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ABsTRACT. — We find infintely many T-periodic solutions to a system
u+V_V(t, u)y=0 with a singular, T-periodic potential V, whose behaviour
at infinity is subjected to rather weak assumptions. In order to do so, we
adapt the Ljusternik-Schnirelman method to handle a functional possibly
unbounded from below and which possibly does not satisfy the Palais-
Smale condition at any level.

ResuME. — Nous trouvons un nombre infini de solutions T-périodiques
d’un systéme u+V,_V (¢, ¥)=0 pour un potentiel singulier, T-périodique V
dont le comportement a linfini est sujet a des hypothéses trés faibles.
Pour ce faire, nous adaptons la méthode de Ljusternik-Schnirelman pour
traiter une fonctionnelle méme non bornée inféricurement et ne satisfaisant
pas la condition de Palais-Smale a tout niveau.
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460 P. MAJER

0. INTRODUCTION

In this paper we seek T-periodic solutions of second order systems of
the type

©0.1) u+au+W'(t, u)y=0,
where W is singular at x=0,
W(i+T, x)=W(t, x), and W (t, x)=: V., W(, x).

Problem (0. 1) has been studied in [1] under the assumptions:
(1) a=0;
(i) W(t, x), W'(t, x) >0 as |x| — 00 uniformly in t;
1

@iii) W satisfies a “Strong Force condition” ( namely Wz—|
X

o’

a=2, at x=0).

(See also [2], [4], [5] for other results in this direction.)
The prupose of this work is to extend the results of [1], retaining
condition (iii), but weakening (i) and (ii). More precisely we assume that:

. n\?
a<|{—];
0 a<(3)
(jj) there exist constants ¢, 6<2, r>0 such that for |x|2r and for all
teR
W, x)<c|x]’, W', x).x=2W(, x)<c|x|%,
and we show that (0.1) has infinitely many T-periodic solutions u with
u(@#0Vvte.

From the abstract point of view, the solutions of (0. 1) are critical points
of the action integral

©0.1) f(u)=JT{%|L}|2—g|u|2_W(t, u)}dt

0
on

A={ueH' (S}, RY) : u(r)#0, VreSi}.

Two difficulties arise in weakening the hypotheses (i), (ii). First, since we
made rather weak assumptions on the derivatives of W at infinity, the
Palais-Smale condition may possibly fail at any level (while it holds at
any level but 0 under the hypotheses (i), (ii); see [1], Lemma 3.1). Second,
if a>0 the functional f'is no longer bounded from below.

In order to overcome these difficulties we prove in section 2 a Ljusternik-
Schnirelman type theorem which establishes the existence of infinitely
many critical points (Theorem 2.4). The main features of this theorem-
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LIUSTERNIK-SCHNIRELMAN THEORY 461

are:

(a) the Palais-Smale condition is not required on the whole domain of
the functional;

(b) the functional need not be bounded from below;

(¢) a certain control is required on the Ljusternik-Schnirelman category
of the sublevel sets of the functional (conditions 2.4 .iii and 2.4.iv).

Then in section 3 we show (Theorem 3.5) that if (j), (jj), and (iii) hold,
[ satisfies the hypotheses of Theorem 2.4. So, whereas checking the Palais-
Smale condition (2.4.v) becomes much simpler, more care is needed in
verifying conditions 2.4.iii and 2.4.iv. Roughly, the idea is to show that
if f(@)<A, then | ul|,/inf|u(z)|<k()). This allows us to deformate the
sublevel sets in compact sets (hence with finite category) via a convolution
operator.

Theorem 3.5 is completed by two examples. In the former we show a
case in which a=0, W(x) - 0 as x — oo and f does not satisfy the usual
Palais-Smale condition at any positive level.

2
In the latter we show that if a><%> , the category of every sublevel

set { f<\} can actually be infinite, so that Theorem 2.4 cannot be applied.

1. NOTATIONS

If fis a real-valued function on some set A and AeR, { <A} denotes
the set {ueA : f (u)<)}; similar meaning has { =)} and so on. If X is
a metric space with metric d, and if xeX and peR, B(x, p) is the ball
{yeX :d(x,y)<p}.If x, yeRN, | x and x.y are respectively the euclidean
norm of x and the scalar product of x, y. S} denotes R/T Z. Finally,

[[ull,= <f |u(t)[2dt) and ||u||; ,=(||u||3+]||«|[})'* denote respectively

the L?*norm and the H!'-norm of ueL2([0, T], RY), respectively
ueH! ([0, T], RN).

