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1. INTRODUCTION

In this paper, we deal with .a class of integrals of the Calculus of
Variations without convexity assumptions on their integrands. More preci-
sely, we consider problems of the form:

where B is the unit ball and À is anon negative number, and we seek
radially symmetric solutions. Our existence result concerns the case when

In order to gain insight into the mathematical difficulties raised by this
type of problems, it is worthwhile to consider first the case g - 0. For this
case, let us remark that the problem of seeking the minimum on the
larger space offers no difficulty. In fact, it is enough, in
this case, to take any (symmetric) selection o, in LP, from the map

and consider the (symmetric) solution ul to the
Dirichlet problem

Then Ul is a solution to the given minimization problem. Hence, in general,
this problem admits several solutions, obtained simply as solutions to
Dirichlet problems. However this procedure cannot be used for the same

minimization problem under the additional condition au = 0 on since

the corresponding Dirichlet problem would be overdetermined, so that,
even for this case, a more complex ap.proach is needed.

There are many papers devoted to the existence of solutions to problem
(P) that avoid the convexity assumption on h: however all of them prove
existence of solutions by imposing conditions implying that every solution
to problem (P**), i. e. problem (.P) where h is replaced by h**, is in fact a
solution to problem (P). The method of proof goes by showing that along
any solution to (P**), the functions hand h** have to coincide almost
everywhere, otherwise the Euler-Lagrange equation would be violated.
This method cannot possibly be applied to cases where there are solutions
to (P**) that are not solutions to (P): in particular it cannot be applied
to the simple case wheng = 0 and ~=0, because, in general, (P**) has
solutions that are not solutions to (P). As an example, take n = 2,
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~C (s) _ .i .(s), i the indicator function of the set { -1, + 1 ~ . A computation
shows that the funct-ion u2 defined by

satisfies the boundary conditions: u = 0 and 2014~==0, on 5B and has a
an

Laplacian taking values either + 1 or - 1, i. e. u~ is a solution to the

original problem. However, the convexified problem, where h* * is the
indicator function of the interval [ -1, +1] has, among others, the solution
u~ identically zero, i. e., in this simple case, there are solutions to the
relaxed problem that are not solutions to the original problem. Moreover,
since the method mentioned above uses the Euler-Lagrange equation
pointwise, some regularity conditions on the functions g and h have to be
imposed. In that spirit Aubert-Tahraoui [A-T2], in case h .independent of
x and g (x, . ) convex, proposed a method based on Duality Theory as
presented in [E-T], by generalizing their earlier idea in dimension one (see
[A-T1]), where the required hypothesis was Raymond ([R],
Annexe 1) gives a direct proof by the Euler-Lagrange equation, by impos-
ing the more general condition, already considered by Aubert-Tahraoui
[A-T2],

for the case h depending on x. These papers seek the minimum on the
space W6’ P. An existence result in the space W6’ P has been given
in [T]. Our result, that contains the case g=0 and allows h to be lower
semicontinuous in s and measurable in (x, s), neither contains nor is
contained in any of the papers mentioned above.

Liapunov’s theorem has been used as a tool to prove existence of a
solution for a different minimum problem in [C-C]. In this paper we had,
in particular, to extend the applicability of this theorem to a more complex
operator and boundary conditions.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, n is an integer, p is a real number such that

2 _ n  p. B is the unit ball of R" with boundary aB. For fixed ~, >__ 0 we
equip the space W2, P (B) U (B) with the norm ~~ ~u - ?~ u 
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SO (n) denotes the Rotation Group in RD which has as elements the
orthogonal matrices A E M (n) such that det (A) =1: it is a compact and
connected topological group (see [DNF]). Therefore, given P (B),
the integral

is well defined, where Jl is a left (or right) Haar measure on SO (n) with
(n)) =1 (see [C]). By the definition of SO(n), we have that its

elements preserve the inner product, i. e.

Hence Furthermore, fixed x E RD, it is not difficult to show
that: 

.

We have the following

PROPOSITION 1. - Let M e W2° p B n W1 ~ " B such that au = 0 on ~B.) o ~ ) 
3~

Define 

Then

Proof - Since = x we have that u vanishes on 3B since u does
so. We use Tonelli-Fubini’s theorem (see [C]) to prove that 
Let AEM(n), 
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where 03BE = Ax and 03BEi = 03A3 aijxj. Since claim (b) is proved. (c)
j=i 

.

follows from the previous remark and (d) is a consequence of the definition .

of SO (n)..
Let I be any interval in R and denote by 2 the a-algebra of (Lebesgue)

measurable subsets of I and, by B (R) the a-algebra of R. We denote by
J~ Q ~ (R) the product a-algebra on I x R generated by all the sets of the
form A x B with A~L and We recall that a function

f : I x R - R is called 2 Q ~ (R)-measurable or simply measurable if the
inverse image under f of every closed subset of R is measurable. .

