Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator

by

P. DELANOË*

C.N.R.S., Université de Nice-Sophia Antipolis, I.M.S.P., parc Valrose, 06034 Nice Cedex, France

ABSTRACT. — Given two bounded strictly convex domains of \mathbb{R}^n and a positive function on their product, all data being smooth, find a smooth strictly convex function whose gradient maps one domain onto the other with Jacobian determinant proportional to the given function. We solve this problem under the (technical) condition n=2.

Key words: Strictly convex functions, prescribed gradient image, Monge-Ampère operator, continuity method, a priori estimates.

RÉSUMÉ. — Soit deux domaines bornés strictement convexes de \mathbb{R}^n et une fonction positive définie sur leur produit, ces données étant lisses, trouver une fonction lisse strictement convexe dont le gradient applique un domaine sur l'autre avec déterminant Jacobien proportionnel à la fonction donnée. Nous résolvons ce problème sous la condition (technique) n=2.

Classification A.M.S.: 35 J 65, 35 B 45, 53 C 45.

^(*) Partially supported by the CEE contract GADGET #SC1-0105-C.

I. INTRODUCTION

Let D and D* be bounded C^{∞} strictly convex domains of \mathbb{R}^n . We denote by $S(D, D^*)$ the subset of $C^{\infty}(\overline{D})$ consisting of strictly convex real functions (1) whose gradient maps D onto D*. Given any $u \in C^{\infty}(\overline{D})$, we denote by A(u) the Jacobian determinant of the gradient mapping $x \to du(x)$. The nonlinear second order differential operator A is called the *Monge-Ampère* operator on D. Basic features of A restricted to $S(D, D^*)$ are listed in the preliminary

Proposition 1. – A sends $S(D, D^*)$ into

$$\Sigma := \left\{ f \in \mathcal{C}^{\infty}(\bar{\mathcal{D}}), f > 0, \left\langle f \right\rangle = \left| \mathcal{D}^* \right| / \left| \mathcal{D} \right| \right\}$$

 $(\langle f \rangle)$ denotes the average of f over D and |D|, the Lebesgue measure of D). On $S(D, D^*)$, A is elliptic and its derivative is divergence-like. Given any defining function h^* of D^* , the boundary operator $u \to B(u) := h^*(du)|_{\partial D}$ is co-normal with respect to A on $S(D, D^*)$. Furthermore, given any $u \in S(D, D^*)$ and any $x \in \partial D$, the co-normal direction at x with respect to the derivative of A at u is nothing but the normal direction of ∂D^* at du(x).

We postpone the proof of proposition 1 till the end of this section. The second boundary-value problem consists in showing that $A: S(D, D^*) \to \Sigma$ is onto. More generally, we wish to solve in $S(D, D^*)$ two kinds of equations namely

$$Log A(u) = f(x, du) + \langle u \rangle$$
 (1)

$$Log A(u) = F(x, du, u)$$
 (2)

where $f \in C^{\infty}(\bar{\mathbf{D}} \times \bar{\mathbf{D}}^*)$ and $\mathbf{F} \in C^{\infty}(\bar{\mathbf{D}} \times \bar{\mathbf{D}}^* \times \mathbb{R})$, the latter being uniformly increasing in u. We aim at the following

THEOREM. – Equations (1) and (2) are uniquely solvable in $S(D, D^*)$ provided n=2.

The second boundary-value problem was first posed and solved (with n=2 but the methods, geometric in nature, extend to any dimension) in a generalized sense in [18] chapter V section 3 (see also [3] theorem 2, where the whole plane is taken in place of D). The elliptic Monge-Ampère operator with a quasilinear Neumann boundary condition is treated in [16], in any dimension, and it is further treated with a quasilinear oblique boundary condition in [21] provided n=2. A general study of nonlinear oblique boundary-value problems for nonlinear second order uniformly

⁽¹⁾ Here the meaning of "strictly convex" is restricted to having a positive-definite hessian matrix, which rules out e.g. the strictly convex function $u(x) = |x - y|^4$ near $y \in D$, as pointed out to us by Martin Zerner.

elliptic equations is performed in [15]. Quite recently, the following problem was solved [5]: existence and regularity on a given bounded domain D of \mathbb{R}^n (no convexity assumption, no restriction on n) of a diffeomorphism from \bar{D} to itself, reducing to the identity on ∂D , with prescribed positive Jacobian determinant (of average 1 on D).

- Remarks. -1. The restriction n=2 is unsatisfactory but we could not draw second order boundary estimates without it. In May 1988, in Granada (Spain), Neil Trudinger informed us that Kai-Sing Tso had treated the problem in any dimension; however, from that time on, Tso's preprint has not been available due to a serious gap in his proof, as he himself wrote us [20]. In June 1989, John Urbas visited us in Antibes and he kindly advised us to submit our own 2-dimensional result; it is a pleasure to thank him for his thorough reading of the present paper. This may be the right place to thank also the Referee for pointing out a mistake at the end of the original proof of proposition 2 below, and a few inaccuracies (particularly one in remark 6).
- 2. We do *not* assume the non-emptiness of $S(D, D^*)$ to prove the theorem; we thus *obtain* it (when n=2) as a by-product of our proof. In fact, we found no straightforward way of exhibiting any member of $S(D, D^*)$ —except, of course, if $D=D^*-$, although we can write down explicitly a $C^{\infty}(\bar{D})$ convex (but not *strictly* convex) function with gradient image D^* , constructed from any suitable *support function* for D^* . Provided non-emptiness, it is possible to prove that $S(D, D^*)$ is a locally closed Fréchet submanifold of the open subset of strictly convex functions in $C^{\infty}(\bar{D})$, as the fiber of a submersion.
- 3. From the proof below, it appears that, given any $\alpha \in (0, 1)$ $C^{2, \alpha}(\overline{D})$ solutions may be derived (by approximation) from the above theorem under the sole regularity assumptions: D and D* are $C^{2, 1}$, f and F are $C^{1, 1}$. We did not study further 2-dimensional global regularity refinements as done in [19], [14] for the Dirichlet problem.
- 4. The uniqueness for (1) shows that, in general, the equation $\operatorname{Log} A(u) = f(x, du)$ is *not* well-posed on $S(D, D^*)$. The idea of introducing in (1) the average term goes back to [6] and it proved to be useful in various contexts ([2], [8], [9], [10]). If $u \in S(D, D^*)$ solves (1), then $v = u + \operatorname{Const.}$ solves in $S(D, D^*)$ the equation $\operatorname{Log} A(v) = f(x, dv) + \langle u \rangle$, while the Legendre transform v^* of v solves in $S(D^*, D)$ the "dual" equation $\operatorname{Log} A(v^*) = -f(dv^*, x) \langle u \rangle$. In case $f(x, x^*) = f_1(x) f_2(x^*)$, the value of $\langle u \rangle$ is a priori fixed by the constraint (due to the "Jacobian" structure of A)

