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ABSTRACT. - This paper is concerned with the problem

where H is a bounded domain in Rn with n > 3 and a(x) is a nonnegative
function in H. We give some conditions on the function 6z(~), sufficient
to guarantee the existence and multiplicity of solutions for the considered
problem without any assumption on the shape of H.
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RESUME. - On considere le probleme (*) ou H est un ouvert borne de
Rn avec n > 3 et a(x) une fonction non-negative dans S2.
On etablit des conditions sur la fonction a(x) suffisantes pour assurer

l’ existence et la multiplicite de solutions du probleme considere sans aucune
condition sur la forme de SZ.
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186 D. PASSASEO

1. INTRODUCTION

Let H be a smooth bounded domain of > 3. In this paper we

are concerned with the problem .

where a ( x ) E .L’2 ~ 2 ( S~ ) is a given nonnegative function, and 2* = is

the critical Sobolev exponent for the embedding Ho’ 2 ( SZ ) ~ 
The aim of our investigation is to give conditions on a(x) sufficient

to guarantee existence and multiplicity of solutions for (1.1). Notice that,
through a lemma of Brezis and Kato (see [5]), the assumption a(x) E Ln/2
ensures that the solutions u to the problem are in E ( 0,1 ) . _

The first contribution to the study of this problem is the well known
Pohozaev nonexistence result: in [20] he proved that a solution u of

Problem (1.1) must satisfy the identity

(where v denotes the outward normal on and this implies that (1.1) has
no solution if S2 is starshaped and a(x) is a nonnegative constant function.
The main feature of the considered problem is the lack of compactness

due to the presence of the critical exponent: in fact, solutions of (1.1)
correspond to critical points of the functional

constrained on the manifold

and, since the embedding Ho’ 2 ( SZ ) ~ L2 ~ ( SZ ) is not compact, the well
known Palais-Smale compactness condition does not hold.

Therefore the classical variational methods cannot be applied in a

straightforward way. In particular critical points cannot be obtained by
minimizing f on V (n); in fact, f does not achieve its infimum 
if a (x ) > 0, as shown in [4].

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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On the contrary, if a(x) is negative somewhere, Brezis and Nirenberg
proved that the infimum of f on V(Q) is achieved if n > 4 (see [6], [4]).
On the other hand, if H is an annulus and a(x) is radially symmetric, it

is not difficult to prove that (1.1) has solutions even if a(x) > 0 (see [11] ]
for example).
Moreover several results show that, when a(x) = 0, the existence of

solutions of ( 1..1 ) is strictly related to the shape of H. Firstly Coron in [7]
proved the existence of a positive solution in domains H having a "small
hole"; then, in [2] this result was extended by Bahri and Coron to every
domain having nontrivial topology (in a suitable sense). More recently,
multiplicity results related to the shape of Q have been stated, for instance,
in [21], [13], [16], [19], [18], [17]; furthermore existence results have been
obtained also in some contractible bounded domains (see [8], [9], [ 13]).

In [4] Brezis pointed out that in every bounded domain S2 (even
starshaped) one can easily exhibit a positive function u that solves (1.1)
when a(x) is a positive function suitably chosen: in fact, 0 is a

positive function with compact support in nand h satisfies -Ah = g in
= 0 on then the pair (u, a) with u = Ah and a = O~)2~ a~ -1 _~9

solves the problem, and a > 0 in H for A large enough. So he focused the
attention of the mathematicians on the problem of giving some conditions
on a(x) > 0, sufficient for the solvability of (1.1) in general domains H
(even starshaped).
A first contribution to this question was given by Benci and Cerami in

[3]. They considered the case n = Rn (their method does not apply when
H is a bounded domain) and proved that the problem

has at least one solution if a(x) is a nonnegative function, strictly positive
somewhere, having L 2 norm suitably bounded and belonging to LP (R n)
for every p in a suitable neighbourhood of 2

Multiplicity results concerning a related problem in R n have been
obtained in [15].

