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ABSTRACT. — This paper is concemed with the problem

(%) {—Au+a(:v)u:u%i—g in Q
>0 in Q; u=0 on 02

where 2 is a bounded domain in R"™ with n > 3 and a(z) is a nonnegative
function in 2. We give some conditions on the function a(z), sufficient
to guarantee the existence and multiplicity of solutions for the considered
problem without any assumption on the shape of .
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RESUME. — On considére le probléme (x) ol €2 est un ouvert borné de
R"™ avec n > 3 et a(z) une fonction non-négative dans €.

On établit des conditions sur la fonction a(z) suffisantes pour assurer
I’existence et la multiplicité de solutions du probléme considéré sans aucune
condition sur la forme de (2.
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186 D. PASSASEO

1. INTRODUCTION

Let © be a smooth bounded domain of R"”, n > 3. In this paper we
are concerned with the problem

(1.1)

u>0 in

{ ~Au+a(z)u=u*"1 inQ
u =0 on €}

where a(x) € L™?(f) is a given nonnegative function, and 2* = 20 s

the critical Sobolev exponent for the embedding Hy'*(Q) < LP(R).

The aim of our investigation is to give conditions on a(z) sufficient
to guarantee existence and multiplicity of solutions for (1.1). Notice that,
through a lemma of Brezis and Kato (see [S]), the assumption a(z) € /2
ensures that the solutions u to the problem are in C1* VX € (0, 1).

The first contribution to the study of this problem is the well known

Pohozaev nonexistence result: in [20] he proved that a solution u of
Problem (1.1) must satisfy the identity

(1.2) /BQ(:C v)(Du - v)do + /Q [a(:v) + %(m : Da(:v))] uldz =0

(where v denotes the outward normal on J€2), and this implies that (1.1) has
no solution if € is starshaped and a(z) is a nonnegative constant function.

The main feature of the considered problem is the lack of compactness
due to the presence of the critical exponent: in fact, solutions of (1.1)
correspond to critical points of the functional

(1.3) flu) = /Q[[Dul2 + a(z)u®]dz

constrained on the manifold
(1.4) V(Q) = {u € Hy*(Q) / [u|? dz = 1},
Q

and, since the embedding Hy?(Q)) — L?'(Q) is not compact, the well
known Palais—Smale compactness condition does not hold.

Therefore the classical variational methods cannot be applied in a
straightforward way. In particular critical points cannot be obtained by
minimizing f on V(£); in fact, f does not achieve its infimum on V(2)
if a(z) > 0, as shown in [4].
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SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 187

On the contrary, if a{x) is negative somewhere, Brezis and Nirenberg
proved that the infimum of f on V(Q) is achieved if n > 4 (see [6], [4]).

On the other hand, if €2 is an annulus and a{x) is radially symmetric, it
is not difficult to prove that (1.1) has solutions even if a(x) > 0 (see [11]
for example).

Moreover several results show that, when a(z) = 0, the existence of
solutions of (1.1) is strictly related to the shape of €. Firstly Coron in [7]
proved the existence of a positive solution in domains {2 having a “small
hole”; then, in [2] this result was extended by Bahri and Coron to every
domain having nontrivial topology (in a suitable sense). More recently,
multiplicity results related to the shape of 2 have been stated, for instance,
in [21], [13], [16], [19], [18], [17]; furthermore existence results have been
obtained also in some contractible bounded domains (see [8], [9], [13]).

In [4] Brezis pointed out that in every bounded domain ) (even
starshaped) one can easily exhibit a positive function v that solves (1.1)
when a(z) is a positive function suitably chosen: in fact, if g # 0 is a
positive function with compact support in €2 and h satisfies —Ah = g in
2, h = 0 on 99, then the pair (u,a) with u = Ah and a = (ﬂlﬁ%ﬁ
solves the problem, and a > 0 in ) for A large enough. So he focused the
attention of the mathematicians on the problem of giving some conditions
on a(z) > 0, sufficient for the solvability of (1.1) in general domains €2
(even starshaped).

A first contribution to this question was given by Benci and Cerami in
[3]. They considered the case {2 = R™ (their method does not apply when
Q1 is a bounded domain) and proved that the problem

—Au+a(r)u=4?"1 in R"
vw>0 in R™
Jgn 1DulPdz < +o00

has at least one solution if a(z) is a nonnegative function, strictly positive
somewhere, having L% norm suitably bounded and belonging to L?(IR™)
for every p in a suitable neighbourhood of 7

Multiplicity results concerning a related problem in IR™ have been
obtained in [15].

In this paper we consider the case of a general bounded domain §2 and
give an answer to the question posed by Brezis. The main results (already
announced in [14]) are stated in Theorems 2.1, 3.1, 3.2 and 3.3.

We consider, in section 2, functions a{z) of the form:

(1.5) a(z) = a(z) + Va[A(z - z6)]
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188 D. PASSASEO

where a(z) is a given nonnegative function in L™/2(Q), z, is a fixed point
in ) (the concentration point), A > 0 is a “concentration parameter”, and
o is a given nonnegative function in L™/2(IR™) with |||/ gn/2(gny # 0.

We prove, in Theorem 2.1, that Problem (1.1) has a solution if A is large
enough; moreover we show that there are at least two solutions (for A large
enough) if the additional assumption

(1.6) llallznre@ny < S(22/™ = 1)

is satisfied (S is the best Sobolev constant: see (2.3)).
We notice that our assumptions seem fairly general. In fact, if we assume
for example that in (1.3) zo = 0, @ = 0 in {2, and

a(m):{l if |z} < 1

lz|=# if |z] > 1,

then, if 5 < 2 (i.e. « ¢ L™%(IR™)) and Q is a bounded domain starshaped
with respect to zero, Pohozaev identity (1.2) implies that Problem (1.1),
with a(z) = Aa(Az), has no solution for any A > 0; on the contrary, if
B > 2 (ie. « € L?(R™)), Theorem 2.1 guarantees the existence of a
solution for A large enough, without any assumption on the shape of €2 (if
A is small and  is starshaped, no solution can exist, also in this last case,
because of the Pohozaev identity).

The assumption (1.6) is strictly related to the method we use in the
proof and it is very reasonable that it might be weakened arguing like in
[2]; however, unlike [3], here we need it only to prove the existence of
a second solution.

More general results can be obtained considering functions a(x) of the
form:

(1.7)  alz) = alz) + Z MpioaNi(z —z)l+ Y Moz — z)

i=r+1

where zi,...,zp are given points in Q,a € L"/Z(Q) and oy...ap €
L™/%(R™) are nonnegative functions, and X;, u; (with¢ = 1...h, j =1...r,
0 < r < h) are positive parameters.

This case is studied in section 3; Theorems 3.1, 3.2, 3.3 show that, for
a suitable choice of \; and u;, Problem (1.1) has at least (r + h) distinct
solutions.

Remark also that it is not necessary to choose distinct concentration
points xi, ...,z in order to obtain distinct solutions.
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SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 189
2. AN EXISTENCE AND MULTIPLICITY RESULT

The aim of this section is to prove the following existence results for
Problem (1.1).

THEOREM 2.1. — Let §2 be a smooth bounded domain of R™ with n > 3
and xq be a fixed point in Q. Let & € LV*(Q) and o € L™?*(R™) be two
nonnegative functions and assume that ||ct||«/2(gry 7 0.

Then there exists A > 0 such that for every \ > X Problem (1.1) with

a(z) = a(z) + NVa[Mz - Zo)]

has at least one solution uy. Moreover

(2.1) lim f(%-) = 3.

A=too ™ \ [lua | per
If we also assume that
(2:2) ey < SE" - 1),

then Problem (1.1) has at least another solution 4\ and

i) < /(i)

In order to prove this theorem we need to introduce some notations, to
recall some known facts and to state some preliminary lemmas.

In what follows, as usual L?(2), 1 < p < oo, denote Lebesgue spaces,
Hé’Q(Q) (HS’Q(]R")) denotes the Sobolev spaces, closure of C5°()
(C5°(R™)) with respect to the norm |ju|| = ([, |Duj?dz)=.

From now on, also, for any function u € Hé’Z(Q) we denote by the same
symbol its extension to R", obtained setting u = 0 outside €.

A function u in Hy?() is a weak solution of Problem (1.1) if and
only if u > 0 in Q,

/Q |Dul*dz + /Q a(z)uldr = /Q |u|? dz # 0,

and ﬂu”"—z is a critical point for the functional f (defined in (1.3)),
L2

constrained on the manifold V' (2) (defined in (1.4)). Thus, solving Problem
(1.1) is equivalent to looking for constrained critical points for f on V().
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190 D. PASSASEC

But, since the pair (f, V(£2)) does not verify the well known Palais—Smale
compactness condition, the critical points cannot be obtained by applying
directly the classical variational methods.

