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ABSTRACT. - For the Emden-Fowler equation -0394u=03BBeu in 03A9~R2,
the connectivity of the trivial solution and the one-point blow-up singular
limit is studied with respect to the parameter ~, > 0. The connectivity is
assured when the domain Q is simply connected and the total mass

E= tends to 8 x from below, which is a generalization for the

case that Q is a ball.
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1. INTRODUCTION

In the present paper, we shall study the global bifurcation problem for
the nonlinear elliptic eigenvalue problem (P): find u E C2 (Q) n C° (Q) and

Classification A.M.S. : 35 J 60.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 9/92/04/367/32/$5.20/0 Gauthier-Villars

© 1992   L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



368 T. SUZUKI

~eR+ =(0, + oo ) satisfying

where is a bounded domain with smooth boundary aS~ and h is a
positive constant.
We shall study the two-dimensional problem, but a lot of work has

been done for (P) including higher dimensional cases, for instance,
Keller-Cohen [9], Fujita [6], Laetsch [10], Keener-Keller [8], Crandall-
Rabinowitz [5]. They can be summarized in the following way:
FACT 1. - There exists ~, E (0,. + (0) such that (P) has no solution

u E C2 (0) n C° (Q) for ~, > ~,, while (P) has at least one solution for 0  ~,  ~,.
FACT 2. - For each fixed ~ the set of solutions ~ u ~ ~ for (P), which is

denoted by S~, has a minimal element u = u~ whenever S,#0. That is,
u~ E S~,, and u~ _ u holds for any u E S~.
FACT 3. - There exists no triple { ul, u2, u3 ~ c: S~ satisfying Ul _ u2 _ u3

and u3.
FACT 4. - Minimal solutions ~ (~, u) 0  X  ~, ~ form a branch S, that

is, one-dimensional manifold, in X - u plane starting from (X, u) = (0, 0).
FACT 5. - When n -- 9, S continues up to ~, _ ~, and then bends back.
FACT 6. - When n _ 2 and ~, E (0, ~,) we have S).:f.= { u~ ~, that is, there

exists a nonminimal solution then.

In the case of n = 2, the problem (P) has a complex structure found by
Liouville [12]. Utilizing it, Weston [20] and Moseley [13] have constructed
a branch S* of nonminimal solutions via singular perturbation method
for generic simply connected domains Q c: Their solutions make one -

point blow-up as X 1 0.
One the contrary, the asymptotic behavior of solutions { u ~ as X 1 0 has

been studied by [15]. Singular limits of (P) are classified in the following
way for the general domain Q c: R2..

THEOREM I . - Let h = u be the classical solution of(P), and set

Then ~ ~ ~ accumulates to some 8 x m as ~. ~, 0, where m = 0, l, ~, ..., 
+ 00.

The solutions ~ u ~ behave as follows:
(a) If m = 0, then lulL 00 (Q) --+ 0, i. e., uniform convergence to the trivial

solution u = 0 for ~, = 0.
(b) If Om + 00, then there exists a set S~03A9 of m-points such that

u Is -~ + 00 and u (O"’-S) E O (1), i. e., m-point blow-up.
(c) If m = + 00, then u (x) -~ + oo for any x E S~, i. e., entire blow-up.
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Furthermore, in the case (b) the singular limit uo = uo (x) and the location
of blow-up points S~03A9 are described in terms of the Green function

G = G (x, y) under the Dirichlet boundary condition in Q. For
instance, if m = 1 then the singular limit uo = uo (x) must be

and the blow-up point K~03A9 must satisfy

where R (x) = [G (x, j/)+2014 log I ] = denotes the Robin function.

When Q is a ball only the cases (a) and (b) with 
occur in Theorem 1, and for the latter case

On the other hand all possibilities m = 0, 1 , 2, ..., 
+ oo are expected when

Q is an annulus where See [11] and [14].
A natural question is how these singular limits are globally related

to each other in plane. In fact if Q=B, the singular limit

is connected to the trivial solution u = 0 (Fig. 1).Ixl ]

Our purpose is to show that this phenomenon holds in more general
situations. We can prove the following theorem, which is a refinement of
our previous work [ 18] :

THEOREM 2. - Let S2 be simply connected. Suppose that there exists a

family of classical solutions ~ u ~ of (P) satisfying ~ _ ~, eu dx T 8 x with
VoL 9, n° 4-1992. -
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~0. Then the singular limit in Theorem 1, uo (x) = 81t G (x, K), is connected
to the trivial solution u = 0 in ~, - u plane through a branch S bending just
once.

