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ABSTRACT. - This paper treats the large deformation of closed nonlin-
early elastic axisymmetric shells under an external pressure field generated
by the steady, irrotational, axisymmetric flow of an incompressible, inviscid
fluid. The flow is assumed to have a prescribed velocity U and pressure P
at infinity. The deformation of the shells is described by a geometrically
exact theory. The parameters U and P and the deformed shape of the
shell uniquely determine the velocity field of the steady flow. The most
difficult part of the analysis is to show that the velocity and pressure of
the flow on the shell depend continuously and compactly on the function
describing the shape. The pressure field on the shell is substituted into the
equilibrium equations for the shell, yielding a system of ordinary
functional-differential equations. These are converted into a fixed-pbint
form, which is analyzed by a global implicit function theorem. The problem
has technical difficulties that do not arise in problems with rigid obstacles.
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RESUME. 2014 On s’interesse aux grandes deformations d’une coque fermee
axisymetrique soumise a l’action du champ de pression externe engendre
par 1’ecoulement stationnaire et irrotationnel d’un fluide parfait incompres-
sible autour de la coque. On utilise pour modeliser la coque une theorie

geometriquement exacte avec une loi de comportement elastique non
lineaire generale. La vitesse et la pression de 1’ecoulement a l’infini sont
deux constantes donnees U et P. Le champ de vitesse du fluide est

determine de facon unique par ces deux parametres et par la forme de la
coque dans sa configuration déformée. La partie la plus delicate de notre
analyse consiste a montrer que les champs de vitesse et de pression sur la
surface de la coque dependent continument et de facon compacte de la
fonction qui decrit la forme de la coque. Substituant la pression dans les
equations d’equilibre de la coque, on obtient un systeme d’equations
fonctionnelles-différentielles ordinaires que l’on transforme ensuite en pro-
bleme de point fixe. Ce probleme est lui-meme resolu a l’aide d’un theo-
reme des fonctions implicites global. On rencontre ici les difficultes tech-
niques qui ne se presentent pas dans les problemes avec obstacle rigide.

1. INTRODUCTION

In this paper we study the large deformation of a closed nonlinearly
elastic spherical shell produced by an external pressure field generated by
the steady, irrotational, axisymmetric flow of an incompressible, inviscid
fluid. (With very little additional work all our results can be extended to
shells with any closed axisymmetric reference shape). The flow is assumed
to have a prescribed velocity U and pressure P at infinity. We describe
the deformation of these shells with a geometrically exact theory (ef [19])
that accounts for flexure, compression, and shear. We allow the material
properties of the shell to be described by a very general class of nonlinear
constitutive relations.
We begin our analysis by observing that U, P, and the deformed shape

of the shell uniquely determine the velocity field of the steady exterior
flow. We show that the velocity of the flow on the shell depends continu-
ously and compactly on the function describing the shape of the outer
surface of the shell. We then use Bernoulli’s theorem to express the
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435ELASTIC SHELLS IN FLOWS

pressure field on the shell in terms of U, P, and the velocity field on the
shell. We substitute this pressure into the equilibrium equtions for the
elastic shell. We transform these equations into a fixed-point equation
for the shape, involving a family of compact operators and depending
parametrically upon U and P. We apply a generalization of the Global
Implicit Function Theorem of [3] to these equations to deduce the existence
of connected families of solutions. In this program we encounter serious
technical difficulties in showing that the pressure on the shell depends
continuously and compactly on an appropriate function describing the
shape and in constructing a suitable fixed point equation. To handle the
first of these difficulties (which can be ignored in the study of flows past
rigid bodies) we could develop and exploit refined results from potential
theory. We are able to shortcut this lengthy process by using a variety of
Schauder estimates (which, at bottom, rest on potential-theoretic argu-
ments) together with a construction relying on a conformal mapping. In
Section 7, we sketch the steps needed for a direct proof of compactness
by using potential theory.
Thus we replace the coupled problem for the deformation of the shell

and the external flow of the fluid with a single problem for the deformation
of the shell in which the pressure field on it depends nonlocally on its

shape. One of the goals of this paper is to develop effective methods for
treating well-set nonlinear problems from mechanics with such nonlocal
terms. (The corresponding problem for the two-dimensional flow past a
ring was solved in [ 13] by using conformal mapping theory. Its mathemati-
cal treatment differs considerably from that used here.)

Notation

Vectors in Euclidean 3-space and n-tuples of real numbers are each
denoted by bold-face lower-case Roman letters. Partial derivatives are
denoted by subscripts and ordinary derivatives by primes. If f and g are

functions of u and v, then 20142014’2014 denotes the matrix of p artial derivatives
a (u, v)

of f and g with respect to u and v. We denote the closure of a set E by
cl ~ the boundary of g by a~, and the set of elements belonging to set
j~ and not belonging to set ~ by 
We denote the norm on a Banach space ~ Let Q be a

bounded open connected subset of IRn with a boundary of class C 1. The
space of m-times continuously differentiable functions on cl Q with its
usual norm is denoted C"" (cl Q). The subspace of C"’ (cl Q) whose functions
have m-th derivatives that are Holder continuous with exponent a are
denoted if u is in (cl SZ), then its 03B1-Hölder quotient is
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The space is equip-

ped with its usual norm:

where (Pi, ..., E (~n and I = ~1 + ... + p (~2) denotes the
Sobolev space of all functions in LP (Q) all of whose distributional deriva-
tives up to order m are in LP (Q). If 00 is of class Cm, then the Sobolev
space W~~ 

P can be defined for each SE [0, m]. (Consult [ 1 ], [7], [ 16] for
details about these spaces.) The domain (Q or cl Q or 00) of the functions
under consideration will not be indicated when it is evident from the
context.

If lt is a space of real-valued functions, then we simply write u if

each component of the vector-valued function u is in PI. We typically use
brackets to denote the value of a mapping f defined on a function space.
Thus the value of f at a function u in its. domain of definition is denoted
f [u]. If f [u] is a function on an interval, then its value at a point s on this
interval is of course f [u] (s).