$$\int_{\mathbf{D}^*} e^{f_2(x^*)} dx^* = e^{\langle u \rangle} \int_{\mathbf{D}} e^{f_1(x)} dx.$$

The prescribed Gauss-curvature equation is an example of this type.

Proof of proposition 1. — By its very definition, as the *Jacobian* of the gradient mapping, A readily sends $S(D, D^*)$ into the submanifold Σ .

Let $u \in S(D, D^*)$. In euclidean co-ordinates (x^1, \ldots, x^n) , A (u) reads

$$A(u) = \det(u_{ij})$$

and the derivative of A at u reads

$$\delta u \in C^{\infty}(\bar{D}) \rightarrow dA(u)(\delta u) = A^{ij}(\delta u)_{ij}$$

where

$$A^{ij} = A(u) u^{ij}$$

(indices denote partial derivatives, Einstein's convention holds, (u^{ij}) is the matrix inverse of (u_{ij}) and (A^{ij}) , its co-matrix). Since u is strictly convex, A is indeed *elliptic* at u. Furthermore, one easily verifies the following identity: for any $\delta u \in \mathbb{C}^{\infty}(\bar{\mathbb{D}})$,

$$A^{ij}(\delta u)_{ij} \equiv [A^{ij}(\delta u)_i]_i$$

So, as asserted, dA(u) is divergence-like. The co-normal boundary operator associated with A at u is

$$\delta u \in C^{\infty}(\bar{D}) \to \beta(\delta u) = A^{ij} N^{i}(\delta u)_{i} \in C^{\infty}(\partial D),$$

N standing for the outward unit normal on ∂D . Fix a defining function h^* for D^* (i. e. $h^* \in C^{\infty}(\bar{D}^*)$ is strictly convex and vanishes on ∂D^*). Since $u \in S(D, D^*)$, the function $H := h^*(du) \in C^{\infty}(\bar{D})$ is negative inside D and vanishes on ∂D . Moreover, a straightforward computation yields in D:

$$u^{ij} \mathbf{H}_{ij} - u^{ij} [\text{Log A}(u)]_i \mathbf{H}_j = u_{ij} h_{ij}^* > 0.$$

Hopf's lemma [12] implies that $H_N > 0$ on ∂D . Since

$$\mathbf{H}_i = u_{ij} h_j^*$$

the boundary operators satisfy

$$A(u) dB(u) = H_N \beta$$
.

So B is indeed *co-normal* with respect to A at u.

Last, the geometric interpretation of the co-normal direction β given at the end of proposition 1, simply follows from the fact that dB(u)(x) equals the derivative in the direction of $dh^*[du(x)]$ which is precisely (outward) normal to ∂D^* at du(x). \square

II. THE CONTINUITY METHOD

Fix $(x_0, x_0^*) \in D \times D^*$ and $\lambda \in (0, 1]$ such that the gradient of

$$v_0 = \frac{\lambda}{2} |x - x_0|^2 + x_0^* \cdot x$$

maps $\bar{\mathbf{D}}$ into \mathbf{D}^* (|.| stands for the standard euclidean norm, . for the euclidean scalar product). Set $u_0 := v_0 - \langle v_0 \rangle$, $D_0 := du_0(\mathbf{D})$. A routine verification shows that \mathbf{D}_0 is \mathbf{C}^{∞} strictly convex. Let $t \in [0, 1] \to \mathbf{D}_t$ be a smooth path of bounded \mathbf{C}^{∞} strictly convex domains connecting \mathbf{D}_0 to $\mathbf{D}_1 = \mathbf{D}^*$, with $\mathbf{D}_t \subset \mathbf{D}_{t'}$ for t < t'; fix $t \to h_t$ a smooth path of corresponding defining functions. For each $t \in [0, 1]$, consider in $\mathbf{S}(\mathbf{D}, \mathbf{D}_t)$ the two following equations:

$$\operatorname{Log} A(u) = tf(x, du) + (1 - t) n \operatorname{Log} \lambda + \langle u \rangle$$

$$\operatorname{Log} A(u) = t F(x, du, u) + (1 - t) (u - u_0 + n \operatorname{Log} \lambda).$$
(1.t)

By construction u_0 solves both equations for t=0, so (for i=1, 2) the sets $T_i := \{t \in [0, 1], (i.t) \text{ admits a solution in } S(D, D_t)\}$ are non-empty. Hereafter, we show that they are both relatively open and closed in [0, 1]: if so, by connectedness, they coincide with all of [0, 1]. The solutions for t=1 are those announced in the theorem; their uniqueness is established at the end of this section.