In this paper we consider the case of a general bounded domain nand
give an answer to the question posed by Brezis. The main results (already
announced in [14]) are stated in Theorems 2.1, 3.1, 3.2 and 3.3.
We consider, in section 2, functions a( x) of the form:

Vol. 13, n ° 2-1996.
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where 1i(x) is a given nonnegative function in xo is a fixed point
in H (the concentration point), A > 0 is a "concentration parameter", and
c~ is a given nonnegative function in ~ 0.
We prove, in Theorem 2.1, that Problem (1.1) has a solution if A is large

enough; moreover we show that there are at least two solutions (for A large
enough) if the additional assumption

is satisfied (S is the best Sobolev constant: see (2.3)).
We notice that our assumptions seem fairly general. In fact, if we assume

for example that in (1.3) ~o = 0, ~x = 0 in H, and

then, if f3  2 and S~ is a bounded domain starshaped
with respect to zero, Pohozaev identity (1.2) implies that Problem (1.1),
with a(x) = has no solution for any A > 0; on the contrary, if
j3 > 2 (i.e. ~x E Theorem 2.1 guarantees the existence of a
solution for A large enough, without any assumption on the shape of 03A9 (if
A is small and H is starshaped, no solution can exist, also in this last case,
because of the Pohozaev identity).
The assumption (1.6) is strictly related to the method we use in the

proof and it is very reasonable that it might be weakened arguing like in
[2]; however, unlike [3], here we need it only to prove the existence of
a second solution.

More general results can be obtained considering functions a(x) of the
form:

where xi , ... , xh are given points in SZ, ~ E Ln/2 (n) and E

are nonnegative functions, and ~c~ (with i = 1...h, j = l...r,
0  r  h) are positive parameters.

This case is studied in section 3; Theorems 3.1, 3.2, 3.3 show that, for
a suitable choice of Ai and Problem (1.1) has at least (r + h) distinct
solutions.

Remark also that it is not necessary to choose distinct concentration

points xl, ..., ~h in order to obtain distinct solutions.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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2. AN EXISTENCE AND MULTIPLICITY RESULT

The aim of this section is to prove the following existence results for
Problem ( 1.1 ).

THEOREM 2.1. - Let SZ be a smooth bounded domain of IRn with n > 3
and xo be a fixed point in SZ. Let ~x E and c~ E be two

nonnegative functions and assume that ~ 0.
Then there exists ~ > 0 such that for every ~ > ~ Problem ( 1.1 ) with

has at least one solution Moreover

If we also assume that

then Problem ( 1.1 ) has at least another solution ica and

In order to prove this theorem we need to introduce some notations, to
recall some known facts and to state some preliminary lemmas.

In what follows, as usual LP (0), 1  p  oo, denote Lebesgue spaces,
~~1,2 C~) (H~1,2 (~n ) ) denotes the Sobolev spaces, closure of Co(O)

with respect to the norm ||u|| = 
From now on, also, for any function u E we denote by the same

symbol its extension to obtained setting u - 0 outside H.
A function u in Ho’ 2 ( SZ) is a weak solution of Problem (1.1) if and

only 0 in SZ,

and is a critical point for the functional f (defined in (1.3)),
constrained on the manifold Y(SZ) (defined in (1.4)). Thus, solving Problem
(1.1) is equivalent to looking for constrained critical points for f on Y ( S2 ) .
Vol. 13, n° 2-1996.
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But, since the pair ( f, does not verify the well known Palais-Smale
compactness condition, the critical points cannot be obtained by applying
directly the classical variational methods.
A very important role in this type of problems is plaied by the best

Sobolev constant S for the embedding H«’2(52) ~ 

Its main properties can be summarized in the following

PROPOSITION 2.2. - a) S is independent of o C IR,n; it depends only on
the dimension n;

b) ,5’ is never achieved when SZ C IR.n is bounded;

c) when SZ = lR,n, S is achieved by the function

moreover every minimizing function has the form

with a > 0 and xo E Ift,n;

d) if u E u > 0, is a critical point of the functional
n constrained on Y(lft,n) _ ~u E f n dx =1~,
then u = for suitable a > 0 and xo in Rn.

The proof of properties a), b), c) can be found, for instance, in [6] or
in [23 ] ; for d) we refer to [10].
The following proposition describes the behaviour of the minimizing

sequences for the Sobolev constant S; for its proof see, for example, [12],
[22].

PROPOSITION 2.3. - Let be a sequence in such that

Then there exist a sequence in and a sequence of positive numbers
such that the sequence ( ici ) i in defined by

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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is relatively compact in L2* tlR,n ).
So ui ~ u in L2* (up to a subsequence) and

I~; in particular, ~c2 E H~’2 (S~) and SZ is bounded, then lim ~i = -I-oo

and the sequences i and i concentrate near a point of SZ
(like a Dirac mass).
We recall now a nonexistence result which can be found in [4].

PROPOSITION 2.4. - Let SZ be a bounded domain n > 3, and a(x)
be a nonnegative function in Then it results:

and the infimum is not achieved.

