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ABSTRACT. - Given two bounded strictly convex domains of l~n and a
positive function on their product, all data being smooth, find a smooth
strictly convex function whose gradient maps one domain onto the other
with Jacobian determinant proportional to the given function. We solve
this problem under the (technical) condition n = 2.
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RESUME. - Soit deux domaines bornes strictement convexes de ~n et
une fonction positive definie sur leur produit, ces donnees etant lisses,
trouver une fonction lisse strictement convexe dont le gradient applique
un domaine sur l’autre avec determinant Jacobien proportionnel a la
fonction donnee. Nous resolvons ce probleme sous la condition (technique)
n=2.
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I. INTRODUCTION

Let D and D* be bounded COO strictly convex domains of (~n. We denote
by S (D, D*) the subset of Coo (D) consisting of strictly convex real
functions ( 1 ) whose gradient maps D onto D*. Given any U E (D), we
denote by A (u) the Jacobian determinant of the gradient mapping
x -~ du (x). The nonlinear second order differential operator A is called
the Monge-Ampère operator on D. Basic features of A restricted to

S (D, D*) are listed in the preliminary

PROPOSITION 1. - A sends S (D, D*) into

(~ f ~ denotes the average of f over D and D ~, the Lebesgue measure of
D). On S (D, D*), A is elliptic and its derivative is divergence-like. Given
any defining function h* of D*, the boundary operator u -~ B (u) : = h* (du) (aD
is co-normal with respect to A on S (D, D*). Furthermore, given any
u E S (D, D*) and any x E aD, the co-normal direction at x with respect to
the derivative of A at u is nothing but the normal direction of aD* at du (x).
We postpone the proof of proposition 1 till the end of this section. The

second boundary-value problem consists in showing that A : S (D, D*) - ~
is onto. More generally, we wish to solve in S (D, D*) two kinds of
eauations namelv

where f E COO (D x D*) and F E C°° (D x D* x R), the latter being uniformly
increasing in u. We aim at the following

THEOREM. - Equations ( 1 ) and (2) are uniquely solvable in S (D, D*)
provided n = 2.

The second boundary-value problem was first posed and solved (with
n = 2 but the methods, geometric in nature, extend to any dimension) in a
generalized sense in [18] chapter V section 3 (see also [3] theorem 2, where
the whole plane is taken in place of D). The elliptic Monge-Ampere
operator with a quasilinear Neumann boundary condition is treated in [16],
in any dimension, and it is further treated with a quasilinear oblique
boundary condition in [21] ] provided n = 2. A general study of nonlinear
oblique boundary-value problems for nonlinear second order uniformly

(~) Here the meaning of "strictly convex" is restricted to having a positive-definite hessian
matrix, which rules out e.g. the strictly convex function u (x) = ( x - y ~4 near y E D, as pointed
out to us by Martin Zerner.
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elliptic equations is performed in [15]. Quite recently, the following prob-
lem was solved [5]: existence and regularity on a given bounded domain
D of (Rn (no convexity assumption, no restriction on n) of a diffeomorphism
from D to itself, reducing to the identity on aD, with prescribed positive
Jacobian determinant (of average 1 on D).

Remarks. - 1. The restriction n = 2 is unsatisfactory but we could not
draw second order boundary estimates without it. In May 1988, in

Granada (Spain), Neil Trudinger informed us that Kai-Sing Tso had
treated the problem in any dimension; however, from that time on, Tso’s
preprint has not been available due to a serious gap in his proof, as he
himself wrote us [20]. In June 1989, John Urbas visited us in Antibes and
he kindly advised us to submit our own 2-dimensional result; it is a

pleasure to thank him for his thorough reading of the present paper. This
may be the right place to thank also the Referee for pointing out a mistake
at the end of the original proof of proposition 2 below, and a few
inaccuracies (particularly one in remark 6).