As for Weston-Moseley’s branch S* of nonminimal solutions, we have
a quantitive criterior for L to tend to 8 1t from below ([18], Proposition 1).
Namely, given simply connected domain we take a KEO satisfying
(5) and a univalent holomorphic function gx : B = { x  1 ~ ~ ~ with
gx (0) = K. It follows from (5) that gx (0) = 0. Under some generic assump-
tion for K other than f ~ 2, Weston-Moseley’s branch S* can
be constructed, of which solutions { u* ~ make one-point blow-up at K E Q

0. Then the relation

holds with

where

Therefore, if C0 then S* is connected to S, the branch of minimal
solutions.

(Weston-Moseley’s branch is constructed by a modified Newton method.
The generic assumption on K stated above is related to the degree of
degeneracy of the linearized operator, and is rather implicit and compli-
cated. However, in the case that Q is convex with two axile symmetries,
say, a rectangle, that condition holds. Furthermore, we have

Ig;;’ I  2 in this case. See Moseley [13] and Wente [19].)
In the previous work [ 18, Theorem 3] we actually showed that pheno-

menon of connectivity when Q is close to a ball. But we could not give a
quantitative criterion about how Q should be close to a ball to assure us
of such a connectivity of S* and S. In fact we have when Q
is a ball in (8) and hence 
As Bandle [ 1 ] reveals, the problem (P) with n=2 has a geometric

structure other than complex one. This structure will be fully utilized in
proving our Theorem 2. Namely, employing the technique of rearrange-
ment, we can reduce the theorem to the radial case Q=B. The assumption
of simply connectedness of Q is necessary in developping those procedures
of rearrangement (Proposition 9).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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2. STRATEGY FOR THE PROOF

We recall the problem (P):

The basic idea is to parametrize the solutions { h = in terms of

This is nothing but to introduce the nonlinear operator

for given E through

Here, ccx (2) denotes the usual Schauder space for 0  a  1 and

C2+03B10(03A9)={03BD~C2+03B1(03A9) I v = 0 on Then, each zero point of 03A8 (., 1:)

represents a solution A== ( /MB of (P) satisfying ( 11 ) .
This formulation has a geometric meaning. The solution h = (u 03BB) of (P)

is associated with a conformal mapping f from Q c R2 into a two-dimen-

sional round sphere of diameter 1. Then, 03A3’ = 1 8 03A9 03BB eu dx indicates the area
as an immersion. Therefore, we are trying to parametrize those

surfaces by their area. This idea was also taken up in [14] in classifying
radial solutions on annului. See [14] for details.

Later we shall show the following lemmas.

LEMMA 1. - For each 03B4 > 0 the set {h=(u 03BB)|03A8(h,03A3)=0 for some

E E [0, 8 x - 0] } is compact.
Vol. 9, n° 4-1992.
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LEMMA 2. - If 03A8 (h, 1:) = 0 with some 03A3 E [0, 8 03C0), then the linearized

operator 
.

is an isomorphism.

LEMMA 3. - If E)=0 for ~~ Xe(0,8~) and h = u , , then

p.~ ( p, Q) > 0, where p = X eu .
Here and henceforth, ~,~ (p, Q) (/= 1,2, ... ) denotes the j-th eifenvalue

of the differential operator - 0394 -p in Q under the Dirichlet boundary
condition. That operator will be denoted by -Au~)"~. Thus, Lemma 3
indicates that the second eigenvalue of the linearized operator for (P) with

respect to u is positive whenever £ = 

Those lammas imply our Theorem 2 in the following way. First, consider
the set of zero points of 03A8 in 03A3 - h plane. Every zero point (h, E) of 03A8

generates a branch of its zero points whenever 0 ~ X  8 x by the implicit
function theorem and Lemma 2. That branch continues up by

the compactness in Lemma 1. However, only the trivial solution h = 0
is admitted for the problem (P) satisfying ( 11 ) with E==0. This implies
the unique existence of a non-bending and non-bifurcating branch C of
zeros of ~F : {(E, h) ~ ~P(/!, X)=0} plane starting from

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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(E, A) == ( 0, ( )) to approach the hyperplane E = 8 7c. On that hyperplane
1: = 8 03C0 hes the singlar limit 8 7C, (8 ’ ’ ’ .