2. EQUILIBRIUM EQUATIONS FOR THE AXISYMMETRIC
DEFORMATION OF NONLINEARLY ELASTIC SHELLS

Let {i, j, k} be a fixed right-handed orthonormal basis for Euclidean
3-space. For each real number cp we set

Geometry of deformation

To’ each (s, p) E [0,7i:] x [0,2 7r] corresponds exactly one point on the

sphere of radius 1 centered at the origin with position vector

Note that s measures the arc length of r~ (., p) from the south pole of the
sphere to r,~ (s, We interpret the sphere (2. 2) as the natural reference
state of the outer surface of a thin three-dimensional shell. The coordinates

(s, p) identify material points on this surface.
The axisymmetric configuration of a shell that can suffer flexure, in-

surface extension, and shear is determined by a pair of vector-valued
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functions rand b of sand p of the form

The reference configuration of the shell is given by r=r~ b= 2014r~. The
vector r (s, p) is interpreted as the deformed position of the material point
r* (s, cp). The vector b (s, cp) is interpreted as characterizing the deformed
configuration of the material fiber whose reference configuration is on the
normal to the mid-surface through r* (s, We define

We define the set of strain variables

by

The arc length from r(0, p) to r (s, p) along a deformed circle of longitude
is

Let the reference configuration of a three-dimensional spherical shell
occupy the region

where hE (0,1) is the given constant thickness. We can interpret the vectors
r and b as corresponding to the deformation that takes (1 2014~)r~(~(p) to
r (s, p) + ç b (s, p). In this case, we find that the Jacobian of this transforma-
tion and its restriction to the (ei (p), k)-plane for each p are positive if
and only if

To be specific, we adopt these requirements as characterizing deformations
that preserve orientation. It is easy to handle far more general requirements
stemming from a more general interpretation of r and b.

Equilibrium equations

Let N (s) a (s, cp) + H (s) b (s, cp) and - M (s) e2 denote the resultant
contact force and contact couple per unit reference length of the circle
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(p !2014~ r* (s, (p) of radius r* (s) that are exerted across the deformed image of
this material section at the material point r* (s, cp). Let T (s) e2 and
X (s) a (s, (p) denote the resultant contact force and contact couple per unit
reference length of the curve s~r* (s, (p) that are exerted across the
deformed image of this material section at r* (s, (p). These forms of the
resultants reflect our assumption of axisymmetry. If the only external force
applied to the shell is a hydrodynamical pressure of intensity p (s) per unit
deformed area at r (s, cp), then the classical form of the equilibrium equa-
tions have the form

Constitutive equations

Let

[cfl (2 . 9)]. The material of the shell is elastic (and homogeneous) it there
are functions T, N, H, E, M : ~ -~ R such that

We assume that these functions are thrice continuously differentiable. We
require that these functions satisfy the monotonicity condition : The matrix

This condition, which is a shell-theoretic analog of the strong ellipticity
condition of three-dimensional elasticity, ensures that an increase in the
bending strain ~. is accompanied by an increase in the bending couple M,
etc. We also require that extreme strains be enforced by corresponding
extreme values of the stress resultants. Specific realizations of such growth
conditions are given by [19]. We complement (2. 15) with the requirement
that

(2 . 16) (h, oo) e N (k, k, 0, 0, 0) strictly increases from - oo to oo,
We require that the material meet the following minimal restrictions on

its symmetry:

(2 . 17) T, N, E, M are even in r~, H is odd in r~ .
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We further require that the shell meet the restricted isotropy conditions

To ensure that the reference configuration is stress-free we assume that

We impose the boundary conditions

which require that the deformation be regular at the poles, and the integral
condition

which fixes translation in the k-direction.
We require that:

These conditions ensure that the outer surface of the shell is simple and
has r (0, p) as the south pole.

3. THE BOUNDARY VALUE PROBLEM FOR THE SHELL

In this section we formulate the boundary value problem for the shell
when the pressure field has the form delivered by the analysis of the flow
problem, which is carried out in Sections 6 and 7. We then convert the
boundary value problem to a fixed-point problem, to which we apply a
global implicit function theorem.

Since the dependence of r, a, b on p is determined by the form of these
functions when (p=0 (cf (2 . 3)], we define

and henceforth use only these new functions.
To give a precise statement of our boundary value problem we must

introduce certain sets of functions. For r~C1 [0,7r] we define
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For 8>0, we set

(3 . .4) LEMMA. - £* is the set of those functions r in the linear space

that satisfy (2 . 22) and have stretches I r’ I that are everywhere positive.
Moreover, ~ (8) (and consequently ~) are open in A.
We omit the proof of this lemma, because it is a straightforward variant

of those of Lemmas 4. 11 and 4.13 of [13].
We introduce the space

equipped with the norm

(3.8) LEMMA. 2014 ~ ~ ~ Banach space. It is continuously embedded in
1/2 [0, .

Proof - It is easy to verify that I is a norm. We now prove that
PI is complete. be a Cauchy sequence in PI. Since it is a Cauchy
sequence in C 1, there exists an fE C1 such that {~} converges to f in C 1.
Since (3. 7) implies is a Cauchy sequence in C°,
there exists a g E CO to which it converges uniformly. Thus f’ is continu-
ously differentiable on (0,~),y(.) converges to f
in ~’.
The statement about embedding is an immediate consequence of the

following inequality (for t  s):

We assume that the shell is subjected to a pressure field generated by
the axisymmetric, irrotational flow of an inviscid, incompressible fluid.
The fluid velocity at the point r (s) on the shell, denoted u [r, U] (s), will
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be shown to depend on the shape r of the shell and the constant velocity
U (in the k-direction) at infinity and to be independent of the pressure P
at infinity. Let the fluid have constant unit density. Bernoulli’s theorem
implies that the pressure on the shell at r (s) is

Our basic theorem about the flow, proved in Sec. 6, is

(3 .10) THEOREM. - The scaled speed U -1 u [r, U] I is independent of U
(and is thus determined solely by r.) The operator

is continuous and its restriction to ~’ (8) is compact for every ~ > 0.
The operator p [ . , . , . ] : X ~ R x R2 ~ C° is continuous and its restriction
to ~’ (8) x ~2 is compact for every 8> 0.
Our boundary value problem BVP is to find and satisfying

(2 .1), (2 . 3), (2 . 4), (2 . 6) (with 0), (2 . 9)-(2 . 12), (2 . 14),. (2 . 20)-(2 . 22).
We now follow [ 19] in transforming BVP to a fixed-point form involving
compact operators to which we can apply a global implicit function
theorem.

