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ABSTRACT. - We determine some sufficient conditions for the G-conver-

gence of sequences of quasi-linear monotone operators, together with an
asymptotic formula for the G-limit. We then prove a homogenization
theorem for quasiperiodic monotone operators and, eventually, extend this
result to general almost periodic monotone operators using an approxima-
tion result and a closure lemma.
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formule asymptotique pour la G-limite. Ensuite nous demontrons un

theoreme d’homogeneisation pour les operateurs monotones quasi-
periodiques et, enfin, nous extendons ce resultat aux operateurs monotones
presque periodiques en utilisant un resultat d’approximation.

INTRODUCTION

In this paper we consider a class of quasi-linear operators
~ : (~2) ~ H -1 ~ q (Q) of the form

where Q is a bounded open subset of Rn, 1  p  + oo , and
the function a : Q x R" ~ Rn satisfies suitable measurability, continuity, and
monotonicity assumptions. By M~ we denote the set of such functions a.
In order to study the behaviour of boundary value problems of the type

under perturbations of the function a E a notion of G-convergence
has been introduced in [16]. Its definition and main properties are recalled
in Section 1.
The main purpose of Section 2 is to determine some conditions on a

sequence of functions (ah) in Mg which imply G-convergence. It turns out
that one of them is simply the strong convergence in (L 1 (Q))n of the
sequence (ah (., ~)), for every § E Rn (see Theorem 2 . 1 ). A necessary and
sufficient condition involves the limit behaviour, as h tends to +00, of
the integrals

tor every ç E Rn and tor every A in a suitable tamily of open sets, where
the functions ~ are the solutions to the Dirichlet boundary value problems

(see Theorem 2.3). The proof of this result relies on a representation
formula for functions a E M~ given in Theorem 2 . 2.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



401ALMOST PERIODIC OPERATORS

Section 3 is concerned with the homogenization of operators defined
by functions of the class M~; i. e., the G-convergence of sequences of
functions (ah) of the form

where (Eh) is a sequence of positive real numbers converging to O. We
suppose that the function a : Rn x Rn  Rn satisfies the usual measurability,
continuity, and mono tonicity assumptions, and a condition of quasiperiod-
icity with respect to x (see Definition 3. 1 ). By using the results obtained
in Section 2, we prove that there exists a monotone operator b : Rn  Rn
such that, for every f E H -1 ° q (SZ), the solutions uh and the momenta

a(x ~h, D uh of the Dirichlet boundary value problems

converge, as (Eh) tends to 0, to the solution u and the momentum b (Du)
of the homogenized problem

Theorem 3.4 gives also an asymptotic formula for the function b ; its

proof generalizes a construction used in [36].
In Section 4 we extend the homogenization result of Section 3 to almost

periodic operators (in the sense of Besicovitch; see Definition 4 . 1 ) defined
by functions of the class MRn using an approximation result (Lemma 4.4)
and a closure lemma (Lemma 4. 3).
The notion of G-convergence for second order linear elliptic operators

was studied by E. De Giorgi and S. Spagnolo in the symmetric case (see
[40], [41], [42], [21]), and then extended to the non-symmetric case by
F. Murat and L. Tartar under the name of H-convergence (see [43], [44],
and [34]). A further extension to higher order linear elliptic operators can
be found in [47] together with an extensive bibliography on this subject.
Results for the quasi-linear case are given, among others, in [46], [37],
[23], [22] and [ 16] .
For the related problems in homogenization theory under periodicity

hypotheses on ~(.,~), we refer to the books [2], [39], and [1], which
contain a wide bibliography on this topic. Homogenization results for
quasi-linear operators are obtained in [4], [5], [6], [25], [26], [17], while the
almost periodic case for linear equations is studied in [28] and [36]. A
corrector result for quasi-linear periodic equations has been obtained in
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[18], whereas an analogous theorem for the almost periodic case will

appear in [ 10] .
From another point of view, the homogenization of a class of variational

integrals of the form

which is related to the homogenization of the operators

- div ~03BEf(x ~h,03BE)), has been studied in [32], [15], and [7], using the

techniques of r-convergence introduced by E. De Giorgi. Homogenization
results for variational integrals under almost periodicity assumptions have
been proven in [8], [9], [ 11 ] .
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1. NOTATIONS AND PRELIMINARY RESULTS

Let p be a real constant, 1 p  +00, and let q be its dual exponent,
The Euclidean norm and the scalar product in Rn are denoted

by . and ( . , . ), respectively.
DEFINITION 1.1. - Given four constants a, (3, cl, and c2, such that

Cl>O, c~ >0, n (p -1), we denote by
M (a, P, cl, c~) the class of all functions a : Rn  Rn which fulfill the follow-
ing conditions:

(i) .

