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ABSTRACT. - We study the existence of heteroclinic orbits for a Hamil-
tonian system 

-

where the Hamiltonian is periodic in the space variable q and superlinear
in p. We use the Saddle Point Theorem to obtain existence of solutions
for a finite time interval, and then we obtain heteroclinic orbits as limit of
them. Our hypothesis on H are motivated by the second order Lagrangean
systems on the torus.
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RESUME. - On etudie 1’existence des orbites heterocliniques pour le

systeme hamiltonien

1 ~/ B1 ~ -tx /

quand l’Hamiltonien est periodique par rapport a la variable q et superli-
néaire en p. On utilise le theoreme de Point Selle pour obtenir des solutions
dans un intervalle de temps fini et on obtient donc les orbites heterocli-
niques comme limites. Les hypotheses qu’on utilise sur H sont motivées
par les systemes Lagrangiens sur le torus.
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0. INTRODUCTION

In this paper we study the existence of heteroclinic orbits of some
autonomous Hamiltonian systems. We generalize results obtained by
Rabinowitz [8] for the equation

with periodic potential. Rabinowitz studied the problem using a variational
approach through a minimization procedure. In this work we consider a
general Hamiltonian system

with Hamiltonian H periodic in the q variables. In the case of equation
(HS) a minimization argument can not be applied.
Our method consists in studying approximate problems by letting the

time interval being finite. This idea has been used by Tanaka [10] and
Rabinowitz [9] in the study of homoclinic orbits for some second order
Hamiltonian systems with singular potential. In order to study the approxi-
mate problem we use a version of the Saddle Point Theorem of Rabinow-
itz. We obtain estimates for the critical values, independent of the length
of the time interval. We use then the estimates in passing to the limit. We
note that the problem of heteroclinic orbits, due to the infinite time

interval, lacks of the compactness one usually needs to use critical point
theory.
At this point we mention the work of Coti Zelati and Ekeland [5] where

the study of homoclinic orbits for Hamiltonian systems is undertaken.
Their approach is based on convexity assumptions on the Hamiltonian,
that allows to use a dual formulation, and the concentrated compactness
of P. L. Lions. Hofer and Wysocki [6] generalized the results of [5], drop-
ping the convexity assumption; they study the problem considering certain
first order elliptic systems.
We describe our results now. We consider a Hamiltonian H : R,

and we denote H(0, q) = V (q). We note that in the case of system (0 .1)

the Hamiltonian is given by H (p, q) 2 1 ~ p ~ 2 + V , (q) so that H (0, q) corre-
sponds exactly to the potential.
We make the following hypotheses on the Hamiltonian
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(H4) There are constants Eo > 0 and such that every qEM

(H5) For constants s _ ~., a2 > 0, a3 > 0

Here and in the future we denote by . the usual inner product in tR" and
by ] . its norm. We normalize H so to have that V = 0 and that v (0) = 0.
We will prove the following theorem.

THEOREM 0. 1. - If (HO)-(H5) hold then (HS) possesses at least 2

heteroclinic orbits, one emanating from 0 and one terminating at 0.

Remark 0. 1. - In Theorem 0 .1 we can replace 0 by any other point
in M.

The method used to prove Theorem 0 .1 can also be applied to a

problem in which H is not periodic in q. Consider
The function Hp (p, q) is bounded on sets of the form [Rn,

where Bs = ~ p E ~n~~ p ~ _ ~ ~ .
(H2n)

and the set M as defined in (H2) is discrete and it contains at least two
points.
Then we have

THEOREM 0 . 2. - If (HO), (H 1 n), (H2n), (H3)-(H5) hold then 
possesses at least 2 heteroclinic orbits, one emanating from 0 and one
terminating at 0.
Coming back to a periodic Hamiltonian, let us consider
(H2’) 

then we have

THEOREM 0 . 3. - If H satisfies (HO), (H 1 ), (H2’), (H3)-(H5) then the
(HS) possesses at least 2 n heteroclinic orbits, n emanating from 0 and n
terminating at 0. If we further assume

(H6) H (p, q) = H ( - p, q), V (p, q) E ~2n, then there are 2 n additional het-
eroclinic orbits, n emanating from 0 and n terminating at 0.