Therefore, in the case that E tends to 8 ~ from below, the branch C

connects the trivial solution (0, ( ) } and the singular limit

(8 03C0,(803C0G(.,03BA) 0 )). More precisely, C={03A3,h(03A3))|003A3803C0} with

lim /x (E) = (0 0) and lim /x (E) = (8 03C0G(., 03BA) 0(Fig. 2).

Now the problem arises to represent ~(E)=( (~ )0X87i:~in" ~’ ’ ~(E)7 J
~-M plane. Lamma 3 and the implicit function theorem imply that M is
locally parametrized by 03BB unless 1(p, Q)=0, where p=03BB(03A3)eu(03A3) with
some Z6(0,87c). However, at the degenerating point Q)==0 works
well the theory of Crandall-Rabinowitz[5]. That is, on account of the
convexity and the positivity of the first eigenfunction of the
linearized the family {(~(E), M(E))} forms a bend-
ing branch around E=2 which changes the solutions from the minimal
to the nonminimal 3).
Regarding the uniqueness of minimal solutions, we see that only one

possibility of such a degeneracy 1(p, 03A9) is permitted, and the proof of
Theorem 2 will have been completed.
We prove those lemmas in later sections.

Vol. 9, n° 4-1992.
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3. A PRIORI ESTIMATES FOR SOLUTIONS AND EIGENVALUES

The following proposition implies Lemma 1: .

PROPOSITION 1. - If h = (~) solves (P) with ~ _ ~, eu dx  8 ~t, then the

inequality

follows.
In fact we have the elliptic estimate for u and the existence of an upper

bound for A described as Fact 1 in Section 1. Therefore, the a priori
estimate (13) for M (Q) implies the compactness of the solution set

{/x) B B}I (h, X) = 0 for some X E [0, 8 x - ~] ~ in x throught the bootstrap
R

argument.
On the other hand Lemma 3 is proven by the following proposition:
PROPOSITION 2 . - If the positive function p E C2 (0) n C° (0) satisfies

~hen

We note that if h = u solves (P), then satisfies (14). Then the

following corollary to Proposition 2 implies Lemma 3.

COROLLARY. - If p satisfies (14) with 03A3 = 03A9pdx  8 03C0, then 2(p, S2) > 0

follows.

Proof of Corollary. - First, we note that VI (p, Q) > 1 is equivalent to
III (p, Q) > 0 because of the Dirichlet principle for III (p, Q).
By the argument of Å. Pleijel [17], the second eigenfunction 03C82 of

- OD (~) - p has two nodal domains Q+={ ::I::~2>0}. That is, both Q+
and Q- are open connected sets. Their boundaries consist of a number of
piecewise CZ Jordan curves by a theorem due to Cheng [5]. In fact, extend-
ing outside S2 through a suitable reflection, we can regard an as a
portion of its nodal lines ~ = 0 ~ .

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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By means of argument we can show that

In fact, for  = 2 (p, Q) the function

satisfies

Hence

On the other hand for any ~~C~(p~), the function

11:t = ~/(p ~ E C~ (Q ±) is well-defined so that

Therefore, we have

This means that

Vol. 9, n° 4-1992.
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On the other hand we have 03A3 = i íl pdx + Therefore,

either 03A9+ pdx403C0 or .n- holds so that SZ) > 0 by

Proposition 2.
Propositions 1 and 2 are known when p is real analytic. For instance,

see [18], Proposition 2 and [3], p. 108, respectively. That is enough for
showing Lemmas 1 and 3. However, we shall perform the proof here,
because it is necessary for us to describe that of Lemma 2.

4. ALEXANDROV-BOL’S INEQUALITY
AND ITS CONSEQUENCES

It is well-known that the relation (14), i. e.,

implies Alexandrov-Bol’s inequality

where ds denotes the line element,

An analytic proof is given in Bandle [2] when p is real analytic. In the
present section, we just refine her argiment and show ( 17) even for non-
real analytic p, to prove Proposition 1 in more general situations.