A very important role in this type of problems is plaied by the best
Sobolev constant S for the embedding H,*(Q2) — LP(Q):

(2.3) deflnf{/ |Dul?dz : u € Hy*(Q), /|u|2*dx:1}.
Q

Its main properties can be summarized in the following
PROPOSITION 2.2. — a) S is independent of QO C R"; it depends only on
the dimension n;
b) S is never achieved when Q C R"™ is bounded;
c) when Q = R", S is achieved by the function
- . 1

(2.4) Y= Hl/)”m with P(z) = W;

moreover every minimizing function has the form

n 77b0 zq T —Xo
= her oz =
77&0,% ”"/)o,onL“ were 770 ’ O(x) 77&( o )

with 0 > 0 and 2o € R";

d) if u € HY*(R™), w > 0, is a critical point of the functional
[ |Dul*dz, constrained on V(R™) = {u € Hy (R : [y ¥ do=1},
then u = g, 4, for suitable 0 > 0 and zq in ]R

The proof of properties a), b), c) can be found, for instance, in [6] or
in [23]; for d) we refer to [10].

The following proposition describes the behaviour of the minimizing

sequences for the Sobolev constant S; for its proof see, for example, [12],
[22].

PROPOSITION 2.3. — Let (u;); be a sequence in Hy*(R™) such that
/ ;| de =1 VieN; lim |Du;|?dz = S
n 1—00 R”

Then there exist a sequence (y;); in R™ and a sequence of positive numbers
(0:)i such that the sequence (ii;); in Hy?(R™), defined by

ai(z) = a;%ui<x—+ﬁ),

i
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SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 191

is relatively compact in L* (R").
So ii; — @ in L¥ (R™) (up to a subsequence) and

/ |Dii|2dx = .

If, in particular, u; € H01’2(Q) and Q is bounded, then lim o; = 400

1—+o0 _
and the sequences (|w;|*); and (|Dw;|?); concentrate near a point of
(like a Dirac mass).

We recall now a nonexistence result which can be found in [4].

PRrOPOSITION 2.4. — Let Q be a bounded domain of R, n > 3, and a(x)
be a nonnegative function in L'?(Q). Then it results:

(2.5) Vlr(g) f=s

and the infimum is not achieved.

The proof is obtained (see [4] or [3]) by testing f on the functions
introduced in (2.4), suitably cut off (2, and using the estimates given in
[6]. Moreover, the proof evidences that the minimizing sequences for f
on V(€2), in booth cases, when a(z) = 0 and when a(z) > 0, are exactly
the same.

The following proposition and the subsequent corollary describe the
behaviour of the Palais—Smale sequences, giving useful informations about
the compactness properties of f on V().

PROPOSITION 2.5. — Let ) and a(x) be as in Proposition 2.4. Let (u;); be
a Palais—Smale sequence for the functional f constrained on V (), i.e.:

sup f(u;) < 400 and grad fiy)(u;) = 0 in H™12(Q).
€N

Then one of the following two cases happens: either the sequence (us); is
relatively compact in Hy*(Q), or there exist k solutions Uy,...0; (k> 1) of

Au+u2u=0 inR"
uwe HY2(R™), u#0 inR"

and a solution ugy of

Av—a()u+ [u> 2u=0 inQ
u € Hy?()
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192 D. PASSASEO

such that (u;); (up to a subsequence) verifies

S

. -
u; — Uy [Z/ ]ﬂjIZ*dij weakly in  Hy?(Q);
=0 JR”

k k —o=
lim [ |Duw;|*dz = [Z/ [D@sz} IiZ/ {ﬂjlrda:} .
i~ Jo s —o/Rr

The proof can be obtained by the same arguments used in [22].
CoROLLARY 2.6. — Let Q and a(zx) be as in Proposition 2.4. Let (u;);
in V(Q) satisfies

lim f(u;) €]8,2%/"3]
grad flv(o)(wi) = 0 in H=1*(Q).

Then (u;); is relatively compact in Hy*(Q).

The following lemma gives a lower bound to the energy of the functions
changing sign, that are critical points for f on V().

LemMMA 2.7. — Let Q and a(z) be as in Proposition 2.4. Let u € Hy*()
be a critical point for f on V(). If f(u) < 2%/™S, then the function u
has a constant sign.

Proof. — Assume, by contradiction, that u™ #Z 0 and u~ # 0. Since u
is a critical point for f on V(Q), u solves Au — a(z)u + plu|? ~2u = 0
in  with g = f(u). Thus

f(u)/ﬂluiﬁ‘dz = /Q[IDuiIZ + a(z)|ut|Hdz > S(/Q Iui|2*dz)2/2*.

Then we obtain

that implies f(u) > 2%2/"S, contradicting our assumption. O

Let us now introduce some useful tools. We define two continuous maps:

B:V(R") = R* and «:V(R") - RT
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SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 193

by
(26) f= [ ol ds
(2.7) V() = /R o — Al @) da.

We notice that 3 is a “barycenter” type function, while v measures the
concentration of the function u near its barycenter 5(u).

The following remark, also, will be helpful in the sequel: a function u
solves the equation

n+2

—Au+a(z)u=u~—2 in Q

if and only if the function u, defined by u,(z) = /\"2;21;[/\(:1: — z9)] solves
the equation

n42

—Auy + Xa[Mz — z0)]us = uj >

in Q) = zo + 18 (notice that |juy || () = [ull 2+ (). Moreover, setting
ax(z) = Na[A(z — z0)], we have for every € > 0:

/ o} (z)dx = / o™ (z)dz,
. B(zg,e€) B(0,Xe)

that implies

lim a;/zdac:/ a®dr.
Q n

A—o0
Let o be a nonnegative function in Lz (R"); we set
(2.8)
c(a)d:Efinf {/ [|Duf’ + a(z)u?)dr : u € V(R™), B(u) =0, y(u) = %}
RTL
The following inequality holds.
LEMMA 2.8. — Let & > 0, o € L™*(R"), satisfy lerl[pnr2(mny # 0. Then

(2.9) c(a) > S.
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Proof. — Clearly c(a) > S, thus we must show that the equality cannot
hold. If this were the case, we could find a sequence (u;); € V(R")
such that

(2.10) lim [|[Du;* + afz)u?)dz = S

200 Rn

(2.11) Blu) =0 and (u;) = /}R lflxlmi(;p)lz*dx:% VieN.

Since a(z) > 0, it follows

(2.12) lim |Du;|*dx = S.

1—00 R"™

Then there exist a sequence of points (y;); in R", a sequence of positive
numbers (o;); and a sequence (w;); in Hy*(R™) such that

Uy = Wy + 1/_101,.%

where ,, ,, are the functions (2.4), and w; — 0 strongly in L% (R™).
We claim that the sequences (;); and (o;); are bounded. In fact suppose,
first, lim |y;] = +o0 (up to a subsequence) and set

Yi={zeR": ((z—w)- -w) >0}

since l_l’jlﬂ > vl vy e 5and 21_1’11; le s

2. _ 1
THi] dx = 5, we should have

y(u;) > .Li 1 —lfllxllul(x)de > N -lf-y1|lyzl ./):z |7 dee

that implies
. 1
liminfy(us) 2 5
contradicting (2.11).
Assume now that, up to a subsequence, lim o; = +o00. Then

lim sup W;oi,yi ()| =0

T— 00 zeR"™

and so

lim |w;|* de =0 Vr > 0.
o0 U B(o,r)
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From
y(u;) = / 12| |u1(a:)|2 dz > / —&mi(a:)lz*da:
1+ |z| R \B(0,) 1 T 1Z]
2 - lw;|¥ dz Vr >0,
L+7 Jro\B(0,r)
it follows

Vr >0

bmin(uc) >
iminfy(u) > 7

that implies hm fy(uz) = 1, contradicting again (2.11).

Thus the clalm holds and we can assume, passing eventually to a
subsequence, y; — ¥ € R™ and o; — & > 0.
We have ¢ > 0: otherwise we should have

lim ) = - flﬂl and B(u)=0VieN

that implies § = 0. On the other hand, if & = 0, we have

R | N
lui(z)]® dz = T+l 0

1 =1
1mfy(u 1m/ 1+||

that contradicts _(2.1 1).
Thus, u; — s 4 strongly in L? (R™) with & > 0. Therefore we can
deduce

(2.13) / o(z)p2 zdr >0

because 5 3(z) > 0 Vo € R”™ and a(z) € L*/?(R"™) is nonnegative and
satisfies [ a™/?(z)dz > 0.
So, using (2.12) and (2.13), we obtain

1—00 n

lim [Dull2 + afz)ullde = S + / a(z)P? zdz > S
contradicting (2.10). O

Fix now € > 0 so small that S + € < min{c(a),2%/"S}.
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In what follows ¢ denotes a function belonging to Hy(B(0,1)),
satisfying the properties:

p € C=(B(0,1)),  w(z)>0 VzeB(0,1)
(2.14) @ is radially symmetric and |z1| < |z2| = @(x1) > v(z2)
Joonetde=1  S< Js0) 1DwlPdz < S +e.