The proof is obtained (see [4] or [3]) by testing f on the functions
introduced in (2.4), suitably cut off S2, and using the estimates given in
[6]. Moreover, the proof evidences that the minimizing sequences for f
on ~(S2), in booth cases, when a(x) = 0 and when a(x) > 0, are exactly
the same.

The following proposition and the subsequent corollary describe the
behaviour of the Palais-Smale sequences, giving useful informations about
the compactness properties of f on 

PROPOSITION 2.5. - Let Q and a(x) be as in Proposition 2.4. Let be
a Palais-Smale sequence for the functional f constrained on Tl (S~), i.e.:

Then one of the following two cases happens: either the sequence is

relatively compact in or there exist k solutions ( k > 1) of

and a solution uo of

Vol. 13, n° 2-1996.
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such that i (up to a subsequence) verifies

The proof can be obtained by the same arguments used in [22].

COROLLARY 2.6. - Let SZ and a(x) be as in Proposition 2.4. Let (ui)i
in Y ( SZ ) satisfies

Then ( ui ) i is relatively compact in Ho’ 2 ( SZ ) .
The following lemma gives a lower bound to the energy of the functions

changing sign, that are critical points for f on Y ( SZ ) .
LEMMA 2.7. - Let S2 and a(x) be as in Proposition 2.4. Let u E 

be a critical point for f on Y(SZ). If f(u)  22~n,S’, then the function u
has a constant sign.

Proof. - Assume, by contradiction, that 0 and 0. Since u

is a critical point for f on Y(S2), u solves a(x)u + = 0

in SZ with ~c = f (u). Thus

Then we obtain

that implies f (u) > 22~n S’, contradicting our assumption. Q

Let us now introduce some useful tools. We define two continuous maps:

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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by

We notice that /3 is a "barycenter" type function, while 1 measures the
concentration of the function u near its barycenter 
The following remark, also, will be helpful in the sequel: a function u

solves the equation

if and only if the function ux defined by ~’~22 xo)] solves
the equation

in S2a (notice that ~Iu~~L2*~~~). Moreover, setting
xo)], we have for every E > 0:

that implies

Let ct be a nonnegative function in L 2 (lR,n); we set

The following inequality holds.

LEMMA 2.8. - Let 0, a E satisfy ~ 0. Then

Vol. 13, n ° 2-1996.



194 D. PASSASEO

Proof - Clearly c( Q) > S, thus we must show that the equality cannot
hold. If this were the case, we could find a sequence i E V(R")
such that

Since > 0, it follows

Then there exist a sequence of points (Yi)i in Rn, a sequence of positive
numbers (ai)i i and a sequence (wi)i i in Ho ’ 2 ( lE~,n ) such that

where are the functions (2.4), and wi - 0 strongly in L2X 
We claim that the sequences and (ai)i are bounded. In fact suppose,

first, lim ] = +00 (up to a subsequence) and set

since > |yi| 1+|yi| dx E 03A3i and lim 03A3i |ui |2* dx = 2 , we should haveI I - lyi I i-o z

that implies

contradicting (2.11 ).
Assume now that, up to a subsequence, Jim ai = +00. Then

and so

Annales de l’Institut Henri Poincaré - Analyse non linéaire



195SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS

From

it follows

that implies lim = 1, contradicting again (2.11).
.

Thus the claim holds and we can assume, passing eventually to a

subsequence, Yi ~ ~ E Rn and cr, ~ ~ > 0.

We have ~ > 0: otherwise we should have

that implies y = 0. On the other hand, if (7 = 0, we have

that contradicts (2.11 ).
Thus, Ui ~ strongly in L2* (Rn) with o- > 0. Therefore we can

deduce

because > 0 Vx G Rn and a(x) G L’~~2(lR,n) is nonnegative and
satisfies JRn > 0.

So, using (2.12) and (2.13), we obtain

contradicting (2.10).

Fix now E > 0 so small that S + E  

Vol. 13, nO 2-1996.
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In what follows p denotes a function belonging to Ho’2(B(0; 1)),
satisfying the properties:

The existence of a p fulfilling (2.14) is a consequence of the properties of
S. For every o- > 0 and y E lR,n, we define

by

LEMMA 2.9. - Let ,C3, ~y, p, be the objects defined in (2.6), (2.7),
(2.14), (2.15) respectively. The following relations hold

Proof - To prove (2.16) a) we argue by contradiction. So we assume
that there exist a sequence (Yi)i in Rn and a sequence of positive numbers

i such that:

By (2.7) we have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Now, since

we infer

On the other hand, using (2.6) and (2.21), we deduce

Thus, taking account of (2.21), (2.22) and (2.17), we obtain from (2.19)

contradicting (2.18).
In order to obtain (2.16) b), let us observe that (2.14) imply > 0

and, 0,

Therefore

Vol. 13, n° 2-1996.
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To prove (2.16) c) we show that both the relations

hold.