(ii ) a satisfies the following inequalities of equicontinuity and strict

monotonicity:

for every ~ 1, Ç2 ERn.
For every open subset (!) of Rn, by Mø (rL, ~i, C l’ C 2) we denote the class

of all functions ~: ~ x Rn  Rn which satisfy the following conditions:
(iii) ~(~.) 
(iv) for every ç E Rn, a ( . , ç) is Lebesgue measurable.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



403ALMOST PERIODIC OPERATORS

It is easy to see that (iii ) implies that there exist constants Cg>0, c~>0,
such that

I , .- ~ I . ~ I ~ I. - .... - - -.

for a. e. for every 03BE~Rn. The proof of (1.3) is trivial. As for the
proof of ( 1. 4), we just observe that by Young’s inequality we have

In the case W = we simply use the notation MRn for MRn (a, 13, cl, c2).

Let us fix from now on a bounded open subset Q of R". Given
~ E Mn (ex, 13, ci , c2), it can be proved that for every IE H -1 ° q (Q) there exists
a unique solution to the following Dirichlet boundary value
problem

For a proof we refer, for instance, to [27], Chapter III, Corollary 1 . 8, or
to [31], Chapter 2, Theorem 2 . 1. The solution to ( I . 5) satisfies a Meyers’
regularity estimate (see [33]) that will be needed in the sequel in the
particular case where Q is a cube, as stated in the following theorem.

THEOREM 1. 2. - Let Q be a cube in Rn and let w E Hi~ P (Q) be the weak
solution to the equation

Then there exists r~ > 0 such that and

The constant 11 depends only on cl, c2, n, p, while C (Q) depends in addition
on Q. Moreover, a simple rescaling argument shows that we can take

where - + - + 2014201420142014 =1.
r q 

In order to study the behaviour of problem (1.5) under perturbations
of the function a we make use of the following notion of G-convergence.

DEFINITION 1. 3. - We say that a sequence (ah) in Mn (cr, 03B2, cl, c2) G-
convergences to a E Mn (a, 13, cI, c2) if, for every f E H-1,q (Q) and for every
sequence (/~) converging to f strongly in H -1 ~ q (Q), the solutions uh to

Vol. 9, n° 4-1992.



404 A. BRAIDES, V. CHIADO PIAT AND A. DEFRANCESCHI

the equations

satisfy the following conditions:

wnere u is Lne soiuuon 10 me equation

Remark 1 .4. - It can be proved that this detinition of G-convergence
is independent of the boundary condition. More precisely, if 
if the sequence E Mg (a, J3, cl, c2) G-converges to a E MQ (oc, J3, c1, c2),
( fh) converges to f strongly in H -1 ~ q (S~), and uh are the solutions in

H1,p(03A9) to the equations

men

wnere u ls ine somnon io ine equation
, ... , T ~ , ..

A proof of this fact can be found, for instance, in [ 16], Theorem 3 . 8 .

The next two theorems concern a localization property and a compact-
ness result for G-convergence. Their proofs can be deduced from
Theorem 6. 1 and Theorem 4 . 1 in [ 16] respectively, by using Theorem 7. 9
and Corollaries 7 . 10-7 . 12 therein.

Let Q’ be an open subset of Q. For a E Mg cl, c2) we denote by a’
the function of Mg, (cr, ~, cl, c2) defined by a’ = a~ ~. x Rn. Then the following
localization property holds.

THEOREM 1 . 5. - Let be a sequence in which G-

converges to a in Then G-converges to a’ in

~~ c2)~

THEOREM 1. 6. - Let (ah) be a sequence in Mg cl, c2). Then there
exist suitable positive constants ci, c; and a subsequence (aa ~h~) of which

G-converges to a f unction a of the class Mg ( , ,~, ci, c2
Annales de l’Institut Henri Poincaré - Analyse non lineaire
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In order to simplify the notation, the classes and

MQ ( ~ , , B, ci, c2 given by Theorem 1. 6 will be denoted, from now on,

by Mg and M~ respectively.
Finally, we recall a lemma of compensated compactness type (see [35],

[45]) which will be used in the sequel. For its proof see, for example,
Lemma 3 . 4 in [ 16].