The existence of a ¢ fulfilling (2.14) is a consequence of the properties of
S. For every 0 > 0 and y € R", we define

Try : V(R™) = V(R™)
by

(2.15) T, ,(u) _ev here Ugy(T) = u(m — y)

" oyl -

Lemma 2.9. — Let B3, v, ¢, T, be the objects defined in (2.6), (2.7),
(2.14), (2.15) respectively. The following relations hold

a) lin%)sup{y oT, (p):yeR"} =0
(2.16) b) (BoTsy(p)-y) >0 Vye R*"\{0} and Vo >0
c) HIE inf{yoT, (p):yeR", |y|<r}=1 V¥r>0.

Proof. — To prove (2.16) a) we argue by contradiction. So we assume
that there exist a sequence (y;); in R™ and a sequence of positive numbers
(0i): such that:

(2.17) lim o; = 0;
(2.18) Lim v 0Ty, y,(v) > 0.

By (2.7) we have

T

— _BoT, 7% d
1+ 7] Bo Ty, y.(p) o“yi(‘p) z

(219)  yo Ty pu(p) = /
B(y:,0:)

<)
B(yi,04)

x . Y
T+ ]zf 1+ |y

* Yi
ng,yi((p)d‘r + Il n |y2] - /BOTUi,yi(‘p)I'
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Now, since
T y . )
2.20 _ <l — vo.y in R,
we infer
z Yi o
2.21 3 - "
( ) /B(yi»o'i) 1+ |$I 1+ ‘yll Unyz(‘p)

<[ le-ul,(ee <o
B(yi,0:)

On the other hand, using (2.6) and (2.21), we deduce

22 |- poTnle)

x Yi o*
= - T; . (p)dz
/za(yi,oi) (1+ lz| 1+ lyil) e

< / Z Y;
B(y:,0:)

Uo] 1+ i
Thus, taking account of (2.21), (2.22) and (2.17), we obtain from (2.19)

T2 (p)dz < 0.

CERY

lim vyo Ty, 4. (¢) <2 limo; =0

1—00 1—o0

contradicting (2.18).
In order to obtain (2.16) b), let us observe that (2.14) imply Vo > 0

T,y(0)(x) > Try(o)(—x) Vz e R™ suchthat (x-y)>0
and, if y # 0,
To (o) () > Tpy(0)(—2) V2 € B(y,0) suchthat (z-y)>0.

Therefore

(BoToy(p) y) = /R fi 1yx)] T2, (¢)dz >0 ¥y e R™\{0}.
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To prove (2.16) ¢) we show that both the relations

(2.23) limsupinf{yo T, ,(¢) :y € R™, |y| <r} <1 Vr>0

o—400

(2.24) liminfinf{v oT,y(p):yeR™, |y <r}>1 Vr>0

hold.

If (2.23) were not true, there would exist a sequence (o;); of positive
numbers and a sequence (y;); in R™ such that

(2.25) lim 0; = 400, |yl <r VieN
(2.26) lim yoT,, 4 (¢) > 1.

By definition of v, we have

T

1) yoTuule)= [ -

T2 . (p)ds

T,y

Bo To,,yi(w)

< /R I f:xngf,yi(w)de’ 1B0 Ty, 4. (@)| <1+ |80Ty, 4 (0)

Now, taking account that o T, o(¢) =0 Vi € IN, we write

z
1+ |z

(228)  [BoTo y(0)l = t/ "

T2 | (¢) — T% o(¢)ldz

< [ 2,000 - TElda = [ 1TFu o)~ Thife)lde
R"l n k3

and from this we deduce

(2.29) lim BoT,, ,(¢)=0

because, by (2.25), g— — 0 as 7 — +o00. So (2.27) and (2.29) imply
lim yo Ty, 4 (p) <1
that contradicts (2.26); so (2.23) is proved.
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If (2.24) does not hold, then there exist a sequence (o;); of positive
numbers and a sequence (y;); in R", satisfying (2.25) and

(2.30) Lim yoTo, . (p) <1
We have
xr
2.31 T, .. = _— d
@31) 10T 9 = | | = Ao T (0|2, ()

o}
> | T e~ 180 T ()]

Now for every p > 0 we have, as i — 400,

||
T2 (p)ds > / ol g e
z:'yz R~ \B(O,p) 1 + lxl Y4

> Tf* god:c:—-f—ol
1+P/Rn\3(o,p) o (#) L+p @)

because, for every p > 0, lim ¢; = +oco implies
11— 00

lim " (p)dz = 0.

i ’y
1—00 B(O,p) *

Thus, using (2.29) and (2.32) in (2.31), we obtain
: P
1 To. . > — Vp>0
Lim yoTo, 4. (#) 2 v,
that gives, as p — +o0,
hm Yo Toi,yi(SD) Z 1

contradicting (2.30). So (2.24), and then (2.16) c), is proved. O

LeMMA 2.10. — Let a(x) be a nonnegative function in L™?(R™). Let ,
T,y be as in Lemma 2.9. Then we have:

a) lim sup {fgn @(@)T2 (p)dz : y e R*} =0

(2.33) b) lim sup{ [p. a(2)T7,(p)dz:y € R"} =0
c) rgr&o sup { [ a( T2 y(P)de 0 >0, jyl=r} =0.
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Proof. — Firstly, let us suppose (2.33) a) not true. Then there exist a

sequence (y;); in R™ and a sequence (o;); of positive numbers, such that

lim o; = 0 and
1—00

(2.34) lim a(z)T?, , ()dz > 0.

1—00 R~

Then, taking account that lim o; = 0 implies

1— 00

lim a? (z)dz = 0,
YT U B(oi,y)
we obtain
Jim | o2)T7,, (¢)dz = lim a(z)TZ, , (p)dz

B(o:,y:)

2/n 2/2"
< lim (/ a (x)dx) (/ Tf:)yi)(go)dx)
e B(Ui»yz) B(Unyi)
2/n
= lim (/ aﬁx)dm) =0
el B(o:,y:)

contradicting (2.34).

N3

To prove (2.33) b), we argue by contradiction and we assume that there
exist a sequence (y;); in R"™ and a sequence of positive numbers (o;);,
with lim o; = 400, satisfying (2.34) as before.

1—00

Let us observe that Yp > 0, Vo; > 0, V(y;); € R”

e3) [ @2, 0= [ a@T2, (o)
" B(0,p)
+/ a(m)Tfi’yz(go)dx
R™\B(0,p)
2/n _ 2/2*
([ avroue) ([ 1,c0)
B(0,p) B(0,p)
2/n 2/2°
+ (/ a"/Q(w)d:E> (/ Tglyyi(go)dx) .
R\ B(0,p) R™\B(0,p)

Now, when g; — +00, we have

lim T2 (9)dz =0 Vp>O0.

oo TiYi
B(0,p)
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So

2/n
imsp [ o@12, (o< ([ e
100 " R™\B(0,p)

but, clearly, (since a(z) € L"/?(R"))

lim o™ ?(z)dz = 0;
PH0 JR7\B(0,p)

thus
lim a(z)T? , (p)dz =0,

; Ti,Yi
1—00 R™
contradicting our assumption.

In order to prove (2.33) c), let us assume, by contradiction, that there
exist a sequence (o;); of positive numbers and a sequence (y;); in R",
with lim |y;| = 400, such that

11— 00

(2.36) lim a(z)T?,, (p)dz > 0.

11— 00 Rn
This implies (because of (2.33) a), b)) that

0 < liminfeo; < limsupo; < +oo.

11— 00 11— 00

Then, up to a subsequence, lim, ,., 0; = & with & €]0, +o0[ and, since
lim |y;| = 400 and a(z) € L™2(R™), we deduce
1—00

lim o™ (z)dz = 0.
o B(yzaai)

Thus, from

| e, o= [ a2, (o
gt B(yi""l)

2/n ) 2/2°
(/ a"/2(x)dx) (/ Tfi'yyi(np)dx)
B(y:,0:) B(yi,o:)
2/n
</ a"/2(a:)dx)
B(yiyo'z)

IN

we infer
Zli'r& - a(z)T? , ()dz =0
contradicting (2.36): so (2.33) c) is proved too. O
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CoroLLArY 2.11. — Let a(z), B, v, ¢, T, be as in Lemmas 2.9, 2.10 and

suppose also ||a||pns2ggny # O. Then, there exist v > 0 and a1, o satisfying
0 <o < % < 09, Such that

@37) s [ 1T, (0 + T2, 0)ds () € 0 )
< S+e<cla),

where
K= K(o1,02,7) = {(y,0) e R" xR : |y| <1, 01 < 0 < 03}
Moreover the map © : 0K — R"™ x R, defined by

O(y,0) = (B0 Toy(p), 70 To (),

_is homotopically equivalent to the identity map in R™ x R\{(0, 3)}.
Proof. — By (2.16) a) and (2.33) a) there exists o €]0, —13[ such that

Vye R"

Wl =

o Ty, 4(p) <

and the relation
38) [ DTy + )T, (o)lds < 5 4+«

holds, when o = oy, for any y € IR". Furthermore (2.33) c¢) allows to
choose r > 0 such that, if |y| = r, (2.38) is satisfied whatever o > 0 is.
Lastly, fixed r, as before chosen, it is possible by (2.16) c) and (2.33) b)
to find o5 > § for which v 0 T,, ,(¢) > 1 if |y| < r, and such that (2.38)
holds, when ¢ = o3, for any ¥ € R".