Hereafter SF, LS and PS means respectively Strong Force, Ljusternik-
Schnirelman, Palais-Smale.

2. A THEOREM OF LJUSTERNIK-SCHNIRELMAN TYPE

We first recall some definitions and basic results on Critical Point
Theory. Let A be a topological space, and let 2 (A) be the family of the
closed subsets of A which are contractible in A; if AcA, the LS category

Vol. 8, n® 5-1991.



462 P. MAJER

of A relatively to A is the number (possibly + o0)
k
Caty (A)=inf{keN: Ac U X;e A (A)}.

i=1
In the following proposition we list some properties of the category.

2.1. ProrosiTioN. — Let A be a topological space and A, B A. Then
2.1) Cat, (A U B)=Cat, (A)+ Cat, (B).

If A is closed and there exists a deformation of A in B, i.e., a continuous
map h: [0, 1]X A — A such that h(0, .)=1, and h(1, A)<=B (in particular
if A<B), then

2.2) Cat, (A)< Cat, (B).

If A is regular and locally contractible every compact subset of A has finite
category.
If A is arcwise connected, {Ai}iEI is a locally finite family of pairwise
disjoint closed subsets of A and A= \J A,, then
iel
(2.3) Cat, (A)=sup Cat, (A)).
iel
Proof. — See [7] for the first three properties. Since we have no
references for the last, we report here a proof.
We show that Cat, (A)<supCat, (A,), since the converse inequality
iel
follows immediately from (2.2). We can assume sup Cat, (A;)=m< o0, for
iel
otherwise there is nothing to prove. Thus Vi= | X;
ji=1
Since A is arcwise connected, for every (i, j) there exists a deformation
h; ; of X; ; in a common base point x,eA. For any jsm set Y;=U X,

iel

with X, ;e (A).

> J?

and let h] . [0, 1] X Y] — A be the map deﬁned by
hjl[o,x]xxi,,;hi,j, Viel:

the definition makes sense because the {X; ;};., are pairwise disjoint.
Moreover, since {X; ;};. is a locally finite family of closed sets, one has
that each Y; is closed and 4; is continuous, whence Y ;e % (A). Therefore
Cat, (A)=m.
QED.

Now let A be an open subset of some Banach space X. For f €% (A)
we set Z,={ueA:f (u)=0} and A=AN\Z,. In the proof of the main
theorem (2.4) we need some technical lemmas. First of all we recall the
following proposition
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LYUSTERNIK-SCHNIRELMAN THEORY 463

2.2. PropPOSITION. — Let f€%*(A), and a€)0, 1[: then there exists a
locally Lipschitz continuous map V : A — X such that Vue A

)

IVels )7
S @), V@) Y]] f W]

2.4

1 .
Proof. — See [7] or [8] (there A=X and oc=5, but the same construction

works without changes in the case of A open subset of X, a€]0, 1[.)

QED.

Maps like V, the so-called Pseudogradient vector fields, are used to

establish a Deformation Lemma (see [7] or [8]). Actually, for our specific
purposes, a statement slightly different from the usual ones is needed.

2.3. LEMMA. — Let a€]0,1[ and let f € €* (A) be such that
(2.5 Vu,->uedA, f(u,)— oo,
and suppose there exists a locally lipschitz map h: A—R such that
Z,c{f<h—1}.

Then there exists a continuous map 1 : [0, oo[ X A —> A such that for any
ue one has

MmN O, =y _

Mi)n (., w) is €* with |n @, w|=1;

(niii) f(n (., w)) is non-increasing;

(Miv) if f(n (&, )2 h(M (@, u), then

2.6) %Uﬁ@@E—me@WH

Proof. — Let V be the pseudogradient for f constructed in Proposition
2.2 and let us define a mapF : A -» X by

0, if fW=sh@—1;
V (u) .
—h 1), f h@@—1Z <h(u);
2.7 Fa= V@] (f@—h@+1) if h@)—1=fW=hw)
V(v) .
f > h(u).
V@] if f@w)zhw)
Consider the Cauchy problem
on_
N0, v)=u, ueA.