PROPOSITION 3. - positive function (Q) (~ C° (Q) satisfies ( 16),
then the inequality (17) holds.

Proof Proposition 3. - Let h be the harmonic lifting of log p, that
is,

and

For each subdomain 03C9~03A9 with sufficiently smooth boundary, the

inequality

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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holds true. This is essentially due to Z. Nehari [16].
In fact, there exists an analytic function g = g (z) in Q such that |g’| 2 = eh,

and hence

and

Therefore, (21) is nothing but an isoperimetric inequality for the flat
Riemannian surface g (m).
Now, we introduce the function q=pe-h, which solves

and

We shall derive a differential inequality satisfied by the right continuous
and strictly decreasing functions

and

In fact, co-area formula implies

On the other hand, Green’s formula gives

because of Sard’s lemma and the fact that a ~ q > t ~ _ ~ q = t ~ for t > 1.
Hence we have from (22) that

Vol. 9, n° 4-1992.
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Therefore, we get from Schwarz’s inequality and (21 ) that

In particular,

Here, we note that

On the other hand, the function

is continuous as j (t + 0) = j (t) = j (t - 0) . In fact, j (t + o) = j (t) is obvious

and j (t) - j (t - 0) = í q = t 
Therefore, (29) implies that -

However, we have

as well as

so that

Combining the inequalities (31 ) and (21) with 03C9 = Q, we see that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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because h = log p on This is nothing but (17).
The following theorem implies Proposition 1 of the previous section.

We have only to take p = for the solution h = u of (P).

PROPOSITION 4. - If a positive function p E C2 (SZ) n C° (Q) satisfies ( 16)

and :E --- pdx  8 x, then the inequality

holds.

Proof of Proposition 4. - As in (30), we can derive from (29) the

estimate

or equivalently,

Setting

we have

Furthermore, we note that

to deduce

because of

Vol. 9, n° 4-1992.
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On the other hand we have

by (34) and (26). The relations (36)-(38) imply for to = max q that
Q

However,

by (34), of which right hand side tends to 1 - K(1) 803C0)2 ~( 1 - 2014 as t~ 1.B 8?r / B 87I/
In this way, we obtain

so that

where the maximal principle-for the harmonic function h is utilized.

5. SPHERICALLY DECREASING REARRANGEMENT

In this section we shall give an outline of the proof of Proposition 2
described in paragraph 3. We follow the idea of C. Bandle, employing
some new arguments.

Proof of Proposition 2:

STEP 1. - We introduce the cannonical surface h* = 
/M*B 

) for given

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

Here, we note the following proposition.

PROPOSITION 5. - The solution h* - u * o, f ’ (40) with (41 ) is parametrized
by 03A3 = 03BB* eu* dx E {0, 8 03C0). In other words for each 03A3 E (0, 8 03C0) there existsn* 

~* 
.

a unique zero h* = of
~,* .

with

This fact is well-known. We can give the solution h* = explicitly.
. 7~*

In fact,

holds for some ~==~(Y)e(0, + oo). We furthermore have

and

See [18] for the proof, for instance.
. By virtue of (45), we can show that the equality holds in Alexandrov-
Bol’s inequality ( 17), when p = p* and Q is a concentric disc ofQ*.

STEP 2. - We shall adopt the procedure of spherically decreasing
rearrangement. Namely, given a domain and a positive function

Vol. 9, n° 4-1992.
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satisfying (16) and j~(Q)= we prepare the cannoni-

cal surface /!* = 
/M*B 

) such that E = 
. 

~* ~ == ~ (Q).B~~/ J~
For given non-negative function ~=~(~) in Q and a positive constant

~>0 we put Q~= {n;> ~}. We can define an open concentric ball Q* of Q*
through

Then, Bandle’s spherically decreasing rearrangement v* of v is a non-

negative function in Q* defined as

It is a kind of equi-measurable rearrangement, and the relation

holds true.

The following pro,position can be proven, which is referred to as the
decrease of Dirichlet integral:

PROPOSITION 6. - If v = v (x) is Lipschitz continuous on S~, v >_ 0 in Q,
and v = 0 on then the inequality

holds.