Let L denote the Legendre differential operator .defined by

which is associated with the linearization of the governing equations about
a spherical state and which captures the behavior of the polar singularities.
We introduce new variables v (vl, v2, v3) by

The following two results are obtained by a straightforward (but lengthy)
computation.

(3. 13) PROPOSITION. - The linear operator Y defined by
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is continuous from CO [0, ~c] to ~’. Moreover,

(3.16) PROPOSITION. - The linear operator Z defined by
I

is continuous from C

Let

~ equipped with the norm ~., is clearly a Banach space.
We can use (3.12)-(3.18) to represent our geometric variables in terms

of v by means of the following functions:

We now turn to the equilibrium equations. We substitute (2. 14) into
(2 . 10)-(2 . 12), carry out the differentiations, and use Cramer’s rule [valid
by virtue of (2.15)] to obtain
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where D is defined in (2 . 15), where

and where is the k-th component of (D -1 f). Now (2 . 6) and
(3 .11 ) imply that

We now replace the left-hand sides of (3.22) with the left-hand sides of
(3.12), we substitute (3 . 21 ) into the right-hand sides of (3 . 22), we substi-
tute (3.20) into the resulting form of the right-hand sides of (3.22), and
we divide the resulting equations by sin 1/2 s to obtain the operator equation

Our boundary value problem is equivalent to finding such that

r [v] E, for all ~e[0,7r], and (3 . 23) is satisfied.
Unfortunately the operator g does not map 1/ x f~2 into because of

the side condition in (3. 19), and is consequently not in the fixed-point
form we require. We accordingly replace (3.23) with a modified problem
having the same solutions.
We introduce a projection J of C° onto 1/ by

Vol. 9, n° 4-1992.
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We define the operator k : C° x [R2 ~ C° by

We seek solutions of

(3.27) PROPOSITION. 2014 For given U P let v e C0 and satisfy (3.26),

/~~ ~//~ ~J ~~ 77~~~ 
~ 
~~(~)sm~~~~=0, ~let § [Jv] (s) e 9 for all s, and let I [Jv] e k . Then Jo 03BD2 (s) sin1 /2 s ds = 0, so

that v e V, Jv = v, and v satisfies (3.23).
To effect the proof, we observe that if then has the form

~2 ~~2 where

We need only show that x2 = 0. For this purpose, we merely have to trace
through the steps leading to (3.26). We omit the details, which are

straightforward.
Let us now study the problem in which U=0, We seek trivial

solutions in which the shell remains spherical, unsheared, and uniformly
compressed, so that i = v = k (Const.), ~==0, 0(~)=~, r (s) = k sin s,
z(s)= -kcoss. Under these conditions, the constitutive assumptions
(2 . 17) and (2 . 18) reduce (2 . 10) - (2 . 12) to

(3 . 29) N (k, k, o, 0, o) --_ T (k, k, 0,0,0) = - P k2/2.
Condition (2 . 16) ensures that for each equation (3 . 29) has a unique
solution for k, denoted k (P), with k (. ) : [0, oo ) - (h, 1] twice continuously
differentiable and strictly decreasing. (C,f: [19].)

Systems (3 . 23) and (3 . 26) admit the corresponding solution

with 

4. EXISTENCE THEORY FOR THE SHELL

We analyze (3 . 26) with
(4 . 1 ) GLOBAL IMPLICIT FUNCTION THEOREM. - Let J?-J be a Banach space
and a family of open sets (not necessarily bounded)
in Y x for which
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Let F : be continuous, let F (0, 0) = 0, and let F : (~ (f:) ~ ~ be compact
for where E is a given positive number. Let I denote the identity
operator on Let the Fréchet derivative I - Fx (0, 0) : Y ~ Y of
x H x - F (x, À) at (0, 0) exist and be invertible. Let

and let be the connected component of ~ containing (0, 0). Then one of
the following statements is true:

(i) L0 is bounded and there is an ~* E (0, E) such that c (9 (£*). There
is an essential map (i. e., a continuous map not homotopic to a constant) (J

from onto the m-dimensional sphere ~m whose restriction to (0, 0) }
is inessential. Moreover, contains a connected subset L00 that contains
(0, 0), that has the same properties as with respect to (J, and that has
the property that each point of it has Lebesgue dimension at least m.

(ii ) (E) ~ 0 V E E (0, E) or is unbounded. For each ~ E (0, E)
there is a modified equation x = p (x, ~,, E) F (x, À) [cf (7 . 4)) defined on all of
~J X ~m that agrees with x = F (x, À) on (~ (E). The one-point compactification
~o (E) of the connected component (E) containing (0, 0) of the set of
solution pairs of the modified equation may be unbounded, but otherwise has
the same properties as in statement (i).
This theorem, a variant of that of [3], is proved in [13]. The statement

about topological dimension follows from the treatment of [2].
Let

For each s E [0, E) we define

It can easily be verified that (9 (E) satisfies (4 . 2) - (4 . 4) provided we
identify the point (v [P], (0, P)) associated with (4 . 7) with the point (0, 0)
arising in Theorem 4. 1 .