If (2.23) were not true, there would exist a sequence of positive
numbers and a sequence i in Rn such that

By definition we have

Now, taking account that ,~ o = 0 Vi E N, we write

and from this we deduce

because, by (2.25), Qi i --~ 0 as i --~ +00. So (2.27) and (2.29) imply

that contradicts (2.26); so (2.23) is proved.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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If (2.24) does not hold, then there exist a sequence a of positive
numbers and a sequence in satisfying (2.25) and

We have

Now for every p > 0 we have, as i ---~ +oo,

because, for every p > 0, lim a~i = +oo implies

Thus, using (2.29) and (2.32) in (2.31), we obtain

that gives, as p -~ +00,

contradicting (2.30). So (2.24), and then (2.16) c), is proved. U

LEMMA 2.10. - Let a(x) be a nonnegative function in Let 03C6,
be as in Lemma 2.9. Then we have:

Vol. 13, n° 2-1996.
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Proof - Firstly, let us suppose (2.33) a) not true. Then there exist a
sequence in and a sequence of positive numbers, such that
lim ~i = 0 and

Then, taking account that lim ~i = 0 implies

we obtain

contradicting (2.34).
To prove (2.33) b), we argue by contradiction and we assume that there

exist a sequence i in and a sequence of positive numbers 
with lim ~i = +0oo, satisfying (2.34) as before.

Let us observe that Vp > 0, > 0, V(Yi)i i E Rn

Now, when 03C3i ~ +0oo, we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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So

but, clearly, (since a(x) E 

thus

contradicting our assumption.
In order to prove (2.33) c), let us assume, by contradiction, that there

exist a sequence i of positive numbers and a sequence i in Rn,
with lim ] = +0oo, such that

This implies (because of (2.33) a), b)) that

Then, up to a subsequence, limi~~ 03C3i = o with o G]0,-t-oo[ and, since
lim = +00 and a(x) e we deduce

Thus, from

we infer

contradicting (2.36): so (2.33) c) is proved too. D

Vol. 13, n° 2-1996.
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COROLLARY 2.1 l. - Let c~~~), ~y, ~p, be as in Lemmas 2.9, 2.10 and
suppose ~ 0. Then, there exist r > 0 and a2 satisfying
0  ~1  3  a2, such that

where

Moreover the map O : x R, defined by

, 

is homotopically equivalent to the identity map in ~,n x IR, ~ ~ (0, 3 ) ~.
Proof - By (2.16) a) and (2.33) a) there exists ~1 E ~~, 3 ~ such that

and the relation

holds, when a = ai, for any y E Rn. Furthermore (2.33) c) allows to
choose r > 0 such that, ( = r, (2.38) is satisfied whatever a > 0 is.

Lastly, fixed r, as before chosen, it is possible by (2.16) c) and (2.33) b)
to find a2 > 3 for which, o > 3  r, and such that (2.38)
holds, when a = 72, for any y E Rn.

Clearly the set K = K(al,a2,r), with chosen as before, is the
wanted set satisfying (2.37).
To achieve the second part of the assertion, consider the map

defined by

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Note that

and

Then {} is the required homotopy between the continuous function e and
the identity map in 0K. D

Let ~o E E be as in Theorem 2.1; for

every A > 0, set

and define fa : Ho°2(S2) -~ R by

LEMMA 2.12. - Let S2, xo, ~x, a be as in Theorem 2.1. Let c(a) be the
number defined in (2.8). Then, for every ~ > 0 the relations

hold.

Proof - Set, for any u G ux = and observe that
= 0 = 3 if and only if = 0 = 3 .

Then, since ~x ( ~ ) > 0, we have Vu E (u is extended by zero
outside SZ):

So, for any u G Ho ’ 2 ( SZ ) having = 0 and = 3 , we deduce

Vol. 13, n° 2-1996.



204 D. PASSASEO

that implies (2.39) a).
In order to prove (2.39) b), assume, by contradiction, that there exists a

sequence (Ui ) i in V ( SZ ) such that

Thus, since o; and a are nonnegative functions, it follows

This implies (by Propositions 2.2 and 2.3) that there exist a sequence i

of positive numbers, a sequence i in and a sequence i in

V(R") such that

where ~ is a minimizing function for the Sobolev constant S, 0,

strongly, in L2~ and bi --~ 0.