Let us show that T_1 is *relatively open* in [0, 1]; similar, more standard (due to the monotonicity assumption of F), reasonings hold for T_2 . Fix $\alpha \in (0, 1)$ and denote by $U^{2,\alpha}$ the open subset of $C^{2,\alpha}(\bar{D})$ consisting of strictly convex functions. On $[0, 1] \times U^{2,\alpha}$, consider the smooth map (M, B) defined by

$$M(t, u) := \operatorname{Log} A(u) - t f(x, du) - (1 - t) n \operatorname{Log} \lambda - \langle u \rangle,$$

$$B(t, u) := h_t(du)|_{\partial D},$$

and ranging in $C^{0,\alpha}(\bar{D}) \times C^{1,\alpha}(\partial D)$. Let $t_0 \in T$; there thus exists u_0 in $U^{2,\alpha}$ such that $(M, B)(t_0, u_0) = (0, 0)$. The proof is based on the Banach implicit function theorem applied to (M, B) at (t_0, u_0) . We want to show that the map

$$(m, b) := [\mathbf{M}_{u}(t_0, u_0), \mathbf{B}_{u}(t_0, u_0)] : \mathbf{C}^{2, \alpha}(\bar{\mathbf{D}}) \to \mathbf{C}^{0, \alpha}(\bar{\mathbf{D}}) \times \mathbf{C}^{1, \alpha}(\partial \mathbf{D})$$

is an *isomorphism*. Record the following expression of (m, b) in euclidean co-ordinates:

$$m(\delta u) = u_0^{ij} (\delta u)_{ij} - t_0 f_{u_i}(x, du_0) (\delta u)_i - \langle \delta u \rangle,$$

$$b(\delta u) = (h_t)_i (du_0) (\delta u)_i.$$

From proposition 1, we know that b is oblique; so Hopf's maximum principle [11] combined with Hopf's lemma [12] imply that any $\delta u \in \text{Ker}(m, b)$ is constant, hence actually $\langle \delta u \rangle = 0$ and $\delta u \equiv 0$. Therefore (m, b) is one-to-one.

Now we fix $(\delta M_0, \delta B_0) \in C^{0, \alpha}(\overline{D}) \times C^{1, \alpha}(\partial D)$ and we look for δu in $C^{2, \alpha}(\overline{D})$ solving: $(m, b) (\delta u_0) = (\delta M_0, \delta B_0)$. Consider the auxiliary map

$$(m', b') := \{ A(u_0)(m + \langle . \rangle), [A(u_0)/H_N] b \},$$

where $H = h_t(du_0)$. It follows from proposition 1 that, given any $(\delta M', \delta B') \in \mathbb{C}^{0, \alpha}(\bar{D}) \times \mathbb{C}^{1, \alpha}(\partial D)$, the function $\delta u' \in \mathbb{C}^{2, \alpha}(\bar{D})$ solves:

$$(m', b')(\delta u') = (\delta M', \delta B'), \tag{3}$$

if and only if, for every $\delta v' \in W^{1,2}(D)$,

$$L(\delta u', \, \delta v') = \int_{\partial D} \delta B' \, \delta v \, da - \int_{D} \delta M' \, \delta v \, dx$$

(da is the measure induced on ∂D by dx), where L is the continuous bilinear form on W^{1, 2}(D) given by

$$L(\delta u', \, \delta v') := \int_{D} A(u_0) [u_0^{ij} (\delta u')_i (\delta v')_j + t_0 f_{u_i}(x, \, du_0) (\delta u')_i \, \delta v'] \, dx.$$

Let us argue on (m', b') as in [6]. Combining the ellipticity of m' and the obliqueness of b' (asserted by proposition 1), with Hopf's maximum principle, Schauder's estimates and Fredholm's theory of *compact* operators, we know that the kernel of the adjoint of (m', b') (formally obtained by varying the first argument of L instead of the second, and by integrating by parts) is *one-dimensional*, let $\delta w \in \mathbb{C}^{2,\alpha}(\bar{\mathbb{D}})$ span it, and that (3) is solvable up to an additive constant if and only if

$$\int_{\partial D} \delta B' \, \delta w \, da - \int_{D} \delta M' \, \delta w \, dx = 0. \tag{4}$$

Observe that

$$\int_{D} \mathbf{A}(u_0) \, \delta w \, dx \neq 0$$

since, otherwise, one could solve (3) with $(\delta M', \delta B') = [A(u_0), 0]$ contradicting the maximum principle. We may thus normalize δw by

$$\int_{D} \mathbf{A}(u_0) \, \delta w \, dx = 1.$$

Then we can solve (3) with right-hand side equals:

$$\begin{split} \left\{ \mathbf{A} \left(u_0 \right) \left[\delta \mathbf{M}_0 + \int_{\partial \mathbf{D}} \left[\mathbf{A} \left(u_0 \right) / \mathbf{H}_{\mathbf{N}} \right] \delta \mathbf{B}_0 \, \delta w \, da \right. \\ \left. - \int_{\mathbf{D}} \mathbf{A} \left(u_0 \right) \delta \mathbf{M}_0 \, \delta w \, dx \right], \left[\mathbf{A} \left(u_0 \right) / \mathbf{H}_{\mathbf{N}} \right] \delta \mathbf{B}_0 \right\} \end{split}$$

since the latter satisfies (4). If $\delta u'_0$ is a solution, then

$$\delta u_0 = \delta u_0' - \langle \delta u_0' \rangle + \int_{\partial D} [\mathbf{A} (u_0)/\mathbf{H}_{\mathbf{N}}] \, \delta \mathbf{B}_0 \, \delta w \, da - \int_{D} \mathbf{A} (u_0) \, \delta \mathbf{M}_0 \, \delta w \, dx$$

solves the original equation

$$(m, b)(\delta u_0) = (\delta M_0, \delta B_0).$$

So (m, b) is also *onto*. The implicit function theorem thus implies the existence of a real $\delta > 0$ and of a smooth map

$$t \in (t_0 - \delta, t_0 + \delta) \cap [0, 1] \rightarrow u_t \in U^{2, \alpha}$$

such that (M, B)(t, u) = (0, 0). By proposition 1 and standard elliptic regularity [1], $u_t \in S(D, D_t)$, hence T_1 is relatively open. \square

Assuming n=2, we shall carry out a $C^{2,\alpha}(\overline{D})$ a priori bound, independent of $t \in [0, 1]$, on the solutions in $S(D, D_t)$ of equations (1.t) and (2.t). Provided such a bound exists, the closedness of T_i (i=1, 2) follows in a standard way from Ascoli's theorem combined with proposition 1 and elliptic regularity [1].