LEMMA 1 7. - Let be a sequence converging to u weakly in H1, p (S~).
Let be a sequence converging to g weakly in (Lq (SZ))’~ with (div gh)
converging to div g strongly in H -1 ~ q (S2). Then

2. SUFFICIENT CONDITIONS FOR THE G-CONVERGENCE
AND REPRESENTATION FORMULA
FOR MONOTONE OPERATORS

In this section we investigate some conditions on a sequence of functions
(ah) in M~ which imply G-convergence. Furthermore, we give a representa-
tion formula for functions a E M~ showing that a (x, ç) can be determined
by the knowledge of the solutions v to the Dirichlet boundary value
problems

where ~ ERn and Q’ is an open subset of Q. More precisely, we prove that
a (x, ç) can be calculated by a differentiation process of the set function

along a family of open subsets of Q. Similar results for minima of
variational functionals were proved in [21 and [24] for the quadratic case,
and in [ 19] for the general case.
The following theorem shows that the strong convergence (L 1 (SZ))’~ of

a sequence (ah) in Mn implies the G-convergence.

THEOREM 2. 1. - Let ah and a E Mo. Assume that (ah (., ç)) converges to
a (., ç) strongly in (L1 (~))n . for every ~ ERn. Then, the sequence G-

converges to a.

Vol. 9, n° 4-1992.
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Proof - Let (fh) be a sequence in H -1 ° q (~) converging to f strongly
in H ~ ~ ° q (~2). Let uh be the solution to the equation

By the definition of G-convergence we have to prove that ( 1. 8), (1.9)
and ( 1.10) are satisfied. Since is bounded in (0), condition
(1. 4) implies that (Uh) is bounded in HÕ’ P (0), hence (ah (., DUh (. ))) is
bounded in (Lq (03A9))n by (1. 3). Therefore, up to a subsequence,

with - div g = f. We shall show that g (x) = a (x, Du (x)) for a. e. xEQ,
hence u is the unique solution to ( 1.10). Therefore, the whole sequences

and (ah (., Du~ (. ))) converge, and the proof of our assertion is com-
plete. By the strong convergence in (L 1 {SZ))’~ of the sequence (a~ (., ç)) to
~(.,~) and by the equicontinuity [see Definition 1.1 (iii )], there exists a
subsequence, still denoted by (a~), such that (ah (x, ç)) converges to a (x, ç)
for a. e. for every 03BE~Rn. Furthermore, by taking the equibounded-
ness condition [Definition 1.1 (iii)] for ah into account, the dominated
convergence theorem implies that

Since a~ (x, . j is monotone for a. e. x E SZ, we have
n

tor every p (~2), cp > O. Passing to the limit as h tends to + 00 we
obtain by means of Lemma 1. 7 that

holds tor every v2), cp Q U. ~3y a standard density argument, (2. 1)
implies that

for a. e. x EO, for every 03BE~Rn [remind that 03B1(x,03BE) is continuous with

respect to ç by (iii) in Definition 1.1]. By Minty’s lemma (see, for example,
[27], Chapter III, Lemma 1. 5) it follows that

for a. e. for Hence, g (x) = a (x, Du (x)) for a. e. 
which completes the proof. D

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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In order to state the representation formula functions in the class

Mn, given let us define the function

for for every open subset n’ of ~, where the ’function v,
depending on ç and Q’., is the unique solution to

THEOREM 2 . 2. - Let M03A9. Then thhere éxists a measurable subset N

of Q with such that

for every 03BE~Rn, x0~03A9/N, where ] denotes the Lebesgue
and A is any bounded open subset 

Proof - By a standard density argument and by Lebesgue’s differentia-
tion theorem (see, for instance, {38],Theorem 8 .8) there exists a mea.su-
rable subset N of Q with 1 N J= 0 such that

for every for where and A is

any bounded open subset of Given we denote

by v the function depending on ç and which is the unique solution
to the Dirichlet boundary value problem

By perfoming the of variables y = 
(x - x0) 03C1, problem (2 . 6) becomes

We may suppose that p runs through a sequence ~(p~~ which tends to 0~
as h tends to +00. Let us set for every yeA,
~ ~ lt’~. By (2.5) we have

Vol. 9, n° 4-1992.



408 A. BRAIDES, V. CHIADO PIAT AND A. DEFRANCESCHI

which guarantees by Theorem 2. 1 that

. (ah) G-converges to a on A. (2. 8)
Since w = 0 is the unique solution to the Dirichlet problem

if u~ denotes the solution to (2. 7) corresponding to p = p~, the G-conver-
gence condition (2.8) and Remark 1.4 imply that (uh) converges to 0
weakly in HÖ’ P (A) and

By (2 . 9) we have then

which by a change ot variables proves (2 . 4). D

The aim of the next theorem is to obtain a necessary and sufficient
condition for the G-convergence of a sequence an E M~ by means of the
convergence of the momenta related to the Dirichlet problems

where 03BE~Rn.

