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ABSTRACT. - We first give a characterization for the set of real analytic
diffeomorphisms which transform homogeneous vector fields of certain

degree into homogeneous fields of the same degree with respect to an

arbitrary dilation b~ . Such a set is constituted by the invertible analytic
maps that are homogeneous of degree one with respect to 8; and can
be endowed with the structure of a Lie Group whose Lie algebra is the

space of the homogeneous fields of degree one with respect to

b~ . Then we prove a decomposition theorem for the elements of the non
semisimple Lie algebra This result is a non linear analog of
the Jordan decomposition of a linear field, i.e. for X E we can

write X = S + N, with S linear semisimple and ~S, N~ = 0. We also
give an explicit representation formula for the flow generated by a field in

Finally we apply this result to obtain a simple representation for
the trajectories of a class of affine control systems x = Xo (x) + B u, with
Xo E and B a constant field, that constitute a natural extension
of the linear control systems.
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136 F. ANCONA

RESUME. - Tout d’abord, nous donnons une caracterisation de l’ensemble
des diffeomorphismes analytiques reels qui transforment des champs de
vecteurs homogenes d’un certain degre en champs de vecteurs homogenes
de meme degre relativement a une dilatation arbitraire b~ . Un tel ensemble
est constitue par des applications analytiques inversibles homogenes de
degre 1 relativement a b~ , et il peut etre dote d’une structure de groupe
de Lie. L’espace des champs de vecteurs homogenes de degre
1 relativement est Falgebre de Lie de cet ensemble. Ensuite, nous
demontrons un theoreme de decomposition pour les elements de Falgebre
de Lie non-semisimple Ce resultat est l’ analogue non lineaire de
la decomposition de Jordan d’un champ lineaire, i. e. , pour X G 
nous pouvons ecrire X = S + N, ou S est un champ lineaire semisimple
et [S, N] = 0. Nous donnons aussi une formule explicite de representation
pour le flux d’un champ de Finalement, nous utilisons ce resultat

pour obtenir une representation simple des trajectoires d’une classe du
systeme affines de contrôle  = X o (x ) + B u, ou X o E et B

est un champ constant, qui constitue une extension naturelle des systemes
lineaires de controle.

1. INTRODUCTION

Consider an affine nonlinear control system

where Xo, Xi, ... Xm are real analytic vector fields on and u =

(~cl, ..., um) is the control. A well known technique for the local study
of such a system consists in locally approximating the vector fields

Xj , j = 0,1,... ,m, by fields = 0,1,... ,m, for which the analysis
is easier and such that they "preserve" the property being studied. This

technique has been the key in obtaining high order local controllability
results and in the construction of asymptotically stabilizing feedback

controls, e.g., see [5], [19], [10], [11], [12], [13], [16]. Homogeneous
vector fields with respect to a dilation 8; have often provided such "correct"
approximations in basically non linear problems for which the usual linear

approximations fail to yield sufficient information. Results in this direction
can be found in [4], [9], [20].
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137DECOMPOSITION OF HOMOGENEOUS VECTOR FIELDS OF DEGREE ONE

In this paper we study some basic properties of the homogeneous vector
fields of degree one with respect to an arbitrary dilation 8; and develop
a general method of solution for every autonomous system of differential
equations

where X is a real analytic vector field on I~n (or on an n-dimensional
manifold M’~ ) homogeneous of degree one with respect to b~ .

Specifically, let 8; : R" be a dilation on R" defined by
b~ (x) _ where ~ > 0, and rl  ...  rn are

positive integers. A polynomial p : (~ is homogeneous of degree
m ~ N with respect to 8; if p(03B403C4~ (x)) = (Throughout N will
denote the set of non negative integers {0,1,...}.) The set of polynomials
homogeneous of degree m with respect to 8; will be denoted 
We define a real analytic vector field X (x) _ ~i 1 on I~n,
given in local coordinates x = (x 1, ... x~ ), to be homogeneous of degree
m E Z with respect to 8; if ai E Pri+"2-l,r(~~), z = 1,... n. We denote
by the family of such vector fields. This definition (although
not universally used) agrees with the classical definition of homogeneity
(i.e., i = l, ... , n) in the case X is homogeneous
with respect to the standard dilation b~ , having rl = ... = rn = 1. In

particular, a field X (x) = Ax that is linear in the local coordinates will be
homogeneous of degree one w.r.t. b~ . One can thus regard the concept of
homogeneity of degree one w.r.t. an arbitrary dilation as a natural extension
of the concept of linearity. In fact, classical results valid for linear vector
fields have been obtained for such fields in nonlinear problems, where the
homogeneous fields play the role of the linear approximations in classical
theory, e.g., see [10].
The paper is organized as follows: in Section 2 we characterize the

set of all real analytic diffeomorphisms § on IRn that transform any

homogeneous vector field X of degree m with respect to a given dilation
8; into a homogeneous field T~X of the same degree with respect to the
same dilation. If 8; is the standard dilation b~ , such a set is clearly the
set of all invertible linear transformations on IRn, which in our notation
coincides with the set of all invertible elements of We show
that also in the case of an arbitrary dilation b~ , r = (rl , ... , r~ ), with
ri = 1, the set of all real analytic changes of coordinates that transform
homogeneous vector fields of certain degree into homogeneous fields of
the same degree is precisely the set of all invertible elements of 
which will be denoted by This set is a subgroup of the
group of all real analytic diffeomorphisms on IRn and can be endowed

Vol. 13, n° 2-1996.