Last, let us prove that (1) admits at most one solution in $S(D, D^*)$; a similar argument holds for (2). By contradiction, let u_0 and u_1 be two distinct solutions of (1) in $S(D, D^*)$. Then, for $t \in [0, 1]$, $u_t := tu_1 + (1-t)u_0 \in S(D, D^*)$ and $u := u_1 - u_0$ solves the linear boundary-value problem:

$$\left(\int_0^1 u_t^{ij} dt\right) u_{ij} - \left[\int_0^1 f_{u_i}(x, du_t) dt\right] u_i - \langle u \rangle = 0 \quad \text{in D,}$$

$$\left[\int_0^1 (h_1)_i (du_t) dt\right] u_i = 0 \quad \text{on } \partial D$$

which is elliptic inside D and oblique on ∂D by proposition 1. The maximum principle implies $u \equiv 0$, contradicting the assumption. \Box

III. PRELIMINARY A PRIORI ESTIMATES

In this section, we do *not* need yet the condition n=2. For any $v \in S(D, D_t)$, $dv \in D^*$, hence |dv| is bounded above by $\rho(D^*) := \max_{v \in D^*} |x^*|$.

Set $|f|_0 = \max_{\overline{D} \times \overline{D}^*} |f(x, x^*)|$, and let $u \in S(D, D_t)$ solve (1.t), then

$$e^{-|f|_0} A(u) \leq e^{\langle u \rangle} \leq e^{|f|_0 + n |\log \lambda|} A(u).$$

Integrating this over D yields for $\langle u \rangle$ the pinching:

$$\operatorname{Log} | \mathcal{D}_0 | - | f |_0 \leq \langle u \rangle \leq \operatorname{Log} | \mathcal{D}^* | + | f |_0 + n | \operatorname{Log} \lambda |.$$

Since $|du| \le \rho(D^*)$, u is a priori bounded in $C^1(\overline{D})$ in terms of $|D^*|$, $\rho(D^*)$, $|f|_0$, $|D_0|$, λ and n.

By assumption, there exists $\mu \in (0, 1]$ such that $F_{\mu} \ge \mu$ on $\bar{D} \times \bar{D}^* \times \mathbb{R}$. The right-hand side of equation (2.t), let us denote it by

thus satisfies $f_u \ge \mu$ as well, on $[0, 1] \times \bar{D} \times \bar{D}^* \times \mathbb{R}$. Let $u \in S(D, D_t)$ solve (2.t). Set

$$\mathbf{M} := \max_{\bar{\mathbf{D}}} (u), \qquad m := \min_{\bar{\mathbf{D}}} (u)$$

$$\mathbf{M}_{0} := \max_{[0, 1] \times \bar{\mathbf{D}} \times \bar{\mathbf{D}}^{*}} [f(t, x, x^{*}, 0)], m_{0} := \min_{[0, 1] \times \bar{\mathbf{D}} \times \bar{\mathbf{D}}^{*}} [f(t, x, x^{*}, 0)].$$

From the mean value theorem, we know that

$$M - m \leq \rho(D^*) \delta(D),$$

 $\delta(D)$ standing for the diameter of D. If $M \ge 0$ and $m \le 0$, it implies $|u| \le \rho(D^*) \delta(D)$ and we are done. If not, say for instance M < 0, then $A(u) = \exp[f(t, x, du, u)] \le \exp[M_0 + \mu M]$. Integrating this over D yields: $\mu M \ge [\text{Log}(|D_0|/|D|) - M_0]$, hence under our assumption $[\text{Log}(|D_0|/|D|) - M_0] < 0$ and

$$-m = \max_{\overline{D}} |u| \leq \rho(D^*) \delta(D) + [M_0 - Log(|D_0|/|D|)]/\mu.$$

Similarly, m>0 yields $[Log(|D^*|/|D|)-m_0]>0$ and

$$M = \max_{\overline{D}} |u| \leq \rho(D^*) \delta(D) + [Log(|D^*|/|D|) - m_0]/\mu.$$

In any case, we obtain a $C^1(\bar{D})$ a priori bound on u in terms of $|D^*|$, $\rho(D^*)$, |D|, $\delta(D)$, $|D_0|$, M_0 , m_0 and μ .

For simplicity, let us give a unified treatment of higher order a priori estimates for equations (1.t) and (2.t) by rewriting these equations into a single general form

$$Log A(u) = \Gamma(t, x, du, u, \langle u \rangle). \tag{*}$$

Let $u \in S(D, D_i)$ solve (*). In this section, a constant will be said *under control* provided it depends only on the following quantities: $|u|_1$, *i. e.* the $C^1(\bar{D})$ -norm of u, on the C^2 -norm of Γ on

$$K := [0, 1] \times \overline{D} \times \overline{D}^* \times I \times I,$$

where $I = [-|u|_1, |u|_1]$, on the $C^0([0, 1], C^2)$ -norm of $t \to h_t$ (the fixed path of defining functions, cf. supra), and on the positive real

$$\sigma := \min_{t \in [0, 1]} \sigma(t)$$

where $\sigma(t)$ is the smallest eigenvalue of $[(h_t)_{ij}]$ over \bar{D}_t .

Since u is convex, a $C^2(\bar{D})$ bound on u follows from a bound on

$$\mathbf{M}_{2} := \max_{(x, \theta) \in \overline{\mathbf{D}} \times \mathbf{S}} [u_{\theta\theta}(x)]$$

S standing for the unit sphere of Rⁿ. Set $H := h_t(du)$ and consider

$$Q:(c,\,\theta,\,x)\in(0,\,\infty)\times S\times\bar{D}\to Q(c,\,\theta,\,x)=\operatorname{Log}\left[u_{\theta\theta}(x)\right]+c\,H(x).$$

PROPOSITION 2. – There exists $C \in (0, \infty)$ under control such that, if $\max_{(\theta, x) \in S \times \overline{D}} [Q(C, \theta, x)]$ occurs at $(z, x_0) \in S \times D$ with x_0 interior to D, then

M₂ is under control.