Vol. 8, n® 5-1991.



464 P. MAJER

Since V is locally Lipschitz continuous in A and F vanishes in a neighbour-
hood of Z,, F is locally Lipshitz in A. In addition |F||<1 and, from
(2.4), there results { f(u), F(u) >=0. Hence (2.8) has a unique solution
N (¢, u) for any initial value ue A; n (., u) is of class €* with |0 (¢, w)||<1;
f (M (2, ) is not increasing in ¢, because

%f(n (t w)= = f* (0t 1), F(n (1, ) Y <O0.

Now with standard arguments of o.d.e. we have that n=mn(¢, ) is defined
and continuous on [0, co[ X A. Namely, if for some u,eA the maximal
existence interval I=]¢,, #,[ of n (., u,) is right-bounded, then there exists
the limit u, of n (¢, uy) as ¢t 7 t,.u, belongs to A, otherwise from (2.5)

lim f(n (2, uy))= o0, whereas f (1 (¢, uy)) is not increasing. Then 1 can
t 7ty

be continued for z>¢, and I is not maximal, a contradiction. Thus n

verifies (ni), (nii) and (niii). Finally suppose that /' (n (¢, u)) = h(n (2, u)).
Then from (2.7) one has

dﬁtf(n (6 w)=— S (0t ), F (2, 0)y

_ . VO \
<f MDA 6w >

Then (niv) follows, since from (2.4)

- <f’ (N (t, ), L 9)

SN < gl (@ ).
“V(n(z’u))”>_ all £ (e W)

QED.
Lastly we recall the well known Palais-Smale condition. A sequence
{u,}=A is a PS sequence iff /" (u,) >0 and f(4,) is bounded; the PS
condition hold in a set Y <A (respectively, at a level AeR) iff every PS
sequence {u, } Y (respectively, with f () — A) has a limit point ueA.

2.4. TueoreM. — Let X be a Banach space with norm ||.|, A an open
subset of X, and suppose a functional f: A — R is given such that the
following conditions hold:

(i) Cat, (A)= + o0;

(il) fe®* (A) and ¥V u, —» uedA, f (u,) >+ 0;

(iii) VAER, Caty ({f <))< +o0;
suppose in addition that there exist ge €' (A), Be]0, 1[ and LyeR such that

(iv) Caty,({ gD < +oo;

(v) the PS condition holds in the set { f=g};

o) Bl S W ||Z|lg @], Vue{ f=g=h}.

Then f has a sequence {u,}<A of critical points such that f (u,) > + o0
and f (u,) =g (u,)— 1.
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Proof. — Suppose by contradiction that Z fc{ f<max (g, A,)—1} for
some A=A, Let h=max(g. A,) and take aelp, 1[: then Lemma 2.3
applies yielding a map n verifiying (ni-iv). The set A= { f <h} is positively
invariant for the flow m: indeed, if u€dA, either f@w=Ah,, or
gw)=f@=A*. In the former case we have from (miii)
N ([0, o[, u) <= { SN, } cA; in the latter one we get from (niv) and (nii)

(g W, nO,u))

=2 r e w)
dt (=0
<—af|f @|+|e W

2 (-9 w)
dt =

0

and from condition (vi) (since ue { f=g=X,})

—a|| £ @+ @l —allf @+l @l= =B/ el
Note that f(u)=h(u) implies u¢Z; since we have assumed
Z,c{ f<h—1}. Therefore

VuedA %(f—g)(n (1, )

<0.
t=0

Hence VuedA3de>0 such that 1 ([0, €[,u)<=A, which proves that A is
positively invariant for .
Since A can be written as

A=‘< U {2k—1 §f§2k}> U( U {2ksf2k+1 }),
keZ kel

and since both {{2k—1=f<2k}}.., and {{2k<f<2k+ 1}, are
locally finite families of pairwise disjoints sets, we get, using Proposition
2.1,

oo =Cat, (A)
=CatA<U {2k—1§f§2k}>+CatA<U {2k§f§2k+1}>
keZ kel
=2sup Cat, ({ fSA)).
reR

On the other hand, by (iii) and (iv)

Cat, (A)<Cat, ({ fSg}) +Caty ({ fEA, }) <0
Thus there exists a A* > A, such that
.9 Cat, ({ f<A*})> Cat, (A).
Consider the deformations

No.m: [0, AIX{fEX*} > A, neN.