2. We do not assume the non-emptiness of S (D, D*) to prove the

theorem; we thus obtain it (when n = 2) as a by-product of our proof. In
fact, we found no straightforward way of exhibiting any member of
S (D, D*) - except, of course, if D = D* -, although we can write down
explicitely a C °° (D) convex (but not strictly convex) function with gradient
image D*, constructed from any suitable support function for D*. Provided
non-emptiness, it is possible to prove that S (D, D*) is a locally closed
Frechet submanifold of the open subset of strictly convex functions in
C °° (D), as the fiber of a submersion.

3. From the proof below, it appears that, given any ae(0, 1) C2, ex (D)
solutions may be derived (by approximation) from the above theorem
under the sole regularity assumptions: D and D* are C2~ 1, f and Fare
C1, 1. We did not study further 2-dimensional global regularity refinements
as done in [19], [14] for the Dirichlet problem.

4. The uniqueness for (1) shows that, in general, the equation
Log A (u) = f (x, du) is not well-posed on S (D, D*). The idea of introducing
in (1) the average term goes back to [6] and it proved to be useful in
various contexts ([2], [8], [9], [10]). If u E S (D, D*) solves ( 1 ), then
v = u + Const. solves in S (D, D*) the equation Log A (v) = f (x, dv) + ~ u ~,
while the Legendre transform v* of v solves in S (D*, D) the "dual"
equation Log A (v*) = - f (dv*, x) - ( u ) . In case f (x, x*) = f1 (x) - f2 (x*),
the value of ( u ~ is a priori fixed by the constraint (due to the "Jacobian"
structure of A)

The prescribed Gauss-curvature equation is an example of this type.
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Proof of proposition l. - By its very definition, as the Jacobian of the
gradient mapping, A readily sends S (D, D*) into the submanifold ~.

Let U E S (D, D*). In euclidean co-ordinates (xl, ..., xn), A (u) reads

and the derivative of A at u reads

where

(indices denote partial derivatives, Einstein’s convention holds, (Uij) is the
matrix inverse of (Uij) and its co-matrix). Since u is strictly convex,
A is indeed elliptic at u. Furthermore, one easily verifies the following
identity: for any ~u E (D),

So, as asserted, dA (u) is divergence-like. The co-normal boundary operator
associated with A at u is

N standing for the outward unit normal on aD. Fix a defining function
h* for D* (i. e. h* E Coo (D*) is strictly convex and vanishes on aD*). Since
U E S (D, D*), the function H : = h* (du) E C°° (D) is negative inside D and
vanishes on aD. Moreover, a straightforward computation yields in D:

Hopfs lemma [12] implies that on aD. Since

the boundary operators satisfy

So B is indeed co-normal with respect to A at u.

Last, the geometric interpretation of the co-normal direction P given at
the end of proposition 1, simply follows from the fact that dB (u) (x) equals
the derivative in the direction of dh* [du (x)] which is precisely (outward)
normal to aD* at du (x). D

II. THE CONTINUITY METHOD

Fix (xo, x D* and ~, E (0, 1] such that the gradient of
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maps D into D* (1.1 ] stands for the standard euclidean norm, . for the

euclidean scalar product). Set Do : = duo (D). A routine
verification shows that Do is C °° strictly convex. Let t E [0, 1] ] --~ Dt be a
smooth path of bounded Coo strictly convex domains connecting Do to

Di = D*, with D~ c= Dt, for t  t’; fix t --> ht a smooth path of corresponding
defining functions. For each 1], consider in S (D, Dt) the two follow-

ing equations:

By construction uo solves both equations for t=0, so (for i =1, 2) the
sets Ti : _ ~ t E [o, 1], (i. t) admits a solution in S (D, are non-empty.
Hereafter, we show that they are both relatively open and closed in [0, 1]:
if so, by connectedness, they coincide with all of [0, 1]. The solutions for
t =1 are those announced in the theorem; their uniqueness is established
at the end of this section.