THEOREM 2. 3. - Let be a sequence in Mg. Let be the function
associated to ah by (2 . 2). For every p > 0 and xo ERn, let Ap (xo) = xo + p A,
where A is any bounded open subset of Rn. Let N be a -measurable subset
of Q with I N = 0. Then, the following conditions are equivalent :

(a) the limit

exists for every ~ E Rn and for every xo E 
(b) there exists a function a E M~, such that G-converges to a.
Moreover, if the previous conditions are satisfied, then

for a. e. x~03A9, for

Proof. - Assume (a). Let (a~ ~h~) be a subsequence of (ah). By the
compactness theorem 1. 6 there exist a further subsequence (a~ ~a ~h~~) and
a E M~ such that

(u (h))) G-converges to a. (2 . 11 )

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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If we show that

for a. e. xo for every ç by the existence of the limit in (a) and
the Urysohn property of the G-convergence (see [16], Remark 3 . 7) we
may conclude that (b) and (2 . 10) hold.

xo E and p > 0, we denote by vh the solution to the
Dirichlet problem

Since v is the unique solution to the Dirichlet problem

the G-convergence condition (2 . 11 ), Theorem 1 . 5 and Remark 1 . 4 imply

Therefore

Now, by the representation Theorem 2. 2 we conclude that

for a. e. xo E Q, for every ~ ERn, proving (2 . 12) .
Assume (b). Then, Theorem 1.5 and Remark 1.4 guarantee that the

solutions ~ to

satisfy

where v is the unique solution’ to (2 . 13). Hence, condition (a) follows
immediately. D

Remark 2.4. - Theorem 2.3 provides a simple characterization of
G-convergence in the special case of functions ah in M~ satisfying

Vol. 9, n° 4-1992.



410 A. BRAIDES, V. CHIADÒ PIAT AND A. DEFRANCESCHI

for every heN In this case G-converges to a function
if and only if (a~ ~ . , ~~~ tends to a ~ . , ~~ weakly in (L1(Q))n, for

every ç E R". According to Theorem 2. 3 this condition is clearly sufficient,
since in this case

while its necessity follows easily from the local character of the G-conver-
gence (see Theorem 1 . 5 and Remark 1 .4). In the linear case, the previous
characterization was proved in [13]. See also [12] for a similar result in
the case ah (x, ç) = oç fh (x, ç) with A convex in ~

3. HOMOGENIZATION OF QUASIPERIODIC OPERATORS

In this section we give a characterization of the G-limit of a sequence
of functions of the form

with a~MRn verifying suitable hypotheses of quasiperiodicity in the first
variable (see Definition 3.1). This result will be used in Section 4 to derive
the homogenization theorem for general almost periodic operators.

DEFINITION 3.1 (see [30] 3.3). - A continuous function /: R
is quasiperiodic if there exist mi, ...,~eN and a continuous function

--+R, where +... N>n, such that
- .. -.- 

/ 
’

. -, periodic f 
21t 2 1t 2 1t 2 03C0 2?c 

.. 

2 1t 
with

À~ E ]0, +oJ[. It is not restrictive to assume that the frequencies
~, ..., ~ are linearly independent on Z for every r = 1, ..., n. This will
be done constantly in the sequel. Under this assumption, Kronecker’s
lemma (see Appendix, Section A) guarantees that F is uniquely determined
byf

Given ~~, ... , ~n,~ as above and given x 

/~=(~~ ...,~) with ~==(~, ... , for r = I , ... , n, denote by
QP (À) the set of all quasiperiodic functions f: R with frequencies ~.
Furthermore, by Trig (À) we indicate the set of all trigonometric polyno-

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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mials with frequencies X; i. e., finite sums of terms of the form

where kEZN, ceC.

Remark 3 .2. - Trigonometric polynomials are obviously quasiperiodic
functions. Moreover, it can be proved that every function f of QP ~~.~ is
the uniform limit of a sequence of trigonometric polynomials belonging
to Trig (Â) (see [30] 3 . 3).
For every ~ > 0, for every z E Rn, let Qs(z) be the cube of side length s

and center z. For every fE L1loc(Rn) we define

It can be seen easily that for every function f in QP (À) we have

uniformly with respect to z. This limit is called the mean value of f (on Rn)
(see [30], 2. 3).