(4. 8) THEOREM. - The operator k, defined in (3 . 25), is continuous on
(!) (0) and is continuously differentiable with respect to (v, P) when U = 0.
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The restriction of k to (!) (E) is compact for every E E (0, E). The Fréchet
derivative I - (ðkjðv) [v [P], 0, P] of I - k with respect to v at (v [P], 0, P) is

an invertible linear mapping of CO onto itself for all P >_- 0 except for the set
~ of eigenvalues of the linearization of (3.26) about (3.30). Moreover,
(3 . 26) is equivalent to BVP. (Specfically, if v E CO and satisfies (3 . 26), f
q [Jv] (s) for all s, and if r [Jv] E, then Jv = v and (r [v], ê [v]) sa tisfies
BVP, and conversely.)

Proof. - Under a slightly specialized version of our constitutive hypo-
theses Shih and Antman [ 19] proved that the operators g and g2 of (3 . 23)
are continuously differentiable on {v: (v, U, P) E (9 (0) ~ and compact on
{ v : (v, U, P) E (9 (E)} for E> 0, that the Fréchet derivative I - (8gj8v)
[v [P], 0, P] of I - g with respect to v at (v [P], 0, P) has a trivial null space
in ~ for all P > 0 except for values in g, and that (3 . 26) is equivalent to
BVP. The proof of [19] carries over to our more general case. Since the
linear operators Y, Z, and J are continuous, the differentiability and
compactness of k follows from that of g. Thus we need only prove
the statement about I - (8k/8v) [v [P], 0, P]. The corresponding statement
about g, proved in [19], is equivalent to

Ve must show that

We reduce (4.10) to (4.9) by the simple device of showing that the

hypotheses of (4 .10) imply that v E Y, i. e., that f V2 (s) sin1/2 s ds = 0. We
omit the details, which form a straightforward analog of those of the
proof of Proposition 3. 27. 0

We define

~ow under very mild additional constitutive restrictions it can be shown
hat 0 ~ ~. A specific set of conditions are given by [19], Eq. (4 . 21).
Bt1ore general conditions can be constructed from the development of [5],

VIII . 5. Theorem 4. 8 would then ensure that * contains a nonempty
nterval containing 0. We assume that this is the case. (Actually, all we

-equire is that ~ not be empty.) Let
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Let P0~P and let Vo=v*[Po]. Let L0 to be the connected component of
~ containing (vo, 0, Po). Theorems 3 .10, 4 .1, and 4 . 8 together with the
fact that is continuous from C° to X and maps bounded

sequences into bounded sequences immediately imply
(4 .13) THEOREM. - At least one of the following statements holds:

If (4 .14 b) holds, then there is an essential mapping a from L0 to S2 whose
restriction to (vo, 0, Po)} is inessential. Moreover, L0 contains a
subset L00 each point of which has topological dimension at least 2. The
restriction of (J to L00 is essential. 

’

As in [ 13] we obtain

4 .15. COROLLARY. - Let P0~P. Then there is a number U1>0, depend-
ing on Po, such that the set

contains a connected subset joining the planes U = ::I:: U 1. (Thus there is a

solution for each U with I U __ U i .)
It is important to note that Proposition 3.27 implies that g and

that Propositions 3 .13, 3 . 16, and the Open Mapping Theorem imply that
the change of variables (r, z, w) (3 . 12)] is a linear homeomorphism
of the Banach space {(~z~)e~:~(0)=0=~(7c), (2 . 20 a). (2 . 21 ) hold}
onto f with inverse Y v3). Hence Theorem 4 .13 and Corol-
lary 4.15 can be stated for the boundary value problem in terms of the
original variables.
For P held fixed at a positive Po the continuity of p [., ., ], defined

in (3. 9), ensures that the pressure on the shell is everywhere positive if U
is small enough. If the pressure becomes negative on part of the shell,
then cavitation occurs. (Our analysis does not account for cavitation.
Cf [12].)

5. THE EXTERIOR FLOW PROBLEM

We study the steady, irrotational, axisymmetric flow of an incompres-
sible, inviscid fluid of constant density p in the simply-connected domain
F[r] exterior to the shell. We denote a typical point in cl F [r] by x,
which we identify with the triple (xl, x2, x3) of its coordinates with respect
to the basis {i,j,k}. In consonance with Section 3 we assume that r~~ is
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defined by

where 03BB~ (0, 1 /2]. Then ~F is of class C1 À. The fluid is required to have
prescribed pressure P and velocity U k at infinity. It is well known (c. f : [18])
that the governing equations are equivalent to the following boundary
value problem for the modified velocity potential ~:

where v (x) is the inner unit normal to a~ at x. Problem (5. 2) has a
unique solution (cf. [20], Lectures 16, 19), which we denote by 03A6 [r, U].
The velocity u (x) and the pressure p (x) of the fluid at x~cl F are given
by

[Eq. (5 . 3 b) is Bernoulli’s formula.]
The uniqueness of 03A6 [r, U] yields

(5.4) LEMMA. - Let (5 . 1 ) hold. Then the solution ~ [r, U] of (5 . 2) is

linear in U and is axisymmetric; in particular,

We define

6. COMPACTNESS

In this section we prove Theorem 3.10 by using Schauder estimates
and conformal mappings. We first extend r of (3 .1 ) to the interval [2014 ~ x]
by setting r ( - s) _ ( - Y (s), z (s)) for s E [o, ~). We use the same notation for
this extension. The extension operator is continuous from ~’, defined in
(3 . 6), to W~(-~7r) for p E (1,2). We define l [r] by (3 . 2 a) with I
replaced by cr (s, t) where
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and with [0,7c] replaced by [-03C0, 03C0]. In place of R (ö) and R we define for
these extensions the sets