From (2.2) and (2.9) we infer that VneNn(n, { /SA* DA, that is,
Vn3u,e{ f<A*} such that n (n, 4,) € A\A; moreover, since A is positively
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466 P. MAJER

invariant, we have in fact

(2.10) N u)eANA={f>h}c{fzr,}, Vtel0, n].
By the mean value theorem there exists z,€[0, n] such that

@.11) %f(n (1 u.,))=%(f (@, 1))~ (M 0, ).

Since from (niii) and (2.10)
M2 (MO, u,)2f (M, u,)) 24,

(2.11) implies that di f (n(,, u,)) - 0, therefore, again from (2.10) and
t

(niv), we have
/' (n(t,, u,))—0.
Hence u,=n(t,, u,) is a PS sequence in { f2g} N { =, }. By condition
(v) we get a critical point ue A with f (u)=h(u), a contradiction.
E.D.

2.5. Remark. — In the case g=X\,, a constant, condition (iv;zand (vi)
are contained in the other ones, while condition (v) reduces to the more
standard PS condition

(V') There exists ahyeR such that the PS condition holds on { f2 X, }.
Namely one has

2.6. THEOREM. — Let (1), (i1), (iil), (V') hold. Then there exists a sequence
{u,} of critical points of f such that f (u) > .

The idea of using this principle in Singular Potentials is due to [1] (Rem.
2.15). We introduce conditions (iv)-(vi) because in the applications they
allow us to handle a larger and more stable class of potentials than (v').

3. APPLICATION TO T-PERIODIC SOLUTIONS OF SINGULAR
TIME-DEPENDENT HAMILTONIAN SYSTEMS

We recall that a potential We @ (S;x (RV\ {0})) satisfies the Strong
Force condition [6], if the following holds:
(SF) There exists a Ue %' (RN\{0}) and a p>0 such that
lim U (x)= o0
x—0
Wi )<—|U &[5 V(L xeSExRYN{x}) with |x|<p.
Throughout this section we shall deal with a (singular) potential V of
the form

\%) Vi, x)=%a|x[2+W(t, x),

Annales de U'Institut Henri Poincaré - Analyse non linéaire
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where
2

n
V1) a<|{ =) ;
v a<(Z)
(V2) We®! (St x RN\ {0})) satisfies (SF);
(V3) 3¢, 0 <2, r>0 such that ¥ |x| =r,VteSt

W, x)<c|x|’, W (t, x).x—2W(t, x)<c|x|°

If these hypotheses hold we can also assume without loss of generality
that
(V4) W(t, x)<b, VxeRYN\ {0}.

2
Indeed, if we take a e:Ia, (%) [ and pose

~ 1 ~
W(t, x)=— E(a—a)|x|2+W(t, x),
(V) can be written as
V(t, x)= %Elx‘2+W(t, x),

satisfying (V1)-(V4).
A non-collision T-periodic solution of

3.1 u+V'(t, u)=0

is a ue®?(St, RN\ {0}) which solves (3.1). According to the usual
notation, we denote by

A={ueH! (S, RM):u()#0V €St}

the space of H! non-collision orbits. It is well known that the non-collision
solutions of system (3.1) are the singular points of the action functional
fe®* (A) defined by

(3.2) f(u)=r{1|{4|2—V(z, u)}dt,
o 12

whose differential at u€ A is the linear form

T
3.3) <f’(u),h>=j {L}‘ﬁ—V'(t, u).h}dt.
0
If ue A, we denote the pericentrum of the orbit u by
3.4 p(u)=mirll|u(t)|.
teSyt

Let us draw some consequences of conditions (V1)-(V4).
First of all we have a well known property that motivates the (SF)
condition.

Vol. 8, n® 5-1991.



468 P. MAJER

3.1. LemMA. — Let {u,} = A and u,—uedA. Then f(u,) > + .
Proof. — See [6].

QED.
3.2. LeMMA. — For every LeR there exists a constant k=k(\) such

that

(3.5 lul,<kMp@), VYue{f<)}

Proof. — By the Poincaré¢ inequality we know that

lolo= sl VoeH)©. T RY.