Remark 0. 2. - If in Theorem 0. 2 we assume (H6) then (HS) possesses
at least 4 heteroclinic orbits.
As we mention above our results generalize the case
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corresponding to equation (0.1). Other case of interest, not covered in
[8], is the Lagrangean system with Lagrangean

The Hamiltonian

corresponds to (0 . 3) and it satisfies our hypothesis if Q and V are periodic
in q, and Q is positive definite. The Lagrangean of the n-pendulum has
the form (0.3), and then the Hamiltonian is given by (0.4) that also
satisfies (H2’) and (H6). Thus Theorem 0. 3 guarantees the existence of at
least 4 n heteroclinic orbits for the n-pendulum. This result complements
recent works on the forced n-pendulum, see Fournier and Willem [4],
Chang, Long and Zehnder [I] and Felmer [2].

This paper is divided in four sections. In Section 1 we present a version
of the Saddle Point Theorem that we use to study an approximate problem,
for finite time intervals. In section 2 we consider the approximate problems
and prove existence of solutions for every time interval. In Section 3 we

obtain estimates on the critical values of the solutions to the approximate
problems, that are independent of the length of the time interval. In

Section 4 we let the length of the time interval to go to infinity and we
prove Theorems 0.1, 0 . 2 and 0 . 3 .
The author wants to express his gratitude to Professor Paul Rabinowitz

for his help and for encouraging the writting of this article.

1. SADDLE POINT THEOREM

The Saddle Point Theorem of Rabinowitz [7] provides a tool for finding
critical points of functionals. Here we give a variation of that result that
we will use in our application.
We consider a Hilbert space E with inner product ( . , . ) and norm

I I . ~ ( . We assume that E has a splitting E = X Q+ Y, where the subspaces X
and Y are not necessarily orthogonal and both of them can be infinite
dimensional.

Let I : E -~ ~ be a functional having the following structure

where

(11) L : E ~ E is selfadjoint,
(12) b’ is compact.

Let us consider a family of bounded, linear operators B (s) : E -~ E where
s E (o, 1]. Assume that for some so E (o, 1], B (so) = idE, and that B depends
continuously on s. We will assume
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(13) If s E (0, 1] and v E then the linear operator

is invertible, and its inverse depends continuously on sand v.
Here Px denotes the projection of E onto X induced by the split-

ting E=XOY. Let R>O 0 and define and
= R ~. We define the class of functions

where

(rl) h is given by

where s : E x [0,1] ] -~ (0,1] ] and v : E x [0,1] are continuous, v

transforms bounded sets into bounded sets, s (E x [0, 1]) stays away from
0, K : E -~ E is compact and K (u, 0) = 0.

Taking v=0, and K - 0 we obtain that h = idE belongs to r so it
is not empty. It can also be proved that the class satisfies the following
composition property: if 11 E r has the form

then 11 (h (x, t), t) E r, V h E r. Now we state the theorem

THEOREM 1.1 (Saddle Point Theorem). - Let I : E --~ I~ of class C1
satisfying the Palais-Smale condition and (I 1 ), (12) and (13), further assume

(14) There are constants a > w such that

, , , , - -

Then I possesses at least one critical point with critical value c > a, character-
ized by

Remark 1.1. - The only difference with Rabinowitz Saddle Point
Theorem is that here the class r is bigger. Even though this version does
not produce in general a smaller critical value, it makes the estimates in
Section 3 somewhat easier.

Proof - The proof goes in the standard way so that here we only
mention the differences. Since Q is bounded we find that c 00. Now we
show that c > a. By (14) (i ) we only need to show that

Vol. 8, n° 5-1991.
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Displaying the form of h and using (12), ( 1 . 3) is equivalent to find z~Q
such that

We define W (x) as the left hand side of (1. 4). Let

for XEX and t E [0,1]. Then we have that H is an admissible deformation
and H (x, 0) = x, Then by the homotopy invariance of the Leray-
Schauder degree we have

1 = deg (H (x, 0), 0, Q) = deg (H (x,1 ), 0, Q) = deg (w (x), 0, Q). °

Thus, ( 1. 4) has at least one solution. This proves ( 1. 3). To show that c
is a critical value we proceed in the standard way, see [7]. We only note
that the deformation provided by the Deformation Lemma has the form
(1.2) so that for every h E r. 0