A slight modification of Lemma 4. 11 of [13] shows that ~ is precisely
the set of all simple, planar, closed, positively oriented, continuously
differentiable r’s symmetric about the i-axis with > 0 everywhere and
with z (x) > z (0). (~’f. Lemma 3 . 4. Hence it is the set of positively oriented,
symmetric extensions of the elements of ~.) Note that

we define

For 1  R2  oo we define the open annular regions

For 0  R  oo and we define the open ball

We now regard r as a curve and E[r] as a set in the complex (xl, x3)-
plane. (E is defined in (5.6).) By the Riemann Mapping Theorem, for
each such curve r there exists a unique biholomorphic mapping

such that

A theorem of Caratheodory (el [17], Thm. 9.10) states that f [r] can be
extended to cl d 2 (1, oo ) and that the extension is a homeomorphism onto
cl ~ [r]. A theorem of Warschawski (el [17], Thm. 10 . 2) states that f[r]’
can also be extended to cl ~2 ( 1, oo ) and that the extension vanishes
nowhere. The uniqueness of f [r], ensured by the Riemann Mapping Theo-
rem, and the symmetry of 06 [r] about the imaginary x3-axis imply that
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Since f [r] preserves orientation and since {6. 9} holds, we observe. that

We can now describe our basic strategy for proving Theorem 3 . 10. We
use the mapping f [r]: to convert our original flow problem on a region
depending on the unknown r to a new problem on a fixed domain, the
exterior of a ball, with coefficients depending on r. As. our first step, we
use the chain rule to prove

satisfy (5.5). is a sol-
ution of boundary value problem (5.2) if and only if the function

U] E C2 (d 3 (1, (0) (cl ~ 3 (1, (0) defined by

satisfies the following boundary value problem :

where

and where v3 is the component of the unit normal v defined in Section 5.
arguments r and U have been omitted in (6 . 1 5).]

Our main effort in this section is to use standard interior and boundary
estimates to prove

(6.16) LEMMA. - Let 3q2p4, R> 1, 0h1 h2, ð>O. Then the
operator (r, U) ~ t~ [r, ~J] is continuous from

and maps bounded sequenees into bounded sequences.
"

.
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We exploit (5 . 3 a) and (6.13) to obtain

(6.17) LEMMA. - Let 32~4,R>1,0A~~.S>0. Then the opera-
tor (r, U) - u [r, continuous and compact from

Theorem 3.10 follows easily from this last result and Bernoulli’s
Theorem.
We begin this program by obtaining a technical result on conformal

mappings.
For r~L let

be the arc-length parametrization of the curve r. For let

be the arc-length parametrization of the. curve Since f preserves
orientation and satisfies (6 . 9) and (6 . 1 0), it must satisfy

Our definitions imply that

for

(6 . 22) PROPOSITION. - Let 3  2 p  4, 
1 _ R1  R2, Õ>O. The operator is continuous from
w2, p ( _ ~, ~) h2, õ) to W2, 2p (~2 (R1, R2)) and maps bounded
sequences into bounded sequences.
Let  be a bounded open subset of d2 (1,00). Then is continuous

from C 1 ~ °‘ ~ [-1[, x] m ~ h2, Õ) to~ (a %) and m.aps bounded sequences
into bounded sequences. -

If d ~ c ~2 (1, 00), then r ~ f [r] is continuous from

and maps bounded sequences into bounded sequences for all k E N and 03B4 > 0.
If ~ is a bounded sequence [ - ~t, ~~ (~ ~ h 2, õ), then there

exists a constant c > 0 such that

The first- statement of this proposition is proved by [11]. The remaining
statements are derived from the work of [22] by [13].
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It is convenient to define an operator S that converts functions of the
cylindrical coordinates ~1~ ~3 to axisymmetric functions of Cartesian
coordinates ~i, Ç2’ ~3 by .

A straightforward computation yields

(6 . 25) LEMMA. - Let 3  q and let 1 __ R1  R2. For each let u" -~ u
and be bounded in {w~Ck(clA2 (Rt", R2)) : w ( - ç, Ç3)= w(03BE, 03BE3)}.
Then S [u~] ~ S [u] and ~ S is bounded in Ck (cl ~3 (R1, R2)) for each k.
S is linear and continuous from from

to W’~D~O, 1)) and from

Our next lemma gives important technical properties of the coefficients
and data of the modified problem (6 .14).

(6.26) LEMMA. - Let 3q2p4, 0a 1 , ~>0, 0hl h2,
1 R1  R2, k E Then ’.

(i ) The mappings r H a1 [r], defined in (6. 15), are continuous from
w2, P ( _ ~~ x) (h 1 ~ h2 ~ ö) and from [ - ~, ~] (h 1, h2, õ) to

Ck (R 1, R2)) and map bounded sequences in to bounded sequences.
. 

(ii ) The mappings r ~ ai [r] are continuous from -

and map bounded sequences into bounded sequences
(iii ) Let  be . a bounded open subset of ~ 3 ( 1, oo ) with (0, 0, ~ 1) cl.

Then

(iv) the mapping , b [ . , . ], defined in (6 .15), is continuous from
p ( _ ~~ ~) h2~ õ)] X ~- to W1-1~2 p, 2 p (a~3 (l, (0)) and maps

bounded sequences into bounded sequences.
We define a* and aj by .

Proposition 6 . 22, Lemma 6. 25, and the fact that p (ç, Ç3) = 0 only if ç = 0
imply that the proof of statements (i ) and (ii ) follows from
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(6.29) LEMMA. - Let the hypotheses of Lemma 6. 26 hold.. Let

.At(E)={(ç,ç3)EIR2:1+Elç311+-,lçlE} for EE(O,I). Then there
E .

exists an E E (0, 1 ) such that [r] and r H aj [r] are continuous from
C1’ °‘ [-03C0, 03C0] ~ L (h 1, .h2, ö) and from w2, p (-03C0, 03C0) ~ L (h 1, h2, ö) to

Ck (E)) and map bounded sequences into bounded sequences for each k.

(6.30) LEMMA. - Let the hypotheses of Lemma 6.26 hold. Then there
exists an E E (0,1 ) such that the mappings taking r to the functions with
values ,~~~+ a* [r] (, J~~+ , Ç3) and a3 [r] + , Ç3) continuous

from
___., _.. _ - - ~ - - .... . 