In the sequel it will be useful to consider the function j : R" - RN defined
by

Then, introducing the variables

on RN, for every (RN) and u(x)=vU(x») we get

mr
or briefly, DM(~)=(~)~(~), where 5=(~, ...,~) with 

~
Let us denote by Trigo (X) the set of all trigonometric polynomials in

Trig (Â.) with mean value 0. By Birkhoffs theorem (see Appendix,
Theorem A) it is easy to prove that

Vol. 9, n° 4-1992.
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is a norm on Trigo(~). Since (Trigo (À), !I. 111, p) is not complete, we study
its completion. To this aim let us introduce

and let us denote by Trig (T) the set of all trigonometric polynomials in
RN with period T. Let us also define the set Trigo (T) of all functions v in
Trig (T) with mean value zero. On Trigo (T) we consider the norm

in fact, if then u=voj satisfies Du = 0. Hence, u is constant. Since
v depends uniquely on u (see Definition 3 . 1), v is constant too; hence ~=0.
By Birkhoff’s theorem (see Appendix, Theorem A) the linear map

is a bijective isometry between (Trigo (X), 11.111, p) and (Trigo (T), 
and will be denoted by J.

Let us denote by ’Y~ the completion of Trigo (T) with respect to the
norm !!. - ( ~.~., which we can identify with the completion of Trigo (~,) with
respect to the Finally, let us remark that the isometry

can be extended in a unique way to an isometry between ~ and a closed
subspace of (LP (T))n, which makes ~ a reflexive Banach space.

Now, let us fix the frequencies with ~ ..., linearly independent
on Z for every r = 1, ... , n, and let us fix a E MRn such that

By definition it follows that there exists a unique function a ( . , ç) : R~_’ -~ Rn
such that a (x, §) = 5 J (x) , §) for every xERn and for every 03BE~Rn, (.,03BE)
is T-periodic and continuous for every 03BE~Rn. It follows that a ( y, . )
satisfies ( 1 . 1 ) and ( 1 . 2) for every This is obvious for y = j (x),
x E Rn, whereas the conclusion for a general y E RN comes from Kronecker’s
lemma (see Appendix A) and the continuity of a ( . , ,~).
The next proposition is an extension to the case p#2 of Lemma 1

in [36].

PROPOSITION 3. 3. - be fixed, let a E MRn satisfying (3 . 3) and
let a be the corresponding T-periodic function. Then, there exists a unique

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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solution wç E to the problem

Furthermore, for any 03B4 > 0 there exist us E Trigo (À) and a vector function
such that

hold.

Proof. - Given 03BE ERn, let 03BE: W ~ W’ be the operator defined by
_ A ’

for every w, h E ~, where ~ . , . ~ denotes here the duality pairing between
~ and its dual space ~’. By the coerciveness and continuity properties
of l7l on ~’, the theory of monotone operators on reflexive Banach
spaces (see, for example [27]) implies immediately that there exists a

unique w~ E ~ satisfying wç = 0, which implies (3 . 4). By the density of
J (Trigo (~,)) in ~ there exists . us E Trigo (À) such that (3 . 6) is satisfied. By
using (3 . 4) and the equicontinuity assumption on a we get

By (3 . 6) it follows that

Since belongs to (QP (~))~ by Remark 3 . 2 there exist a
function E (Trig (~.))n and a quasiperiodic function hs E (QP (~,))n such
that

and

Since a x, Duj + 1> = li j x>, lJ uj> u x» + », by (3 . 8) and (3 . 10) we get

Vol. 9, n° 4-1992.



414 A. V. CHIADÒ PIAT AND. A. DEFRANCESCHI

where (F03BE03B4)r is J((f03BE03B4)r), and

Being can w~~~~~

where the sum runs finite set of vectors It turns
out that the function

with ~ == 2014 ~k~~~ ~~~-~~.~~~~2)~ is solution in Trigo (~) to
J;- !

If W~ = J th~n
M

holds. By (see B)

c>0 independent of § and &#x26;. We have then by Birkhoff’s

Hence, by setting

w~ 

tn the sense of distributions on Rn, proving (3. 5). Furthermore, by (3. 10)-
(3. t2) we ~3 .. 7).. a 

- - 
.

Let the following boun4ary value problem
/ / B. ~ 

’ ’ 

B 

’

and (EIj). is a sequence of real numbers converg-
ing to 0. 