Clearly the set K = K (o1, 09,7), with 01, 02,7 chosen as before, is the
wanted set satisfying (2.37).

To achieve the second part of the assertion, consider the map

19:8K><[0,1]—>R"><]R\{(0,%>},

defined by

Wy,0,t) = (1 —t)(y,0) +tO(y,0) V(y,o) € K, Vte|[0,1].
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Note that 9(y, 0,t) # (0, 3) V(y,0) € 0K, Vt € [0,1]: in fact, if |y| < r,

(I=t)or+tyoT, 4(p) < vt € ]0,1]

Wi

and 1
(1=t)ogs +tyoTy,, (¢) > 3 vt € [0, 1];

if [yl = r and 07 < 0 < o9, by (2.16) b),
([(1 =)y +tBoTsy(p)]-y) >0 Vte[0,1].

Then ¥ is the required homotopy between the continuous function © and
the identity map in 0K. O

Let 70 € , @ € L?(Q), a € L"/?(R") be as in Theorem 2.1; for
every A > 0, set
Br =B oI xxo Pa =70 Th —xa
and define fy : Hy*(Q) — R by

fa(u) = / {IDuf? + [a(z) + Na(\(z — z0))}u?}d.

LEMMA 2.12. — Let Q, x4, &, « be as in Theorem 2.1. Let c(«) be the
number defined in (2.8). Then, for every A > 0 the relations

a) inf{fa(uw):u € V(Q), Ba(u) =0, ya(u) cla) > S
(2.39) {b) inf{falw) : u € V(Q), B(u) = 0, () S

Wlgs =
Vv

}
}

VA

hold.

Proof. — Set, for any u € Hy?(R), uy = T _ s, (1) and observe that
Ba(u) = 0 and vx(u) = 3 if and only if B(uy) = 0 and y(u,) = 3.
Then, since @(z) > 0, we have Yu € Hy*(Q) (u is extended by zero

outside €2):
Hilu) > [lDu[2 + /\2a(/\(at — xo))UZ]dw = / [|Du,\|2 + a(x)u?\]dx.
R™ R”

So, for any u € Hy*(f2) having x(u) = 0 and ~,(u) = %, we deduce

Hlu) > inf{ Rn[IDu|2 + a(z)u?)dz : u € V(R™),
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that implies (2.39) a).

In order to prove (2.39) b), assume, by contradiction, that there exists a
sequence (u;); in V() such that

(2.40) Balui) = 0, yalu;) >
zliglo Salw) = S.

Thus, since & and « are nonnegative functions, it follows

VieN

Wi

lim | |Du|?dz = S.
Q

11— 00

This implies (by Propositions 2.2 and 2.3) that there exist a sequence (6;);
of positive numbers, a sequence (z;); in R™ and a sequence (w;); in
V(IR™) such that
u; = w; + Ts, 5, (¢)

where 7,5 is a minimizing function for the Sobolev constant S, w; — 0,
strongly, in L?" (R™) and 6; — 0.

Now, setting v; = T\ _xg, (u;), we have B(v;) = 0, v(v;) > 1 Vi € N.
Moreover from
Vi = Do —xao (W) + Th<awo © Doz, (¥) = Ta—aao (w0) + Thas, Awimzo) (¥),
taking in account that T _x,,(w;) — 01in L¥ (R™) and §; — 0, we deduce
(2.41) lim Wdz=1 Yp>0.

"0 JB(Az;—Axg,p)

Using the fact that ((v;) = 0 and the relation (2.20), we can write,
whatever p is:

Az —zo| / [ (z; — x0) z } o
v; dx
1+ Mz —zo] | Jwe 1+/\|£L'1 —xo| 1+ |z]

1'0)
d
< [\ T g @
_ / z Mz; — zo) o (2)dz
B(Az;—Azo,p) 1+ !$l 1+ /\lxl - xOl
+/ T Mz — zo) o (2)dn
R \B(zi—Are,p) | 1 H 18] 1+ Az — 0]

< / |z — A(z; — zo)|v? (z)dz + 2/ v (z)dz
B(Az;—Azo,p) R \B(Az;—-Azg,p)

< p/ v? (z)dx + 2/ v (z)dx
B(Az;—Azo,p) R™ \B(Az;—Azq,p)
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that, together with (2.41), gives

/\IiL’,‘ — .’L‘[)[
li — < Yp > 0.
pies e
Thus lim —i=2ol — 0 and so lim z; = zo. On the other hand, since

ivoo THAzi—za| oo

B(v;) = 0, we have for every p > 0

_ lxl 2+
() = /R T @

|z| * / |z] o
= v; (z)dz + v; (z)dz
/B(Azi—)\zo,p) L+ |z] R*\B(Azi—Azo,p) L T |Z]

g/ [:v]vf(x)dx+/ v? (z)dz
B(Az; —XAzo,p) R™ \B(Az;—Azq,p)

< (p+ Az — o)) / v (z)dz + / v? (z)dz.

B(Ax; —Axg,p) R™ \B(A\z; —Azo,p)

Therefore we deduce
limsupy(v;) <p VYp>0

that implies lim «(v;) = 0, contradicting (2.40). O

LemMa 2.13. — Let ), zp, &, « be as in Theo_rem 2.1 and K be the set
introduced in Corollary 2.11. Then there exists A > 0 such that for every
A > A it results:

aj the function T 1

(2.42) 120 © To,y() msisomonn 8V (y,0) € K;
: b) sup{faoTr, 0T, ,(p):(y,0) €K} < S+e<cla).

%o

Proof. — The existence of \;, such that (2.42) a) is satisfied for every
A > A, follows from the fact that ¢ has compact support and K is a
bounded subset of R™ x IR.

In order to prove (2.42) b), let us remark that for every A > A it results

(2.43) faoTy z,0Toy(p) = / Doy () + a(@)T7, (¢))dz

+ / (5T 0, 0 Toy(9)Pde
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and that, by Corollary 2.11,

sup {/Rn[]DTo,y(SO)l? + a(z)Tf)y(go)]dz :(y,0) € aK} <S+e

So, to get (2.42) b), it suffices to show that

(2.44) lim sup {/Qd(z)[T%,xo o T, ,(¢)dz : (y,0) € K} =0.

A—+o00

Now, Y(y,0) € K we have

/ 8Ty . o Ty ()P = / &(2) [T 4, 0 Tory(0)Pd
Q B(zo+,2

n

< / a?(z)dz| < / az(zr)dr
B(zo+1,g QNB(z,522)

[ME]

where the last term goes to zero as A — 400, because @ € L%(§). Then

(2.44) is proved.

Proof of Theorem 2.1. — Let ¢(a) be the number defined in (2.8); let
K and © be as in Corollary 2.11. Let us choose ¢ > 0 so small that
S + ¢ < min{c(a),27 S5}, and ¢ satisfying (2.14); moreover consider

A > X with X fixed in such a way that the claim of Lemma 2.13 is true.

Let ¥ be the homotopy between © and the identity map in K, used in

the proof of Corollary 2.11. Then we have
1
(2.45) Wy, o0,t) # (0, §> Y(y,o) € 0K, Vte[0,1]

that implies the existence of (§,5) € K such that

ﬂoTa,ﬂ(‘P) = /BA OT%,IO o Ta,g(‘P) - 07

Lol =

Yo T&»g((p) =m0 T%,xo o T&,g(‘P) Z
and the existence of (y',0’) € K for which ©(y’,0’) = (0, 1) that is

1
Bh 0Ty 0 Tor () =0 and 10Ty, 0 Tyr () = 5.

> L0
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Therefore, using also (2.39) a) - b) and (2.42) b), we obtain

(2.46) S < inf{f,\(u) tu € V(Q), Ba(u) =0, va(u) > %}

S faoTy 4, 0 To5(p) <sup{fa 0Ty o, 0 Toy(9) : (y,0) € 0K}

1

<S8+4+e<cla) < inf{f,\(u) tuw e V(Q), Ba(u) =0, ma(u) = 5}

S faoTy 4, 0Tory (@) <sup{fao Ty, 0Toy(p): (y,0) € K}

We want to prove that there exists a critical point v, for fy constrained
on V() such that

cld:efinf{f,\(u) tu € V(8), Ba(u) =0, 1a(u) > %}

def
< fa(va) <sup{fao Ty o, 0 Toy(p) : (y,0) € 0K} =co.