138 F. ANCONA

with the structure of a finite dimensional Lie group. Moreover, if X is a
field in and ( ex p tX ) ( p ) denotes the solution, at time t, of the
Cauchy problem x = X (~), = p, then, for t fixed, the diffeomorphism
p -~ (exptX)(p) lies in It follows as an easy consequence that
the space of the homogeneous fields of degree one with respect
to a dilation 8; is the Lie algebra of the Lie group 

In Section 3 we prove a decomposition theorem for the vector fields of
the non semisimple Lie algebra Hl,r(lRn), providing a non linear analog
to the Jordan decomposition of a linear vector field into a semisimple and
nilpotent part.

THEOREM 3.1. - Let X(x) = ~i 1 be a real analytic vector
field on homogeneous of degree one with respect to a given dilation
~. Then there is a polynomial change of coordinates x = §(y), § e

such that

denoting the transformed field after performing the coordinate
change ~ _ where S and N are real analytic homogeneous vector
fields of degree one with respect to b~, satisfying

Moreover S is a linear semisimple vector field (i.e. the complexification of
S is diagonalizable) and N is the sum of a linear nilpotent field and of a
strictly non linear homogeneous vector field of degree one with respect to b~ .

Finally, in Section 4 we obtain a simple representation of the solutions
of system (1.2), in terms of their Picard approximations, for a class of
fields that can be regarded as a generalization of the linear nilpotent
vector fields. This result, together with the decomposition theorem given in
Section 3, yields a representation formula for the solutions of (1.2), for any
X E We also derive an explicit representation for the trajectories
x(., u) of an n-dimensional, single input, affine control system

where Xo is an element of r = (ri,..., rn ), and B is a constant
field whose local coordinate expression is given by an n x 1 matrix having
nonzero entries bi only for those i such that r i = rn :

denoting by A the linear part of the field Xo. 
’
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139DECOMPOSITION OF HOMOGENEOUS VECTOR FIELDS OF DEGREE ONE

2. HOMOGENEOUS DIFFEOMORPHISMS OF DEGREE

ONE WITH RESPECT TO AN ARBITRARY DILATION

2.1. Notations and Definitions

The general setting for the theory which follows is the Lie algebra of all
real analytic vector fields on a real analytic n-dimensional manifold Mn .
However, we deal only with local problems in which we study the vector
fields on some neighborhood U of a point p E M". Therefore, instead of
constantly referring to local coordinate with X(p) = 0,
we will identify any point q in U with its local coordinate expression
x = X( q) in = U, and take the local viewpoint that our vector fields
are defined on an open neighborhood U of 0 E IRn.
We will denote a real analytic vector field X, in local coordinates

x = (x 1, ... , xn ), equivalently by

where each is a real analytic function of x.
Given two real analytic vector fields X, Y, we let [X, Y] denote their Lie

product which, in local coordinates, is expressed by (~X/~x)(x)Y(x)-
(~Y/~x)(x)X(x), denoting by (~X/~x)(x), (~Y/~x)(x) respectively
the Jacobians of X and Y. In order to simplify the notation, if X

and Y are smooth maps from ~n to IRn, we still denote by ~X, Y~
the map defined by the above expression even in cases where we

do not interpret X, Y as local coordinate expressions of two vector

fields. We also use adX (Y) _ (adX, Y) _ [X, Y] and, inductively,
[X, 

If X(x) denotes a vector field given in the x-coordinates and we

perform a coordinate change x = we denote by the

transformed field expressed in the y-coordinates, which is given by
2’~X~~J) _ 

For a given vector field X and p E we denote by (exp tX) (p) the
solution, at time t, of the Cauchy problem x = X(x), x(0) = p; thus the
map p ~ (exptX)(p), represents the flow generated by the field X.

Throughout it will be used the term strictly non linear to denote an
analytic map whose Taylor expansion starts with a homogeneous term
(with respect to the standard dilation) of degree greater than one.
The definitions of dilation and homogeneity w.r.t. a dilation have

already been recalled in the introduction. In particular we will use the

Vol. 13, n° 2-1996.



140 F. ANCONA

following notation. Let 8; : IRn be a dilation on IRn, 8; (x) ==
(~~~i,..., c > 0. The nondecreasing n-tuple of positive integers
r = (T 1, ... , will be said to be of the type (21, ... , ,jm) if
the following equalities hold:

with im = n and ji  j2  ...  jm. (Throughout is used zo = 0.) For
certain results the additional assumption jl = 1 will be required. Given
a map f : ~~ with fi E z = 1, ... , n, we write
f G even in cases where f does not denote the local coordinate
expression of some vector field.

2.2. Statements of the main results

We here summarize the results presented in this section. Given a dilation
8; with r = (ri , ... , Tn) of the type (i 1, ... , ,jm) as defined in
(2.1), let Z denote the vector field expressed, in x-local coordinates, by

THEOREM 2.1. - Let 03C6 be a real analytic diffeomorphism on Rn such that
= 0. If jl = 1 in (2.1), then the following statements are equivalent:

(i) There exists an integer m > 0 such that

If jl > 1 in (2.1), then (ii), (iii) are equivalent and they imply (i).

THEOREM 2.2. - a real analytic diffeomorphism,homogeneous of degree one with respect to the dilation b~, if and only if

Annales de l’Institut Henri Poincaré - Analyse non linéaire



141DECOMPOSITION OF HOMOGENEOUS VECTOR FIELDS OF DEGREE ONE

it has the form

where A is a matrix of the form

each A~ being an invertible (i~ - x (i k - matrix with real entries,
and g is a strictly non linear function in of the form

each g~ being homogeneous of degree j with respect to the standard
dilation b~ .

Let denote the set of all invertible linear transformations on
We will sometimes identify the elements of with their matrix

representation, denoting by A the linear transformation x ~ Ax. Consider
the sets of transformations

(here I denotes as usual the identity matrix, and g the strictly non linear
part of From Theorems 2.1 and 2.2 it follows that, in the case b~ ,
r = (rl , ... , rn ), is a dilation with rl = 1, coincides with
the set of all real analytic diffeomorphisms that transform elements of

into elements of the same space.

