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ABSTRACT. - We find infintely many T-periodic solutions to a system
u) = 0 with a singular, T-periodic potential V, whose behaviour

at infinity is subjected to rather weak assumptions. In order to do so, we
adapt the Ljusternik-Schnirelman method to handle a functional possibly
unbounded from below and which possibly does not satisfy the Palais-
Smale condition at any level.

RESUME. - Nous trouvons un nombre infini de solutions T-periodiques
d’un systeme u) = 0 pour un potentiel singulier, T-periodique V
dont le comportement a l’infini est sujet a des hypotheses tres faibles.

Pour ce faire, nous adaptons la méthode de Ljusternik-Schnirelman pour
traiter une fonctionnelle meme non bornee inférieurement et ne satisfaisant

pas la condition de Palais-Smale a tout niveau.

Mots Ljusternik-Schnirelman theory, singular dynamical systems, periodic solution.
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0. INTRODUCTION

In this paper we seek T-periodic solutions of second order systems of
the type

where W is singular at x = 0,

Problem (0.1) has been studied in [1] under the assumptions:

(See also [2], [4], [5] for other results in this direction.)
The prupose of this work is to extend the results of [I], retaining

condition (iii), but weakening (i) and (ii). More precisely we assume that:

B - /

(jj ) there exist constants c, 8  2, r > 0 such that for |x| _> r and for all
t~R

and we show that (0.1) has infinitely many T-periodic solutions u with

From the abstract point of view, the solutions of (0.1) are critical points
of the action integral

on

Two difficulties arise in weakening the hypotheses (i ), (ii ). First, since we
made rather weak assumptions on the derivatives of W at infinity, the
Palais-Smale condition may possibly fail at any level (while it holds at

any level but 0 under the hypotheses (i ), (ii ); see [I], Lemma 3 .1 ) . Second,
if a > 0 the functional f is no longer bounded from below.

In order to overcome these difficulties we prove in section 2 a Ljusternik-
Schnirelman type theorem which establishes the existence of infinitely
many critical points (Theorem 2 . 4). The main features of this theorem
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are: 
’

(a) the Palais-Smale condition is not required on the whole domain of
the functional;

(b) the functional need not be bounded from below;
(c) a certain control is required on the Ljusternik-Schnirelman category

of the sublevel sets of the functional (conditions 2 . 4 . iii and 2 . 4 . iv).
Then in section 3 we show (Theorem 3 . 5) that if (j ), (jj ), and (iii) hold,

f satisfies the hypotheses of Theorem 2 . 4. So, whereas checking the Palais-
Smale condition (2 . 4 . v) becomes much simpler, more care is needed in
verifying conditions 2 . 4 . iii and 2 . 4 . iv. Roughly, the idea is to show that

then This allows us to deformate the
sublevel sets in compact sets (hence with finite category) via a convolution
operator.
Theorem 3. 5 is completed by two examples. In the former we show a

case in which a = 0, W (x) - 0 as jc -~ oo and f does not satisfy the usual
Palais-Smale condition at any positive level.

In the latter we show that if a>(03C0 t)2, the category of every sublevel
set {f~ 03BB} can actually be infinite, so that Theorem 2 . 4 cannot be applied.

1. NOTATIONS

If f is a real-valued function on some set A and { f __ ~, ~ denotes
the set {u~ A : f(u)~03BB}; similar meaning and so on. If X is
a metric space with metric d, and if x E X and peR, B (x, p) is the ball

{y E X : d (x, y)  p }. If x, y and x . y are respectively the euclidean
norm of x and the scalar product of x, y. ST denotes R/T Z. Finally,

u 2 / and ~u~1,2=(~u~22|~~22)1/2 denote respectively
the L2-norm and the H1-norm of T], respectively
u E H 1 ([0, T], 

Hereafter SF, LS and PS means respectively Strong Force, Ljusternik-
Schnirelman, Palais-Smale.