’

to

and map bounded sequences into bounded sequences.

Proof of Lemma 6 . 29. - The symmetry condition (6 .10) and the
inequality (6. 23) imply that

for s sufficiently small. The continuity of  03C1 [r] and condition (6 . 31 b)
I§ 

’

enable us to get from the Mean Value Theorem representations like
- , ..

for (~ Ç3) E ~f (E). We substitute this representation and similar representa-
tions for p [r] (03BE 03BE3) - 03BE~ 03C1 [r] (03BE, Ç3) and 03BE-1~ ~03BE3 p [r] (03BE, Ç3) into the expres-
sions for and aj obtained from (6. 28) and (6. 15). We invoke Proposi-
tion 6..22 to complete the proof. D

Proof of Lemma 6. 30. - We first observe that for I ç31  1. we cannot
use the Mean Value Theorem as in the proof of Lemma 6.29 because

( 1, ~) is not convex. To circumvent this difficulty, we modify a
standard extension theorem (cf. [21], Sec. 1 . 2, e. g.) to show that there
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exists a symmetrized extension (p, ~) of any pair (p,Q satisfying (6.10) to
the entire complex plane with

continuous for and each R2 E (1, oo). We denote the resulting
symmetrized extension of f [r] --_ (p [r], ç [r]) -- (p [r], ç [r]). (Note that
in general f[r] is not holomorphic on @~ (0, 1).)

Let { be a bounded sequence in ~V2° ~ ( _ ~, ~) ~ ~ (hl, h~, ö). Proposi-
tion 6.22, the compactness of the embedding of W~(2014~ir) into

C~"(2014~~) for 0al2014 -, and the boundedness of (6.33) imply that
p

the family 2014 p[r.],20142014 is equicontinuous in C° (cl EØ2 (0, fory 
(~ 

p 1. ,~l~ ~~3 ~ L J ~ ~ 2 l 2))

R2E(1, oo). Hence condition (6.10) and inequality (6 . 23) imply that there
exists an and an E > 0 independent of j such that

By virtue of the extension we had effected, we can use the Mean Value
Theorem to write

Thus

Since {~~ 2 + ~~ 2jt - ~ + ~j~2 ~ L,q {©, ~ + E j ) if  2 , we conclude that
1- (3

there is a positive constant c such that
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Proposition 6.22 implies that the mapping that takes r to the function
with values Jçî + ç~ a* [r] (Jçî + ç~, ~3) maps bounded sequences into
bounded sequences as in Lemma 6. 30.

Now let converge to r in W~(-~?r)r~(~i~2.S). Lemma
6.26(i) implies that

pointwise on [D3 ((0, 0,1 ), E) U D3 ((0, 0, -1 ) (0, 1 ). Inequality
(6.36) and Proposition 6.22 enable us to use the Lebesgue Dominated
Convergence Theorem to prove that a* converges to a* [r] as in Lemma
6. 30. The proof of the analogous results for a3 is identical. D

Statement (iii) of Lemma 6. 26 follows directly from (6.15), statement
(i), and Proposition 6 . 22.
Proof of Lemma 6 . 26 (iv). - By computing v3 of (6.15) we obtain

from (6 .15) that

(Here we suppress the argument r.) Proposition 6.22, Lemma 6.25, and
the fact that W 1- ~ 1 ~q~~ q (a~73 (0,1 )) is a Banach algebra if q > 3 implies the
conclusion. D

Thus the proof of Lemma 6. 26 is complete. Having determined crucial
properties of the coefficients in (6.14) we are now ready to obtain a priori
estimates on its solution. Our next result gives a maximum principle and
an associated uniqueness theorem.
(6.40) LEMMA. - Let

satisfies boundary value problem
(6.14) and is axisymmetric, then

Problem (6. 14) has at most one such solution.

Proof - Since the coefficients ai [r] are continuous on A3 ( 1, ~) and
since (6. 14 c) must hold, a corollary of the Maximum Principle yields
(6.41). The uniqueness then follows in the standard way. 0

(6.42) LEMMA. - Let 3q2p4,0hlh2, IR1, and
r E W2, p ( _ ~, ~) n ~ (hl, h2) with cl ? ~( ai [r], Lq (~~ (1, R1)) Then there
exists a constant c > 0 depending only on q, cl, R1 such that
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for every solution u E W2, q (~3 (l, R1)) of (6 .14 a) on ~3 (1, R1).

Proof - The one difficulty with this proof is that the coefficients of
the lower-order terms in (6 .14 a) need not be continuous. We use standard
methods. By combining Theorem 8 . 2 of [14] with Theorem 3 . 28 of [21]
we obtain the standard a priori estimate for the Laplace operator that
there is a constant c > 0 such that

for every Since q > 3, it follows that when

~e(0,1 2014 (3/q)) the space W2, q (~ 3 ( 1, R1)) can be continuously embedded
into which in turn is compactly embedded into

By imitating Troianello’s proof of Lemma 1. 37 on

page 61, we can thus derive the following interpolation inequality: For
every E > 0 there exists a positive constant c (s) such that

3 .,

We apply (6.44) to the equation in to show
. j= 1 ~-

that there is a constant c>0, depending only on q and Ri, such that

We now set ~ = 1/2 cc1 and use (6.45) to complete the proof. D

(6.47) LEMMA. - Let 3  ~ p  4, 0~i ~~, 8>0. Let 
bounded sequence in [W2, P ( _ a~, x) (hi, h2, õ)] x ~. Then the sequence
{max{ (D[!°~U~](~) :~ ~ ==1}} is bounded. -

Proof - We set
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Lemma 6.26 implies that there exists a sequence of real numbers {ck}
and a number f3 E (0, 1] such that

for 3  q  2 p, and for all j and k.
Let us assume for contradiction that there is a subsequence of {(r,, U )},

denoted the same way, such that >_ 1 ~ >__ j-
Then ~j~03C9 [rj, Uj]/Mj satisfies 

.