Thus if ue A and 1€ S} is a point where |u(7)| attains its minimum value
p (w), since the curve v ()=u(t+1,) —u(t,) is in H (0, T; RY) we obtain

T, - _
(3.6) ]]u||2§—1|u||2+\/Tp(u).
n
Condition (V) implies
3.7) f(u)g%”zl”%—gnunﬁ—bT, VueA,
which yields, together with (3.6), to
6.9 @zl il o ) b,
T2 2\ n

Now if the claim of the lemma is false, then there exists a sequence
{u} = A such that f(u,) is bounded and

(3.9) 20|, 2 kp ().
Putting (3.9) into (3.8), we get

f(”k)élllﬁklli[l—a<—T~ + £>2]—b’r.
2 T k

2
. T . .
Since a< (¥) , the term into square brackets is bounded away from zero

for large k; since f(u,) is bounded we conclude that ||%]|, is bounded
too. Then from (3.9) p(,) tends to zero and, extracting a subsequence
as needed, we may suppose that the u, converge weakly to some ue0A.
Due to Lemma 3.1 we have f(y,) — oo, a contradiction which proves the
assertion.

QE.D.
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3.3. LEMMA. — For every ceR the set Ac={ueA: ”—l(‘l—})igc} is of
p(u
finite category in A.

Proof. — Due to Proposition (2.1) it suffices to give a deformation
h:[0, 1]xA,— A such that A(l, A) c < A. Take 6€]0, T[ such that

c /0L %, and define

(p(t)=% if tel0, 8];
o ()=0, otherwise.

T

For any ue A let (u * @) (¢) be the convolution J‘ u(t—s) @ (s)ds : then we
0

have for any ¢, by standard inequalities

d
lu()—u*e) ()| < %f |u(@)—u(t—s)|ds

Sl = ””H2>
< sup |u u = /o|ull, u 0.
= Spl (t) (t )I_\/ “ || P( )( () \/

Is| <&

Hence if u is in A,

)

G10  JuO-Gr DO 2pWe S5 p6= [ul)

so that V (s, ©)€[0, 1] %[0, T]

* Q) (¢
x*9) () 20,

p )
Thus the left-hand side of (3.11) defines a homotopy 4:[0, 1] X A, — A,;
furthermore A (1, A,) = A. Finally 2 (1, A,) is relatively compact since it is

the image of the bounded set {u/p(u):u EA,} through the convolution
operator T,:H'sur>u* @eH', which is compact.

3.11) A=) u@+s

Q.E.D.

3.4. LeMmMA. — Let Ve&' (St x(RN\ {0})) and let SF hold. The
Sfunctional f verify the PS condition on the bounded sets.

Proof. — Let {u} be a H'-bounded PS sequence. Then, up to a
subsequence, it converges weakly in H! and strongly in L® to an element
u of H'(S;, RY) which belongs to A by Lemma (3.1). Hence
V' (¢, u) . (u—u,) converges uniformly to zero. Since /(1) — 0 in H™! and
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u—u, is H*-bounded we have, from (3.3)

T
nw—mwm=mj@@ﬁo
0

- k- ©
T
= lim {(f’(u), u—uk>+J V' (t, uk).(u—uk)} =0.
k- o© 0
Therefore u, converges to u strongly in H!.
QED.

3.5. THEOREM. — Let V be a T-periodic time-dependent potential satis-
fying (V). Then the dynamical system

u+V'(t, u)=0
has infinitely many T-periodic non-collision solutions.

Proof. — We have to check the hypotheses of Theorem 2.4
(i) See [3].
(i) Lemma 3.1.
(iii)) Lemma 3.2 and Lemma 3.3.
Now we shall define geé” (A), Be]0, 1[ and A, €eR verifying (iv, v, vi).
Let k£, be a constant such that

(3.12) lullo<ky|lull;2  VueH!(Si RY),
le.g., k,=:(T+T YH'2], and choose Be:lg, 1[. We define

g)=v|lulfi,, VueA,
where
BcTk®
2-0
(iv) We have to show that {f<g} is a set of finite category in A. Let

us take £>0 such that
at2e 7 \?
a.=: <{=1,
1-2¢ T

MeR such that VseRy|s[°<es*+(1—2¢)M, and define
T(1, . W (¢
ﬂij Y- Gup- WDy,
o 12 2

(3.13) Y2

1-2¢
Then
{fsg} = {f=ejulf,+(1-2e)M}={f,<M}.
Again we have from Lemma 3.2 that there exists k€ R such that
(3.14) lull.<kpw), Vue{f,<M}
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and by Lemma 3.3,

Cat, ({f<g})=Cat,({f.=M})<oo.

