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ABSTRACT. - It is proved that there exist solutions of the nonlinear
Dirac equation, smooth in time, on a time interval which is independent
of c. Moreover after multiplication by a phase factor (dependent on c)
these solutions converge to the solution of a coupled system of nonlinear
Schrodinger type equations.
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RESUME. - La limite non relativistique de l’équation de Dirac non linéaire.
- On montre qu’existent des solutions de 1’equation de Dirac non lineaire,
regulieres en temps, sur un intervalle en temps independant de c. En plus,
apres la multiplication avec un facteur de phase (c-dépendant) ces solutions
convergent vers la solution d’un systeme couple d’equations du type
Schrodinger non lineaire.
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INTRODUCTION

We consider the initial value problem for the nonlinear Dirac equation

where ~, and c are positive constants, T is a function from fR3 into C~,
aV stands and a, and P are 4x4 matrices satisfying

j= i

a, ock + ock a~ = 2 I, a, p + pa, = 0, p is diagonal and = I.
This equation has first been investigated by the physicists; see the

references in [I], [2], [3]. L. Vazquez, T. Cazenave et al. ([3], [2], [1])
recently started the investigation of the existence of localized (or stationary)
solutions of (1).
We are interested in the solutions of the equation with arbitrary (i. e.

not necessarily radially symmetric as in the above references) initial condi-
tions and their convergence as the speed of light c increases to 00 .

Introducing ~=1 2c2, we write (1) in the equivalent form

We first prove the existence of a classical solution of (2) on an interval
independent of E.

In the following theorem as well as in the rest of this paper H~ stands
for the Sobolev space HS ((~3)4 and L~ stands for Lz ((~3)~.
THEOREM 1. - Let Assume that and

Then there exists an interval J = [ - T, T] such that for every E with 0  E ~ ~Q
there exists a unique solution

of the initial value problem (2).
Next we investigate the nonrelativistic limit E -~-> 0 [i. e. c --~ oo in ( I )].

Since cannot be expected to converge, motivated by the linear theory
(see [5], [6]), we introduce the new function ~ = 2 t~E Inserting this
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5THE NONRELATIVISTIC LIMIT

into (2) we obtain an equivalent initial value problem

with ~~ ~ = 2 E.

Theorem 1 evidently holds verbatim for ~~. Differentiating (3) with
respect to t we conclude that the smooth solutions of (3) (their existence
is shown in Theorem 1) is also the solution of the initial value problem

Conversely, as the initial value problem (3) is equivalent to the initial value
problem (2) which has a skew-adjoint linear part, standard arguments show
that a solution of (4) which is C2 in time is also a solution of the first
order system (3).

This suggests that the solutions ~£ of (3) converge to the solution Do
of the nonlinear Schrodinger type equation

We shall prove an existence result for ~o and the convergence of ~£
to 

THEOREM 2. - Assume that Then there exists an interval
J = ~ - T, such that the initial value problem (5) has a unique solution

THEOREM 3. - Let 0. Assume that E H2 (0 _ E -_ Eo) and moreover

Vol. 9, n° 1-1992.
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Further assume that there exists some a E [0, 1] such that

Let J = [ - T, T] be such that there exists a unique solution

~E E C2 (J, L2) n C1 (J, H1) (~ C (J, H2) of the initial value problem (3) for
E > 0 and a unique solution E C1 (J, L2) (~ C (J, H2) of the initial value
problem (5). Then

LEMMA 4. - There exists K > 0 such that for all u E H2 following inequali-
ties hold:

Proof. - Let ti be the Fourier transform of u. The Plancherel Theorem
implies that

LEMMA 5. - Assume Eo > 0 and

Then there exists an interval J = [ - T, T] such that if for each E E (0, ~o) the
initial value problem (2) has a solution B{If: E C1 (J, L2) (~ C (J, H2) then
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Proof. - It is sufficient to prove (11) since (12) follows from (11) and
the embedding theorem. In fact it is sufficient to prove

since t E [ - T, 0] is treated similarly.
In the proof of (13) we need the conservation of L2 norm

which follows easily from (2) by scalar multiplication in L2 by 
Now we turn to the proof of (13). Apply the operator A to both sides

of (2). It follows that ~ = 0~’ is the solution of the initial value problem.