° 

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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In this section we prove the convergence, as (Eh) tends to 0 ~ , of the
solutions ~~ of (3.13) to the solution u of the homogeneized problem

Furthermore, we give an asymptotic formula for the homogenized function
b in terms of the solutions vs to the following Dirichlet boundary value
problems

The convergence result above mentioned will follow from the next two
theorems.

THEOREM 3 . 4. - Let a ~ MRn satisfying (3 . 3) and let  be the correspond-
ing T- periodic function. Let b : Rn  R’~ be the function defined by

where wç is the solution to ~3 . 4~. Then, for any family in ~n, we
have

where v03BEs is the unique solution to (3. 15) with z = zs.
THEOREM 3. 5. - Let a E MRn satisfying (3. 3). Let be a sequence of

positive real numbers converging to 0 and let ah (x, ç) = a(x ~n,03BE) for every

x~03A9 and for Then G-converges to b, where b is the

function defined in Theorem 3. 4.

The proofs of these theorems are quite technical and are therefore given
at the end of the section as a consequence of the next proposition and
some remarks stated in the sequel.
For every 5>0, and for every family in us define

where v03BEs is the solution to. (3.15) on Qs (zs). By (iii) and (iv) in Definition
1.1, using Young’s and Holder’s inequalities, it turns out that the function
c) satisfies the following estimates

Vol. 9, n° 4-.1992.
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with c independent of z~. Here and henceforth, we will denote by c any
constant depending at most on c2, a, (3, n, p, that can change from
line to line. By (3 . 17), we have

PROPOSITION 3. 6. - Let ~ E Rn be fixed. Let us be as in Proposition 3. 3
and let vs E HÕ’ P (Q~ (z~)) be the unique solution to (3. 15) with z replaced
by Then

for every family (zs)s>o in ltn.

Proof - Given a family we consider

By (3.15), Is = 0. On the other hand,

By Birkhoffs theorem we get

where SVS is the operator detined in the proof of Proposition 3.3. Since
by (3 . 6) we have

2014 ~ f~ f - - ..

the continuity of and the equality = 0 implies that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Since

and converges to 0, as s - +00, we obtain that thes
sequence (ws) converges weakly to 0 in (0)). Applying Lemma 1. 7,
we obtain that the sequence of functions

converges to 0 in £D’ (Q 1 (0)) as s - + ~. On the other hand, by ( 1. 6)
and (3.17) we have

by ( 1. 3) it follows that the sequence of functions

is uniformly bounded in some for some T>~. This implies
that there exists 6 > 1 such that

where c is independent of s. Since (ss) converges to 0 in ~’ (Q 1 (0)), the
above inequality implies that (Q converges to 0 weakly in La (Q 1 (0)), as
s - + oo . This fact gives then

Let us show that

Let be as in Proposition 3.3. By applying Holder’s inequality and
(3.17) we obtain

Now, by taking the limit first as s tends to + oo and then as ð tends to

0 +, (3 . 7) implies that
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Since the equicoerciveness assumption in Definition 1.1 (iii ) guarantees

we obtain immediately

Hence, by passing to the limit first as s tends to + ~, and then as 6 - 0 +
we get (3 . 1 8) and the proof of Proposition 3 . 6 is accomplished. D

Proof of Theorem 3 . 5. - Let xo E Q, and let ~ E Consider

where is the unique solution to

It follows immediately that

where wt p is the unique solution to

By Theorem 3. 4 we conclude that

for every p>0. Hence, the limit

is independent on p. This implies by Theorem 2 . 3 that (ah) G-converges
to b and concludes the proof. 0
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4. HOMOGENIZATION OF ALMOST PERIODIC OPERATORS

In this section we prove the homogenization theorem for general almost
periodic monotone operators defined by functions of the class Mgn.

DEFINITION 4 . 1. - A function f E (Rn) is almost periodic (in the
sense of Besicovitch [3]) if there exists a sequence of trigonometric polyno-
mials Ph : R such that

It is easy to see that for every almost periodic function f and for every
z E Rn we have

The limit is called the mean value of f (on Rnj and is, in general, not
uniform with respect to z.

THEOREM 4. 2. - Let a E MRn such that a (., ç) is almost periodic for all
ç E Rn and let be a sequence of positive real numbers converging to o.

Let us define an (x, 1;) = a(x ~h, 03BE) for every x E Q and 03BE~Rn. Denote by vs the

solution to

Then, for every ~ E Rn there exists the limit

Moreover, the map b belongs to M (a, f3, cl, c2) and (an) G-converges to b.