(v) For any AeR{f2g} N{f<A} < {g<A} is a bounded set because
g is coercive. Therefore by Lemma 3.5 the PS condition holds in {/>g}.
(vi) From (3.6) and (4.14) we find, for some k, >0,

6.19 lulsSkipG,  Vue{sse).
We take Ay =:7(k; r)°. Then if ue{f=g=A, }, there results

A \1/8
|wmlz(f) —kyr

so we have from (3.12) and (3.15)
r<p@ = u@)| < ||uflo ke |lully2  VieSt.
Now, taking account of (V3) we get
(3.16) JT{W’(t, u).u—2W(t, u}dt
R .
STsup{W'(t, x).x—2W (1, x):1€S}, r< | x| Sk, ||u|l, .}
<cT(k, ”unl.z)e-
From (3.2) and (3.3) we get
G177 @ flulli22 <776, w)=210)
—J {W'(t, u).u—2W (1, w) } dt.
0

From (3.16) and (3.17)

17" @)l 2 @y=c TS ||uli%:
since || g' (w)||=70||u||{ 3", we have, from our choice of y (3.13)

BllF @l—llg' @[ 20, Vue{f=gziy}.

QED.

3.6. Remark. — Theorem 3.5 can be improved stating that there exists

a sequence {u,} < Z, such that f(u,)=n| u|/’+n. This follows at once

from Theorem 2.4, for in the definition of the function g we can choose

the constant y arbitrarily large [eq. (3.13)]. We shall use this fact in

the following corollary, as a trick to avoid the constant solutions (see
also [1], § 7).

3.7. CoroLLARY (Autonomous case). — Let We%' (R¥N\ {0}) be a
potential such that (SF) holds, W'(x). %—» +o00 as x—0, and
x

W (x).x—2Wx)Zc|x|® for |x|=r, with 0<2. Then for any T>0 and
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for any aeR, the system
(3.18) u+au+W' (u)=0
has infinitely many T-periodic non-constant non-collision solution.

Proof. — The inequality W' (x).x—2W (x)<c|x[’, V|x| = yields by
integration W (x)<c¢,|x|*, V|x|=r. Hence, replacing if needed W with
W—c¢,|x|* and a with a+c,, we can suppose without loss of generality

2
that W is bounded from above. We take keN so large that a<k2(%> ,

~ T ~ . .. .
and we pose T= % Now we look for T-periodic non collision solutions

of system (3.18): Theorem 3.6 applies and we get a sequence {u,} < A
of solutions such that f(u,)2n|u,||% +n (Rem. 3.6). Only finitely many
of these can be constant: for otherwise (taking the subsequence of the
constant solutions) we would get from (3.18), by scalar product with u,

(3.19) alu,|*+W'(u,).u,=0,

and

(3.20) f(un)=jT{— glunlz—W(un)}dt= %{W’(un).u,,—ZW(un)}
0

Since f(u,) - co either |u,| > 0 or |u,| - co. In the former case it follows

from our hypothesis on W that W' (u,). —~_ — oo, which is in contra-

||

diction with (3.19). In the latter one we have from (3.20) that

T . .
f(u) < ¢ |u, |® for large n, whereas f(u,)=n|u,|*: a contradiction again.

QED.

4. FURTHER REMARKS

We emphasize that condition (V) does not imply the usual PS condition
(iii)’ of Theorem 2.6, even if we assume lim V (¢, x)=0: we shall show

this in Example 4. 1. However, if additional hypotheses on V are assumed,
such as

limsup | W (7, x)| + | W' (1, x)| <0,

X = ©

then (iii)’ holds and Theorem 2.6 applies.
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4.1. Example. — A potential Ve %1 (R") satisfying
V<0, lim V=0, |V ()|<]|x['"?

(hence also the hypotheses of Theorem 3.6) and such that the corresponding
action functional f does not verify the usual PS condition at any positive
level.