2. A THEOREM OF LJUSTERNIK-SCHNIRELMAN TYPE

We first recall some definitions and basic results on Critical Point
Theory. Let A be a topological space, and let Jf (A) be the family of the
closed subsets of A which are contractible in A; if A c A, the LS category
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of A relatively to A is the number (possibly +00)

In the following proposition we list some properties of the category.

2 .1. PROPOSITION. - Let A be a topological space and A, Be A. Then

If A is closed and there exists a deformation of A in B, i. e., a continuous

map h : [0, 1 x A --~ A such that h (0, . ) =1 A and h ( I , A) c B (in particular
if A c B), then

If A is .regular and locally contractible every compact subset of A has finite
category.

If A is arcwise connected, {Ai}i~ I is a locally finite family of pairwise
disjoint closed subsets of A and A = U Al, then

iEI i

Proof - See [7] for the first three properties. Since we have no
references for the last, we report here a proof.
We show that Cat (A) ~ sup Cat (Ai), since the converse inequality

i E i

follows immediately from (2 . 2). We can assume sup Cat~ (Ai) = m  oo, for
i E i
m

otherwise there is nothing to prove. Thus V i = U Xi. j, with Xi, J E H (A).

Since A is arcwise connected, for every (i, j) there exists a deformation
of Xi. j in a common base point xo e A. For any j _ m set Y j = U ’ ’ 

i E i 
’

and let hj : [0, 1] x Y~ -~ A be the map defined by

the definition makes sense because I are pairwise disjoint.
Moreover, I is a locally finite family of closed sets, one has
that each Y~ is closed and hj is continuous, whence Therefore

Cat (A)  m.
Q.E.D.

Now let A be an open subset of some Banach space X. For (A)
we set f ’ (u) = 0 ~ and In the proof of the main
theorem (2.4) we need some technical lemmas. First of all we recall the
following proposition
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2 . 2. PROPOSITION. - Let f ~1 (A), and a E ]0, 1 [: then there exists a

locally Lipschitz continuous map V : I - X such that ~u~ A

Proof - See [7] or [8] (there A = X and a =1 but the same construction
works without changes in the case of A open subset of X, Cl E ]0, 1 [.

Q.E.D.

Maps like V, the so-called Pseudogradient vector fields, are used to
establish a Deformation Lemma (see [7] or [8]). Actually, for our specific
purposes, a statement slightly different from the usual ones is needed.

2. 3. LEMMA. - Let oc E ]o,1 such that

and suppose there exists a locally lipschitz map h : A --~ R such that

Then there exists a continuous map ~ : [0, oo[ x A ~ A such that for any
u E A one has

Proof. - Let V be the pseudogradient for f constructed in Proposition
2 . 2 and let us define a map F : A - X by

Consider the Cauchy problem
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Since V is locally Lipschitz continuous in A and F vanishes in a neighbour-
hood of F is locally Lipshitz in A. In addition ~F~~1 and, from
(2 . 4), there results ( f’ (u), F (u) ~ >__ o. Hence (2 . 8) has a unique solution
11 (t, u) for any initial value u E A; 11 (., u) is of class ~ 1 with ~ ~ ~ ( t, 1;
f (11 (t, u)) is not increasing in t, because

Now with standard arguments of o.d.e. we have that 11 = 11 (t, u) is defined
and continuous on [0, oo[xA. Namely, if for some uo E A the maximal
existence interval I = ]to, ti[ of 11 (., uo) is right-bounded, then there exists
the limit U1 of ~ (t, uo) as t / t 1 . U1 belongs to A, otherwise from (2. 5)
lim uo)) = oo, whereas (t, uo)) is not increasing. Then 11 can

be continued for 1 and I is not maximal, a contradiction. Thus 11
verifies (~ i), (l1ii) and (l1iii). Finally suppose u)) >_ h (~ ~(t, u)).
Then from (2. 7) one has

Then (11 iv) follows, since from (2 . 4)

Q.E.D.