THEOREM 2.3. - The set is a finite dimensional Lie group with
the dimension depending on r = (rl , ... rn ). Moreover, the sets Gl , G2
defined above are subgroups of and for any 03C6 E 
there exist 03C61 E Gland E G2, such that

Remark 2.4. - The group is the natural generalization of
the group of the invertible linear transformations with which it
coincides in the case 8; is the standard dilation b~ .
Vol. 13, n° 2-1996.



142 F. ANCONA

THEOREM 2.5. - Let X E Then, for each fixed t E (~, the map

is a homogeneous analytic diffeomorphism of degree one with respect to b~ .
Moreover, is the Lie algebra of the Lie group 

Example 2.6. - On l~2 let X(x) = 2xl + (5xi - x2) ~/~~2.
Note that X is a field in Hl,r(1R2), with r = (1,3). It can be easily
computed that the flow-map of X is given by (exp 

(5/7)(est - + e-tp2), which is clearly an element of
for any fixed t E R.

2.3. Preliminary lemmas

We collect here several preliminary results that will enable us to prove
Theorem 2.1. 

LEMMA 2.7. - Let Z be as in (2.2). A real analytic vector field
.~ (x) - a/~~i is homogeneous of degree m with respect to
8; if and only if

Proof. - The i-th component of the field [X, Z] is given by

Since X is analytic, its components ai can be expanded in terms of

homogeneous polynomials; let ai denote a monomial of ai of the form
= a~ i 1 ~ ~ ~ ~ Then we have

Substituting the above in (2.8), for any monomial ai of ai, we deduce
that the relation (2.7) holds if and only if the exponents vi , ... , of any
monomial ai (x) = axil ~ ~ ~ ~ ~ xnn of ai, satisfy the relation

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



143DECOMPOSITION OF HOMOGENEOUS VECTOR FIELDS OF DEGREE ONE

for each 2 = l, ... , n. This means that a2 E for each

i = l, ... , n which is equivalent to say that X E D

LEMMA 2.8. - Let X be a real analytic vector field on homogeneous of
degree m with respect to bE . If 03C6 is a real analytic diffeomorphism such that

then also is an homogeneous field of degree m with respect to b~ .

Proof - Recall that the Lie product is a coordinate-free operation; thus,
transforming both sides of (2.7), we obtain

Hence, substituting (2.9) into (2.10), we have Z~ _ ( m - 
which, using lemma 2.7, enables us to conclude. D

LEMMA 2.9. - Let Y(x) _ ~2 1 ai(x) be a non-zero real

analytic homogeneous vector field of degree j E 7L with respect to

b~, r = (rl, ... , rn), with rl = 1. Then

for some m > 0, if and only if one of the following two conditions holds

Proof - That (i) implies (2.11 ) is immediate since an homogeneous
vector field of degree zero with respect to the standard dilation is a constant
vector field and the Lie bracket of two constant fields is clearly zero.
Next suppose (ii); from lemma 2.7, using the linearity of the Lie product,

it follows

Therefore, since m = 1, (2.11) is satisfied.
Now suppose that (2.11) holds for some m > 0. Note first that, since

m > 0 implies rk + m - 1 > 0, k = 1, ... , n, then 
l, ... , n ~ is a set of non zero fields in Therefore (2.11 ) is in

Vol. 13, n° 2-1996.
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particular satisfied by the elements of this set:

Thus it follows

which implies, using Y E and therefore ai E 

We now consider three cases:

Case 1. - Suppose al = 0. From (2.12) it follows ~ 0,
for each k = 1, ... , n and so Vi = 0 for each i = 1,..., n in (2.14),
which implies r i = 1, for each z = 1, ... , n, and j = 0. Thus condition
(i) is satisfied.

Case 2. - Suppose 0, vk = 0 for some k, 1  l~  n. Then m > 0
and (2.12) imply rk = 1, m = 0. Hence r2 = 1 for each i = 1,..., k which,
using again (2.12), implies (x) ) - 0, for each i = 1, ... , ,1~. Thus

E R, Vi = 0, for each i = 1,...,k and j = 0. If vi > 0 for
some i > k, then, using (2.14), we would have j = ri(vi - 1) + 1 > 1
which gives a contradiction. Hence Vi = 0 for each i = 

condition (i) is satisfied.

Case 3. - Suppose 0, Vi > 0 for each z = 1,... n. From (2.12),
using (2.14), it follows

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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which implies vk = 1 for each k = 2,..., n, and so by (2.14) j = l.

Moreover, since ri = 1, (2.14) implies also vi = j. Thus v2 = 1 for

each i = 1, ... n. Finally (2.15), with k = 1, implies m = 1, and, with
k = 2, ... , n, implies ak = rkal for each k = 2,..., n. Hence condition
(ii) is satisfied with a = al. D

LEMMA 2.10. - Let Y(x) _ ~i 1 ai(x) non-zero real analytic
vector field on Then the same conclusions of lemma 2.9 hold.

Proof - First expand Y in homogeneous vector fields with respect to

~, i. e. ,

Next observe that, since [X, > 1- rn, are homogeneous vector fields
of different degrees, the equation

is satisfied if and only if the equations

are satisfied simultaneously. Hence we can apply lemma 2.9 and obtain the
same conclusion. D

LEMMA 2.11. - Let 03C6 be a real analytic diffeomorphism on Rn such that
(~(0) = 0. Assume that ji = 1 in (2.1). If

for some 0, then

Proof. - By lemma 2.7 we know that (2.16) implies

Transforming both sides of (2.18) under the action of the map which

is the inverse map of Tx, we obtain

Vol. 13, n° 2-1996.
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which, together with (2.7), implies

We now distinguish three cases:

Case 1. - Suppose 8; = b~ , m = 0. By lemma 2.10 it follows

that can be explicitly written as

If we evaluate the above at x = 0 and observe that ~(0) = 0 implies
(0) = 0, we obtain ai = 0, i = l, ... , n. Hence Z = Z which

implies (2.17).