2. THE APPROXIMATE PROBLEM

Given and T > 0 we consider the Hamiltonian system

Let e = (2 x k)/T, e (t) = et and ç (t) = (0, e (t)) E 1R2n. If we define the constant
forcing term f= (e, 0), we can easily prove that if z (t) satisfies

then z (t) = z (t) + ~ (t) satisfies (HS)T. We devote this section to find

solutions to (KS)T. We consider the space E of functions z : [0, T] --~ 1R2n,
z = (p, q) with Fourier series

where al, bj E (~n and
«

If ~ _ (cp, with Fourier series

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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then we define the inner product

that induces the norm

The space E with the inner product ( .,. ) is a Hilbert space, that can be
isometrically embedded into Wl2°2 (S1, ~2n). This fact allows to prove
that for every 1  s  oo there is a constant as such that

here, and in the future ~ ~ . ~ ~ S denotes the usual norm in LS (0, T; [R2n). We
define the following subspaces ofE

and

here {e1, ..., e2n} denotes the usual basis of 1R2n. It is easy to see that
E=XCY where and Y = Eq.

Let us define now some operators we need later. Let z = (p, q) and
~ _ (cp, be smooth functions in E, then we define

and

The symmetric form ~ can be continuously extended to E X E, and it
induces a linear, bounded, selfadjoint operator L : E -~ E defined by

thus we have

Remark 2. 1. - We observe that ~ is negative on E -, and it vanishes
on Ep and Eq.

Vol. 8, n° 5-1991.
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We define now the operator B appearing in the Saddle Point Theorem
proved in Section 1. Given s E (0,1] we define B (s) : E -~ E by

Certainly B (s) is a bounded, linear and it depends continuously on s. We
note that .

LEMMA 2 .1. - For every v E R+0 and s E (0,1] the linear operator

is invertible and its inverse depends continuously on s and v.

Proof. - By calculations using Fourier series we obtain explicit formula
for B . If z = z - + z°, z - E E - , then

where

The number m (s, v) is certainly positive ~e(0,1] then B is inverti-
ble, and its inverse is given by

and it depends continuously on sand v. D

After this preliminaries we consider the variational formulation of (KS)T.
Let us assume for the moment that the Hamiltonian H satisfies the

following growth condition (G). There are constants a > 0, b>O and s> 1
so that

Then we can define the functional

on E. This functional is well defined and it has the form (1.1). If we

define

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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then ~ (z) is of class C~ and its derivative is compact. See [7]. Then by
Lemma 2 .1 we have that IT satisfies (Il)-(13). The following proposition
relates the critical points of IT with the solutions 

PROPOSITION 2 . 1. - If z e E is a critical point of IT then z (t) is of class
C1 and it satisfies
Proof - See [7].
Now we study the existence of solutions of (KS)T. Since the

Hamiltonian H does not satisfy the growth condition (G) necessarily, the
functional ~f may be not well defined in E. We will make a modification
following a trick used by Rabinowitz.

Let K > Eo, where Eo is defined in (H4) and x E C°° ((~ +, (~ +) such that
x(y)=1 Let
M be a constant so that

We define

The following lemma can be easily proved.

LEMMA 2 . 2. - For every K > Eo, the Hamiltonian Hx satisfies the analog-
ues to (HO), (H 1 ), (H3)-(H5), with exactly the same constants.
The following inequalities follow from (H3) and the fact that K > ~o.

There are constants a3 and a4 independent of K so that

and

On the other hand, the definition of Hx (p, q) implies that there are

constants as and a6 so that

here as and a6 may depend on K. From (2.18) we can define the functional

We note that if z = (p, q) with then

LEMMA 2 . 3. - The functional IT possesses at least one critical point zT.

Vol. 8, n° 5-1991.
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Proof. - By (2.18) we can use the same argument given in Lemma 3 . 2
in [3] to show that IT satisfies the Palais-Smale condition. By the structure
of IT discussed above, and Lemma 2.2 we only need to prove (14). For

we have

From (2.16), the definition of II liE and the Schwarz inequality we have

Using (2 . 6) and the projection from E - onto E~ we find

Then, for R >__ Ro, with Ro big enough

From (2 . 20) and (2 . 21 ) we obtain (14), then we apply the Saddle Point
Theorem to obtain the result. D

Remark 2 . 2. - Any R >-- Ro will make the hypothesis (14) of the Saddle
Point Theorem to be satisfied. In the next Lemma we will precise how to
choose R. This lemma will be used in the limit process and we postpone
its proof to the next section.

LEMMA 2.4. - For every T there is R depending only on T so that for a
constant c independent of T and K

IT C.