This proposition does not refer to any boundary condition and constitutes by no means an interior estimate (it is rather the type of argument suited on a compact manifold). A similar proposition (with Δu and $|du|^2$, respectively in place of $u_{\theta\theta}$ and H) is lemma 2 of [13], later (and independently) reproved in [7] (p. 694); a similar argument is used in [4] (p. 398). Here proposition 2 may serve for the higher dimensional theorem, due to the special form of Q; so for completeness, we provide a detailed proof of it.

Proof. – Fix $(c, \theta) \in (0, \infty) \times S$ and consider Q as a function of x only. Let us record some auxiliary formulae: differentiating twice equation (*) in the θ -direction yields,

$$u^{ij}u_{\theta ij} = (\Gamma)_{\theta} \equiv \Gamma_{\theta} + \Gamma_{u}u_{\theta} + \Gamma_{ui}u_{\theta i} \tag{5}$$

$$u^{ij}u_{\theta\theta ij} = (\Gamma)_{\theta\theta} + u^{ik}u^{jm}u_{\theta ij}u_{\theta km} \tag{6}$$

with

$$(\Gamma)_{\theta\theta} \equiv \Gamma_{u_i} u_{\theta\theta i} + \Gamma_{u_i u_j} u_{\theta i} u_{\theta j} + 2 (\Gamma_{\theta u_i} + u_{\theta} \Gamma_{u u_i}) u_{\theta i} + \Gamma_{u_i} u_{\theta\theta} + [\Gamma_{\theta\theta} + 2 u_{\theta} \Gamma_{\theta u} + \Gamma_{u_i} (u_{\theta})^2].$$

Differentiating twice H yields (with the subscript t, of h, dropped),

$$\mathbf{H}_i = h_k \, u_{ik} \tag{7}$$

$$H_{ij} = h_k u_{ijk} + h_{km} u_{ik} u_{jm}$$
 (8)

and similarly for O.

$$Q_{i} = (u_{\theta\theta i}/u_{\theta\theta}) + c H_{i}$$

$$Q_{ij} = (u_{\theta\theta ij}/u_{\theta\theta}) - [u_{\theta\theta i} u_{\theta\theta j}/(u_{\theta\theta})^{2}] + c H_{ij}.$$

Combining (8) with (5) and (7), we get

$$u^{ij} \mathbf{H}_{ij} = h_i (\Gamma_i + \Gamma_u u_i) + \Gamma_{u_i} \mathbf{H}_i + h_{ij} u_{ij}$$
(9)

while from (6) we get,

$$u^{ij} Q_{ij} = [(\Gamma)_{\theta\theta}/u_{\theta\theta}] + (1/u_{\theta\theta}) [u^{ik} u^{jm} u_{\theta ij} u_{\theta km} - (1/u_{\theta\theta}) u^{ij} u_{\theta\theta i} u_{\theta\theta i}] + cu^{ij} H_{ij}.$$

Expanding the square

$$(u_{\theta\theta}\,u_{\theta ij}-u_{\theta i}\,u_{\theta\theta j})(u_{\theta\theta}\,u_{\theta km}-u_{\theta k}\,u_{\theta\theta m})\,u^{ik}\,u^{jm}$$

one immediately verifies the identity:

$$u^{ik} u^{jm} u_{\theta ij} u_{\theta km} \ge (1/u_{\theta\theta}) u^{ij} u_{\theta\theta i} u_{\theta\theta j}.$$

So,

$$u^{ij} \mathbf{Q}_{ij} \geq [(\Gamma)_{\theta\theta}/u_{\theta\theta}] + cu^{ij} \mathbf{H}_{ij}.$$

452 P. DELANOË

Combining the expression of $(\Gamma)_{\theta\theta}$ with that of Q_i and (9) yields,

$$u^{ij} Q_{ij} - \Gamma_{u_i} Q_i \ge ch_{ij} u_{ij} + (1/u_{\theta\theta}) \Gamma_{u_i u_j} u_{\theta i} u_{\theta j} + (2/u_{\theta\theta}) (\Gamma_{\theta u_i} + u_{\theta} \Gamma_{u u_i}) u_{\theta i} + \Gamma_{u} + ch_i (\Gamma_i + \Gamma_u u_i) + (1/u_{\theta\theta}) [\Gamma_{\theta\theta} + 2 u_{\theta} \Gamma_{\theta u} + \Gamma_{u u} (u_{\theta})^2].$$
(10)

Introducing the constant σ (defined above) we get

$$(1/u_{\theta\theta}) \Gamma_{u_{i}u_{j}} u_{\theta i} u_{\theta j} + \frac{1}{3} ch_{ij} u_{ij}$$

$$\geq (1/u_{\theta\theta}) u_{ik} u_{jm} \left(\theta^{k} \theta^{m} \Gamma_{u_{i}u_{j}} + \frac{1}{3} c \sigma u_{\theta\theta} \delta_{ij} u^{km} \right)$$

$$\geq (1/u_{\theta\theta}) u_{\theta i} u_{\theta j} \left(\Gamma_{u_{i}u_{j}} + \frac{1}{3} c \sigma \delta_{ij} \right)$$

this last inequality being obtained by noting that, identically for u strictly convex, $u_{\theta\theta} u^{km} \ge \theta^k \theta^m$. Hence our first requirement on c is:

$$\left(\Gamma_{u_i u_j} + \frac{1}{3} c \sigma \delta_{ij}\right) \ge 0$$

in the sense of symmetric matrices, over K. To express our second requirement on c, we first note that the inequality between the arithmetic and the geometric means of n positive numbers applied to the eigenvalues of (u_{ij}) and combined with (*), yields on D:

$$\Delta u \ge n \exp\left(\frac{1}{n} \min_{\kappa} \Gamma\right) = : \gamma.$$

Then we take c such that

$$2\min\left[\Gamma_{yu_y}(r) + u_y(x)\Gamma_{uu_y}(r)\right] + \frac{1}{3}c\sigma\gamma \ge 0$$

the minimum being taken on $(r, x, y) \in K \times \overline{D} \times S$. From now on, c has a fixed value under control, C, meeting both requirements and we take $(\theta, x) = (z, x_0)$ as defined in proposition 2. In particular, $u_{zz}(x_0)$ is now the *maximum* eigenvalue of $[u_{ij}(x_0)]$; diagonalizing the latter and using the second requirement on C, we obtain at x_0 :

$$\frac{1}{3} \, \mathbf{C} \, h_{ij} \, u_{ij} + (2/u_{zz}) \, (\Gamma_{zu_i} + u_z \, \Gamma_{uu_i}) \, u_{zi} \\ \ge \frac{1}{3} \, \mathbf{C} \, \sigma \, \Delta u + 2 \, (\Gamma_{zu_z} + u_z \, \Gamma_{uu_z}) \\ \ge 0.$$