Case 2. - Suppose m = 1. From (2.19), using lemma 2.10, it follows

for some a E {-1~ (~ 7~ -1 since = 0 implies Z = 0, by
applying Tx to (2.21)). Set b = (a + 1)-1. Then, using the linearity of 
(2.21) implies T~Z = bZ, b E R B ~0}, from which it follows

Since § is analytic, its components can be expanded in terms of

homogeneous polynomials; let denote a monomial of of the form

03C6i(x) = 03B1xv11 . ... . xvnn. Then (2.22) implies

Thus (2.22) is equivalent to the condition that the exponents vi , ... , v~ of
all the monomials ~i(x) = ... ~ xn of the same z-th component

of ~, must satisfy the relation

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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for each i = 1, ... , n. This relation implies b > 0 and

for each i = 1, ... , n, with li integers satisfying

In particular (2.25), evaluated for i = 1, gives li = b-1 and thus, by
substituting it back in (2.25), we have

Note that from the above it follows that li is a positive integer since b > 0.
Moreover, if li > 1, from (2.24) and (2.26) we have

which implies that the n-th component of § is the sum of homogeneous
terms of degree greater than one with respect to the standard dilation. But
this would imply det ( (c~~/ax) (0) ) = 0 which cannot be since § is a

diffeomorphism. Thus II = 1 which implies b = 1 and a = 0 in (2.21),
from which (2.17) follows.

Case 3. - Suppose 8; = 8;,m > 1, b~ , m ~ 1. From (2.19),
using lemma 2.10, it follows that T~- ~ Z - Z = 0 and thus (2.17). D

COROLLARY 2.12. - Let 03C6 be a real analytic diffeomorphism on Rn such
that = 0. Then the following statements are equivalent:

(i) Z;

(ii) cjJ E 

Proof - First suppose that (i) is satisfied. We have shown, in the proof
of case 2 of lemma 2.11, that this condition, which is equivalent to (2.22)
with b = 1, implies (2.24). Then, using (2.25) with b = 1, it follows that

E for each i = 1,... n and so § E 
Next suppose that (ii) is satisfied. This condition implies that (2.23),

in the proof of case 2 of lemma 2.11, is satisfied with b = 1 by any
monomial (fii of each component 03C6i of 03C6. It follows (2.22) with b = 1,
which is equivalent to condition (i). D

2.4. Proofs of the main results

Proof of Theorem 2.1. - We need only to observe that:

Vol. 13, n° 2-1996.
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if j1 = 1, condition (i) implies (ii) by lemma 2.11;

if j1 > 1, condition (ii) implies (i) by lemma 2.8;

if j1 ~ 1, condition (ii) is equivalent to (iii) by Corollary 2.12. D

Proof of Theorem 2.2. - From the definition of homogeneity with respect
to a dilation, it follows immediately that § is a real analytic homogeneous
function of degree one with respect to 8; if and only if it has the form (2.3)
- (2.5), with Ak generic (ik - x (ik - ik-l) matrices with real entries.
Thus we need only to show that, under the hypothesis § G the

matrices Ak in (2.4) are invertible if and only if § is a diffeomorphism
on R".

One implication is obvious since if § is a diffeomorphism then

the Jacobian is invertible and, from (2.3), it is clear that

(0) = A which, having the form (2.4), is invertible if and only if
each block Ak is invertible, k = 1,... m.

Suppose now that Ak in (2.4) are invertible matrices for each k =

1, ... , m. We will show that § has a continuously differentiable inverse
map on Define the map

where h is a function whose z-th component is recursively defined by

Note that this definition makes sense since the fact that g is a strictly non
linear map in implies that the components gi , z = ~ 1, ... , i,~
are functions depending only on the previous variables (x 1, ... 

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Thus it can be easily checked, by recursion on k = 1,... m, that

Hence ~ _ and, from definition (2.27), (2.28), it is clear that ~ is

continuously differentiable, thus concluding the proof. D

Proof of Theorem 2.3. - By Theorem 2.2 and Corollary 2.12 we know
that § G if and only if 03C6 is a diffeomorphism that fixes zero
such that T~ Z = Z. Thus for § E from

it follows that the inverse is an element of Also we have,
using the definition of homogeneity of degree one with respect to a dilation,

for any E This shows that is a group. The fact

that Gl, G2 are subgroups of is an immediate consequence of

their definitions and of the form (2.27), (2.28) of the inverse map of an
element in Let now § be an element of of the
form (2.3) - (2.5), = Ax + g(x), and consider the following maps

Note that and g o A-1 are compositions of two elements of 
and therefore still elements of by the previous argument; also
they are strictly non linear maps since g is. Hence E (?i and G2
and the equality (2.6) is clearly satisfied.

Finally, to prove that is a Lie group, observe that 
is a finite dimensional analytic manifold isomorphic to with pr
a constant depending on r = (rl , ... , rn ) (more precisely on the 2m-
tuple (il, ... , associated to r in (2.1)). Note that 
coincides with the open subset ( § E = A + g, det A ~ 0}
of Thus also is a pr dimensional analytic manifold
and the group operation (the composition of maps) and the inversion

(z : ~ ~ are clearly analytic. D

Vol. 13, n° 2-1996. 
,
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Proof of Theorem 2.5. - We first observe that, by Theorem 4.3 in Section
4, the flow (exp tX) (x), x E generated by the field X is defined for all
t E R. Let Z be the vector field defined in (2.2). It can be easily verified that

Since, by Lemma 2.7, X E implies [X,Z] = 0, it follows that,
for any fixed t E R,

which shows the homogeneity of the (exp tX ) (x), t fixed.