Let ~~/!**(~) be the bipolar of the function ~~2014~(/,~). We have
the following

PROPOSITION 2 ([E-T] Prop. 1.4.1; Lemma IX. 3 . 3; Prop. IX. 3 . 1 ). -
(a) h** (r, ç) is the largest convex (in ç) function not larger than h (r, ç). ’
(b) Let h : I x R --~ R be such that:

(h 1 ) h is 2 Q ~‘ (R)-measurable; 
’

(~2) ~’~~~(~~) ~ lower semicontinuous for almost all r in I;
(h3) there exists a positive constant cxl such that

/!(~~)~(x ~ ~2014P(f), where the function r H t~ -1 (3 (r) is in L 1 (I). Then

(c) Let z ( . ) be measurable. Then there exist measurable pi : I ~ [0, 1] ] and
measurable Vi : I -~ R, i = 1, 2, such that:

Finally, we state a version of the famous Liapunov’s theorem. ’

PROPOSITION 3 ([Ce] 16.1. V). - Let A be a measurable subset of RD
with finite (Lebesgue) measure, let ... , fk be a integrable functions froni
A to IW and let p 1, ... , pk be a measurable functions from A to [0, 1] such
that:

Then, there exists a measurable partition of A, (Ai)i, i = 1, ..., k such that
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3. MAIN RESULT

We shall assume the following hypothesis.

HYPOTHESES (H). - Set I to be [0,1]. The map a : I --~ R is such that
is in Lp’ (I) with p’ the exponent conjugate top. The map

h : Ix R -+ R is such that

(h 1 ) h is ’2 ~B (R)-measurable;
(h2) ~ H h (r, ç) is lower semicontinuous for almost all r in I.

Moreover:

(h3) there exists a positive constant a, such that
h (r~) ~ a ~ ~ 1p - P M where the function r H ~ -1 f3 (r) is in L (I).

THEOREM 1. - Let h and a satis, fy hypothesis (H) non-negative.

Assume that the functional has afinite value for

some u in W2, p(B) n W1, p0(B) such that 2014 = 0 on 9B. Then the problem( ) o ( ) 
an 

p

admits at least one radially symmetric solution.

In (a) below we show that the relaxed problem admits at least
one radially symmetric solution; in (b) we write several functions as convex
combinations and apply Liapunov’s theorem to begin defining a candidate
for a solution to the original problem; (c) is a technical integrability result
and in (d) we complete the construction of the solution.

(a) We consider the relaxed problem

Clearly, h** satisfies the growth condition ~h3), therefore a well known
result (see [E-T]) assures that problem (P a *) has a solution û. We claim
that we can assume the function û to be radially symmetric. If it is not so,
we can consider the function u : B 7 R defined by
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instead of M, which by Proposition 1 belongs to is

such that 2014 = 0 on 5B and x ). Let us show that u is another
an 

t )

solution to problem (P$*). Jensen inequality and (d) of Proposition 1

imply

Moreover, using Tonelli-Fubini’s theorem (see [C]) we have

but

so that

Hence, from (2) it follows that

Similarly we can show that

i. e. u is a radially symmetric solution to problem (P~*).
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(b) Using spherical coordinates we obtain

where ffin denotes the volume of the unit ball B. By (c) of Proposition 2
there exist measurable functions p; and v~, i= 1,2; such that

On the other hand by Lusin’s theorem there exist a sequence (K~)~ of
disjoint compact subsets of I and a null set N, such that I = N U (U Kj)

j

and the restriction of each of the maps to each K~ is

continuous.
Consider the two functions p both belonging to

where p is the (radially symmetric, see for instance [G-T]) solution to the
Dirichlet problem

and B)/ is the (radially symmetric) solution to the problem

At this point we apply Liapunov’s theorem to construct from u a new
function u, that will be a solution to the original problem.
By Proposition 3 there exists a measurable partition of each K3, ~,

i = 1,2, such that: for every j,
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(c) We claim first that the map

belongs to L1 (I). If it is so,

i. e. the map

belongs to LP (I) or, equivalently, the map

belongs to LP (B). To prove the previous claim, first, notice that, from
(5. b), the map

is integrable. On the other hand the sequence of maps

is monotone non decreasing and

Set Sm = U K j. By (8), the right hand side equals
jm
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Hence

The latter implies

so that the claim is proved.
(d) Since E; j’ i =1, 2, is a partition of Kj, we have

Therefore from (3) and (13) it follows that

Now, let u be the (unique) radially symmetric solution to the Dirichlet
problem

We actually know that ([G-T)), i. e. that

Notice that, from (12), the right hand side of (15) is in LP,(B). We claim
that the function u is a solution to problem (Po). To infer it, we shall
prove that:

2014 = 0 on ðB or, equivalently,
an

in spherical coordinates, that u’ (1) = 0; (17)
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Ad (17). First, remark that (15) in spherical coordinates implies

Then

where we have used (9) and (5. a) and M’(l)=0. On the other hand, by
taking into account (6), we have

From Green’s Formula we have

so that
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The last integral equals

and, from (10) we conclude that

Ad ( 18). This is a straightforward consequence from (14) and ( 15).
Ad (19). From the definition 

-

By means of Green’s Formula the right hand side can be written as

Taking in account ( 15) in spherical coordinates, the last integral equals

where we have used ( 11 ), (5. a) and (7), and the proof is complete. This
proves that u is a radially symmetric solution to problem (Po)..
Remark. - In the scalar case; n = 1, p> 1, B is the interval ] -1, + 1 [.

In this situation the proof remains as before (setting n =1 ), except only
that we take

instead of that defined in ( 1 ).
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