Let us show that T 1 is relatively open in [0, 1]; similar, more standard

(due to the monotonicity assumption of F), reasonings hold for T2. Fix

ae(0, 1) and denote by the open subset of (D) consisting of
strictly convex functions. On [0, 1] x U2~ ex, consider the smooth map (M, B)
defined by

and ranging in (D) X (aD). Let to E T; there thus exists uo in 
such that (M, B) (to, u°) _ (o, 0). The proof is based on the Banach implicit
function theorem applied to (M, B) at (to, uo). We want to show that the
map _

is an isomorphism. Record the following expression of (m, b) in euclidean
co-ordinates:

From proposition 1, we know that b is oblique; so Hopf s maximum
principle [11] ] combined with Hopfs lemma [12] imply that any

03B4u~Ker(m, b) is constant, hence actually 03B4u> = 0 and bu = o. Therefore

(m, b) is one-to-one.
Now we fix (8Mo, X (aD) and we look for bu in

(D) solving: (m, b) (~u°) _ (bM°, ~B°). Consider the auxiliary map

where H = ht (duo). It follows from proposition 1 that, given any

(bM’, ~B’) E (D) X (aD), the function ~u’ E (D) solves:

Vol. 8, n° 5-1991.
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if and only if, for every bv’ E W 1 ° 2 (D),

(da is the measure induced on aD by dx), where L is the continuous

bilinear form on WI, 2 (D) given by

Let us argue on (m’, b’) as in [6]. Combining the ellipticity of m’ and
the obliqueness of b’ (asserted by proposition 1), with Hopfs maximum
principle, Schauder’s estimates and Fredholm’s theory of compact opera-
tors, we know that the kernel of the adjoint of (m’, V) (formally obtained
by varying the first argument of L instead of the second, and by integrating
by parts) is one-dimensional, let span it, and that (3) is

solvable up to an additive constant if and only if

Observe that

since, otherwise, one could solve (3) with {bM‘, bB’) = [A (uo), 0] contra-
dicting the maximum principle. We may thus normalize bw by

Then we can solve (3) with right-hand side equals:

since the latter satisfies (4). If ~uo is a solution, then

solves the original equation
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So (m, b) is also onto. The implicit function theorem thus implies the
existence of a real 8 > 0 and of a smooth map

such that (M, B) (t, u)=(0, 0). By proposition 1 and standard elliptic
regularity [I], ut E S (D, Dt), hence T 1 is relatively open. D

Assuming n = 2, we shall carry out a C2° °‘ (D) a priori bound, indepen-
dent of t E [0, 1], on the solutions in S (D, DJ of equations ( 1. t) and (2. t).
Provided such a bound exists, the closedness of Ti (i =1, 2) follows in a
standard way from Ascoli’s theorem combined with proposition 1 and

elliptic regularity [1].
Last, let us prove that (1) admits at most one solution in S (D, D*); a

similar argument holds for (2). By contradiction, let uo and Ul be two
distinct solutions of (1) in S (D, D*). Then, for t E [o, 1 ],
ut : = tul + (I - t) uo E S (D, D*) and u : = uo solves the linear boundary-
value problem:

which is elliptic inside D and oblique on 9D by proposition 1. The
maximum principle implies u --_ 0, contradicting the assumption. 0

III. PRELIMINARY A PRIORI ESTIMATES

In this section, we do not need yet the condition n = 2. For any
vES(D,Dt), dv E D *, hence is bounded above by 

x* E D*

Set f ~ o = max )/ (x, x*) I, and let u E S (D, Dt) solve ( 1. t), then
DxD*

Integrating this over D yields for ( u ~ the pinching:

Since I du I  p (D*), u is a priori bounded in C1 (D) in terms of D* ~,
p (D*), (.f ~o~ ( Do ~~ ~ and n.
By assumption, there exists P, E (o, 1] such that on 

The right-hand side of equation (2. t), let us denote it by
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thus satisfies as well, on [0, 1] x D x D* Let U E S (D, Dt) solve
(2 . t). Set