Moreover, it is well known from the theory of differential equations that
the map .r 2014~ (exp tX)(x) is analytic and therefore we can conclude
that it is an element of To show that is the Lie

algebra of the Lie group we observe that, by Theorem 2.2,
is the group of the invertible elements of the associative algebra

Hl,r (IRn) (with the composition of functions as multiplication). Thus, the
conclusion follows from a general result in the theory of Lie algebras (see
[24, Section 2.3]). D

3. DECOMPOSITION OF HOMOGENEOUS VECTOR FIELDS OF
DEGREE ONE WITH RESPECT TO AN ARBITRARY DILATION

3.1. Proof of the main result

Before giving the proof of Theorem 3.1, we want to observe that

the decomposition of vector fields given in this theorem would be

an immediate consequence of a classical result in the theory of Lie

algebras (the Jordan decomposition for elements of finite dimensional,
semisimple Lie algebras: see [24, Thm. 3.10.6] ), if or, at least

(C(Hi,~(~n)) denoting the center of 
would have been semisimple. Nevertheless it can be easily seen that this is
not the case for any dilation b~ different from the standard dilation b~ .

Recall that a Lie algebra is said to be semisimple if it does not

possess any non zero solvable ideal. From lemma 2.9 it follows that

_ ~ aZ(x) : a E Thus, since the center is a non zero
abelian (thus solvable) ideal, it is clear that is not semisimple.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Regarding if b~ ~ b~ we can consider the subspace
9 that is generated by the following set

Note that, if ~~ is an element in n E

~ j 1, ... ~ ~m ~, we have

But, since n ~o~, for any k > jm, it follows that the
above product, if not zero, must be an element of Hjm,1(Rn).
Thus it can be easily seen that Q is an ideal of 

Moreover, observing again that the Lie product of two elements in

n is an element of n we

deduce that their product is zero since jm > 1 implies 2jm - 1 > jm.
Therefore ~ is an abelian ideal of that cannot be

semisimple.

Proof of Theorem 3.1. - Since X E its expansion in

homogeneous fields with respect to the standard dilation has the form

We know that, if S and N denote the semisimple and nilpotent part
of the linear field A, we have ~S, N~ = 0. Thus, in order to obtain
the decomposition (1.3) satisfying (1.4), we will look for coordinate
transformations that leave unchanged the linear part of X and remove,
from the non linear part, terms of increasing degree not commuting with
the semisimple field S. More precisely we will show, using induction,
that there exist a finite sequence of transformations E 

1  I~  jm, satisfying

Vol. 13, n° 2-1996.
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where denotes the homogeneous part of degree j (with
respect to the standard dilation) of the field X after performing the
transformation x = o ... o (y), and Y~ E n 

Since we know, from Theorem 2.3, that the set is a group,
the composition of these transformations is also an element of 
and therefore their product § = o ... o will produce a change of
coordinates in that gives X the form ( 1.3), ( 1.4), thus proving
the theorem.

It is clear that the map = I is an element of that satisfies

(3.2). Next suppose ~s E 1  s ~ k, k > 1, satisfying
(3.3) have already been constructed. Since E it follows
from Theorem 2.1 that E for all 1  s  l~. This,
together with the inductive assumption, implies that T~10...o~k _ X is a field
of the form

Suppose that the field is given in the x-coordinates and
consider the coordinate transformation x = with

The field (3.4), expressed in the new y-coordinates, becomes

Since g~ is a strictly non linear map in we have (c~g~/~gs)(g) -
0, for all 1  i  s  n (gf denoting the i-th components of the map
g~) which implies that the Jacobian /c~g) (g) is a lower triangular
matrix with zeros on the diagonal and hence a nilpotent matrix. Therefore
we can write

for some N E N. Substitution of this into (3.6) and expansion of the
resulting expression (using the analyticity of the fields X~ ), retaining only
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homogeneous terms of degree k (with respect to the standard dilation) and
lower, produces

which can be rewritten in the form

Observe now that g~ E n and A E n

imply E n Thus the map

is a linear operator acting on the linear space H~ ~ 1 n 

At this point we need to state a technical lemma that is proved after the
theorem using a standard argument in normal form theory (e.g., see [22,
Coroll. 2.1] and [23, Thm. 2.5]).

LEMMA 3.2. - Let A be a linear map in and S the semisimple
part of A. Denote by Ker and Im (adkA) respectively the kernel
and the range of the linear operators adkA defined as in (3.8), with
k > 1. Then there exists a subs pace Vk of Ker that is a complement
to Im (adkA) in n i.e. such that

Using this lemma we can find gk, hk E n such that

Consequently, after the transformation (3.5) with g~ chosen as in (3.10),
the field (3.4) takes the form (3.3), which concludes the proof. D

Proof of Lemma 3.2. - Denote by N the nilpotent part of A. We
first show that adkA = adkS + adkN is the semisimple-nilpotent
decomposition of the linear operator adkA. Since ~S, N] = 0 it follows,
using the Jacobi identity, that adkS and adkN commute. To prove that
adkS is semisimple, by considering the natural isomorphism between the
complexification of the space 
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and the space n Hl,r(cn) (which is defined in analogous
way to the corresponding real one), it will be sufficient to show that

n has a basis consisting of eigenvectors of adkSe
(where S~ denotes the complexification of the map S). Moreover, let
B E n be the linear transformation that puts S ~ in

diagonal form TBSe == = D. Then, by Theorem 2.1., TB is
an invertible linear operator on n Hence, it will be