Now (10) yields for $x \to Q = Q(C, z, x)$ at x_0 ,

$$u^{ij}Q_{ij} - \Gamma_{u_i}Q_i \ge C\left(\frac{1}{3}\sigma u_{zz} - C'\right) - C''(1/u_{zz}),$$
 (11)

for some positive constants under control C', C". Since Q(C, z, .) assumes its maximum at $x_0 \in D$, (11) implies a controlled bound from above on

 $u_{zz}(x_0)$, hence also on $(\theta, x) \to Q(C, \theta, x)$ and on $(\theta, x) \to u_{\theta\theta}(x)$. Therefore M_2 is under control. \square

According to proposition 2, we may assume, without loss of generality, that the point x_0 above lies on ∂D , hence a $C^2(\bar{D})$ a priori bound on u follows from an a priori bound on $u_{zz}(x_0)$ which, in turn, coincides with $\max_{\{\theta, x\} \in S \times \partial D} [u_{\theta\theta}(x)]$.

IV. A PRIORI ESTIMATES OF SECOND DERIVATIVES ON THE BOUNDARY (n=2)

In this section we fix a defining function of D, denoted by k, and we include in the definition of constants *under control* the possible dependence on $|k|_3$, on $\tau := \min_{\partial D} k_N > 0$ and on the minimum over \bar{D} of the smallest eigenvalue of (k_{ij}) , denoted by s > 0.

We still let $u \in S(D, D_t)$ solve equation (*). According to proposition $1 + H = h_t(du)$ which vanishes on ∂D , satisfies there $H_N > 0$; moreover, (7) implies on ∂D (dropping the subscript t of h):

$$h_i[du(x)] = H_N u^{ij} N^j(x).$$
 (12)

In particular, the function on ∂D

$$\varphi(x) := N^{i}(x) h_{i} [du(x)]$$

is *positive*. Fix an arbitrary point $x_0 \in \partial D$ and a direct system of euclidean co-ordinates (O, x^1, x^2) satisfying $N(x_0) = \partial/\partial x^2$. Then (12) reads at x_0 ,

$$\begin{array}{c}
u_{11}(x_0) = (e^{\Gamma}/H_N) \varphi(x_0) \\
u_{12}(x_0) = -(e^{\Gamma}/H_N)(x_0) h_1 [du(x_0)]
\end{array} (13)$$

while equation (*) itself provides for $u_{22}(x_0) = u_{NN}(x_0)$,

$$\varphi u_{22}(x_0) = H_N(x) + (e^{\Gamma}/H_N)(x_0) \left\{ h_1 \left[du(x_0) \right] \right\}^2.$$
 (14)

We thus need positive lower bounds under control on $H_N(x_0)$ and $\phi(x_0)$, as well as a controlled upper bound on $H_N(x_0)$.

Let us start with $H_N(x_0)$. Aside from (9), H also satisfies in D [still by combining (8), (5), (7)],

$$u^{ij} \mathbf{H}_{ij} - u^{ij} (\Gamma)_i \mathbf{H}_j = h_{ij} u_{ij}.$$
 (15)

Set $T = u_{11} + u_{22}$, $T^* = u^{11} + u^{22}$, and note the identity: $T^* = A(u)T$. It implies the existence of positive constants under control, α , β , such that

$$\alpha T^* \leq T \leq \beta T^*, \tag{16}$$

which we simply denote by: $T \simeq T^*$. Consider the function

$$(c, x) \in (0, \infty) \times \overline{D} \rightarrow w(c, x) = H(x) - ck(x).$$

454 P. DELANOË

From (9) and $T \ge \gamma$ (cf. supra), we infer

$$\begin{split} u^{ij}[w(c, .)]_{ij} & \leq -T \left[\frac{1}{2} c(s/\beta) - (u_{ij}/T) \left(h_{ij} + \Gamma_{u_i} h_j \right) \right] \\ & - \left[\frac{1}{2} \gamma c(s/\beta) - h_i \left(\Gamma_i + \Gamma_u u_i \right) \right], \end{split}$$

and there readily exists c = C > 1, under control, such that the latter right-hand side is non-positive. Similarly (15) (16) yield:

$$u^{ij}[w(c,.)]_{ij} - u^{ij}(\Gamma)_{i}[w(c,.)]_{j} \ge \frac{1}{2} \sigma T$$

$$- T \max \left\{ 0, (c/\alpha) u^{ij}/T^{*} \right\} [k_{ij} - k_{i}(\Gamma_{j} + \Gamma_{u} u_{j})] + \left(\frac{1}{2} \sigma \gamma + c k_{i} \Gamma_{u_{i}} \right),$$

(σ was defined at the beginning of section III) and there exists $c \in (0, 1)$ under control such that the right-hand side is nonnegative. Since w identically vanishes on $(0, \infty) \times \partial D$, Hopf's maximum principle [11] implies the following pinching under control on ∂D :

$$c \tau \leq ck_{N} \leq H_{N} \leq C k_{N} \leq C |k|_{1}. \tag{17}$$

Combined with (13), it implies a controlled upper bound on $|u_{11}(x_0)| + |u_{12}(x_0)|$. Furthermore, combined with (14), it implies also (the notation \simeq is defined at (16))

$$u_{22}(x_0) \simeq 1/\varphi(x_0).$$
 (18)