From the mean value theorem, we know that

8(D) standing for the diameter of D. If M >__ 0 and m  0, it implies
‘u ( _ p (D*) ~ (D) and we are done. If not, say for instance M  0,
then A (u) = exp f (t, x, du, Integrating this over

D yields: hence under our assumption

In any case, we obtain a C1 (D) a priori bound on u in terms of D* ~,
p (D*), D ~~ ~ (D), Do ~~ Mo, mo and p.
For simplicity, let us give a unified treatment of higher order a priori

estimates for equations (1. t) and (2. t) by rewriting these equations into a
single general form

Let U E S (D, Dt) solve (*). In this section, a constant will be said under
control provided it depends only on the following quantities: i. e. the
C1 (D)-norm of u, on the C2-norm of r on

where I = [ - ~ u ~ 1, ~ on the C° ([o, 1 ], C2)-norm of (the fixed
path of defining functions, cf. supra), and on the positive real

where a (t) is the smallest eigenvalue of over Dt.
Since u is convex, a C2 (D) bound on u follows from a bound on

S standing for the unit sphere of Rn. Set H : = ht (du) and consider
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PROPOSITION 2. - There exists C E (0, oo) under control such that, if
max [Q (C, a, x)] occurs at (z, xo) e S x D with x4 interior to D, then

(6, x) E S x D

M2 is under control.
This proposition does not refer to any boundary condition and constitu-

tes by no means an interior estimate (it is rather the type of argument
suited on a compact manifold). A similar proposition (with AM and |du (2,
respectively in place of uee and H) is lemma 2 of [13], later (and indepen-
dently) reproved in [7] (p. 694); a similar argument is used in [4] (p. 398).
Here proposition 2 may serve for the higher dimensional theorem, due to
the special form of Q; so for completeness, we provide a detailed proof
of it.

Proof. - Fix (c, 8) E (o, oo) x S and consider Q as a function of x only.
Let us record some auxiliary formulae: differentiating twice equation (*)
in the a-direction yields,

with

Differentiating twice H yields (with the subscript t, of h, dropped),

and similarly for Q,

Combining (8) with (5) and (7), we get

while from (6) we get,

Expanding the square

one immediately verifies the identity:

So,

Vol. 8, n° 5-1991.
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Combining the expression of (r)66 with that of Qt and (9) yields,

Introducing the constant a (defined above) we get

this last inequality being obtained by noting that, identically for u strictly
convex, uee ~k Hence our first requirement on c is:

in the sense of symmetric matrices, over K. To express our second require-
ment on c, we first note that the inequality between the arithmetic and
the geometric means of n positive numbers applied to the eigenvalues of

and combined with (*), yields on D:

Then we take c such that

the minimum being taken on (r, x, y) E K x D x S. From now on, c has a
fixed value under control, C, meeting both requirements and we take
(0, x) = (z, xo) as defined in proposition 2. In particular, uZZ (xo) is now

the maximum eigenvalue of (xo)]; diagonalizing the latter and using the
second requirement on C, we obtain at xo:

for some positive constants under control C’, C". Since Q (C, z, . ) assumes
its maximum at xo ED, ( 11 ) implies a controlled bound from above on

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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hence also on (8, x) -~ Q (C, 9, x) and on (8, x) --~ ueg (x).
Therefore M2 is under control. 0

According to proposition 2, we may assume, without loss of generality,
that the point xo above lies on aD, hence a C2 (D) a priori bound on u
follows from an a priori bound on Uzz (xo) which, in turn, coincides with
max [uoo (x)~ .