Furthermore, Lemma 6 . 40 implies that there exists a çj E (0, 1 ) such
that

We now use a diagonalization process to construct a convergent subse-
quence Inequalities (6 . 49 c) and (6 . 50 e) and standard Schauder
interior estimates (cf. [7], Thm. 6. 2) imply that .

for each Thus there is a subsequence ~ ~~ ~ and 1 in
such that in C2(cldl). By induction, there is a subse-

quence {~kj} of { xY - 1 } and an element ~k such that Xk in C2 (cl dk).
It is easy to see that there exists a X E C2 (~3 (1, oo)) such that

for every R1 and R2 with Inequality (6.52) and
the continuity of the embedding of into
W2° p (~ (R, R + 1)) imply that

for each R > 1. Hence Lemma 6 . 42 and inequalities (6 . 49 b), (6 . 50e), and
(6. 54) imply that
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Using the compactness of the embedding of ~V 2 ~ q ~~_3 { ~ ~, ~)) into

~ 1 s ~ (cl ~ 3 ( 1, R)) we deduce that for ever~ ~ > 1 and for every

0, ~ - 3 there exists a x* d 3 ( 1, R)) such that

Clearly x= x* on A3(1, R). Thus ~~C2 (A3 (1, oo)) n C1 (cl A3 ( 1, oo )) .
Let { (r~, U1) } be the subsequence of { (r~, corresponding to x1. By

the compactness of the embedding of W~(2014~7i) for

03BB~(0.p-1 p) we may assume that converges to (r,U) in

for such 03BB’s. Hence Lemma 6.26 implies that

ai [r~] - ai.[r] uniformly on compact subsets of ~ 3 ( 1, 00). The boundedness
of the embedding of W1-(1/q),q(~D)3 (0, 1)) into CO (ð!?Ø3CO, 1)) for q > 3

and inequality (6 : 49 b) imply that b[rjj, Ujj] Mj ~ 0 pointwise In ~D3 (0 1 ) .

Thus x satisfies

We now prove that

For this purpose we introduce the mapping g defined =by

which takes onto G[r]. We abbreviate g [r] and g [r~] by g
and .g~ and use analogous notation for other functions. We make some
preliminary observations.
We choose R so large that c (0, R -1 ). By applying a theorem

of Caratheodory (cf. [15]) to the sequence {z~1 f-1(1/z)} we easily show1 .f; ( / )
that f-1j ~ f-1 uniformly on ~D2 (0, R). It then -easily follows that

- -g.[r] -1 uniformly on (C, R). This uniform convergence

implies that there is no loss of generality in assuming that Ri 1 and R2
with are chosen so that ~3 (R1, RZ) ~ g~ 1 (c~3 (U, R)) and
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implies that there is a c>0 depending only on ~3 {Rl" R2) such that

for j sufficiently large. In view of the convergence of Xi and gj- 1 we deduce
from (6.60) that

uniformly on (u, K).
Now let s>0. Condition (6.61) implies that there is a number K such

that

Since

since .(6. 50 c) holds, and since the ~j(g-1j) are harmon.ic .on A3 (R, (0),
we can use a corollary -of the Maximum Principle to deduce that

Let I> K. By choosing R1 so large that sup |~l(g-1l) for I x >_ Rl~ 

1 3

[cf. (6 . 50 c)] and by :using (6 61) and (6 . 64) we ,obtain that |~(g-1 (x)) I  E
for >_ RI . Thus (6. 58) holds. F’rom (6. 57), (6. 58), and Lemma 6 . 40
we deduce that XO, .in contradiction to (.6 .. 51 ) and ~(6 ..56). 0

.(6 . 65). LEMMA. - Let 3  q~_2p 4, R>l, 0h1h2,ö>O. The 
ping (r, U) ~ ro [r, U] .is continuous from [W2, p (-1t, h2, 8)] x (~
to (~3 (1, R)) and maps bounded sequences into bounded sequences.

1’roof : - Since

Vo)[r,U]eW~~(~(~ 1)). m[r, U]EW2-(1/q),Q(O.@3(0, 1 )), and

a~ [r] E L~ (d 3 ( 1, R)), we can use (6 . 14 a, b) and standard ~results specifying
how the regularity of solutions of boundary value problems for Poisson’s
equation depend on the data to deduce that 03C3[r, U] E W2, q(A3 (1, R)).

Let {(r~ Uj) } be a bounded sequence in
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Using Lemmas 6.26 and 6.47, and standard interior estimates (cf [7],
Thm. 6. 2) we easily deduce that

for some (3E(O, 1), whence

Lemmas 6. 26, 6. 42, and 6.47 then imply that

is bounded.
Now let (rl, U~) ~ (r, U). It suffices to prove that every subsequence of

has a subsequence converging U]. For this purpose we
follow the proof of Lemma 6 . 47 to show that there is a

C2 (~ 3 ( 1, (0)) n C1 (cl ~ 3 ( 1, (0)) such that (ù W in C2 (cl ~k)
for all k and in W 2 ~ q (~ 3 ( 1, R)) for all R > 1. Then we show that ~r
satisfies the same boundary value problem as 03C9 [r, U] and accordingly
equals it. 0 .

Lemma 6 . 41 of [ 13] is

(6 . 68) LEMMA. - Let 0  ex -- I and let . m be a nonnegative integer.
be a sequence of functions on [ - L, L] that is bounded in 0152. If

he converges to f E CO either pointwise a. e. or in the sense of distributions on
( - L, L), then f ~ em, 0152 and converges to f in the norm of Cm° 13.

(6 . 69) LEMMA. - Let 3  2 p  4, 0  h I  h2, ~ > o. The mapping
(r, U) i- u [r, U]|=| |Uk + [r, IJ] (r ( . ), 0, z ( . )) I (delivering the speed) is

continuous and compact from [W2° P (- ~, x) (hl, h2, õ)] to C° [0, ~t].