Now, setting vi = (ui ), we have ,C3(vi ) = 0, > 3 Vi E N.
Moreover from

taking in account that 0 in L2* (Rn) and b2 -~ 0, we deduce

Using the fact that 0 and the relation (2.20), we can write,
whatever p is:

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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that, together with (2.41), gives

Thus = 0 and so lim xi = xo . On the other hand, since
= 0, we have for every p > 0

Therefore we deduce

that implies lim = 0, contradicting (2.40). U

LEMMA 2.13. - Let SZ, xo, a, a be as in Theorem 2.1 and K be the set
introduced in Corollary 2.11. Then there exists ~ > 0 such that for every
~ > ~ it results:

Proof - The existence of Ai, such that (2.42) a) is satisfied for every
A > Ai, follows from the fact that cp has compact support and K is a
bounded subset of R n x R.

In order to prove (2.42) b), let us remark that for every A it results

Vol. 13, nO 2-1996.
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and that, by Corollary 2.11,

So, to get (2.42) b), it suffices to show that

Now, V(y, a) E K we have

where the last term goes to zero as A - +0oo, because ~ G Then

(2.44) is proved. 0

Proof of Theorem 2.1. - Let c(a) be the number defined in (2.8); let

K and e be as in Corollary 2.11. Let us choose E > 0 so small that

S + E  and ~p satisfying (2.14); moreover consider
A > ~ with A fixed in such a way that the claim of Lemma 2.13 is true.

Let ?? be the homotopy between e and the identity map in used in

the proof of Corollary 2.11. Then we have

that implies the existence of (~, o) E such that

and the existence of ( y’ , ~’ ) E K for which O ( ~’ , a’) = ( 0, 3 ) that is

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Therefore, using also (2.39) a) - b) and (2.42) b), we obtain

We want to prove that there exists a critical point va for fa constrained
on V(S2) such that

Assume, by contradiction, that no critical value lies in c2~. Then,
since S  cl  c2  S ~- a  22~"S and the Palais-Smale condition
holds in f-103BB(]S,22/nS[), there exists cl E ]S, c1 [ such that the sublevel
fal =  c } is a deformation retract of the
sublevel fa2 = {u E V(SZ) : fx(u)  c2~; namely a continuous function
r : fa2 x [0, 1] ~ faz exists such that

Since o (y, a) E C f~2, it follows that

Now, let us define a continuous function c~K x [0, 1] ~ x R by

Notice that r~ is well defined because (y, a) E C f~2 ;
moreover, by (2.45) and (2.46), 

~ ~

Vol. 13, n° 2-1996.
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Then a point (x, 8) E 0K must exist such that

and this implies

that contradicts (2.47).
So it is proved, for any A > A, the existence of a constrained critical

point va satisfying the energy estimate

and, since E > 0 can be taken arbitrarily small, we derive

Remark also that, since S + E  by Lemma 2.7, V À must have

constant sign.

Let us now prove the second part of the claim of Theorem 2.1.
First of all observe that,  ,S’(22~’2 -1 ), then it is possible

to find c.p, K and A so that

In fact, since in this case > S, cp can be chosen

verifying, in addition to (2.14),

Now we have for every (y, a) E K

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and from this, using (2.49) and (2.44), we deduce the existence of A > 0
for which (2.48) is satisfied.

We shall prove that for every A > A there exists a constrained critical
point vÀ for fx on V(Q) such that

We remark that, in this case, by (2.48) and Lemma 2.7, va will have
constant sign, and moreover 03BB~ vx, because ci   c2  c(a) 

ê2.
Assume, by contradiction, that no critical value lies in c2~ .
Then, since S  cl  c2  22~’2 ~S‘ and the Palais-Smale condition

holds in f ~ 1 ( ~ S, 22~n S ~ ), there exists [ such that the sublevel
f ~;1 = ~ u E Y ( SZ ) :  is a deformation retract of the sublevel

f ~2 = ~ u E Y ( SZ ) : f a ( ~c )  c2 ~ ; namely there exists a continuous function
r : f ~2 x [0,1] ~ f ~2 such that:

So, from

it follows

Now let us define a continuous function ~ : K x [0, 1] ~ x R by

Vol. 13, n° 2-1996.
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Notice that ~ is well defined because o (y, a) E 
moreover we deduce from (2.45) 

’ ~

and, using (2.45) and (2.50),

Then a point (~’, b’) E K must exist such that

and this implies

contradicting (2.51).
Then we have proved the existence of two distinct critical points va and

vÀ of fx on These functions have constant sign, that we can assume
positive; so they give rise to two positive solutions

of Problem (1.1).