Lastly we recall the well known Palais-Smale condition. A sequence
~ c A is a PS sequence iff f’ (u") -~ 0 and f is bounded; the PS
condition hold in a set Y~A (respectively, at a level 03BB E R) iff every PS
sequence ( c Y (respectively, with f --~ ~,) has a limit point u E A.

2 . 4. THEOREM. - Let X be a Banach space with norm ~ ~ . ~ ~, A an open
subset of X, and suppose a functional f : A --~ R is given such that the

following conditions hold:

suppose in addition that there exist g E ~1 (A), (3 E ]0, 1 [ and ~,o E R such that

Then f has a sequence {un} c A of critical points such that f (un) ~ + o0
and f (un) g (un) -1.
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Proof - Suppose by contradiction that ~,*) -1 ~ for
some ~,* >__ ~o. Let h=max(g. ~,*) and take 1[: then Lemma 2 . 3

applies yielding a map 11 verifiying (11 i-iv). The set A = ~ f _ h ~ is positively
invariant for the flow 11: indeed, if u~~A, either f(u)=03BB*, or

g (u) = f (u) >_ ~* . In the former case we have from (11iii)

~ ([p~ in the latter one we get from and (11 ii)

and from condition (vi) (since 

Hence ~u~~A~~>0 such that ~([0, ~[, u)~A, which proves that A is

positively invariant for 11.
Since A can be written as

and since both and are

locally finite families of pairwise disjoints sets, we get, using Proposition
2 .1,

On the other hand, by (iii) and (iv)

Thus there exists a ~,* > ~,* such that

Consider the deformations
rn

From (2. 2) and (2. 9) we infer that that is,

V E { f  ~,* ~ such that 11 (n, un) E ABA; moreover, since A is positively
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invariant, we have in fact

By the mean value theorem there exists tn E [0, n] such that

Since from (11 iii) and (2.10)

(2 .11 ) implies that ~ f (r~ (tn, un)) --~ 0, therefore, again from (2 .10) and
dt

(11 iv), we have

Hence un = ~ (tn, un) is a PS sequence in ~ f >_ g ~ (~ ~ , f’> ~,* ~. By condition
(v) we get a critical point U E A with f (u) >_ h (u), a contradiction.

Q.E.D.
2. 5. Remark. - In the case constant, condition (iv) and (vi)

are contained in the other ones, while condition (v) reduces to the more
standard PS condition

(v’) There exists a ~,o E R such that the PS condition holds 
Namely one has

2. 6. THEOREM. - Let (i), (ii), (iii), (v’) hold. Then there exists a sequence
~ un } of critical points of f such that f (u) --~ oo .
The idea of using this principle in Singular Potentials is due to [1] (Rem.

2.15). We introduce conditions (iv)-(vi) because in the applications they
allow us to handle a larger and more stable class of potentials than (v’).

3. APPLICATION TO T-PERIODIC SOLUTIONS OF SINGULAR
TIME-DEPENDENT HAMILTONIAN SYSTEMS

We recall that a potential W E ~1 (ST X (RN B ~ 0 ~ )) satisfies the Strong
Force condition [6], if the following holds:
(SF) There exists a U E ~1 (RN B ~ 0 ~ ) and a p > 0 such that

Throughout this section we shall deal with a (singular) potential V of
the form

Annales de l’Institut Henri Poincaré - Analyse non linéaire



467LJUSTERNIK-SCHNIRELMAN THEORY

where

If these hypotheses hold we can also assume without loss of generality
that

(V) can be written as

satisfying (V 1)-(V4).
A non-collision T-periodic solution of

is a u E ~2 (ST, RN B ~ 0 } ) which solves (3 .1 ). According to the usual

notation, we denote by

the space of H1 non-collision orbits. It is well known that the non-collision

solutions of system (3 .1 ) are the singular points of the action functional

(A) defined by

whose differential at U E A is the linear form

If U E A, we denote the pericentrum of the orbit u by

Let us draw some consequences of conditions (V1)-(V4).
First of all we have a well known property that motivates the (SF)

condition.
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3 .1. LEMMA. - c A and un u E bA. Then + oo .