From this proposition, it follows that

provided that m (03A9) ~ 03A9 pdx = 03A3 = [ p*E(O,811:). Hence the proof of

Proposition 2 will be reduced to the radial case.

Originally, Proposition 6 was proven for real analytic functions by
c. Bandle..

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof of Proposition 6. - The function a = a (t) in (46) is right-continu-
ous and strictly decreasing in Since in Q, co-area formula gives

and

From Schwarz’s and Alexandrov-Bol’s inequalities we obtain

Here, the function j (t) = - Lt I V u 12 dx is continuous and strictly

decreasing in t e l. To see this, we have only to note that u is Lipschitz
continuous so that

Therefore, j (t) is absolutely continuous and hence

On the other hand, v* = v* (x) is a decreasing function of r = ~ . There-
fore, equalities hold at each step. in (53) for Q = Q* and v = v*. Therefore,
we have the equality in (54) for this case, in other words,

This means (49).

STEP 3. - We finally show that v l (p*, Q*) > I in (50), or equivelently,
pi (p*, 03A9*)~ the first eigenvalue af - åD(Q*)- p*>0, under the assump-

tion r Jfi* .
Vol. 9, n° 4-1992.
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This has been done by C. Bandle from the study of

and

for p*(r) = 8  (r2 + )2 with r = ] x ] . By the separation 03C6=03A6(r)eim03B8 and the

transformation ç = (y - + r2) of variables, the problem is reduced to
the associated Legendre equation

B

with

Let 03A6 solves (58) with A = 1, m = 0 and 03A6 ( 1 ) =1. Then, the relation
v (~*, Q*)> 1 is equivalent to D(~)>0(~~ 1). Since such a 0 is given
as Po (ç) = ç, we see that v 1 (p*, Q*) > 1 is equivalent to ç~ > 0, or 1.

From (43) we see that >1 if and only if X= 03A9*p*dx403C0. Thus the
proof has been completed.

This fact, however, can been proven more easily if we note that the

bending of  /x* = (u* 03BB*)} in 03BB - u plane occurs at E = 4 x in Proposition 3.
In fact, then X  4 ?c indicates that Jl is a minimal solution, from which
follows Q*) > 0.

Concluding the present section we show that the inequality (50) can be
regarded as an isoperimetric inequality for the Laplace-Beltrami operators.
In fact, take a round two-dimensional sphere S of area 8 x. Its cannonical
metric and the volume element are denoted by da and dV, respectively.
Let be the stereographic projection from the north pole
n E S onto R2 U { ~} tangent to the south pole s e S.
Let be a ball (or boul, more precisely,) with the center s e S, and

- ~s ((0*) be the Laplace-Beltrami operator in 00* under the Dirichlet

boundary condition on Then the injection transforms
- As (co*) into - 0/p* in Q* = t (co*) under the Durichlet boundary condi-
tion.

Since the Gaussian curvature of S is 1 /2, the radial function /?*=/?*( ~ )
satisfies

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

If 1 * denotes the pull-back by 1, the relations

and

hold, and hence v~ (p*, is nothing but the first eigenvalue of - As 
under the Dirichlet boundary condition on cko*. This consideration reveals
the reason why the assoicated Legendre equation has arisen in the study
of (56).

In fact, let us take the variable y = x/R, where R denotes the radius of:
S~* _ ~ C x ~  R }. Then the positive radial function = (x) satisfies

Furthermore, we have for v E HÕ (Q*) that

where vl (y) = V (x). Hence the eigenvalue problem for - As (co*) is reduced
to that of - A/p* on the domain of unit ball:

and

Hence we note that

For À * =pi the function pi is realized as where
u* = u* ( ( y ~ ) solves

Vol. 9, n° 4-1992.
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by (61) and

Therefore, it holds that

with a constant y > 0, as we have seen in Proposition 5. The parameter {i
is determined by (68)..

In this way the eigenvalue problem for - As (00*) is reduced to (66) with
(67) through those transformations. Via the usual separation of variables
for - As (0)*), or three-dimensional Laplacian

the associated Legendre equation arises, and so does in (66) it the inverse
is applied.