Remark 2.14 (radial symmetry). - If SZ = B(0, p) _ ~x E ~x)  p~,
and we assume ~o = 0 and radially symmetric functions, , then it

is natural looking for the solutions of Problem (1.1) in the subspace of
made up the functions having radial symmetry.

In this case the proof of Theorem (2.9) can be simplified. In particular,
the solution ~ca corresponds to a local minimum point among the radial
functions. In fact, if we denote by the subset of made up the

radial functions, we have for A > ~

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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---- --

VV 1~.11 IJ ~ l. B v l.l . .

Thus the existence of a minimum point va of ~a on the subset

uc proved.

Moreover, under the additional  S(22/n - 1),
another solution i~a can be obtained by a variant of the well known
Mountain Pass Theorem by Ambrosetti-Rabinowitz [1]. In fact, in this case
we have for A > A

Remark 2.15. - The solutions ua and ua found in Theorem 2.1 have a
different behaviour In fact, as we have before seen,

wnme

thus one cannot say that ux concentrates near a point +00,
like u~ does. 

,

It is only possible to remark that for A large enough is

~lose to S provided is small enough.

2-1996.
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Remark 2.16. - The solution ica given by Theorem 2.1 corresponds, in
some sense, to the solution obtained by Benci and Cerami [3] in the case
H = R".
On the contrary ux is a solution of new type, whose existence is just

related to the fact that H is a bounded domain.

Let us also remark that in Theorem 2.1 we do not require the stronger
assumption a E LP(Rn) Vp E [pl, p2] with pl  2  p2, used in [3].

3. MULTIPLICITY OF POSITIVE SOLUTIONS IN

PRESENCE OF SEVERAL CONCENTRATIONS

This section is devoted to the study of Problem (1.1) when the function
a( x) has the form 

’

or also

are given points in H, o;, al...ah are nonnegative
functions, and ~i, are positive parameters.

It is very natural to think that several concentrations in the function a(x)
can guarantee the existence of several distinct solutions. Indeed, we show
that it is possible to choose the parameters ~i and in such a way to obtain

several distinct critical values of the functional f constrained on V (0).
Theorems 3.1, 3.2 and 3.3 describe some possible way to realize this

choice. We point out that, when we exploit the parameter ~i and in

order to obtain several critical values, we do not need to require that the
concentration points are necessarily distinct.

THEOREM 3.1. - Let 03A9 be a smooth bounded domain of with n > 3

and be given points in SZ (not necessarily distinct). Let ~x in

and in be nonnegative functions such that
7~ o Vi = 1...h.

Then, there exist Ai > 0, ~2 = > 0, A3 = ~2) > 0... .
A, == > O...A/, = > 0 such that Problem

(1.1) with a(x) of the form (3.1) has at least h distinct solutions 
for every choice of such that ~i > i, i = 1... h.
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Moreover

THEOREM 3.2. - Let SZ, xl...xh, a, al...ah be as in Theorem 3.1.

Then there exist ~C1 > 0, ~1 = > ~~ ~2 = > ~~ _~2 =
~2~ ~ o... = ~1~ ~2~ ~ .., ~r-1) > o, ~r =

> 0~ (With h~ and ~1r+1 =
> o... ~h = 

~ ~~h-1) > ~ such that Problem (1.1) with a(x) of the form (3.2) has
at least (r + h) distinct solutions u1, ul, û2, u2, ..., ur, ur, 2Gr+1, ..., uh for
every choice such that

Moreover

THEOREM 3.3. - Let be as in Theorem 3.1.

Then there exist ~C1 > 0, ~c2 = > 0, ~_3 = >

0,..., flr = > ~ (with r  h) and Ai = ~ ~ >

0,~2 = > ~...~h = > 0 such

that Problem (1.1) with a(x) of the form (3.2) has at least (r + h) distinct

Vol. 13, n° 2-1996.
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solutions û1, û2...ûr, u1,u2...uh for every choice of such
that

_ ~ .... _ _ _

Moreover we have

and the relations (3.6) hold.

In what follows we denote by the functional f when

and by the functional f when

+

Moreover we put

Proof of Theorem 3.1. - The idea of the proof is the following: first we
remark that Theorem 2.1 implies the existence of a critical value for fal
on if Ai is large enough; moreover, fixed Ai > 0, the same theorem
implies that for A2 > 0 large enough there exists a critical value for 
that goes to S as ~2 --~ +00.