Assume, by contradiction, that no critical value lies in [c1, c2]. Then,
since S < ¢; < ¢c; < S+¢€ < 228 and the Palais—~Smale condition
holds in f;'(]S,2%/"S[), there exists ¢; €]S,cy[ such that the sublevel

f‘,‘ = {u € V() : filu) < ¢/} is a deformation retract of the
sublevel f3?> = {u € V() : fa(u) < co}; namely a continuous function
[ f2 x[0,1] — f{? exists such that

[(w,0)=u and T(u,1) € f3 Yue fo.
Since {Ty ., 0 Toy() : (y,0) € OK} C f52, it follows that

(2.47) faol[Ty 0 Toy(9),1] < ¢y <er Y(y,0) € OK.

Now, let us define a continuous function 7 : 9K x [0,1] — R™ x R by
1
Wy, 0,t) = 9(y,0,2t) V(y,0) € OK, Vi e [o, 5}
n(y,o0,t) :(ﬂ)‘ o I‘[T%Jc0 0T, ,(¢),2t — 1], a0 F[Ti,xo 0Ty y(p),2t — 1])

Y(y,0) € 0K, Vteg [%,1}.

Notice that 7; is well defined because {71 . 0T, (¢) : (y,0) € K} C fi2;
moreover, by (2.45) and (2.46),

n(y,o,t) # (0%) V(y,0) € 0K, Vte|[0,1].
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Then a point (Z,6) € K must exist such that

/BA o F[T%,Io o TS@(‘P), 1] =0 and YO F[T%,Io 0 TS,&(‘P)a 1] Z

Lo =

and this implies
f/\ © F[Ti,zo o TS@(‘P)» 1]
. 1
> int{ /(0) € V@), Br(w) =0, ) > s

that contradicts (2.47).

So it is proved, for any A > ), the existence of a constrained critical
point vy satisfying the energy estimate

S<CISf,\(U,\)S(22<S+€
and, since € > 0 can be taken arbitrarily small, we derive

AETOO Hv) =S.

Remark also that, since S + ¢ < 2% S, by Lemma 2.7, v, must have
constant sign.

Let us now prove the second part of the claim of Theorem 2.1.
First of all observe that, if [|a||zn/2(r=) < S(22/™ —1), then it is possible

to find ¢, K and A so that
(2.48) sup{fy 0 T ., 0 Tp,y () : (y,0) € K} <2¥™8 YA > A

In fact, since in this case 2%/"S — [ja||;n/2(gn) > S, @ can be chosen
verifying, in addition to (2.14),

(2.49) / |De|?dx < 22/™S — ||at|| sz (remy-
B(0,1)
Now we have for every (y,0) € K

[ 2
f30Tys, o Tonl9) = [ 1DpPdo+ [ 60Ty, 0 Toy ()] o
> B(0,1) Q
+ [ a@)Tae) s
B(y,0)

2
< [ Dl lallpemey + [ 350)[Thay 0 Trate)] do
B(0,1) Q
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and from this, using (2.49) and (2.44), we deduce the existence of A > 0
for which (2.48) is satisfied.

We shall prove that for every A > X there exists a constrained critical
point Uy for fy on V() such that

def ,

o lnf{mu) CuE V(Q), Pr(u) = 0, () = %}

N def
< A(08) Ssup{fao Ty oy 0 Toy(9) : (y,0) € K} =25,

We remark that, in this case, by (2.48) and Lemma 2.7, ¢, will have
constant sign, and moreover U # vy, because ¢; < fi(vy) < 2 < ¢(a) <
¢ < fa(iy) < éo.

Assume, by contradiction, that no critical value lies in [¢1, éo].

Then, since S < & < é < 22/*S and the Palais-Smale condition
holds in £y 1(]8,2%/m8[), there exists &, €]cz,é[ such that the sublevel

il = {u € V() : fa(u) < &} is a deformation retract of the sublevel
2 ={ueV(Q): fi(u) < ¢2}; namely there exists a continuous function
I': £ x[0,1] — f3* such that:

[(u,0)=u and [(u,1) € 7 Vue f2
Du,t)=u Vte[0,1], Vue f;ll
So, from

{Ts o 0 Toy() : (y,0) €OK} C f2 C f5

X

{T1 4 0Toy(p) : (y,0) € K} C f32,

it follows

(2.50) f‘[T%’IooTo.,y(cp),t] =Ty ,,0T,,(¢) Y(y,0) € 0K, Vt € [0,1]

(251)  sup{fr o TTs 4y 0 Loy (9),1]: (v, 0) € K} < & < &1,

Now let us define a continuous function 77 : K x [0,1] — R™ x R by

1(y,0:8) = (1= 2t)y + 2tBo Ty (), (1= 2t)a + 2ty 0 Ty, (p))
V(y,0) € K, Vte {0, %},

(y,0,8) = (Bx 0 T[T 4y © Toy (9,2t — 1], 12 0 D[T 0 Ty (1), 26 — 1))

Y(y,0) € K, Vte [%,1}.
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Notice that 7) is well defined because {7 , 0 T, ,(¢) : (y,0) € KYcfe,
moreover we deduce from (2.45)

A 1
0y, 0,t) = 9y, 0,2t) # <0, 5) Y(y,0) € 0K, Vte [0, %]

and, using (2.45) and (2.50),

. ) 1 1 1
n(y,a,t):TI(y,a,E)# (0,§> Y(y,0) € 0K, Vte¢ [5,1}

Then a point (z’,6") € K must exist such that

. . 1
B o F[T—;-,mo °© Té"m’(tp)u 1] =0 a0 F[Ti,zo °© T5',I'(Lp), 1] = 5

and this implies
frol(Ty . 0Ty 2 (), 1]

> inf{fm) cw € V(Q), Baln) = 0, n(u) = é}: Y

contradicting (2.51).

Then we have proved the existence of two distinct critical points v, and
0y of fx on V(). These functions have constant sign, that we can assume
positive; so they give rise to two positive solutions

n—2

ur = [Hr(o)] T vy and dy = [fr(62)]°F 0

of Problem (1.1). 0

Remark 2.14 (radial symmetry). - If @ = B(0,p) = {x € R" : |z] < p},
and we assume zg = 0 and &, « radially symmetric functions, , then it
is natural looking for the solutions of Problem (1.1) in the subspace of
H}*(Q) made up the functions having radial symmetry.

In this case the proof of Theorem (2.9) can be simplified. In particular,
the solution u) corresponds to a local minimum point among the radial
functions. In fact, if we denote by V,.(2) the subset of V() made up the
radial functions, we have for A > A

Wi

x0Ty g0 Toy0() >
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and

S < inf{f,\(u) € Vo (), m(u) 2 %}

SfroTigoTy,o(p) <S+e<c(a)

with S + ¢ < 22/78.
Thus the existence of 4 minimum point vy of f, on the subset

{u € V() : ma(u) > %}

can be proved.

Moreover, under the additional assumption |[|@|[n/2(gny < S (22/m — 1),
another solution 4, can be obtained by a variant of the well known
Mountain Pass Theorem by Ambrosetti—-Rabinowitz [1]. In fact, in this case
we have for A > A

1
x0Ty 0Ty 0(p) < 3 <Me Ty g0Tg;0(¢)

and
S <max{fxoTyo0Ts0(p):z € {01,02}}
1

< inf{fx(u) tu € Ve(Q), m(u) = §}

<sup{faoTio0Ts0(p):0 € [01,09]} < 27 8.

Remark 2.15. — The solutions uy and @, found in Theorem 2.1 have a
different behaviour as A — +o0. In fact, as we have before seen,

. U
lim — ) =5,
W *(uuxnw )
while

. Qi
liminf fy (A—> >cla) > S.
2 ATl ) 24

Thus one cannot say that 4, concentrates near a point as A — —+oo,
like uy does. )

It is only possible to remark that for A large enough f,\(H—u:‘”#) is
close to S provided that ||| p~/2(g~) is small enough.
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Remark 2.16. — The solution 4, given by Theorem 2.1 corresponds, in
some sense, to the solution obtained by Benci and Cerami [3] in the case
Q = R".

On the contrary uy is a solution of new type, whose existence is just
related to the fact that 2 is a bounded domain.

Let us also remark that in Theorem 2.1 we do not require the stronger
assumption o € LP(R™) Vp € [p1,pa] with p1 < § < po, used in [3].