(0, x) E S x aD

IV. A PRIORI ESTIMATES OF SECOND DERIVATIVES

ON THE BOUNDARY (n = 2) 
,

In this section we fix a defining function of D, denoted by k, and we
include in the definition of constants under control the possible dependence _ ’
on k ~ 3, on T : = min kN > 0 and on the minimum over D of the smallest

aD

eigenvalue of denoted by s > 0.
We still let uES(D, Dt) solve equation (*). According to proposition 1

H = ht (du) which vanishes on aD, satisfies there HN > 0; moreover, (7)
implies on aD (dropping the subscript t of h):

In particular, the function on aD

is positive. Fix an arbitrary point xo E aD and a direct system of euclidean
co-ordinates (0, x2) satisfying N (xo) = Then ( 12) reads at xo,

while equation (*) itself provides for u22 (xo) = uNN (xo),

We thus need positive lower bounds under control on HN (xo) and cp (xo),
as well as a controlled upper bound on HN (xo).

Let us start with HN (xo). Aside from (9), H also satisfies in D [still by
combining (8), (5), (7)],

Set T* = ul 1 + u22, and note the identity: T* = A (u) T. It

implies the existence of positive constants under control, a, P, such that

which we simply denote by: T  T*. Consider the function

Vol. 8, n° 5-1991.
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From (9) and T~y (cf. supra), we infer

and there readily exists c = C > 1, under control, such that the latter right-
hand side is non-positive. Similarly (15) (16) yield:

(o was defined at the beginning of section III) and there exists c E (o, 1)
under control such that the right-hand side is nonnegative. Since w ident-
ically vanishes on (0, r) x aD, Hopfs maximum principle [11] implies the
following pinching under control on aD:

Combined with (13), it implies a controlled upper bound on

Furthermore, combined with (14), it implies also
(the notations is defined at (16))

We now turn to a lower bound on cp (xo) and consider the function

where

A routine computation using (5) yields in D:

It implies the existence of a constant c under control such that, in D,

let us choose c = Co : =2C1 03B2/s min (1, y), so that u‘’ [P (Co, . in D.

By Hopfs maximum principle [ 11 ], P (Co, . ) necessarily assumes its mini-
mum over D at a boundary point yo where

Pick a euclidean system of co-ordinates (0, yl, y2) such that
Then dk = kN ~/~y2 while, using ( 13) ( 17):
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is under control, and (19) reads:

It implies

i. e. a controlled bound from above on u22 (yo). Recalling (18), it means a
controlled positive bound from below, ~,, on Since on aD,

and since P (Co, . ) assumes its minimum at yo, we infer
on aD:

Using (18) again, we obtain a controlled upper bound on u22 (xo). The
second derivatives of u are thus a priori bounded on aD. 0

Remarks. - 5. Proposition 1 and (12) show that the lower bound cp >__ ~,
ensures a priori the uniform obliqueness of the boundary operator at u.
Geometrically, it implies another positive lower bound on the scalar

product of the outward unit normals, to aD at x and to ~Dt at du (x).
6. Let (T, N) and (T*, N*) be direct orthonormal moving frames on

aD and on aDt respectively (N* stands for the outward unit normal on
~Dt) and let zo be a critical point of: Denote

by J du the Jacobian (or differential) of the gradient mapping du. With
the help of Frenet’s formulae, one verifies that

Ro (resp. Ro) standing for the curvature radius of aD at zo [resp. of aDt
at du (zo)]. Equation (*) implies that the area of the parallelogram [J du (T),
J du (N)] equals exp (r), in particular, it is uniformly bounded below by a
positive constant. What happens if we drop the strict convexity of ~D at
zo, but keep that of aDt at du (zo), i. e. if we let Ro go to infinity and Ro
remain bounded ? From (20), ~ J du [T (zo)] goes to zero hence J du [N (zo)] I
goes to infinity. In a direct system of euclidean co-ordinates (0, xl, x2)
such that N (zo) = it implies that |u11 (zo) + |u12 (zo) I goes to zero
while I u22 (zo) blows up like Ro i. e. the control on uNN (zo) is lost.

V. HIGHER ORDER A PRIORI ESTIMATES

Let u E S (D, Dt) solve equation (*). Fix a generic point x e D and choose
a euclidean co-ordinates system which puts into a diagonal form.
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