Then, the crucial step is to prove that the previous critical value of 1

persists in the sense that has also another critical value, which is
close to the one of f ~l , if ~2 > 0 is large enough. Iterating this argument,
we obtain h distinct critical values for f ~ 1. _ , a h for suitable choices of the
parameters 03BB1...03BBh .
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For every i = 1... h, let us set

By Lemma 2.8, 7~ 0, we have that c(ai) > ~
Vi = 1...1~.

For every E ~ > 0 such that

we find, arguing as in section 2, with analogous notations, a constant

Ai > 0, a function ~01 E ~o ~ 2 ( B ( 0,1 ) ) and a subset .K1 of Rn x R, with
(0, 3 ) in its interior, having the properties described in Corollary 2.11 and
such that for every Ai the relations

hold.

Let us fix Ai > Ai. Then, for every E2 > 0 such that

there exist ~2 = > 0, a function p2 e ~Io ~2 (B(o,1) ), a subset K2
in Rn x R, with (0, 3 ) in its interior, having the properties described in
Corollary 2.11, so that for every A2 > ~2 it results:

and
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Now, let us prove that

In fact we have

because sup cpl  +00.
B(0,l)

Moreover, it is easy to verify that

that is

Therefore we have
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So from (3.10), for a suitable choice of c, it follows

that implies (3.9), as p ~ 0.
Thus we infer from (3.8) and (3.9) that

Moreover, since > Vu E Y(S2), we can assume that for
every ~z > ~2 the following inequalities hold:

Iterating this argument for i = 3... h, we obtain that for every Ei > 0,
such that

there exist Ài = > 0, functions cpi E Ho’2(B(0,1)), subsets
I~2 in R n x R, with (0, 3 ) in their interior and satisfying the properties
described in Corollary 2.11, so that, if ~i > ~i, then

and, for every i = 2 ... h, it results:

where S
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It is easy to verify that for every choice of the positive constants 
the relation

is satisfied. Therefore the following inequalities hold, if ~i > ~i Vi = 1... h:

with 5’ + 6,  22~n,S’ Vi = 1... h.
Arguing as in the proof of Theorem 2.1, using (3.11) and the properties

of Ki, it is not difficult to prove that, for every i = 1... t~, the functional
.~a 1... a,,, admits a critical value vi verifying

Thus, the solutions Ui = ( i = 1...h) of Problem (1.1)
verify the relations (3.3); moreover, since Ei > 0 can be taken arbitrarily
small, (3.4) holds. 0

Proof of Theorem 3.2. - Like in the proof of Theorem 3.1,
we use an iterative procedure: we find consecutively the parameters
~1, ~l, ~2, ~2, ..., ~T, a,r., ~r+l...ah in such a way that the functional

~1...~r constrained on has at least (r + h) distinct critical values.
Let us choose ~c1 > 0 in such a way that

Arguing as in Theorem 2.1, we deduce that for every E 1 > 0 there exist

~ 1 > 0,(~i E Ho ’ 2 ( ~ ( ~,1 ) ) , and a subset K1 ofRn x R (having
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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the properties of Corollary 2.11) such that the following inequalities hold
for 0  ~C1  /~i and Ai > 

and, moreover,

Let us fix  and Ai > ~ 1. Then, as before, for every 62 > 0 there
exist /G2 = > 0, A2 = ~2{~1~ ~1~ ~2) > 0, ~~(B(0,l))
and a subset .~2 of ~,n x R (satisfying the properties of Corollary 2.11 )
such that, if 0  ~c2  ~c2 and ~2 > ~2, it results:

and moreover

As in the proof of Theorem 3.1, we can also assume that Ai) is so
small and ~2 = ~2 ~~,L1 ~ I~2) is so large that the following inequalities
Vol. 13, n° 2-1996.
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hold:

and moreover

Repeating this procedure for i = 3...r, for every Ei > 0 we find

/~i = > 0 , = e

Ho’2(B(0,1)), KiC Rn x R such that, if 0 and ~i > Gi Vi =

1... r, the following inequalities hold for i = 2 ... r :

and, for
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For i = r + l, ..., h, the same arguments used in the proof of Theo-
rem 3.1 allow to state that for every Ei > 0 there exist

(with the properties described in Corollary 2.11 ) such that, if ~i > ~i for
i = 1.../~ and 0  ~ci  ~ci for i = 1...r, then the previous inequalities hold
with .’.y’~ h instead of .’.’. ~ r , and, moreover, for i = r + 1, ... , h, we have