Proof. - See [6].
Q.E.D.

3 . 2. LEMMA. - For every ~, E R there exists a constant k= k (~,) such
that

Proof. - By the Poincare inequality we know that

Thus if U E A and to E ST is a point where ~M (t) attains its minimum value
p (u), since the curve v (t) = u (t + to) - u (to) is in T; RN) we obtain

Condition (V) implies

which yields, together with (3 . 6), to

Now if the claim of the lemma is false, then there exists a sequence

{ uk ~ c A such that f(uk) is bounded and

Putting (3 . 9) into (3. 8), we get

Since a  - , the term into square brackets is bounded away from zero
BT/ 

for large k; since f(uk) is bounded we conclude is bounded

too. Then from (3 . 9) p (uk) tends to zero and, extracting a subsequence
as needed, we may suppose that the uk converge weakly to some 
Due to Lemma 3 . 1 we oo, a contradiction which proves the

assertion.

_ 

Q.E.D.
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Proof. - Due to Proposition (2 . 1 ) it suffices to give a deformation
such that h (l, A. Take 03B4~]0, T[ such that

c /8 ~ -, and define~ 2

For any M e A let (u * (p) (t) be the convolution ~Tu (t - s) cp (s) ds : then we
o

have for any t, by standard inequalities

Hence if u is in A~,

so that b’ (s, t) E [o, 1 ] X [o, T]

Thus the left-hand side of (3 .11 ) defines a homotopy h : [0, 1] x A~ --~ A;
furthermore h ( 1, A~) c A. Finally h ( 1, A~) is relatively compact since it is
the image of the bounded set {u/p (u) : U through the convolution
operator which is compact.

Q.E.D.

3 . 4. LEMMA. - Let and let SF hold. The

functional f verify the PS condition on the bounded sets.

Proof - be a H~-bounded PS sequence. Then, up to a
subsequence, it converges weakly in H~ and strongly in L 00 to an element
u of H 1 (ST, which belongs to A by Lemma (3 .1 ). Hence
V’ (t, (u - uk) converges uniformly to zero. Since f’ (uk) - 0 in and
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u - uk is H1-bounded we have, from (3 . 3)

Therefore uk converges to u strongly in H 1. 
Q.E.D.

3. 5. THEOREM. - Let V be a T-periodic time-dependent potential satis-
fying (V). Then the dynamical system

has infinitely many T-periodic non-collision solutions.

Proof. - We have to check the hypotheses of Theorem 2.4
(i ) See [3].

(ii ) Lemma 3.1.
(iii) Lemma 3 . 2 and Lemma 3. 3.
Now we shall define E ]0, 1 [ and ~,o E R verifying (iv, v, vi).

Let koo be a constant such that

where

(iv) We have to show that ~f__g~ is a set of finite category in A. Let
us take E > 0 such that 

’

MER such that and define

Then

Again we have from Lemma 3. 2 that there exists k E R such that

(3 .14)
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and by Lemma 3 . 3,

(v) For any (~ ~ f __ ~, ~ bounded set because

g is coercive. Therefore by Lemma 3 . 5 the PS condition holds in ~ f >_ g ~ .
(vi) From (3 . 6) and (4. 14) we find, for some ki > 0,

We take ~,o = : ~y (k 1 r)e. Then there results

so we have from (3.12) and (3.15)

Now, taking account of (V3) we get

From (3 . 2) and (3 . 3) we get

From (3.16) and (3.17)

Q.E.D.
3 . 6. Remark. - Theorem 3 . 5 can be improved stating that there exists

a sequence {un} C Z f such This follows at once
from Theorem 2.4, for in the definition of the function g we can choose
the constant y arbitrarily large [eq. (3.13)]. We shall use this fact in
the following corollary, as a trick to avoid the constant solutions (see
also [1], § 7).