From those considerations, we see that the spherically decreasing rear-
rangement described here is nothing but the Schwarz symmetrization on
the round sphere. Namely, given a domain 03A9~R2 with sufficiently smooth
boundary and given a positive function p E CZ (Q) n C° satisfying

and

we take a ball so that

Then, for a non-negative function v in Q we define a function
1~ : 00* ~ ( - oo, + 00] through the relation

where cot m S denotes the open concentric ball of o* such that

The following propositions are the consequences of the present section:

PROPOSITION 7. - For each continuous function 03C8: R - R we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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PROPOSITION 8. - v is Lepschitz continuous on S~, v _> 0 in Q and v = 0
on aSZ, then the relation

6. ANNULAR INCREASING REARRANGEMENT

Now we can perform the proof of Lemma 2.
First we note that the lemma is obvious when ~E=0. In fact, then

/!==={ 0 0) follows from 03A8(h, 0) = 0 and hence

In the case we have X> 0 ~)=O with h = u , so
that T (h, E) = 0 is equivalent to 03A6 (h, 1:) = 0, where

with

Hence the isomorphy of (h, E) is reduced to that (h, E) when

The linearized operator

Vol. 9, n° 4-1992.
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L (Q)
has a natural self-adjoint extension in x , which is denoted by - T
R

HÕ (Q) n H 2 (Q)
with the domain D ( - T) = x . By wirtue of the elliptic regu-

R

larity the isomorphy of dh 03A6 (h, L) is equivalent to that of T.
The operator T is associated with the bilinear form A = A ( . , . ) on

HÕ (0)
x i

R

Ho C~)
where 03BE = and ~ = are in 

X . 
That is,

holds for ç e D (T) and 11 EX, where
R

and 11 = BP/ ). See Kato [7], for instance, as for the bilinear
for associated with a self-adjoint operator.

Since E = we have °’1

for 03BE = C ) and ~ = C w P/ 1. We put
to see the isomorphy of the mapping

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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for each X>0. Therefore, T = - dh ~ (h, E) is an isomorphism if and only
if Ap has no zero spectrum, where Ap denotes the self-adjoint operator inassociated with the bilinear form B IHl (n) with

for 

The spectrum of Ap is composed of eigenvalues: a (Ap) _ ~ ~,J (p, 
with - 00 (p, 0)  Ilz (p, (1)  ... We have

H1 (Q) ~L2 =1.

On the other and we can prove the following proposition. _

PROPOSITION 9. - If a positive function p E C2 (S~) n C° satisfies

with

then we have

By virtue of Courant’s mini-max principle, (88) implies that

Hence Lemma 2 follows. ’

We finally give the 
-

Proof of Proposition 9. - First ~we note that K in (88) is nothing but
the second eigenvalue for the following eigenvalue problem (E.P.): To
find (peH~B{0} and KeR such that

Vol. 9, n° 4-1992.
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In fact, the first eigenvalue and eigenfunction of (E.P.) are 0 and
ç = Const. ~ 0, respectively. Hence the second eigenvalue of (E.P.) is given
by the value K of (88). ’

In particular, the minimizer cp E Hj (Q) of K in (88) satisfies

and

where v denotes the outer unit normal vector on aS~.
I be the nodal domains of q>, that is, the set of connected

components Then, ani consists of a number of piecewise C2
Jordan curves by Cheng’s theorem [4]. We have

from (9 1 )...
In fact, each lQ; is composed of some portions of nodal lines { p = 0 }

and/or the boundary lQ. That is, ~03A9i=03B30~03B31 with 03B30~~03A9 and
Y 1 C { p = 0 }. If 03B31 =P 0, then Yo c { cp = 0 ) and hence p == 0 on ~03A9i.
Therefore, it holds that í 

p 
~03C6 ds = 0. Otherwise, 03B30=~03A9 follows from
lv

ø- because Q c R 2 is simply connected and lQ has only one com-
ponent. Therefore, in this case we. have also that

By virtue of Pleijel’s argument [l. 7], this fact (92). implies #I = 2. In

fact cp cannot be definite because of cp dx = o. Suppose that there exist

three nodal domains 03A92. and 03A93 of 03C6. Each zero extensian to 03A9 of
cp |03A9i (i =1, 2, 3), which is denoted by satisfies

and

There exist constants a 1 and a2 such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where Obviously, FER1 (Q) satisfies

Furthermore, (93) and (94) imply that

These equalities (95)-(97) indicate that F e H; (Q) is a second eigenfunc-
tion for the eigenvalue problem (89). Therefore, F is smooth and satisfies

However, F Q3 = 0 implies F == 0 (in Q) by the unique continuation theorem,
a contradiction.