Using these inequalities and the properties of the subsets Ki, arguing as in
the proof of Theorem 2.1, it is not difficult to see that the functional 
constrained on Y{SZ) has, for every i = 1...r, a critical point Vi such that

Moreover for every i = 1...h it is possible to prove the existence of
another critical point Vi E V(SZ) such that

Thus, we obtain the solutions of (1.1)

that, clearly, verify (3.5) and (3.6).
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Proof of Theorem 3.3. - In analogy to what done in the proof of Theo-
rems 3.1 and 3.2, we choose the positive parameters ~i and consecutively,
in such a way that the corresponding functional f ~ i : ,’, a h constrained on 
has at least (r + h) distinct critical values. Here we choose these parameters
in the following order: 
Let us choose ~cl > 0 such that

Since 0, Lemma 2.8 implies that > S for every
1 E ]0, 1 [.
Therefore there exists ~,2 = > 0 such that

Notice that  S + because

Iterating this procedure, we obtain, for every i = 2...r,

Then arguing as in section 2, we find, for every E 1 > 0, Ai = 

cpl E Ho’2(B(o,1)), x R (satisfying the properties described in
Corollary 2.11 ) such that, if 0  JLI  1 and Ai 

In particular, we choose EI > 0 such that S + EI  
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Repeating the same procedure, for any E2 > 0 we prove that there exist

such that, if

then the inequalities (3.12) hold with ,’a2 instead of and, moreover,

In particular, choose E2 > 0 such that

Arguing in the same way for i = 3... r, for every Ei > 0 we find
03BB1...03BBi-1), cpi E Ho’2(B(o,1)), Ki~IRn x R, such that,

if 0 and ~i > ~i Vi = 1...r, then

In particular, we choose Ei > 0 such that

For i = r + 1,..., h, by arguing as in the proof of Theorem (3.1), we
find for every Ei > 0,
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(satisfying the properties of Corollary 2.11 ) such that, if

then the inequalities (3.13) hold when we replace the functionals by .:y~h ,
and, moreover, it results for every z = r + 1,..., h :

We also assume that

Thus, the topology of the sublevels of the functional constrained on

V(Q) can be described, if 0 Vi = 1... r and 03BBi > 03BBii = 1... h,
by the following inequalities (that hold for i = 2...h):

for i = 2...r we have, in addition,
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Then the above inequalities, and the properties of the subsets Ki, allow
us to state that the functional f ~ i :.’: a h constrained on V ( SZ ) has, for every
i = 1... h, a critical point Vi such that

Furthermore for every i = l...r there exists another critical point
vi E V (S2) such that

Therefore the solutions of (1.1)

corresponding to these critical points, satisfy (3.7) and, since Ei and i can
be chosen arbitrarily small, the relations (3.6) hold. 0

Remark 3.4. - In the proof of Theorems 3 . 2 and 3.3 we obtain (r + h )
distinct solutions of Problem (1.1) by choosing the parameter ~i and in

such a way that the corresponding functional f ~ i . : ~~ h has at least ( r + h )
distinct critical values; as already observed, we do not require that the
concentration points xl...xh are distinct. On the other hand, it is very
reasonable that, if we assume that the concentration points are

distinct, an assertion of the following type holds:
there exists E > 0 such that, if
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then there exist at least (r -~ 1~) distinct critical points for f ~i , y~.~h constrained
on corresponding to critical values not necessarily distinct.

Moreover, in analogy with other multiplicity results on elliptic problems
involving critical Sobolev exponents (see [21], for example), we can
conjecture that h distinct concentration points xi...xh guarantee the

existence of at least 2(r+h) - 1 distinct positive solutions, if Ài > ~ Vi =
1...h and 0  E Vj = 1...r.

Remark 3.5 (concentration on subset of small capacity). - Theorems
2.1, 3.1, 3.2 and 3.3 associate the existence and the multiplicity of positive
solutions for Problem (1.1) to the property that some parts of the nonnegative
function a(x) are concentrated near some points of H.
More in general, one can consider the case where a(x) is a nonnegative

function concentrated near some subsets of Q, having small capacity: for
example, we can consider functions a( x) of the form:

where (Hi)i i is a sequence of subsets of H with lim capo Hi = 0, and
lim ~i = +0oo.

In this case the study of the multiplicity of positive solutions become
more interesting because the topological properties of the subsets Hi also
intervene and contribute to increase the number of solutions.

Multiplicity results concerning functions a( x) of this type will be reported
in a paper in preparation.
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