implies #I=2. In

fact ¢ cannot be definite because of J P @ dx=0. Suppose that there exist
Q
three nodal domains Q,, Q,. and Q; of ¢. Each zero extension to Q of

@ o, (i=1, 2, 3), which is denoted by ¢,, satisfies

—Ao;=Kpo, (in Q) 93)
and
J 9 ¢ ds=0, (94)
Q; 6V

There exist constants a, and a, such that

jdeFo and  F#0, (95)
Q
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where F=a, ¢, +a, @,. Obviously, Fe H' (Q) satisfies
F=Const.  (on 0Q). (96)

Furthermore, (93) and (94) imply that

[[1vrpav=at [ Vo.paat [ |vosPas
Q Q

Q3

=K{a§ J poldx+al J p(p%dx}:K f pF?dx. (97)
Q Qr Q

These equalities (95)-(97) indicate that Fe H! (Q) is a second eigenfunc-
tion for the eigenvalue problem (89). Therefore, F is smooth and satisfies

—~AF=KpF  (in Q). (98)

However, F ]93 =0 implies F =0 (in Q) by the unique continuation theorem,
a contradiction.

Thus, each of Q,={+¢>0} becomes a nodal domain of ¢, that is,
open connected set of which boundary consists of a number of piecewise
smooth Jordan curves.

Let k=0 |,q€R.

In the case of k=0, ¢ € H! (Q) satisfies

—Ap=Kpo, £0>0 (inQ,) 99)
and
0=0  (on dQ.). (100)

Now (87) implies either J
Q4
from Proposition 2 of section 3.
In the case x#0, any nodal line of ¢ cannot touch Q. Hence either
Q. or Q_ is simply connected.
Without loss of generality we suppose that Q_ is simply connected and

pdx<4m ofj pdx <4m so that K> 1 follows

Q_

0Q, 20Q (Fig. 4). We put £, =J pdx. Since X, +X_ =X <8m, we have
Qi

either
Y_<4nmn (101)

or
T, <4n<T . (102)

In the case of (101), K>1 follows again from Proposition 2 because
o_=¢|o_€eH§(Q-) holds by the topological assumption for Q.
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FiG. 4

Supposing the case (102), we put '=0Q and y=0Q_. The function
@, =¢|g, solves

—Ap,=Kpo,, ¢,>0 (nQ,), (103)
¢.=0  (onvy), (104)
and
¢, =Const. (onT), j 0P+ ds=0. (105)
r Ov

Therefore, it holds that

K=inf{j |Vo|* dx [veH' (Q4), v=0 (on ),
Q4
v=Const. (on I“),J pvzdx=l}. (106)
Q4

The minimizer >0 of K in (106) is defined in Q, and is given by
Const. X ¢@..

Putting t=V |, we set Q, ={ ¥ =<1} and Q,={{y>1}. The latter might
be empty, but otherwise we take the spherically decreasing rearrangement
V% of y, Z\llv|92 described in section 5. Namely, let S be the round sphere
with area 8w, and let do? and dV be its cannonical metric and volume
element, respectively. We prepare a ball B& S with

J“dV,=j pdx. (107)
B Q,
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Then the function Y% on B is defined through
Vi (x)=sup {|xeaw,},
where o, denotes the open concentric ball of B satisfying

f W=J pdx.
ot {W2>t}

We have
Lpllfzdx=L(\J!§)2dV, (108)
f lwzlzdxzfldwzlzdv (109)

and N B
\Lr;‘],,B:c. (110)

On the other hand we take the following procedure for \r; = |, , which
may be called the annular increasing rearrangement. Namely, we take
open concentric balls B, =B, =S so that

J dV=f pdx(=X_) and J dV=j pdx (=%). (111)
B, - Bj Q

The function {, on the annulus A=B;\ B, is defined through
Ve () =inf {1]xeA},
where A, denotes the closed concentric annulus of A such that A, (UB,<=S

is a closed ball and
J av =J pdx.
Ay {v1=t}

It is an equi-measurable rearrangement and the relation

f p\llzdx=f(%*)2dV (112
Q) A

follows. On the other hand the decrease of Dirichlet integral is derived
from Alexandrov-Bol’s inequality as in Proposition 8. Namely,