Thus, each becomes a nodal domain of cp, that is,
open connected set of which boundary consists of a number of piecewise
smooth Jordan curves.

Let K = p ~~~ E R.
In the case of K = 0, p E H; (Q) satisfies

and

Now (87) implies either 03A9+pdx403C0 of r pdx403C0 so that K > 1 follows

from Proposition 2 of section 3.
In the case K ~ 0, any nodal line of cp cannot touch Hence either

Q+ or Q - is simply connected.
Without loss of generality we suppose that ~2 _ is simply connected and

~03A9+~~03A9 (Fig. 4). We = Since £ + + 03A3- =03A3  811:, we have

either

or

In the case of (101), K > 1 follows again from Proposition 2 because

/Q- EHÕ (SZ _ ) holds by the topological assumption for S2 + .
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FIG. 4

Supposing the case (102), we put and The function

(p+ = p 10+ solves

and

Therefore, it holds that

The minimizer of K in (106) is defined in Q+ and is given by
Const. 

Putting ’t = 0/ r, we set S21= ~ ~ _ i ~ and O2 = { 0/ > ’t }. The latter might
be empty, but otherwis.e we take the spherically decreasing rearrangement
~2 of Bt/2 = ~ ~2 described in section 5. Namely, let S be the round sphere
with area 87~ and let dcr2 and dV be its cannonical metric and volume
element, respectively. We prepare a ball B c S with
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Then the function on B is defined through

where rot denotes the open concentric ball of B satisfying

We have

and

On the other hand we take the following procedure for 0/1 = 0/ Inl’ which
may be called the annular increasing rearrangement. Namely, we take
open concentric balls B2 c Bl c S so that

The function 0/1* on the annulus is defined through

where At denotes the closed concentric annulus of A such that At U B2 c S
is a closed ball and

It is an equi-measurable rearrangement and the relation

follows. On the other hand the decrease of Dirichlet integral is derived
from Alexandrov-Bol’s inequality as in Proposition 8. Namely,

because 0~Bj/~T in 5~2, B)/= 0 on y on Finally, the
relation
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is obvious, where and r*=oB1. We note that In

this way we obtain

where regarded as a disjoint sum. Therefore, the proposi-
tion has been reduced to showing K* > 1.

Recalling the assumptions 03A3+403C0~03A3- and 03A3++03A3-803C0 as well as
the relation (107) and we arrange the ball B and the annulus A so

that are concentric with the center S E S of the south pole (Fig. 5). Then,
m+ = A U B is contained in a chemi-ball of S.
Though the stereographic projection the value K* in

(115) is realized as the first eigenvalue of the following problem. That is,

and

Here, Q* = A* U B*, h1= i (y*), r2=i(r*), and h3 = i (aB) (Fig. 6). The
function p* comes from the transformation by the projection i of the
Laplace-Beltrami operator - Ag on S. The annulus A* and the ball B* in
the flat plane are concentric and disjoint.
Through the scalling transformation as we introduced at the end of the

previous section, we may suppose that the outer radius of A* is equal to
one. Then, the function p* in (116) is given as
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with some constant ~>0, which is determined by

The is contained in a chemi-ball of the round sphere S,
and hence

The first eigenfunction for ( 116)-( 118) is radial and positive. Therefore,
in terms of the it satisfies for some constants a
and b in a  b  1 that

with

in the case of Q~ = 0 and that

with

in the case of Q2 = 0, respectively.
Therefore, the desired inequality K* > 1 is proven if the relations

and
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are obtained respectively, whenever C solves

with

and

with

The fundamental system of solutions for (128) or (130) is known. That

is, Pi (§) = § and Qi (03BE)= -1 +- Therefore, solutions for (127)-

(128) and (129)-(130) are given as

and

respectively.

As we have seen in the previous section, the condition (121) implies

that 03BE ~ -1 +1 >0. Hence (126) and (127) follow from the elementary
computations that

and

in ( 132) and ( 133), respectively. Thus the proof has been completed.
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