3. MULTIPLICITY OF POSITIVE SOLUTIONS IN
PRESENCE OF SEVERAL CONCENTRATIONS

This section is devoted to the study of Problem (1.1) when the function
a(z) has the form '

h
(3.1) a(z) = a(z) + Z Moz — ;)
=1
or also
T h
(32) a(z) =a(z)+ Y Mmooz —x:)) + Y Mai(hi(z — )
i=1 i=r+1
where zp,...,z, are given points in ), &, aj...q, are nonnegative

functions, and A;, 4; are positive parameters.

It is very natural to think that several concentrations in the function a(x)
can guarantee the existence of several distinct solutions. Indeed, we show
that it is possible to choose the parameters A; and u; in such a way to obtain
several distinct critical values of the functional f constrained on V (2).

Theorems 3.1, 3.2 and 3.3 describe some possible way to realize this
choice. We point out that, when we exploit the parameter )\; and y; in
order to obtain several critical values, we do not need to require that the
concentration points ...z, are necessarily distinct.

THEOREM 3.1. — Let Q) be a smooth bounded domain of R™ with n > 3
and x1...ry be given points in § (not necessarily distinct). Let & in
L*2(Q) and «...ap in L2(R™) be nonnegative functions such that
HaiHLn/z(]Rn) :,6 0 YZ = 17h _ B B

Then, there exist Ay > 0, Ao = )\2(/\1) >0, A3 = )\3()\1,)\2) > 0...
5\1‘ = 5\1‘()\1.../\1‘_1) > Oj\h = j‘h()\l-n)\h—l) > 0 such that Problem
(1.1) with a(x) of the form (3.1) has at least h distinct solutions ;.. .up
for every choice of A1...A\p such that A\; > Xi, i=1...h
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Moreover
2/ng M (—“2—> ( Uh ) s,
(33) 2 >f<||u11|w)>f Y AN T A
. Ui _ .

THEOREM 3.2. — Let Q, z1...Th, @, ai...ap be as in Theorem 3.1.

Then there exist ji1 > 0, Ay = A (p1) >0, ig = ﬁz(/\l,p,l) > 0, 2\2 =
Aa(pe1, A, p2) > 0. = Gr(p1, A1y 2, Azy - oy i1, A1) > 0, Ap
A1, A1, iz, Agy - p,T 1,/\7« 1, r) > 0, (with v < h) and Arp1 =

/\T-H(/l'h /\lall'27 /\2> <oy Moy A ) > 0.. /\h = /\h(ll'lv /\17/1'2a /\2a oy Mo /\
Arg1---An_1) > O such that Problem (1.1) with a(x) of the form (3.2) has

at least (t + h) distinct solutions 1, uy, Gg, Uz, . . -, Ury Ur, Upt1, - - -, Un fOF
every choice of A1...An, W1.. .1, Such that

/\i>/_\i Vi=1...h and 0<}Lj<ﬂj Vj=1...r

Moreover

(63) 275> 1 (nuun) >/ (nﬂb) >/ (naAan*)
>/ <||u2||L2*) >z (Ilurllm*) >/ ( luran*)
> i )> <|Iuhllm*)

w
lim f(————) =S Vi=L1...h,
Mmoo ™\ [lug|er

i, 1 () = i

THEOREM 3.3. — Let Q, x1...Tp, &, 1...qp be as in Theorem 3.1.

Then there exist iy > 0,03 = fiz(p1) > 0, fiz = palp1, p2) >
0. .o fir = fr (i1, 2 - piro1) > O (with 7 < h) and Ay = Ar(p1. . .par) >
0,X2 = /\2(;1,1 ey A1) > 0. A = A1 ey A1 Apo1) > 0 such
that Problem (1.1) with a(z) of the form (3.2) has at least (r + h) distinct

(3.6)

,._.
y
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solutions iy, iiy. . iy, uy, Up. . .uy, for every choice of A;.. Ay, {41 -y SUCH
that

Xi>X Vi=1...h and O<p;j<p; Vi=1...1

Moreover we have

(3.7) ) ) A
22/nS ( ,\UI ) ( Uz ) o ( Uy )
Nl ) N\l ) N\

>fGE%?)>fﬂéﬁw)>“>fGEﬁF)>S

and the relations (3.6) hold.

In what follows we denote by fai..a, the functional f when

a(z) = a(z) + Z Aoi(Xi(z — z;)) (where s < R)

and by f{* the functional f when

a(z) = a(z) + Z A pio(Ni(z — m4))
+ > Mou(\i(w — 24)) (with £ < s < h).

Moreover we put
Br. =BoT, —xez and v, =v0Th _rq,-

Proof of Theorem 3.1. — The idea of the proof is the following: first we
remark that Theorem 2.1 implies the existence of a critical value for I
on V() if A; is large enough; moreover, fixed A\; > 0, the same theorem
implies that for A, > 0 large enough there exists a critical value for g
that goes to S as Ay — +oo.

Then, the crucial step is to prove that the previous critical value of I
persists in the sense that fy, », has also another critical value, which is
close to the one of fy,, if Ay > 0 is large enough. Iterating this argument,
we obtain h distinct critical values for f, . », for suitable choices of the
parameters Aj...\y.
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For every 7 = 1...h, let us set

c(ai)définf{ /R IDuf + ai(@)e’lde s u € V(R),

By Lemma 2.8, since ||a;l|pn/2gny # 0, we have that c(ey) > S
Vi = 1...h.
For every ¢; > 0 such that

S+ e < min{c(e),. .., c(ay), 248},

we find, arguing as in section 2, with analogous notations, a constant
A1 > 0, a function ¢; € Hy?(B(0,1)) and a subset K; of R” x R, with
(0, 3) in its interior, having the properties described in Corollary 2.11 and
such that for every A\; > A; the relations

( Tﬁ,zl 0 Toy(p1) € H(}z(Q) Y(y,0) € Ky
(3.8) and )
S <inf{fx,(u) 1w € V(Q), Br,(u) =0, v, (u) > 3}
< Sup{fh o Tﬁ,ml o Tﬂyy(sol) : (y70) S aKl}
\ < S+ € < c(al)
hold.

Let us fix A\; > A;. Then, for every €, > 0 such that
. 1
S+e< 1nf{f,\l(u) cueV(Q), B, (u) =0, i, (u) > 5}’

there exist Ay = Az(\;) > 0, a function ¢, € H&’z(B(O, 1)), a subset K,
in R” x R, with (0, %) in its interior, having the properties described in
Corollary 2.11, so that for every Ay > A, it results:
T oy 0 Toy(p2) € Hy*(R) Y(y,0) € Ky

and

. 1

5 < 1nf{fA1,A2(u) W E V), fr() =0, () > 5}
S sup{fiin; 0Ty 0 To(92) : (y,0) € 0Kz} < S+ &2 < efaxa).
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Now, let us prove that

{/Q Asor(ha(z = 22))[T o, © Ty (1)) da -

(39) lim sup
(y,O’) € Kl}: 0.

A2 —~+o00

In fact we have
(p1)(z) 1z €9, (y,0) € K1} < 400

(3.10) sup{TTll_’gc1 0T,y

because sup p; < +oc.
B(0,1)
Moreover, it is easy to verify that

lim [Mao(Ap(z — 2))]2dx = / af (z)dz Vp >0
Az —+o0 B(zz,p) n

that is
lim Mao(Ap(z — 22))]2dz =0 Vp > 0.
Ag—~+00 Q\B(itz,p)
Therefore we have
[ Maaulo — )T
Q 1
oT,

/ MO — 2) [T, 0 Ty
B(zz,p) !

+ / Mag(Ag(z — 22))[Te o, ©
Q\B(z2,p) 1

o Ta,y((pl)]zdx
(<P1)]2d37

To,y(‘Pl)de

< (/B(%’p)[x\%ag()\?(x _ $2))]"/2d$)2/n

( [ o Ta,ym)]fdx)
B(xz2,p) M

2/n
N ( / N2az (o (z — mg))]"ﬂda:)
Q\B(z2,p)

([ e oTusto )
Q\B(x2,p) :
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So from (3.10), for a suitable choice of ¢, it follows

tmaupsup{ [ Moa(ale ~ )Ty o, o Ty 0o (410 € Ko
Az—+o00 Q !

<egpn? Yp >0,

that implies (3.9), as p — 0.
Thus we infer from (3.8) and (3.9) that

lim sup{f,\l,,\z oTi _ o Ta,y(‘;ol) : (y’ U) € 6K1}

T
Ag—+o00 ATt

=sup{fy, 0T+ , 0T, ,(¢1): (y,0) € K1} < S + €.

%1

Moreover, since fi, »,(u) > fa,(u) Vu € V(£), we can assume that for
every Ay > X, the following inequalities hold:

S+ €2 < inf{f/\1,/\2(u) Tu € V(Q)7 /8/\1 ('LL) = 07 T, (U) Z %}

<sup{fa, n, 0T L ;. 0T, y(¢1) : (y,0) € 0K} < S+ €1 < (o).