equivalent to show that there exists a basis of n Hl,r(cn)
consisting of eigenvectors of TB o o = adkTBSc = adkD,
where D = is a diagonal linear map with ~ 1, ... ~~,,
denoting the eigenvalues of S (and therefore of A). If we denote by
~el, ... , the canonical basis of cn, the set

constitutes a basis for A straightforward computation
shows that, for any xv ei G B, we have

thus proving that the elements of Bare eigenvectors of adkD with

corresponding eigenvalues of the form

Regarding the nilpotency of adkN, observe that for any Z E n

and for any j > k, we have Dj Z = 0 (denoting by D~ Z the j-th
order differential of Z). Then, since Z) (x) is a linear combination
of elements of the form

with t = i 1 = 0 when s = m, and 1  + i 1 = m + 1 - s when
s  m, it follows that (adN)3P = 0 for p > max{k, where n denotes

the nilpotency order of N.
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Thus adkS constitutes the semisimple part in the Jordan decomposition
of the operator which implies that the kernel of the adjoint operator
(adkA)T is a subspace of the kernel of adkS. Moreover, by simple facts
from linear algebra (the Fredholm alternative) we know that the kernel of
(adkA)T is a complement space to Im (adkA). Thus Ker is a

possible choice for a subspace of Ker that satisfies (3.9). D

Remark 3.3. - Denote by n the center of

the Lie algebra n It is not difficult to verify that
n n is a finite dimensional

semisimple Lie algebra. Therefore, since the map A ~ adkA is a

representation of n in n the

semisimple-nilpotent decomposition adkA = adkS + adkN in the proof
of lemma 3.2 can also be derived from a well known result in the theory
of Lie algebras (see [15, Coroll. 6.4]).

Remark 3.4. - Adapting results analogous to lemma 3.2, of A.

Vanderbauwhede [21], and C. Elphick et al. [7], it can be easily shown
that we can introduce a particular inner product on n 

such that the adjoint operator satisfies (adkA)T = Thus we may
choose the kernel of adkAT as a subspace Vk of n that

satisfies the condition of the lemma.

Example 3.5. - (i) On U~3 consider the field

Note that X E with r = (1,1,3), and that its linear part A
is represented by a symmetric matrix. Therefore, by the previous remark,
we can choose a complementary space to 7m ( ad3 A) satisfying (3.9) to
be the kernel of ad3A, that is equal to span{x31 ~/~x3}. In fact we have
Im (ad3A) = span{ x21x2 ~/~x3, x1x22 ~/~x3, x32 ~/~x3 } and we may
verify that, if we set

we can write X = A - ~A, g3~ + h3, h3 E Ker (ad3A). Thus, after

performing the coordinate transformation
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the field X takes the desired form (1.3), (1.4):

(ii) On 1R4 consider the field

Note that X E with r = (1,1,3,3), and that its linear part A is a
semisimple field with double, purely imaginary eigenvalues Ai, = ~ i . An
easy calculation shows that the kernel of ad3 AT is equal to span{ (xf +

~/~~3+(~1~2+x2) ~/~~~~ ~l~~4 ~~
and that the range of ad3A is equal to span{ 3x21x2 ~/~x3 + x31 ~/~x4,

+ 8/8x3 + ~/~x4, (-2x21x2 + x2) (~/~x3 + x1x22 ~/~x4,
-3x1x22~/~x3 + x32 ~/~x4, -x31 ~/~x3 + 3x21x2 ~/~x4, -x32 ~/~x3 -

3x1x22 ~/~x4 }. Let X3 = (5x31 - 6x21x2 + 5x1x22 + x32) ~/~x3 + (-2x31 +
3x21x2 + 3x1x22 + the homogeneous part of degree 3 (with
respect to the standard dilation) of X. Then, by the previous remark,
we can write X3 = -~A, g3~ + h3, with g3 E H3,1(~4) n and

h3 E Ker (ad3AT). Indeed, this equality is satisfied with

Therefore, the coordinate transformation

Annales de l ’Institut Henri Poincarf - Analyse non linéaire



157DECOMPOSITION OF HOMOGENEOUS VECTOR FIELDS OF DEGREE ONE

gives to the field X the form (1.3), (1.4):

Remark 3.6. - The constructive proof of Theorem 3.1 permits one to

compute a normal form for X satisfying (1.3), (1.4) in a finite number of

steps j  jm . Such a procedure cannot be applied to vector fields that are
not homogeneous of degree one with respect to a dilation b~ . In fact in
this latter case, since we cannot use Theorem 2.1, any transformation ~~
of the form (3.5) introduces additional higher order terms that are no more

necessarily homogeneous of degree one with respect to the dilation b~ .
Thus we would produce an infinite and it would

be necessary to study the convergence to a function of the corresponding
products ~ ~ 1 o ... o 

Remark 3.7. - Theorem 3.1 can also be derived from a result of K.T.

Chen [6, Thm. 8.1] ] who proved the existence of a formal transformation

(i. e. a transformation given by a formal series) that puts a formal vector
field of a graded Lie algebra into the form (1.3), (1.4). Our approach is a
constructive treatment of the formal result of Chen and yields an explicit
procedure to compute a polynomial coordinate change that gives to a field
X E the normal form (1.3), (1.4).

Remark 3.8. - The decomposition (1.3), (1.4) of a field X E 
produces a normal form for all the elements of the group orbit T~ X ,
~ E This normal form is not unique. Indeed its linear part can
be uniquely determined if we require it to be in Jordan canonical form (or
in real canonical form in the case it has some non real eigenvalue) which
can be done by performing, after obtaining (1.3), a further coordinate linear
transformation ~ _ E that clearly preserves (1.4).
However, the choice of the complementary spaces Vk to 7m that

satisfy condition (3.9) of the lemma, is in general far from being unique and
therefore some arbitrariness in the form of the non linear part is unavoidable.
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3.2. An application

We present here a corollary of Theorem 3.1 that provides a Poincare
type result for homogeneous vector fields of degree one with respect to a
dilation b~ , r = (ri,..., rn ) of the type (i 1, ... , im ; ji , ... , jm ) as defined
in (2.1). In fact a well known theorem proved by Poincare shows that a
sufficient condition for the existence of a (formal) coordinate change that
takes a given vector field X into a linear field is that the eigenvalues
Ai,..., Àn of the linear part of X do not satisfy any resonance relation of
order k > 2, i. e. any relation of the form

For vector fields X E it turns out to be sufficient to check that

the eigenvalues do not satisfy only a finite number of renonance relations.