We now turn to a lower bound on $\varphi(x_0)$ and consider the function

$$(c, x) \in (0, \infty) \times \bar{\mathbf{D}} \to \mathbf{P}(c, x) = \psi - ck$$

where

$$\psi(x) := k_i(x) h_i [du(x)].$$

A routine computation using (5) yields in D:

$$u^{ij} \psi_{ij} = k_i h_{ij} (\Gamma_j + \Gamma_u u_j + \Gamma_{u_m} u_{jm}) + 2 k_{ij} h_{ij} + k_i h_{ijm} u_{jm} + u^{ij} k_{ijm} h_m.$$

It implies the existence of a constant c_1 under control such that, in D,

$$u^{ij} P_{ij} \le c_1 (1+T) - c(s/\beta) T = -\left[\frac{1}{2} c \gamma(s/\beta) - c_1\right] - T\left[\frac{1}{2} c(s/\beta) - c_1\right];$$

let us choose $c = C_0 := 2c_1 \beta/s \min(1, \gamma)$, so that $u^{ij}[P(C_0, .)]_{ij} \le 0$ in D. By Hopf's maximum principle [11], $P(C_0, .)$ necessarily assumes its *minimum* over \bar{D} at a boundary point y_0 where

$$\psi_{\mathbf{N}} \leq C_0 k_{\mathbf{N}}.\tag{19}$$

Pick a euclidean system of co-ordinates (O, y^1, y^2) such that $N(y_0) = \partial/\partial y^2$. Then $dk(y_0) = k_N \partial/\partial y^2$ while, using (13) (17):

$$|u_{12}(y_0)| \leq C_1 := e^{|\Gamma|_0} |h|_1/c\tau$$

is under control, and (19) reads:

$$u_{22}(y_0) k_N(y_0) h_{22} [du(y_0)] \le C_0 k_N(y_0) - k_{2i}(y_0) h_i [du(y_0)] - k_N(y_0) u_{12}(y_0) h_{12} [du(y_0)].$$

It implies

$$\sigma \gamma u_{22}(y_0) \leq C_0 |k|_1 + |h|_1 |k|_2 + C_1 |k|_1 |h|_2$$

i.e. a controlled bound from above on $u_{22}(y_0)$. Recalling (18), it means a controlled positive bound from below, λ , on $\varphi(y_0)$. Since on ∂D , $P(C_0, .) \equiv k_N \varphi$, and since $P(C_0, .)$ assumes its *minimum* at y_0 , we infer on ∂D :

$$\varphi(x) \ge \lambda k_{N}(y_{0})/k_{N}(x) \ge \lambda \tau/|k|_{1}.$$

Using (18) again, we obtain a controlled upper bound on $u_{22}(x_0)$. The second derivatives of u are thus a priori bounded on ∂D . \square

Remarks. – 5. Proposition 1 and (12) show that the lower bound $\varphi \ge \lambda$ ensures a priori the uniform obliqueness of the boundary operator at u. Geometrically, it implies another positive lower bound on the scalar product of the outward unit normals, to ∂D at x and to ∂D_t at du(x).

6. Let (T, N) and (T^*, N^*) be direct orthonormal moving frames on ∂D and on ∂D_t respectively $(N^*$ stands for the outward unit normal on ∂D_t) and let z_0 be a critical point of: $x \in \partial D \to N(x)$. $N^*[du(x)]$. Denote by Jdu the Jacobian (or differential) of the gradient mapping du. With the help of Frénet's formulae, one verifies that

$$| J du [T(z_0)] | = (R_0^*/R_0),$$
 (20)

 R_0 (resp. R_0^*) standing for the curvature radius of ∂D at z_0 [resp. of ∂D_t at $du(z_0)$]. Equation (*) implies that the area of the parallelogram [J du(T), J du(N)] equals $\exp(\Gamma)$, in particular, it is uniformly bounded below by a positive constant. What happens if we drop the strict convexity of ∂D at z_0 , but keep that of ∂D_t at $du(z_0)$, i.e. if we let R_0 go to infinity and R_0^* remain bounded? From (20), $|Jdu[T(z_0)]|$ goes to zero hence $|Jdu[N(z_0)]|$ goes to infinity. In a direct system of euclidean co-ordinates $(0, x^1, x^2)$ such that $N(z_0) = \partial/\partial x^2$, it implies that $|u_{11}(z_0)| + |u_{12}(z_0)|$ goes to zero while $|u_{22}(z_0)|$ blows up like R_0 i.e. the control on $u_{NN}(z_0)$ is lost.

V. HIGHER ORDER A PRIORI ESTIMATES

Let $u \in S(D, D_t)$ solve equation (*). Fix a generic point $x \in \overline{D}$ and choose a euclidean co-ordinates system which puts $[u_{ij}(x)]$ into a diagonal form.

Observe that for each $i \in \{1, ..., n\}$,

$$u_{ii}(x) = A(u) / \prod_{i \neq i} u_{jj}(x) \ge \gamma / (|u|_2)^{n-1}.$$
 (21)

In case n=2, the $C^2(\bar{D})$ a priori estimate drawn on u in the two preceding sections thus implies the controlled uniform ellipticity of d[Log A(u)] on \bar{D} . Given $\alpha \in (0, 1)$, a $C^{2, \alpha}(\bar{D})$ a priori bound on u now follows from the general theory of [15] (section 6); however, this bound is so straightforward for n=2 that we include it for completeness.