T;ﬂ?l

Iterating this argument for ¢ = 3...h, we obtain that for every ¢, > 0,
such that

S+ € < inf{fz\1---/\i—1(u) ‘u€ V(Q)v ﬂ/\iv1(u) = Oa ’Y/\i71(u) > l}a

there exist A; = X;(A1...\_1) > 0, functions ¢; € Hy?(B(0,1)), subsets

K; in R* x R, with (0,3) in their interior and satisfying the properties

described in Corollary 2.11, so that, if A\; > );, then
Ty, 0Toy(p:) € Hy?(Q) VY(y,0) € Ki, Vi=1...h

and, for every ¢ = 2...h, it results:

5 < inf{fxl...kh(w Cw € V(Q), f(w) =0, (u) > %}
< Sup{f/\1~~/\h o T%i,x, o Ta,y(cpi) : (y, U) S aKz} <S+¢
< inf{fh...xh(w U V(R), Bry(u) =0, () > %}

<sup{fa,.a, 0T 2

Xi—1

\ i1 oTG,y(Qo'i—l) : (y,U) € aK’i—l} <5 + €1

where S +¢; < c(a;) Vi = 1...h.
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It is easy to verify that for every choice of the positive constants );. ..\,
the relation

o) < nt] f.0, (1) w € VIO, B (0) = 0. 7 )=
Vi=1...h
is satisfied. Therefore the following inequalities hold, if A\; > \; Vi = 1. . .A:
(3.11)
5 < mf{fh...“(u) Lu € V(R), () = 0, () > é}

< Sup{f)\l...xh OTAL,L. OTa,y(ﬂpi) : (y,a) €0K;} < S+¢g

< cla) < nf{ fy o, (0) 0 € VD), (00 =0, 3, (1) = 3

with S +¢; < 2%/"S Vi = 1...h.

Arguing as in the proof of Theorem 2.1, using (3.11) and the properties
of K, it is not difficult to prove that, for every ¢ = 1...h, the functional
far..x, admits a critical value v; verifying

{00 2. € VI, (0 = 0, 0, (0) 2 1< oo, (00

< Sup{f/\lw/\h © T,\L,Il °© Tﬂ,y((p’i) : (y,a) € aKZ} <S+te.

Thus, the solutions u; = [fx, ., (vi)]anvi (1 = 1...h) of Problem (1.1)
verify the relations (3.3); moreover, since ¢; > 0 can be taken arbitrarily
small, (3.4) holds. 0

Proof of Theorem 3.2. — Like in the proof of Theorem 3.1,
we use an iterative procedure: we find consecutively the parameters

B1y A1, 2y A2y ooy fhey Ary Aryq. .. Ap In such a way that the functional
{175 constrained on V() has at least (r 4 h) distinct critical values.

Let us choose ; > 0 in such a way that
“/7’10[1”[,71/2(Rn) < 5(22/" _ 1).

Arguing as in Theorem 2.1, we deduce that for every ¢; > 0 there exist
A1 = Ai(p1) > 0, 1 € Hy?(B(0,1)), and a subset K; of R™ x R (having
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the properties of Corollary 2.11) such that the following inequalities hold
for 0 < py < @1 and A1 > Ap(pq):
1

< inf{ £ (u) ru e V(Q), B, (w) =0, 1, (u) = g}

< sup{f{!o TL 2 0 Toy(p1) : (y,0) € K1} < 2% S

Wi =

S < inf{ (u) ru e V(Q), Ba(u) =0, m,(u) >
<sup{fy; 0 T'L o, 0 Toy(e1) : (y,0) € 0Ky}

and, moreover,

1): (y,0) €0K 1} < S+ ¢

SUp{ 2 0T ., 0T,
To’y 1) : (y’U) € Kl} <SS+ 2”1“a1“L"/2(]R")'

%%
SUp{L2 0 T ., 0 Toy(y

Let us fix p; < 1 and Ag > AL :I‘hen, as before, for every ¢; > 0 there
exist fig = fiz(p1, A1) > 0, A2 = Mo, Aty p2) > 0, 2 € Hy?(B(0,1))
and a subset Ky of R" x R (satisfying the properties of Corollary 2.11)
such that, if 0 < uo < 19 and Ay > Ay, it results:

|

L =

S < inf{f’”’“z( ):u e V(Q), Br,(u) =0, va,(u) >
<Sup{f{147 0 T ., 0 Toy2)  (3,0) € OKy)

Wi =

< inf{f"1 w(u) s u € V(Q), B, (u) =0, v, (u) =
< Sup{fuhﬂ; o Tl ,Iz © TG)y((p2) : (y70) € KZ}

and moreover

sup{ ;s 0 Tt o © To(

Toy(p2) : (y,0) € OKa} < S+ €
sup{f}; %, OTL w2 © Toy(

P2
¢2) : (y,0) € K2} < S+ 2uzes|lpnr2 g
As in the proof of Theorem 3.1, we can also assume that fia(p1, A1) is so

small and Ay = Xa(p1, A1, p2) is so large that the following inequalities
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hold:
S+ 22|zl Lz mey
< mf{ FEnge ) s u € V(Q), By () = 0, 9, (u) >

< sup{fi0%; 0 T oy 0 Toy(1) : (y,0) € 9K}

<inf{ 1200w € V@), B ) =0, )= § )

Soup{f{Hg 0 T sy 0 Toy(i1) < (w0) € Ky} < 2278

Wl

and moreover

Sup{ /l\?’f; OTL 3 OTGYU((pl) : (y)U) € aKl} <S+ea

#1 M2

sup{f s ©T e © Toy(wr): (y,0) € K1} < S+ 2u1|]a1|]Ln/2(Rn).
Repeating this procedure for ¢ = 3...r, for every ¢, > 0 we find
/ji = /jl(ula/\l - la/\z 1) > 0 /\ - /\ (uh/\l y— 17/\1 1,#1) (101
Hy*(B(0,1)), K;CR" x R such that, if 0 < p; < ul and \; > N\ Vi=
1...r, the following inequalities hold for ¢ = 2...7:
S <int{ S8 s e VIO, Bl =0, () 2 3
<sup{f3 5 0 T, 0 Toy(94) < (v, 0) € 0K}
. 1
<t { 20700 1w € V), ) = 0 ) = 3
<sup{f, X 0Tz, 0 Toy (i) : (,0) € Ki}

Wl

< inf{fi‘fj.if:(u) u e V), Ba (W) = 0, 1, () >
<sup{fy' {7 o T o, 0Toy(pin1): (y,0) € 0K, 1}

|

< 1nf{ /1\1111/(1: (U) U € V(Q), ,3,\1-_1<’LL) = 07 7Ai~l<u) - _}

SR

3
<Ssup{f{IAr 0T o, 0 Toy(wio1) : (y,0) € Kima} <2978

and, for ¢ = 1...r,

sup{ f{1 {7 o *oe: O Toylpi) : (y,0) €K} < S+ ¢
sup{f}; {7 °T1 2 0 Toy(pi) 1 (y,0) € Ki} < 8+ 2usllal| prrzmmy-
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For 1 = r +1,...,h, the same arguments used in the proof of Theo-
rem 3.1 allow to state that for every ¢; > 0 there exist

Ai = A1, A ey Ary Arg1- - Nil1), s € HY3(B(0,1)), K;CR* xR -

(with the properties described in Corollary 2.11) such that, if \; > X; for
t=1...~hand 0 < u; < fi; for i = 1...r, then the previous inequalities hold
with £ {"" instead of f{”'"{", and, moreover, for i = r+1,..., h, we have

1
S < inf{ S (w) u e V(Q), Ba(w) =0, v, (u) > §}
<sup{f2 4 o Ty 4, 0 Toy(00) : (3, 0) € OK)

< lnf{ /l\?fhr(u) ‘u € V(Q)3 IB/\i-l(u) = Oa Fyz\i—l(u) >

}

\_\,_/wlb_.

<sun{ S8 0Tt o Toslipi) : 0:0) € K
sup{f}, %) 0 T 2, 0 Toy(i) : (y,0) € 0K}

1
< lnf{ffll ,{L,:( u):u € V(Q), Bi,(u) =0, 5, (u) = §}’
sup{f3) %y 0 T o, 0 Toy(i) : (y,0) € 0K} < S+ ¢

_ml

Using these inequalities and the properties of the subsets K;, arguing as in
the proof of Theorem 2.1, it is not difficult to see that the functional ot
constrained on V() has, for every : = 1...r, a critical point ¥; such that

inf{fi‘f.‘:ﬁi‘; (u) 0 € V(R), fa(u) = 0, 1, (u) = } Fe ()
<sup{f{/ 57 °T1 2 0 Toy(@i) t (y,0) € K} <S4 2uil| il sz gy,

Moreover for every ¢« = 1...h it is possible to prove the existence of
another critical point v; € V() such that

it { S0 @) € VIO, B0 =0, () > 3js Rt
<sup{f{1 s oTi 2 9 Toy(0i) 1 (y,0) € OK;} < S+ €.