~’roof. - Let

We define

where J[r](t) is the inverse of the matrix of partial derivatives of

p [r] and 03B6[r] with respect to 03BE1 and 03BE3 evaluated at (6 .13)].
It is easy to see that Proposition 6.22 and the continuity of
the embedding ofW~(7c/2,57c/2) into C~j~/2,57t/2] 
implies that is continuous from W~’~(2014~7t)r~~(~i~2~) ~
Co, (3 [~/2, 5 ~/2] and maps bounded sequences into bounded sequences.
Lemma 6 . 65, the continuity of the embedding of W 1 ° q (~ 3 ( 1, R)) into

(1, R)) for R > 1 and 0 P  1- 3/q  1 - 1/~ and the continuity
of the trace operator from C°~ ° to the Banach algebra
C~({(~i~3):~+~=l}) implies that (r, A [r, U] is continuous
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from ( - ~, x) (h i , h2, 8)] X R to [~/2, 5 ~/2] for 0  J3  1- 3/q
and maps bounded sequences into bounded sequences.
By imitating the proof of Lemma 5.44 of [12] we show that

W~~(-~7c)n~(/!~~8)3r~~[r]’’(~[r](.))=~[r]eC~~-~Tc] is

continuous for (xe(0,l) and maps bounded sequences into bounded

sequences. By using Lemma 6 . 68 as in the proof of Lemma 5.38 of [12]
~ 

we find that the composition operator

with 0  y  pa, is continuous and maps bounded sequences into bounded
sequences. Combining this result with the properties of A and t* * and

using the compactness of the embedding of C~[20147~7c] into C~[2014~7c]
we complete the proof. D

Proof of Theorem 3 .10. - Let U~) be a bounded sequence of
lt (8) x R. The invariance of (5 . 2) under translations in the k-direction
implies that u [r + a k, U] = u [r, U] for a E IR. Since elements inter-
sect the k-axis only at s = o, ~, we may assume that

Simple arguments by contradiction shows that there exist h2, and
~ 1 > 0 such that

Since 
.

(6.73) ~ is continuously embedded in W2° p (- x, x) for p E (1,2)

(in. the sense of the extension introduced at the beginning of this section),
we can therefore assume that there are h 1 and h2 with such

is a bounded sequence in ~ (h~, h2, ~) n W2~ p (- ~, ~c) for
~e(l,2). The continuity and compactness properties of u I and p follow
from Lemma 6 . 69, from (6.73), and from Bernoulli’s Theorem (5 . 3 b).
The independence of u/U ~ of U immediately follows from (5 . 4). D

~ 

7. COMPACTNESS VIA POTENTIAL THEORY 
’

In this section we outline the steps necessary to prove Theorem 3.10
directly by the methods of potential theory. We consider the boundary
value problem (5.2). If there is an ae(0,1] such that re(C~[0,7i:])n~
then lff [r] is smooth enough for us to apply the Fredholm method of
integral equations to solve (5 . 2). It implies that this problem has a unique
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solution, which can be expressed as

where

Here da (y) is the differential surface area of off [r] at y and cr [r, U] is the
unique Holder continuous solution of the integral equation

Note that uniqueness implies that ?[r,U]==U7[r,l]. We specialize (7 .1 )
to the variables introduced in Section 2 to obtain

Since it is readily shown that cr [r, LQ (r (s) e1 (c~) + z (s) k) is independent of
p, we define

Then we can write (7 . 2) as

where

Analogously we specialize (7. 3) by

Our aim is to show that (r (s, 0))
depends continuously and compactly on r. [Cf. (5.3).]. We do this by
carrying out the following steps.
We first use a modification of Theorem 4 (2. X) of [9], p. 363, which

gives criteria on kernels that ensure the compactness of integral operators
from LP to CO, 0152, to prove
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(7 . 7) LEMMA. - Let O(X1/4, and 6 E C°. Then
A [r, a] E C°=1~4. be a bounded sequence in ~’ converging to
r+ E [0, ~]) in the C1-norm. Then

We combine Lemmas 7 . 7 and 6 . 68 to obtain

(7 . 9) LEMMA. - Let 0  exl  1/2, be a bounded sequence in

converging to in the and let 6n be a

sequence in C° converging in this space Then A [r + , a+] °‘2 and

{A [rn, converges to A [r; ~ +] in the Co, °‘2-norm . for all a2 E (0,1 /4).
Our first basic result is

(7 .10) THEOREM. - The operator A is continuous from (~’ (~ ~) x C° to
CO, 0152 for 0  ex  1/4. There exists a unique continuous operator cr [., U]
PI to such that [r, Lfl) satisfies (7.5 a). Furthermore, cr [., U]
is compact from X ~ R (8) to Co, 13 for all 03B2 E (0, oc) and for all 03B4 > 0.
The well-known existence and uniqueness of cr [., U] can be proved by

integral equation methods (cf [8], e. g.). The continuity follows from the
version of the classical Implicit Function Theorem given by [6].
We now prove our second basic result:

(7.11) THEOREM. - Let 003B1103B11. Define

Then V [ . , . ] is continuous from n ~) X to 

Sketch of Proof - It follows from (7 . 12) that if (rn, 6n) - (r, cr) in the
x Co. "-norm, then V [Tn, crj - V [r, cr] in the sense of distributions on

(0, x). Since

(7 .13) V [r, cr] (s) _ [r, cr] (r (s)) . [Y’ (s) e ~ (0) + Z’ (s) k] 
we can follow Gunter’s [8], App. 1, treatment of gradients of single-layer
potentials to show that

if (rn, c~,~) -~ (r, cr) in [0, ~] n ~) X eO, CX. We complete the proof by
using Lemma 6. 68. D

We easily deduce Theorem 3. 10 from the combination of (5.3) and
(7. 13) by invoking Theorems 7. 10 and 7. 11 and using the compactness
of the embeddings of into e1. 13 and C~’ ~ into eO, 13 for 0  (3  a.

The details of this proof, which are lengthy, are given by [10],
Chap. 11.
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