We use Lemma 2.4 to prove the following proposition

PROPOSITION 2. 2. - For every T > 0 there is a solution zT of the system
(KS)T and

Proof. - The proof consists in showing that given R defined in

Lemma 2.4 there is K large enough so that for z~ = qT) we have

~ pT (t) ~  K, Thus, by the definition of H~ we see that
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and z~ is a solution of (KS)T.
Now we choose K. Since zT - z = (p, q) is critical point of IT, and using

(H 3) for H~ and (2.16) we have

But this implies that there is a constant aio independent of K such that

Following from here a standard argument, and noting that H~ satisfies
(H 5) with constant independent of K we obtain that ] is bounded
independent of K. See for example [3]. D

Remark 2.3. - The constant K may depend on T, however it is
independent of R. Thus we are free to choose R ~ Ro without changing
our conclusions.

3. ESTIMATES ON THE CRITICAL VALUE cT = IT (zT)

In this section we provide a proof of Lemma 2.4. Since our estimates
only depend on (H 0)-(H 5) and their consequences (2.16) and (2.17) that
are independent of the value of K, we drop it from the indices. For every
T we find R >_ Ro and we construct hEr such that

for a constant c independent of K and T. Let us consider a C~ function
e : [0, T] --> (~n such that

and

Vol. 8, n° 5-1991.
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and ~ (t) _ (o, e (t)) E E. Let us also consider y, s : R + -~ f~ +, functions,
such that

with and 0 _ y (i) _ 1. The constants R > 0 and ~>0 will be
determined later. We define

Clearly the function h belongs to r.

Proof of Lemma 2.4. - In doing our estimates we consider two cases
(i ) z E Q and and (ii ) zeQ and We will use
b; to denote several constants independent of K and T.

Case (i ). we have h (z, then

We analyse first the quadratic term. Since ç has p-component equal to 0
by (2. 8), (2.12) and definition of ç we have

We analyse now the last term in (3.1). By the definition of è

By (2.16) we have

we recall that a3 and a4 are independent of K. Now we estimate the first
integral in (3 . 3). By (2 . 6) we see that Choose E 1 so that

0~1~0 and I V (q) I _-1 /(T -1 ) if I q ( _ E 1. Given E > o, we define

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

Since TR we have

here m represents the Lebesgue measure. By (2 .17) and (H 4) if we

have 

and by (2.16) if we have

Then, by (3 . 6), (3. 7) and by the choice of Si we obtain

By (3 . 3), (3 .4) and (3. 8) we have

By Holder inequality and for T > 1 we obtain

By Holder inequality again we obtain

Thus, from (3 . 9), (3.10) and (3 .11 ), for a constant b 1 o we have

Case (ii). We consider now that As before we obtain

Vol. 8, n° 5-1991.
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we recall that y _ 1. By (2 .16) we obtain

As we did for (3 .11 ) and (3 .12) we obtain

and

And since s _ 1

Then, from (3.13)-(3. 17) we obtain

If R is large enough then for all z~Q with we see from

(3. 18) that

Now that we have chosen R we choose E in such a way that 1,
then from (3 .12) and (3 .19) we obtain

with c independent of T.

4. THE LIMIT PROCESS AND PROOF OF THE THEOREMS

In this section we study the sequence {zT} as T goes to infinity, and
we give a proof to the theorems presented in the introduction.
By Propositions 2 .1 and 2. 2, for every T > 0 there is a solution zT of

(KS)T and

with boundary condition
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and by (4 . 1 )

We assume from now on that In the arguments that follow we will
only use zT, so that no confusion will rise by dropping the tilde.

Since the system (HS)T is autonomous, the energy is conserved along
the solutions, then there is a constant ET such that

In what follows we will denote by ci various constants that are independent
of T.

LEMMA 4.1: l

Proof. - Since zT satisfies (4. 2), by (4 . 4) and using (H 3) we obtain

From (4. 5) with t = o, (4. 3) and hypothesis (H 3) we find

then o. Recalling that V (q)  0 we obtain from (4 . 6) that

from where statement (i) follows. Also from (4.6) (ii) follows. To show
(iii) we note that by (2.17) if we have

then

Then from (4. 7)

Vol. 8, n° 5-1991.
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COROLLARY 4. 1:

Proof. - Since qT (o) = 0 we have from (H 4) and (2 .17)

then since oo the conclusion follows. For pT (T) we can give a similar
argument. D

Let us define

The following lemma will be used repeteadly later.

