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ABSTRACT. - This paper gives a solution to an open problem raised by
Bethuel, Brezis and Helein. We study the Ginzburg-Landau energy with
weight. We find the expression of the renormalized energy and we show
that the finite configuration of singularities of the limit is a minimum point
of this functional. We find a vanishing gradient type property and then we
obtain the renormalized energy by Bethuel, Brezis and Helein’s shrinking
holes method.
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Ce travail donne la solution d’un probleme ouvert de Bethuel,
Brezis et Helein. On etudie l’énergie de Ginzburg-Landau avec poids.
Nous trouvons l’expression de Fenergie renormalisee et on prouve que la
configuration finie des singularites de la limite est un point de minimum
pour cette fonctionnelle. Nous montrons une propriete du type « vanishing
gradient » et on obtient ensuite l’énergie renormalisee avec la methode
« shrinking holes » de Bethuel, Brezis et Helein.
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1. INTRODUCTION

In a recent book [BBH4], F. Bethuel, H. Brezis and F. Helein studied
the vortices related to the Ginzburg-Landau functional. Similar functionals
appear in the study of problems occuring in superconductivity or the theory
of superfluids.

In [BBH4], F. Bethuel, H. Brezis and F. Helein have studied the behavior
as c 2014~ 0 of minimizers of the Ginzburg-Landau energy

in the class of functions

where:

a) s > 0 is a (small) parameter.
b) G is a smooth, simply connected, starshaped domain in R~.
c) g : ~G -~ S’1 is a smooth data with a topological degree d > 0.
They obtained the convergence of (usn) in certain topologies to u*.

The function u* is a harmonic map from G ~ ~ a 1, ..., ad) to and is

canonical, in the sense that

Recall (see [BBH4]) that a canonical harmonic map u* with values in
and singularities bl, ..., bk of degrees dl, ..., dk may be expressed as

with

They also defined the notion of renormalized energy W (b, d, g) associated
to a given configuration b = (bl, ..., b~) of distinct points with associated
degrees d = (di , ..., dk). For simplicity we set W ( b ) = W ( b, d, g ) when
k = d and all the degrees equal +1. The expression of the renormalized
energy W is given by
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where lfo is the unique solution of

and

The functional W is also related to the asymptotic behavior of minimizers
u~. as follows:

where ~y is an universal constant, k = d, di = + 1 for all z and the

configuration a = (al, - - - , ad) achieves the minimum of W.
We study in this paper a similar problem, related to the Ginzburg-Landau

energy with the weight w, that is

with w E C1 (G), w > 0 in G. Throughout, Uê will denote a minimizer of
E~. We mention that Uê verifies the Ginzburg-Landau equation with weight

Our work is motivated by the Open Problem 2, p. 137 in [BBH4]. We are
concerned in this paper with the study of the convergence of minimizers,
as well as with the corresponding expression of the renormalized energy.
We prove that the behavior of minimizers is of the same type as in the
case w D 1, the change appearing in the expression of the renormalized
energy and, consequently, in the location of singularities of the limit u*
of In our proof we borrow some of the ideas from Chapter VIII in
[BBH4], without relying on the vanishing gradient property that is used
there. We then prove a corresponding vanishing gradient property for the
configuration of singularities obtained at the limit. In the last section we
obtain the new renormalized energy by a variant of the "shrinking holes"
method which was developed in [BBH4], Chapter I.
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2. THE RENORMALIZED ENERGY

THEOREM 1. - There is a sequence ~~ --~ 0 and exactly d points al , ..., ad
in G such that

where u* is the canonical harmonic map associated to the singularities
al, ..., ad of degrees +l and to the boundary data g.

Moreover, a = ( a 1, ~ ~ ~ , ad ) minimizes the functional

among all configurations b = ( b 1, ... , bd ) of d distinct points in G.
In addition, the following holds:

where 03B3 is some universal constant, the same as in (2).

Remark. - The functional W may be regarded as the renormalized

energy corresponding to the energy E~.
Before giving the proof, we shall make some useful notations: given the

constants > 0, set

Here Bq = B(0, r~) C 1~2.
For x E G, denote

Note that

and

provided c2.
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We shall drop the superscript c if it equals 1.

Proof of Theorem l. - The first part of the conclusion may be obtained by
adapting the techniques developed in [BBH1], [BBH2], [BBH3], [BBH4]
(see also [S]). We shall point out only the main steps that are necessary
to prove the convergence:

a) Using the techniques from [S] we find a sequence Cn -~ 0 such that,
for each n,

b) Using the methods developed in [BBH4], Chapters 3-5, we determine
the "bad" disks, as well as the fact that their number is uniformly bounded.
These techniques allow us to prove the convergence of weakly in
Hi ~ (G ~ ~ al , ..., a~ ~; (~2 ) to u*, which is the canonical harmonic map
associated to a 1, ... , a~ with some degrees di, ..., dk and to the given
boundary data. 