Let {g,},.n be an enumeration of Q; and {x,},.n 2 sequence in RN
such that x,—> oo, |x,|2(g,+1)*+¢,+1 and |x,—x,|>¢,+¢,+2 if
n#m. For any neN let ¢,e €° (R") be such that

1
0z0,()2—-,  Vi20;
n

0, (=0, if r=2g,+1;

9, (4,) =3

o llo=ga+1.
Define V,(x)=9,(|x—x,|) for every xeR", and let we®* (S}, RY)
satisfy

‘e
4.1) { wEw=0,
lw@®|=1.

Then u,=x,+q,w is a 2 n-periodic solution of the system
u+V, (u)=0.

Since the V, have disjoint supports it is defined a potential V=)V, of

class %” such that V=<0 and V(x)—-0 as x—oo. Moreover
V(@) Z|x|"*Vx: if V(x)#0, then there exists neN such that
xeB(x,, g,+ 1), so one has, by the choice of x,,

‘xl g |x"| _(qn+ l)g(qn+ 1)2
and
V&= IVi@ <l
Each u, solves

S 1S |x ]

{ u+V' (u)=0
u(®=u(+2mn),
Thus for any neN

S (u,)=0,

fw)=mnq}—2n0,(g,)
||u,,||1,2—+oo.

Since ¢,(g,) =0 as n— co, one has that for any AeR’there exists a
subsequence of {u,} which is a non-compact PS sequence at the level A

Vol. 8, n® 5-1991.
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for f. Of course the same example can be done for a singular potential,
simply adding to V a singular perturbation with compact support.

4.2. Remark. — Notice that if V is autonomous no assumptions on
the coefficient a are needed in order to get infinitely many T-periodical
solution of (3.1). In the following example we show that if we drop

2
condition a< <%) , (iv) and (v) in general fail to hold.
4.3. Example. — A potential Ve®' RN\ {0}) such that the corre-
sponding action functional f does not verify conditions (iv) and (v).

2
Let a> <%> ,and let Ve%' RN\ {0}) be such that V(x)g%a|x

2
)

Vx with | x| 2 1. We show that for any A, and p,,
Caty ({f<ho } \B(0, po))=0;

in order to do this it is sufficient to exhibit a deformation of a set of
infinite category, e.g., A={ueA:|u(®)|=1Vt}, in {f<h}\ B(0, po).

Choose T* in ]%, T[, and define the functions [0, 1]X [0, T] -» R
a

0, if 0<r<sT*
—_ —_ *

g(s, t)_{Ti, if sT*<(<T,
T—sT*

ssin[ L) if 0<r<sT*
I(s, )= sT*

0, if sT*<t<T.

Consider the homotopy 4:[0, 1] x A - A:
h(s, u)y=u°g(s, .),

and set B=/A(1, A): clearly every ue B is constant on [0, T*]. For re % (B),
r=0 consider the homotopy £:[0, 1]X B — A:

k(s, y=u+rwu(0)I(s, .),

We shall choose r in such a way that k(1, B) = {f<X,} \ B(0, py). In
order to do this, we note that

T*
4.2) llk(l,u)||1,2;<3||k(1,u)llw;C|k(1,u><7>‘

=C

u(%*>+r(u)u(0)‘=C(r(u)+1)[u(0)| >Cr(u)|u(0)].
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Thus ||k(1, w)||,, ,=p, whenever r(u)> ECQ‘ Furthermore, making the

ry (u)=fT{1[d|2—V(u)}dt
T. 2
and

L[ oo e ()]

there results

(4.3) f(k(1,u)

positions

§%J:{(%)zr(u)2c052(%t)—a[r(u)sin<%t>+l:lz}dt+r1(u)
T 2
é—;—r(u)zj0 {(%) cos2<%t>—asin2<%t }dt+r1(u)
=—prw?*+r, ().

Since p>0 and r, e % (B), if we take

r(u)-_-max(& /———Irl (@)= o )
c’ M

we have from (4.2) and (4.3) that ||k (1, w)||,. ,2p, and f(k (1, u))<A,.
Then we have

Cat, ({/<Xo} \\B(0, po)) = Cat, (B)=Cat, (h(1, A))2 Cat, (A) = co.
QED.
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