LEMMA 4 . 2. - Let 0  a  d/2, then there exist constants c (a) > 0 and
E1 so that ifqEM and then

Proof. - Since z-p satisfies (4. 2), from Lemma 4.1 and the periodicity
of H in q, we have

Then, from (4. 8), we have

Choose 81 so that c4 E 1= a/2, then

Now choose c (a) so that

then

We note that since V is periodic in q and the set M is discrete the constant
c (a) can be chosen independent of q. 0

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LEMMA 4. 3. - qT is uniformly bounded independent of T, i. e. there is a
constant cs so that

Proof. - The idea is that if qT is not uniformly bounded then qT (t)
spends too much time outside M contradicting Lemma 4. 1 (ii). We forma-
lize this. By Lemma 4 .1 (iii), pT is uniformly bounded, then since zT
satisfies (4.2) we have

Assume there is and so that q (to) ~ = 2 N d and

~ q (t) I  2 N d, V t  to. Since qT (0) = 0 there is tl  to such that

and I = 2 (N -1 ) d. By (4 .10) ~ t 1- to >_ 2 d/c6. By continuity of qT
and the definition of d there is t i E (t 1, to) so that

if t2tl is such that and IqT(t)I2(N-2)d, 
then, by Lemma 4 . 2 there is a constant c~ and E1 > 0 such that

(ti - El, tl + E1) c (t2, to) and

We can repeat this argument N/4 times to obtain finally

By Lemma 4 . 2 (ii ) follows that N has to be bounded, completing the
proof. D

We now begin the limit process. Let us consider a sequence {Tm}m~N
such that oo . Let us denote Assume we have two sequences

{ tm ~ m E ~ such that

Let us now define a sequence of functions

Since system (4 . 2) is autonomous the function Sm (t) is a solution for (4 . 2)
for t E [ - tm , Given we consider the sequence { ~m } restric-
ted to the interval [ - N, N]. By Lemmas 4 . 1 and 4. 3, and the definition
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of Sm we see that ~m is uniformly bounded. By equation (4.2) we have
that also ~m is uniformly bounded. Since for m large enough
[ - N, N] c [ - tm , by the Arzela-Ascoli theorem we find a subse-
quence uniformly convergent to a function [ - N, N] -~ 1R2n and
this function satisfies (4 . 2) in [ - N, N].

Proceeding by induction, for every we can do the anterior proce-
dure in such a way that { ~mN + 1 ~ is a subsequence Then by
taking the "diagonal" subsequence we obtain a subsequence of ~ ~m ~ we
call {z~} and a function zl : f~ -~ (~2n so that z~ converges to z~ locally
uniformly, and z~ is a solution of (HS). We note that by (s 3) I q1 (0) == Eo
so that z~ is not trivial.

LEMMA 4.4:

Proof - Let For every by Lemma 4 .1 (ii )

taking the limit when mN  00, and then taking limit when N -~ oo we
find

where z~ = (p1, q1). By (s 3) and the definition of Sm we see that

and since lim tm - tm = oo we obtain that I ql (t) I  Eo, ‘d t E ( - oo, 0). Let
m -> o0

us assume that lim q1 (t) ~ 0, then there exist a sequence tn ~ - oo such

that Taking a  d/2, and c (a), E1 as in Lemma 4 . 2, we
obtain that

Assuming without lost of generality that 1 we see that
(4 . 12) contradicts (4 .11 ). This proves the second part of (i ). We note
that Lemma 4. 2 was proved only for qT, but the same argument allows
to prove it for q 1.
By conservation of energy and Lemma 4 .1, after taking the limit we

find
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then since lim ql (t) = o, by (H 4) we conclude that for t large enough

from where lim pl (t) = 0 follows. By a similar argument we

T - - o0

show (ii). D

PROPOSITION 4. l. - Equation (HS) possesses a heteroclinic orbit starting
at 0 and terminating in M~{ 0 ~ .