’

c) The strong convergence of in Hi ~(G ~ ..., a~~;1~2) follows
as in [BBH4], Theorem VI.1 with the techniques from [BBH3], Theorem 2,
Step 1. Now the local convergence of in G B ~al, ~ ~ ~ , in stronger
topologies, say C2, may be easily obtained by a bootstrap argument in
(3). This implies that

uniformly on every compact subset of G B ..., a~~.
d) For each 1  j  k, deg ( u* , 0. Indeed, if not, then as in Step

1 of Theorem 2 [BBH3], the H1-convergence is extended up to aj, which
becomes a "removable singularity".

e) The fact that all degrees equal +1 may be deduced as in Theorem
VI.2, [BBH4].

f) The points al , ..., ad lie in G. The proof of this fact is similar to the
corresponding result in [BBH4].
The proof of the second part of the theorem is divided into 3 steps:

Step 1. - An upper bound for (~c~ ) .
We shall prove that if b = (bj ) is an arbitrary configuration of d distinct

points in G, then there exists r~o > 0 such that, for each r~  r~o,
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for E > 0 small enough. Here is a quantity which is bounded by C~,
with C independent of ~ > 0 small enough.
The idea is to construct a suitable comparison function VE;’ Let r~  r~o,

where

Applying Theorem 1.9 in [BBH4] to the configuration b, we find
d

ic : G B U -~ 81 with S = g on 8G and E C,
j=i

~ a j ~ = 1 such that

and

We define ~ as follows: let v~ on ~~ and, in let v~ be
a minimizer of E~ on Hh ( B ( b~ , r~ ) ; I~ 2 ) , where h = ~ We have
the following estimate

The desired conclusion follows from (9), (10) and  

Step 2. - A lower bound for E~ 
We shall prove that, if al, ..., ad are the singularities of ~c*, then given

any ~ > 0, there is No = N such that, for each n > No,

Here cx = 1 ~ r~ and is a quantity with the same behavior as in (8).
Indeed, for a fixed aj, supposed to be 0, u* may be written

where ~ is a smooth harmonic function in a neighbourhood of 0. We may
assume, without loss of generality, that ~ ( 0 ) = 0.
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In the annulus {x E ff~2 ; r~  ~ x ~  the function may
be written, for n large enough, as

where is a smooth function and 0  pn  1. Define, for ~  r  

the interpolation function

We have

This convergence is motivated by (7). We also observe that the convergence
of in ~al, ..., ad~;1~2) implies

where

Thus, we may write, for n > Nl ,

We prove in what follows that

Indeed, since

and

the desired conclusion follows by a straightforward calculation.
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We obtain

On the other hand, by the convergence of in 

~al, ..., aa~;1~2) it follows that

for En sufficiently small.
Taking into account (12)-(15) we obtain the desired result.

Step 3. - The final conclusion.

It follows from [BBH4], Chapter IX that

where the constant 03B3 represents the minimum of the renormalized energy
corresponding to the boundary data x in Bi.
From (8) and (11) we obtain

where o( 1 ) stands for a quantity which goes to 0 as En -~ 0 for fixed r~.

Adding 7rd log ~~ and passing to the limit firstly as n --~ oo and then as
~ -~ 0, we obtain that a = (ai , ... , c~d ) is a global minimum point of W.
We also deduce that

We now generalize another result from [BBH4] concerning the behavior
of u~..
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THEOREM 2. - Set

Then (Wn) converges in the weak * topology of C(G) to

Proof. - The boundedness of (Wn) in follows directly from (6).
Hence (up to a subsequence), W~ converges in the sense of measures of
G to some W*. With the same techniques as those developed in [BBH3]
(Theorem 2) or [BBH4] (Theorem X.3) we can obtain that, for any compact

d

subset K of G B U ~ a j ~,
j=1

Hence

Therefore

j=i

We now determine mj using the same methods as in [BBH4]. Fix one of
the points aj (supposed to be 0) and consider BR = B(0, R) for R small
enough so that BR contains no other point ai (i ~ j). As in the proof of
the Pohozaev identity, multiplying the Ginzburg-Landau equation (3) by
x . and integrating on BR we obtain

Passing to the limit in (18) as c -~ 0 and using the convergence of Wn
we find
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Using now the expression of u* around a singularity we deduce that, on
~BR,

Inserting (20) and (21) into (19) we obtain

On the other hand, multiplying 0~ = 0 by x . and integrating on
BR we find

Thus, from (17) and (18) we obtain

3. THE VANISHING GRADIENT PROPERTY OF
THE RENORMALIZED ENERGY WITH WEIGHT

The expression of the renormalized energy Wallows us, by using the
results obtained in [BBH4], to give an expression of the vanishing gradient
property in the case of a weight.
From (4) it follows that

for each configuration b = ( b 1, ... , bd ) E Gd .
Recall now Theorem VIII.3 in [BBH4], which gives the expression

of the differential of W in an arbitrary configuration of distinct points
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Here S~(~) _ log x - in G and lfo the unique solution of

The function Hj is harmonic around bj and is related to u* by

Let

Our variant of the vanishing gradient property in [BBH4] (Corollary VIII.1 )
is:

THEOREM 3. - The following properties are equivalent:
i) a = (al, ..., ad) is a critical point of the renormalized energy W.

The proof follows by the above considerations and the fact that, for
each ?.
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4. SHRINKING HOLES AND THE
RENORMALIZED ENERGY WITH WEIGHT

As in [BBH4], Chapter 1.4, we may define the renormalized energy by
considering a suitable variational problem in a domain with "shrinking
holes".

Let, as above, G be a smooth, bounded and simply connected domain
in 1R2 and let bl , ..., bk be distinct points in G. Fix dl , ..., dk E 7l and a
smooth data g : ~G ~ 81 of degree d = d 1 + ... + dk. For each ~ > 0
small enough, define

where

Set

We consider the minimization problem

The following result shows that the renormalized energy W is what
remains in the energy after the singular "core energy" ~ d ( log ] has
been removed.

THEOREM 4. - We have the following asymptotic estimate:

where
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Proof - As in [BBH4], Chapter I we associate to (26) the linear problem:

With the same techniques as in [BBH4] (see Lemma 1.2), one may
prove that

where 4lo is the unique solution of (1).
Note that the link between ~~ and an arbitrary solution u~ of (26) is

From now on the proof follows the same lines as of Theorem 1.7 in

[BBH4]. a
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