The proof of this theorem follows from the homogenization Theo-
rem 3 . 5 for quasiperiodic functions, by means of an approximation result
and a closure lemma, which are stated below.
With a slight change of notation we will write

meaning that b (x, ç) is the G-limit of a x ~h,03BE) for every sequence (~h)

which tends to 0 + .
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The following lemma states that homogenization is preserved under
passage to the limit in the mean value.

LEMMA 4. 3. - Let be a sequence of functions in MRn, such that for
every hEN the limit

exists and is independent of x, and let a E MRn such that for every R > 0

Then, the limit

exists and

The proof of Theorem 4. 2 will be completed by the following approxi-
mation result.

LEMMA 4. 4. - Let a be a function of the class MRn such that a (., ç) is
almost periodic for every ç ERn. Then, there exists a sequence in MRn
of quasiperiodic functions satisfying (3 . 3) (with ~, possibly depending on h)
such that for every R >_ 0 we have

Throughout this section the letter c will denote a positive constant
depending at most on p, n, cl, c2, (x, p, and possibly on a fixed vector

Its value can vary from line to line.
We begin by proving Lemma 4. 4.

Proof of Lemma 4 . 4.

Step 1 (discretization of the function a on bounded sets). - Let be a
sequence of natural numbers, and (~h) a sequence of positive real numbers.
For every h E N, let us set

For every z E Ih, let us define
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and let us choose a trigonometric polynomial PZ : Rn  Rn such that

The choice of the sequences (Yh) c N and R will be made in the

sequel. Then, taking into account that

we define the function ah : Rn x Rn  Rn in the following way:

Then, for every ~ ERn, the function ah (., ç) is quasiperiodic.

Step 2 (projection of the function ah on MRn). - For every hEN, let us
define the function [0, + 00 [ ~ [0, + oo [ by 

-

We also define the Hilbert space Lh of measurable functions u : Rn  Rn,
provided with the norm _

The set M (a, is a closed convex subset of We can define the

projection 7th : L  M (a, p, c l’ c2), and for every x E Rn the function

Step 3 (quasiperiodicity of the function ah). - Let us consider for every
N = N (h) E N, the function ah(y, .):RnRn defined by

where, for every 03BE~Rn, h(.,03BE) is the periodic function given by the
quasiperiodicity of ah (., ~). It follows clearly that

where j is the function related to the quasiperiodicity of ah as in Section 3.
Since the function ah (., ç) is a periodic function, such is also ah (., ~).
Moreover, being ah _( y, . ) uniformly continuous with respect to ç, it remains
only to prove that ah (., ç) is continuous for every e Rn.

Let ç, r) e Rn; for all u, v e M (ex, ~3, Ci, c~) we have 
’
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Let 08gl; then an integration over Bô (ç) gives

so that we obtain

In particular, since 7~ is a Lipsçhitz function with constant 1 in for
all ti, v e L~ and for we obtain

Let us remark that the function c~ == a-h (~ ~) is uniformly continuous in y,
uniformly with respect to ç. Fixed s > 0, let p > 0 such that r ~ p, then

for all y E RN R". Then, for such a T we have

so that, by (4.9) and v E~) = a, ~)~

for e Rn. Since E and S, calB be chosen independently arbitrarily small,
(4 . 10). proves that ah, ( . , ~) is uniformly continuous.

Step 4 [proof of (4.6)]. - Fixed let us consider for every x~Rn
and A e N the function

Since we are interested in the limit as h tends to +00, we will suppose
~>R + 1, so ~?.=1 for !, _ R.

Let us remark that c1, c2) for almost every x~Rn, since
a E so that
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for a. e.. R~~ for ~very ~ ~ and for- every By (4 . 9), we have for

Thus, we have to estimate

By (1.3) we have

so that lim J~ = 0. By the definition of (1.3), and the Holder inequality
A 00 

... ’

we obtain

Taking (4, h 2}-(4 . 15) into account, we obtain for ) § ) _ R and 0  S  1

an integration gives
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Now, we can choose the sequences (yh) and in such a way that
, 

(for example, yh = h! and ~,h = Then, (4 .16) gives

By the arbitrariness of 8, the proof is completed. D

Proof of Lemma 4 . 3 . - By the representation Theorem 2 . 3 it is enough
to prove that for every ç and for every cube Q in Rn the limit

exists and is independent of Q, where vE is the solution to the following
boundary value problem

.... " ,

Given a cube Q in Rn and ç E Rn let us prove that

where vh~ is the solution to the following boundary value problem

For the sake of simplicity we drop in the notation any explicit dependence
on ç of v£ and vh~ throughout this section. We can write

The estimate of J1~, h and J2~, h will be carried out in the following four steps.