Proof. - Consider Tm = m, and define tm E [0, so that

and define t-m = 0. We claim that the sequences ( and ( tm } so defined
satisfy (s 1 ), (s 2) and (s 3). We only need to prove (s 2): Consider the
initial value problem

By continuous dependence on initial data, and noting that p --_ 0, q = 0 is
the solution for a = o, for every K there is E > 0 so that implies
q (t) E BEo (0), V 0  t __ K. By Corollary 4. l, for every E > 0 there is T so

that pT (o) ~  E, from where we conclude the first part of (s 2). A similar
argument can be given to prove the second part, again we use

Corollary 4.1.
Using the limit procedure described before Lemma 4 . 4, and Lemma 4. 4

we find a solution zl = (p1, ql) of (HS) that is a heteroclinic orbit of (HS)
if lim ql (t) E MB~ 0 ~. If this is not the case we end with a homoclinic
orbit. Let us assume we are in this adverse situation.

Let such that ql (t) E (0), V t >__ tl. We note that tl > 0 because
I ql (o) ~ = Eo. Let us consider the sequence qm) defined in the limit
procedure. Since qm (t) reaches 2 x k eventually there numbers im  im so

and I (t) (  Eo, V t E (’Lm , ’Lm ). We define = tm + im and = tm +’Lm .
We claim that the sequences {t1+m} and ( t1-m} satisfy (s 1), (s 2) and (s 3).
(s 1 ) and (s 3) are clearly true. Let us show that (s 2) is also satisfied.
Taking the subsequence corresponding to show that
lim Tm - = oo we proceed as we did before.
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We only need to show that goes to infinity, and since
0  im  tl, it is enough to show that im goes to infinity. Suppose it is
bounded, then im and converge through a subsequence to i - and i + ,
with 0  i - _ t 1  i + , but then I q1 1 (i + ) ~ = Eo that contradicts the definition

Since { tm+ ~ satisfy (s 1 )-(s 3) we can repeat the procedure
to obtain a solution z2 = ( p2, q2) of (HS), that is a heteroclinic orbit
lim q2 (t) E M~{ 0 ~ .
On the contrary, if lim q2 (t) = 0 we obtain a second homoclinic orbit.

Repeating this procedure and assuming in each case we find a homoclinic
orbit, we obtain a sequence of homoclinic orbits. We claim that this is

impossible.
In fact we will generate sequences ~, ~ ~, ... , ~ tm }, ... where

and this fact together with Lemma 4 . 2 contradicts assertion (ii ) of
Lemma4.1. D

Proof of Theorem 0 . 1. - By Proposition 4. 1 there is at least one
heteroclinic orbit emanating from 0 and terminating in MB{ 0 ~ .

If in problem (HS)T we change the boundary condition by

and we modify the arguments accordingly we obtain a heteroclinic orbit
emanating in MB~ 0 ~ and terminating in 0. D

Remark 4.1. - Theorem 0.2 can be proved in the same way
Theorem 0.1 was, with minor modifications.

Proof of Theorem 0 . 3. - Here we base the argument in the idea used
by Rabinowitz in proving Proposition 3.33 in [8]. This together with an
analysis similar to the one given in Proposition 4.1 will build the proof.
We will be scketchy.

We are assuming (H 2’), thus M consist of integer translations of a single
point. We can assume that M=Z". Let B denote the set so

that 0 and q are connected by a heteroclinic orbit. By Theorem 0.1 B is
not empty.

Let A be the set of linear combinations of elements in B with coefficients
in Z. We claim that A = M. If this is not the case then S = QS.
Take 2 x k E S and consider the problem (HS)T with the boundary condition
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As in Proposition 4.1 we find solutions of (HS) in R, zl, z2, ... Let

qi) the first one so that q‘ = lim By definition of 
T - o0

and then q‘ ~ 2 ~c k. Then by going a further translation as in Proposi-
tion 4.1 we find a solution of (HS) z‘ + 1 so that lim q‘ + 1 (t) = q‘. If

lim q‘ + 1 (t) = qt + 1 ~ A, then q~ + 1- q~ ~ A, but this is impossible since

zi + 1 (t) - (0, if) is an orbit joining 0 with q‘ + 1- if. Consequently ~~ e A.
Now we continue generating orbits of (HS) whose end points will always

be in A by the argument given above. Since we can not continue this
procedure indefinitely and for some j qj ft A contradicting the
hypothesis. Thus A = M, and then we can find at least n orbits emanating
from 0 and terminating in MB~ 0 ~ . The n heteroclinic orbits terminating
at 0 are obtained similarly. This proves the first assertion of Theorem 0 . 3.
For the second we assume also (H 6), and we note that if

z (t) = (p (t), q (t)) is a heteroclinic orbit joining 0 to q then z(t) _ ( - p ( - t),
q ( - t) - q) joins - q to O. 0
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