[ vvpas ja,pa. (113

because 0=y =<t in Q,, y=0 on y and y=1 on 9Q,\y. Finally, the
relation

V,,=0 (onvy* and V., =T (onT%#) (114)
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is obvious, where y*=0B, and I'*=0B,. We note that A=y* JT*. In
this way we obtain

KgK*Einf” |dv|?aV|veH! (@,), v=0 (on v*),

()

,-*=v|aB=Const‘J vde=1}, (115)

O+

where @, =A U B<S is regarded as a disjoint sum. Therefore, the proposi-
tion has been reduced to showing K*> 1.

Recalling the assumptions X, <4n<X¥X_ and X, +X_<8m as well as
the relation (107) and (111), we arrange the ball B and the annulus A so

FiG. §

that are concentric with the center seS of the south pole (Fig. 5). Then,
®, =A U B is contained in a chemi-ball of S.

Though the stereographic projection i:S — R* U { oo }, the value K* in
(115) is realized as the first eigenvalue of the following problem. That is,

—Ap=Kp*e (inQ) (116)
0=0 (onT)) (117)
and
@ |r, =@ |r, = Const,, J % +J % 4= (118)
o ov o v

Here, Q*=A* UB*, I', =i(y*), I,=i(T'*), and T';=i(dB) (Fig. 6). The
function p* comes from the transformation by the projection i of the
Laplace-Beltrami operator — Ag on S. The annulus A* and the ball B* in
the flat plane are concentric and disjoint.

Through the scalling transformation as we introduced at the end of the
previous section, we may suppose that the outer radius of A* is equal to
one. Then, the function p* in (116) is given as

8
p* ()= W—E—u)—z (119)
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with some constant p>0, which is determined by

Jp*dx=f dv. (120)
Q* o+

The set o, =A (U B is contained in a chemi-ball of the round sphere S,
and hence

J prdx<dnm. (121)
Qi

The first eigenfunction for (116)-(118) is radial and positive. Therefore,
in terms of the variable &= (u—r?)/(u+ r?) it satisfies for some constants a
and b in a<b<1 that

[(1-E) @+ (2/K*) D=0

-1

§p—m<§<a,b<§<l> (122)

with

®(E)>0, (€ <E<a, b<t<]),
D (b)= (a), D' (b)=7’ (a), ®(E)=0 (123)
in the case of Q,=¢¥ and that

[(1-E) D). +(2/KH) =0  (E,<E<a) (124)

with
®©E)>0 (E,<¢<a), D’ (a)=0, E)=0 (125)

in the case of Q, = (¥, respectively.
Therefore, the desired inequality K* > 1 is proven if the relations

®E)>0 E.<&<a b<t<l) (126)
and
DE)>0 E,<&<a) (127)
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are obtained respectively, whenever @ solves

[(1-E)D],+20=0 (—1<&<a, b<t<]) (128)

with
o()=1, D (b)=D(a), D' ()=’ (a) (129)

and
[(A-EY) D] +20=0 (—1<&é<a) (130)

with
D (a)=1, D' (a)=0. (131)
The fundamental system of solutions for (128) or (130) is known. That
is, P, (§)=¢& and Q, (§)= —1 +—§ logié . Therefore, solutions for (127)-

(128) and (129)-(130) are given as
13 b<g<l)

D)= {{1+(b_a)(1_202 logg+a>}§

—(1—a?) (b—a) {—1+%10g H&} (—1<t<a) (132)

1-¢
and
(-] E1og UZ00 Y - 133
dE)=(1 a){ 2log(1+a)(1_§)+l}+a& (—l<t<a), (133)
respectively.

As we have seen in the previous section, the condition (121) implies

that ﬁpzp—;—: >0. Hence (126) and (127) follow from the elementary
n

computations that
DE)=E>0 O<&<a, b<t<]) (134)
and
PE)ZDO0)=1-a>>0 (0<i<a) (135)
in (132) and (133), respectively. Thus the proof has been completed.
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