COROLLARY 3.9. - Let X be a real analytic vector field in 
Denote by

the eigenvalues of the linear part A = diag{A1, ..., of X ordered so
that -1 + 1 ~ , ..., 

= 1, ..., m, are the eigenvalues of the j -th block

A j of ~. Suppose that ~ 1, ..., ~.r,, do not satisfy any relation of the form

with vs E N such that

Then there exists a polynomial change of coordinates ~ E such

that

A relation among the eigenvalues of the form (3.14), with vs E N satisfying
(3.15), will be called a resonance with respect to the dilation b~.
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Proof - The proof of lemma 3.2 shows that the semisimple part of
each operator adkA is given by the operator adkS (with S being the
semisimple part of A) and that the eigenvalues of adkS have the form
(3.13) p = ~s--~ with ~s--1 ~s--1 ~. Since the

non resonance relations with respect to 8; of the eigenvalues 03BB1, ... , 03BBn
imply that the eigenvalues of adkS (and therefore of adkA) are all different
from zero, the operators adkA are invertible for 2  I~  jm . Hence the
transformation § = o ... o constructed in Theorem 3.1 gives X the
form (3.16). 

" 

D

Example 3.10. - (i) On 1~3 consider the vector field

Observe that X E with r = (1,1,2). The eigenvalues of the
linear part of X are ~l = ~~ = 2, As = 0. Note that there is no resonance
of order 2 with respect to 8;:

Therefore, by Corollary 3.9, we can find a coordinate change § E

which transforms the field X into its linear part. In fact, if

we set

we obtain

It may be noted that it was possible to transform the field X into its
linear part even if there were resonances of any order of the form (3.14) not
satisfying (3.15) (i. e. resonances in the classical sense) due to the eigenvalue

and in particular there were the following resonances of order 2:

(ii) On 1R2 consider the vector field
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The eigenvalues of the linear part are Ai = 1, a2 = -1. Observe that there
is no classical resonance of order 2 since the eigenvalues do not satisfy
any relation of the form (3.14) with vi + v2 = 2:

Thus we can find a coordinate transformation § which removes completely
the quadratic terms. If we set

we obtain

Note that (2/3)~i~2 ~/~~1, -(2/3)~1~2 9/~/2 are resonant terms of order
3 in the classical sense: the eigenvalues satisfy the following relations of
the form (3.14)

Thus these terms cannot be removed by further coordinate transformations.
In this case the field X is not homogeneous of degree one with respect to

any dilation. Therefore the lack of classical resonances of order 2 is not

sufficient to guarantee the existence of a coordinate change that transforms
X into its linear part.

4. REPRESENTATION OF SOLUTIONS

FOR A CLASS OF NONLINEAR SYSTEMS

In this section we first derive a general representation formula for the
solutions of an autonomous system of differential equations
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Then we use this result to obtain a representation for the trajectories of an
n-dimensional, single input, affine control system

1 + 1 denoting as in (2.1) the smallest index i such that Ti = rn )
in terms of integrals of the control u, which is analogous to the standard
representation of the trajectories of a linear control system x = Ax + b u,
(A, b, denoting n x n, n x 1 matrices). In fact, a system of the form (4.2)
coincides with a linear system when 8; is the standard dilation b~ with
rl = ... = rn = 1. Thus, systems of the form (4.2) can be regarded as a
natural extension of the linear control systems.

4.1. Representation of the flow generated by a homogeneous
field of degree one with respect to an arbitrary dilation

THEOREM 4.1. - Let N be a vector field in of the form

where N is a linear nilpotent field and Y is a strictly non linear field.
If p), denotes the Picard approximations of the solution to
= N(x), x(0) = p, recursively defined by

then there exists an integer k such that

Proof - Denote by cjJk,i the i-th component of the k-th Picard approxi-
mation We will show, by induction on the index i, 1  i  n, that there

exists a non decreasing n-tuple of positive integers ki  1~2  ...  kn,
such that
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This implies that, if we set k = kn, we have

which is what we need to prove.
Since N is a linear nilpotent element of it follows that (with

the usual notation of Section 2) N = diag{Nl,... Nm ~ , where each Nj
is a (ij - x (ij - nilpotent block. Denote by nj , j = 1,..., m,
the nilpotency order of Nj, i. e. the smallest positive integer n such that

N~ = 0. Note that, by Theorem 2.5, are homogeneous functions of
degree one with respect to b~ , in the p-variable. From the definition of ~~
and the general form of an element of it follows that, if we set

k1 = k2 = ... = ki1 = n1, we have

Suppose now that we have obtained ki  l~2  ...  I~i~ , 1 ~ .?  m,
such that relation (4.5) is satisfied for i = 1,... ij . Then

Moreover, it can be easily verified that, for any integer k > 1, the following
equality holds
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Hence, using relation (4.5) and nilpotency of it follows that, if we
set = = ... - ~ZO+1~ _ + we have

which proves the inductive step. 0

Remark 4.2. - It is clear, from the proof of Theorem 4.1, that the smallest
integer k such that (4.4) is satisfied, is given by k = where nj
denote the nilpotency orders of the blocks Nj of the linear part of the field
N. Thus the solution to the Cauchy problem £ = N(x), x(0) = p, with
N = N- + Y as in Theorem 4.1, can be computed using the
following recursive formula

Vol. 13, n° 2-1996.