Step 1. - Let us fix ~eR". As in (3 . 17) one gets
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This estimate will be used frequently in the sequel. By the Meyers estimate
( 1. 6) we have then

Let us fix R > 0, h E N and E > 0, and let us define the set

We have then

so that, using the Holder inequality, we obtain the estimate

Step 2 (estimate of J£ h). - Given R > 0 by ( 1 . 3) and (4 . 12) we have

By Step 1 we conclude then

Step 3 (estimate Dvf- DvE (Q»n). - By (4. 18) and (4 . 20) we
. have

so that by (iii) and (iv) in Definition 1. 1 and the Holder inequality we
have
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so that by (4.22) we obtain

Step 4 (estimate of J;, h). - By the equicontinuity condition of a and
Holder’s inequality we have

Hence, by (4.23) we get

Taking into account that there exists s > 0 such that Q c Q~(0) and
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by passing in (4. 22) and (4.24) first to the limit as E tends to 0 +, then as
h tends to + oo, and eventually as R tends to + oo we obtain (4.19). By
(4.4) and Theorem 2. 3 this implies that 

.

Since the first limit does not depend on Q, the proof of Lemma 4. 3 can
be concluded by applying again the representation Theorem 2 . 3. D

Proof of.Theorem 4. 2. - Let a E MRn such that a ( . , ç) is almost periodic
for By Lemma 4 . 4 there exists a sequence (ah) in M~n satis-
fying (3.3) (with À possibly depending on h) such that condition (4.5) is
satisfied. By the homogenization Theorem 3.5 we obtain that for every
h E N the limit

exists and is independent of x. Hence, by Lemma 4. 3 the limit

exists. Finally, the representation formula follows from (4.25). 0

APPENDIX

A. Birkhoffs theorem for quasiperiodic functions

Before we give a direct proof of Birkhoffs Ergodic theorem in the
quasiperiodic case, we state Kronecker’s lemma (see, for instance, [30] 3 . 1 ).

KRQNECKER’S LEMMA. - The set of vectors which are equivalent modulo
T to vectors oftheformj(x), with is dense in R~.

THEOREM A. - Let f: Rn  R be a quasiperiodic function in QP (À) (see
Section 3). Then

where T is defined by (3 . 2).
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Proof - Let X = j (Rn) and Z = X. Let us identify R"=X 0 Z. More-
over, let us introduce

where BS (0) is the ball in Z of radius s and center 0, and define the set S
by z is equivalent modulo T to vectors of the type j(03C4)
with By Kronecker’s lemma the set S is dense in Bf (0). Then,
given z E S there exists T = T (z) E Rn such that

for every x E Rn. Since the limit

exists uniformly with respect to T (see [30] 2. 3), given E > 0 we have

for every r E Rn, for s sufficiently large, so that for z E S

for s sufficiently large. By the uniform continuity of F and the density of
S, the estimate (A. 1 ) holds for every z E B~ (0). By Fubini’s theorem we
have

which by (A. 1 ) yields that

This implies together with the periodicity of F that

and concludes the proof. D
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B. Regularity of the quasiperiodic solutions of Du = div f

Remark B. 1. - Let be the completion of Trigo (T) with respect to
the norm ~.~ introduced in Section 3. Let us denote by if/’ its dual. It
turns out that for every S E there exists G E (Lq (T))n such that

In fact, since by the map ~ the space 1r is isometric to a subspace of
(LP (T))~‘, by the Hahn-Banach and Riesz theorems there exists a function
G E (Lq (T))n such that (B. 1 ) and

n

hold. We will write I S = 1/ 1 ~ ar Gr 
r= 1

THEOREM B. - Let F E (Trig (T))n and let W~Trigo (T) be the unique
solution to

Then,

with c = c (T) > 0 and defined in Section 3.
~=1~

Proof - Let us define by

By Remark B. 1 there exists G E (Lq (T))n such that

and
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By extending G on RN by periodicity we have that

Let us introduce on RN a new orthogonal base (~~) 1 _ r s ~ with

We shall denote the new coordinates by

It turns out that

where ~=(x,z). Hence by (B.5) the function satisfies
for almost every 

By elliptic regularity (see, for instance [14]) for every A’ c  A c c Rn
there exists a constant c = c (A’, A), such that

By Fubini’s theorem we get

for every B c c: R~ ". Choosing A’, A and B such that

and using finally the periodicity of G, we get

By (B . 4) we obtain (B . 3), and we can conclude the proof. fl
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