Thus, we obtain the solutions of (1.1)

—2

:[ff\t ,\h(vz)]nTUi (1=1...h)

n—2

i = [f{A0(0)] T4 (G=1..7)
that, clearly, verify (3.5) and (3.6). 0
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Proof of Theorem 3.3. — In analogy to what done in the proof of Theo-
rems 3.1 and 3.2, we choose the positive parameters ); and p; consecutively,

in such a way that the corresponding functional f{ " constrained on V' ({2)

has at least (r 4 k) distinct critical values. Here we choose these parameters
in the following order: gy, ta. . .tr, A1, Aa. . Ap.

Let us choose fi; > 0 such that
S+ HﬂlalHLn/Z(Rn) < 22/nS

Since [|a1f[pn/2(mn) # 0, Lemma 2.8 implies that c(uja;) > S for every
B € ]07 ﬁl [
Therefore there exists fip = fia(1) > 0 such that

S+ B2 Lrre ey < c(pan).

Notice that c{pi0n1) < S+ |||l g2y Yin €10, 1], because

/ |Dul?dz + 1, / oy (z)uldr < / |Duf?dz + ||pon || oz rny
n n R~
Vu € V(R™).

Iterating this procedure, we obtain, for every ¢ = 2...r,
fi = [i(p1...pim1) > O such that, if g; €]0, i,
S <e(pis) < S+ (|| prrerry < c(pi-106-1)
2
< S+ ||ﬁi_1ai_1||Ln/2(Rn) < 2= 8.

Then arguing as in section 2, we find, for every ¢; > 0, AL = ;\1(,u1. C b )s
@1 € Hy*(B(0,1)), K;CR™ xR (satisfying the properties described in
Corollary 2.11) such that, if 0 < p; < g1 and A; > Ay,

sup{fy' o Tﬁ,zl 0Ty y(p1): (y,0) € 0K 1} < S+ €,

(3.12) sup{f}; o T'L o, 0 Toy(p1) : (y,0) € K1}

< S+ llewtl| gz grny min(fn, 201) < 2% 8.

In particular, we choose €; > 0 such that S + ¢; < ¢(pra,).
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Repeating the same procedure, for any €2 > 0 we prove that there exist
X2 = Xo(pia. . tir, A1), 92 € Hy®(B(0,1)), K2CR™ xR,
such that, if
0 < p1 < fin, A1 > A1, 0< pg < fig, A2 > Ao,
then the inequalities (3.12) hold with f{'"{? instead of f{ and, moreover,

sup{ f} #1’#2 ° TL 2, 0 Toy(02) : (y,0) € 0Kz} < S + €2,
sup{f ’“’“Z ° TL 22 © Toy(2) 1 (y,0) € OK,}
<S5+ ”azlluﬂ(nn) min(fig, 2p2) < c(pron).

In particular, choose €2 > 0 such that

S+e< inf{ Si(u) ru € V(Q), 1, (u) =0, By (u) > %}
< inf {180 0 € VIO, () =0, () 3.

Arguing in the same way for : = 3...r, for every ¢; > 0 we find
X = Ni(p1e i, AL Aic1), @ H”( (0,1)), K;C R™ x R, such that,
if0<p,i<p,iand)\i>)\Vz-l .r, then

Sup{f)’f N OT—L 2 O Toy(wi) i (y,0) € OK;} < S +¢,

(3.13)  sup{f3}73] °T1 w0 Toy(pi) : (y,0) € Ki}
<8 + ||ai]]Ln/2(]Rn) min(ﬁi,2p,i) Vi=1...r.

In particular, we choose ¢; > 0 such that

Wl

S+el<1nf{ Vokr(u) cu e V(RQ), B (u)=0, ya_,(u) > }
Vi=2...r

For 1 = r 4+ 1,...,h, by arguing as in the proof of Theorem (3.1), we
find for every ¢; > 0,

i = N(pre ey A Xil1), @i € HY?(B(0,1)), KicR™ xR
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(satistying the properties of Corollary 2.11) such that, if
O<p;<p; Yi=1l..r and A >N\ Vi= 1...h,

then the inequalities (3.13) hold when we replace the functionals by f{*{
and, moreover, it results for every i = r +1,..., h:

sup{ ;% 0 T o, 0 Toy (i) : (y,0) € 0K} < S+ ¢,
sup LS 0 T o 0 Toy (i) ¢ (v, 0) € 0K}

< 1nf{ - /l\‘}:( ) U € V(Q)7 /6/\h1(u) = 07 FyAi—l( ) 2

}

Wl

We also assume that

S+e€ < cla;) < inf{ff\‘l1 $7(u) ru e V(Q), By, (u) =0, v, (u) = %}

Thus, the topology of the sublevels of the functional FAisr constrained on

V() can be described, if 0 < p; < f; Vi = 1.. rand)\ >)\\7’z—1 .h,
by the following inequalities (that hold for ¢ = 2...h):

S <t {F20 () u € VIO), ) =0, 2 ) > 3
<sup{f{ "} o T%m 0T, y(p)i:(y,0) €OK;} < S+ ¢

<int {4 ) s € VIO), () =0, ) > 3

< sup{ 35 0T o, 0 Toy(9)i : (y,0) € OKi1} < S+ iy

1 2
<int { 400w € V@), o, ) = 0, 1. (1) = 3] <2
for ¢+ = 2...r we have, in addition,
S <sup{fyl{ 0Ty, 0T, (¢:): (y,0) € 8K,}

<int { S0 ) s u € V), ) = 0, 7, (1) = )
<Sup{ 4 0 Ty 0 Tyl : (4,0 € KG)

Annales de I'Institut Henri Poincaré - Analyse non lindaire



SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 225
< S+ |atill prregrey min(f, 2p) < c(pi-10i-1)
. 1
<int { 40w € VIO B0 =0, 0= 5

Loz © Toy(pio1): (y,0) € Ki_1}

. _ 2
< S+ ”ai_lnLn/Z(Rn) mln(ui_l,Zui_l) <27 8.

< sup{ o T_

Then the above inequalities, and the properties of the subsets K;, allow
us to state that the functional f} %" constrained on V'(£2) has, for every
1 = 1...h, a critical point v; such that

i {22725 w € VIO ) =0, () > 5| € K00
<sup{fy' 4 oTy oT,,(pi): (y,0) EOK;} < S +e.

—Iz

Furthermore for every 4 = 1...r there exists another critical point
9; € V() such that

inf{ /’\T f’:(u) u € V(Q), Br(u) =0, m(u) = —} f/(‘ll /’\‘;(A)
< sup{ {1 %7 0 T o 0 Toy(pi) = (y,0) € Ki}
<S5+ 2Hi|laz||Ln/2(Rn)-
Therefore the solutions of (1.1)
= [t )] T u (=1 k)
i = [t @) T o (i=1.),

corresponding to these critical points, satisfy (3.7) and, since ¢; and p; can
be chosen arbitrarily small, the relations (3.6) hold. O

Remark 3.4. — In the proof of Theorems 3.2 and 3.3 we obtain (r + h)
distinct solutions of Problem (1.1) by choosing the parameter A; and p; in
such a way that the corresponding functional f{§" has at least (r + h)
distinct critical values; as already observed, we do not require that the
concentration points z;...z, are distinct. On the other hand, it is very
reasonable that, if we assume that the concentration points z;...r, are
distinct, an assertion of the following type holds:

there exists ¢ > 0 such that, if

1
’\i>g Vi=1...h and O0<p; <e Vj=1...r,
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then there exist at least (r +h) distinct critical points for f{ {7 constrained
on V(), corresponding to critical values not necessarily distinct.

Moreover, in analogy with other multiplicity results on elliptic problems
involving critical Sobolev exponents (see [21], for example), we can
conjecture that h distinct concentration points x;...r; guarantee the
existence of at least 2("*") — 1 distinct positive solutions, if A; > % Vi =
l...hand 0 < p; < e Vj = 1...1.

Remark 3.5 (concentration on subset of small capacity). — Theorems
2.1, 3.1, 3.2 and 3.3 associate the existence and the multiplicity of positive
solutions for Problem (1.1) to the property that some parts of the nonnegative
function a(x) are concentrated near some points of 2.

More in general, one can consider the case where a(z) is a nonnegative
function concentrated near some subsets of {2, having small capacity: for
example, we can consider functions a(z) of the form:

a(a:) _ A ifx € H;
T 10 otherwise,

where (H;); is a sequence of subsets of  with lim capyH; = 0, and
lim A\, = +o0.

100

In this case the study of the multiplicity of positive solutions become
more interesting because the topological properties of the subsets H; also
intervene and contribute to increase the number of solutions.

Multiplicity results concerning functions a(z) of this type will be reported
in a paper in preparation.
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