164 F. ANCONA

THEOREM 4.3. - Let X be a real analytic vector field in 
and 03C6 E a change of coordinates that transforms X into the
canonical form T~X = S + N of Theorem 3.1. Then

where the flow can be computed by the recursive

formula (4.7).

Proof. - Note that

Since ~S, N] = 0 we can write -

(exp (exp t(S + N) ) (q) = (exp tS) o (exp tN) (q) ~

which evaluated at q = gives (4.8) after applying § and using
(4.9). a

Remark 4.4. - It may be noted that the formula (4.8) in Theorem 4.4, is

analogous to the "generalized variation of constants formula", obtained by
A.A Agrachev, R.V. Gamkrelidze and A.V. Sarychev in [1], that express
the flow generated by a vector field XT + YT as a perturbation of the flow
generated by XT .

Example 4.5. - Consider the Cauchy problem on 1~4

where X E Hl’’((~4), r = (1,1, 2, 2), is the vector field

First we compute the coordinate transformation that puts X into the

canonical form (1.3),(1.4). If A denotes the linear part of X, and S the

semisimple part of A, it can be easily seen that (5xi - ~/~x3 E
Ker (ad2s), and that span{ x1x2 ~/~x4, x22 ~/~x4 } is a subspace of
Im (ad2A). Indeed we may check that, if we set g2(x) _ ((1/5)xlx2 -
(16/25)x22) ~/~x4, h2(x) = (5x21- x1x2 + x22) ~/~x3, we have
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X = A - [A,g2] + h2. Thus, the coordinate change x = = I + g2,
transforms X into the canonical form

Next, using formula (4.7) with q = (ql , q2 , q3, q4 ), we compute the flow
generated by N

Then, multiplying the exponential matrix ets by the above expression, after
substituting in it q = (p) = p - g2 (p), we obtain

which gives

4.2. Representation of the trajectories
for a class of nonlinear control systems.

THEOREM 4.6. - Let x = Xo (~) + B u, be an n-dimensional, single input,
affine control system as in (4.2). Then, if we denote by A the linear part
of the field Xo, the trajectories x(. , u) of such a system can be computed
Vol. 13, n° 2-1996.
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with the formula

Proof. - A direct calculation verifies that in order to show that (4.10)
represents a trajectory of (4.2) we only need to prove

Since Xo is homogeneous of degree one with respect to b~ , its linear

part is represented by a diagonal matrix composed of blocks of order
( i ~ - ( i k - i ~ _ 1 ) , 1~ = 1, ... , m (with notation of Section 2) and
therefore also the matrix representing e-tA has the same form. It follows

that e-tAB is a column vector having all components zero but the last
n - 

1 
like B. Hence in order to prove (4.11 ) it is sufficient to show

for any column vector C having all components zero but the last n - 
It is a well-known fact, in the theory of differential equations, that the
Jacobian is equal to the fundamental matrix solution
of the variational equation

where Y denotes the nonlinear part of X o . Let dj , j = 1, ... , n - 1

be the solutions of  = Amv, v(0) = where {el,... denotes

the canonical basis of I~~ 2m-1 
and Am is the last block of the matrix A.

Then define the functions vj , j = 1, ... , n - 2 m _ ~ having zero the first 1

components and equal to the ones of dj the last n - 1 components.
It can be easily seen that vj are solutions of v = Av, v(O) = ,

(ej being the canonical basis of R") and therefore they constitute the last
n - columns of the matrix etA. Observe now that the last n - 
columns of the Jacobian (~Y/~x) (x) are all zero since from the definition
of homogeneity of degree one it follows that any component of the non
linear part Y of Xo is independent on the last n - variables. Therefore

it can be easily verified that vj are also solutions of 4.13 and hence they
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constitute the last columns of (8(exp for any p 
This shows that the last columns of the matrices etA, 
are the same, for any p E which proves (4.12). D

Remark 4.7. - Observe that the first components of a map
’ljJ- E are independent on the last n - variables, while
the last n - components depend linearly on the last n - variables.

Therefore, if the first 1 components of a column vector B are zero and
the last n - 

1 
are constant, the same is true for the components of the

vector (9~/c~)J3. Thus it can be easily verified, using also Theorem 2.1 of
Section 2, that any coordinate transformation § E transforms an
affine system as (4.2) into a system of the same form. Hence we can always
perform a coordinate change x = GHl,r(Rn) that transforms
the field Xo in (4.2) into the canonical form T~Xo = S + N, ~S, N~ = 0
of Theorem 3.1 and use the formula given in Theorem 4.3 to derive the
following explicit representation of the trajectories of (4.2)

where N denotes the linear part of the field N.

Remark 4.8. - The flow generated by a homogeneous vector field of
degree one can be in general calculated by solving a cascade system of
the type

This implies that systems of the form (4.2) can be always integrated
without any restriction on the constant vector field B. However, formula
(4.10) allows to derive a general description of the attainable set of a
nonlinear system of type (4.2) as the image, through the flow generated by
Xo, of the attainable set of its linearized system.

Remark 4.9. - The representation of the trajectories of control systems
of the form (4.2) given by formulas (4.10), (4.14) can be used to study
problems of local controllability and to construct asymptotically stabilizing
feedback controls for affine nonlinear control systems. Some interesting
results in this sense have been recently obtained by H. Hermes in [14]
where it is shown that non-resonance conditions (as stated in Corollary 3.9
here) and small time local controllability (STLC) imply many standard
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necessary conditions for the existence of a continuous, asymptotically
stabilizing feedback control (ASFC), for an n-dimensional, single input
affine control system.
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