First of all, given any interior subdomain D' of D and any $z \in S$, the 2-dimensional regularity theory of [17] applied to u_z , which satisfies (5) in D', yields a $C^{1,\alpha}(\bar{D}')$ a priori bound under control on u_z , hence, since z is arbitrary, a controlled $C^{2,\alpha}(\bar{D}')$ a priori bound on u. The theory of [17] also applies to H which satisfies (9) in D and vanishes on ∂D : it yields a $C^{1,\alpha}(\bar{D})$ a priori bound under control on H. Solving for u_{11} , u_{12} and u_{22} the 3×3 system given by (7) and equation (*), we get (dropping the subscript t of h):

$$\begin{array}{l}
u_{11} = [(\mathbf{H}_{1})^{2} + (h_{2})^{2} e^{\Gamma}]/\Delta \\
u_{12} = (\mathbf{H}_{1} \mathbf{H}_{2} - h_{1} h_{2} e^{\Gamma})/\Delta \\
u_{22} = [(\mathbf{H}_{2})^{2} + (h_{1})^{2} e^{\Gamma}]/\Delta,
\end{array}$$
(22)

where

$$\Delta(x) := H_i(x) h_i [du(x)].$$

Note that (7) and (21) imply

$$\Delta(x) \ge (\gamma/|u|_2) |dh[du(x)]|^2.$$
 (23)

Given any small enough $\delta \in (0, 1)$, let

$$D_{\delta}$$
: = { $x \in D$, dist $(x, \partial D) < \delta$ }.

From the $C^2(\bar{D})$ a priori estimate precedingly drawn on u, it follows that the gradient image $du(D_\delta)$ is contained in $(D_t)_{C\delta}$ for some positive constant C under control. If $\tau^* := \min_{t \in [0, 1]} \min_{\theta_t D} |dh_t|$,

then there readily exists $\delta_0 \in (0, 1)$ under control such that, for any $x \in D_{\delta_0}$, $|dh_t[du(x)]| \ge \tau^*/2$. Therefore (22) and (23) imply a $C^{\alpha}(\bar{D}_{\delta_0})$ a priori bound under control on the second derivatives of u. A $C^{2,\alpha}(\bar{D})$ a priori bound on u follows.

Actually, a straightforward "bootstrap" argument now provides $C^{k,\alpha}(\bar{D})$ a priori bounds on u for each integer k > 2.

REFERENCES

[1] A. AGMON, D. DOUGLIS and L. NIRENBERG, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, I,

- Comm. Pure Appl. Math., Vol. 12, 1959, pp. 623-727; II, Ibid., Vol. 17, 1964, pp. 35-92.
- [2] T. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité, J. Funct. Anal., Vol. 53, 1983, pp. 231-245.
- [3] I. BAKEL'MAN, Generalized Solutions of Monge-Ampère Equations, *Dokl. Akad. Nauk. S.S.S.R.*, Vol. 114:6, 1957, pp. 1143-1145 (in russian).
- [4] L. CAFFARELLI, L. NIRENBERG and J. SPRUCK, The Dirichlet Problem for Nonlinear Second-Order Elliptic Equations I. Monge-Ampère equation, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 369-402.
- [5] B. DACOROGNA and J. MOSER, On a Partial Differential Equation Involving the Jacobian Determinant, Ann. Inst. Henri Poincaré Analyse non linéaire, Vol. 7:1, 1990, pp. 1-26.
- [6] P. DELANOË, Equations du type de Monge-Ampère sur les variétés Riemanniennes compactes II, J. Funct. Anal., Vol. 41, 1981, pp. 341-353.
- [7] P. DELANOË, Equations de Monge-Ampère en dimension deux, C. R. Acad. Sci. Paris, 294, série I, 1982, pp. 693-696.
- [8] P. DELANOË, Plongements radiaux Sⁿ → ℝⁿ⁺¹ à courbure de Gauss positive prescrite, Ann. Sci. Ec. Norm. Sup., Vol. 18, 1985, pp. 635-649.
- [9] P. DELANOË, Remarques sur les variétés localement Hessiennes, Osaka J. Math., Vol. 26, 1989, pp. 65-69.
- [10] P. DELANOË, Viscosity Solutions of Eikonal and Lie Equations on Compact Manifolds, Ann. Global Anal. Geom., Vol. 7:2, 1989, pp. 79-83.
- [11] E. HOPF, Elementare Bemerkungen über die Lösungen partieller Differential-gleichungen zweiter Ordnung vom elliptischen Typus, Sitz. Ber. Preuβ. Akad. Wissensch. Berlin, Math.-Phys. Kl, Vol. 19, 1927, pp. 147-152.
- [12] E. HOPF, A Remark on Linear Elliptic Differential Equations of Second Order, Proc. Am. Math. Soc., Vol. 3, 1952, pp. 791-793.
- [13] N. M. IVOTCHKINA, The *a priori* Estimate $||u||_{C(\overline{\Omega})}^2$ on Convex Solutions of the Dirichlet problem for the Monge-Ampère Equation, *Zapisk. Nautchn. Semin. LOMI*, Vol. **96**, 1980, pp. 69-79.
- [14] L.Y. LIAO and F. SCHULZ, Regularity of Solutions of Two-Dimensional Monge-Ampère Equations, Transact. Am. Math. Soc., Vol. 307:1, 1988, pp. 271-277.
- [15] G. M. LIEBERMAN and N. S. TRUDINGER, Nonlinear Oblique Boundary Value Problems for Nonlinear Elliptic Equations, *Transact. Am. Math. Soc.*, 295:2, 1986, pp. 509-546.
- [16] P.-L. LIONS, N. S. TRUDINGER and J. I. E. URBAS, The Neumann problem for Equations of Monge-Ampère Type, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 539-563.
- [17] L. NIRENBERG, On Nonlinear Elliptic Partial Differential Equations and Hölder Continuity, Comm. Pure Appl. Math., Vol. 6, 1953, pp. 103-156.
- [18] A. V. POGORELOV, Monge-Ampère Equations of Elliptic Type, Noordhoff Ltd, 1964.
- [19] F. SCHULZ, Boundary Estimates for Solutions of Monge-Ampère Equations in the Plane, Ann. Sc. Norm. Sup. Pisa, Vol. 11:3, 1984, pp. 431-440.
- [20] K.-S. Tso, Personal Letters from the Chinese University of Hong-Kong sent on July 12, 1988 and on June 7, 1989.
- [21] J. I. E. Urbas, The Oblique Derivative Problem for Equations of Monge-Ampère Type in Two Dimensions, Preprint, Courant Institute and CMA at Canberra, 1987.

(Manuscript received November 2nd, 1989) (Revised July 30th, 1990.)