3 . 7. COROLLARY (Autonomous case). - Let 

potential such that (SF) holds, W’ (x) , x -~ + oo as x --~ 0, and

with 8  2. Then for any T>O and
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for any a E R, the system

has infinitely many T-periodic non-constant non-collision solution.

Proof. - The inequality ( >_ r yields by
integration W (x) _ c 1 ~ x I2, V I x I >_ r. Hence, replacing if needed W with
W-c1|x|2 and a with we can suppose without loss of generality

that W is bounded from above. We take so large that a  k2 - ,
BT;

and we pose T = T . Now we look for il-periodic non collision solutionsp 
k 

p

of system (3 . 18): Theorem 3 . 6 applies and we get a sequence {un} c A
of solutions such (Rem. 3 . 6). Only finitely many
of these can be constant: for otherwise (taking the subsequence of the
constant solutions) we would get from (3 .18), by scalar product with un

and

Since f(un)  oo either I Un ‘ --~ 0 or un I ~ oo . In the former case it follows
from our hypothesis on W that W’ (un) . un |u03C0|2 ~ oo, which is in contra-

I Un 12
diction with (3.19). In the latter one we have from (3.20) that

for large n, whereas f(un)~n|un e: a contradiction again.

Q.E.D.

4. FURTHER REMARKS

We emphasize that condition (V) does not imply the usual PS condition
(iii)’ of Theorem 2 . 6, even if we assume lim V (t, x) = 0: we shall show

JC -~ 00

this in Example 4.1. However, if additional hypotheses on V are assumed,
such as

then (iii)’ holds and Theorem 2. 6 applies.
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4. 1. Example. - A potential V E ~1 (RN) satisfying

(hence also the hypotheses of Theorem 3. 6) and such that the corresponding
action functional f does not verify the usual PS condition at any positive
level.

be an enumeration of Q; a sequence in RN
such that and if

n ~ m. For any nEN let (R + ) be such that

Define for every x E RN, and let 

satisfy

Then un = xn + qn w is a 2 x-periodic solution of the system

Since the Vn have disjoint supports it is defined a potential V = ~ Vn of
n

class ~°° such that and V (x) -~ 0 as Moreover

V (x) __ ~ x ~ 1~2 b’ x: if V (x) ~ 0, then there exists such that

x E B (xn, qn + 1 ), so one has, by the choice of xn,

and

Each un solves

Thus for any n E N

Since -~ 0 as n ~ oo, one has that for any there exists a

subsequence which is a non-compact PS sequence at the level X
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for f Of course the same example can be done for a singular potential,
simply adding to V a singular perturbation with compact support.

4.2. Remark. - Notice that if V is autonomous no assumptions on
the coefficient a are needed in order to get infinitely many T-periodical
solution of (3.1). In the following example we show that if we drop

condition a  ( 2014 ) , (iv) and (v) in general fail to hold.

4. 3. Example. - A potential V~1(RNB{0}) such that the corre-

sponding action functional f does not verify conditions (iv) and (v).

Let a>(03C0 T)2, and let V~1(RNB{0}) be such that 
Vx with x ( >_ 1. We show that for any 03BB0 and po,

in order to do this it is sufficient to exhibit a deformation of a set of
infinite category, e. g., in ~ f _ ~,o ~ B B (o, po).
Choose T* in ]03C0 a, T , and define the functions [0, 1] x [0, T] ~ R

Consider the homotopy h : [0, 1] x A -~ A:

and set B = h (1, A): clearly every u~B is constant on [0, T*]. For r (B),
consider the homotopy k : [0, 1] x B ~ A:

We shall choose r in such a way that k (l, B) c { f  ~,o } B B (o, po). In
order to do this, we note that
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Thus whenever r (u) >_ p° . Furthermore, making the

positions

and

Since ~, > 0 and r 1 if we take

we have from (4 . 2) and (4 . 3) u))  ~,o .
Then we have
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