Multiplying by (0 and taking the imaginary part we find

From (9), (10) and (14) it follows that

From this it follows that if KT  1 then

Together with (14) this implies (13).
Let y be a matrix and j, k E ~ 1, 2, 3 ~ . Define the functions

LEMMA 6. - The functions f , i = 1 , ..., 6, are locally Lipschitz continu-
ous functions from H2 to L2: for every K>O there exists such that

~ ~ u  K, ( u ~ __ K imply

Moreover for a = 0 and 1
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We omit the easy proof (which repeatedly uses Lemma 4 and the Embed-
ding Theorem).

Define the mappings N~ {~ >_ 0) by

LEMMA 7. - (a) For 8>0 the mapping I~E is a locally Lipschitz continuous
map from H2 to Hl: for every K>O there exists such that

~‘ c K imply

(b) The mapping No is a locally Lipschitz continuous map on H~.
(c) There exists C > 0 such that for all ~, ~i’ E H~ and a E [0, 1 the estimate

Proof - (a) and (b) are straightforward consequences of Lemma 6. To
prove (c), fix ~, ~’ and define the linear map R~, ~ by
R~, ~ (8) _ ~) 8 + (~i ~ ~ 8) ~ + (8 ~ ~. Then

It is easy to show for
a = 0 and a== 1 (in fact such estimate appears in the proof of Lemma 6).
Since is linear, the same estimate holds for all oc E [0, 1].

Proof of Theorem 1. - As mentioned in the Introduction, it is sufficient
to prove the statement of Theorem 1 for the solution of the initial value
problem (4), since it follows by standard methods that this solution is also
solution of (2).
The substitution U = e - i a t~2£ ~ transforms the initial value problem (4)

into

Converting this equation into an integral equation (cf [4]) we find that
any smooth solution of (4) is also a solution of
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with

and A the positive square root of 1 ~2(~A+1 4), A = - 1 20394, naturally

defined in L2.
We shall use the following well known result: let j~ be a m-dissipative

operator in a Hilbert space X and let D (d) be its domain endowed with
the graph norm. Let F be a locally Lipschitz continuous mapping on
D (d). Then for every Xo ED (d) the initial value problem

has a maximal classical solution

Moreover if  00 then

Fix E > o. We apply the above result to the space X = D x L2 = H~ x L2
endowed with the norm

to the operator A in X defined on x D (A£) = H2 x H~ by

and to the mapping F defined by

Then d is skew-adjoint and F is locally Lipschitz continuous on D (d)
by lemma 7. We conclude that there exists and a unique classical
solution Dt of (19) on [0, TJ and moreover that

Since (19) and (4) are equivalent, it follows that there exists a unique
classical solution ~E of (4) on [0, TJ and moreover that if T~  oo then
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Since C, is the solution of (3) and since (3) is equivalent to (2), we can
apply lemma 5 and conclude that if T£  T (T is the number in that lemma)
then consequently lim 

(t) II = However the
H1

equation (2) implies C, (t) which leads to a contradic-

tion.

This implies From the symmetry of the equation (19) with respect
to t we conclude that the maximal existence for (hence also for is
in fact ( - TE, TE).

Proof of Theorem 2. - Using the notation from the proof of Theorem
1, the initial value problem (5) can be written as

Since - i ~3 A is a skew adjoint operator in L2 and No is a locally Lipschitz
map on D (A) = H2 by Lemma 7, the conclusions of Theorem 2 are a
straightforward application of the classical existence result that was used
in the proof of Theorem 1.

Proof of Theorem 3. - Denote

Then the solution of the initial value problem (23) [and consequently (5)]
satisfies also the integral equation

note that P, A and Io (t) are diagonal commuting.
Using the representations (20) and (24) of the solutions and their

difference can be written as
6

where
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We shall prove

Since 03A600 E H°‘ and No ( . )) E C ([0, T]; H2) by Theorem 2, the state-
ments (251) and (254) follow directly from Lemma 2.2 in [5]. Noting the
estimate

we see that (252) is a consequence of (7).
Similarly, the estimate

together with (6) and the Sobolev embedding theorem imply lim E~ 1 E = 0
’ 

in H1, therefore (253) follows from (26). Next

hence it follows from (26) and Lemma 4 that

Using Lemma 4 and Lemma 5 [recall that in (11) and (12) can be

replaced by CJ it follows that ~I L£5~ (t) _ C t E1~2, hence the equality
(245) is also proved. Using (26) once again we see that

It follows that

with lim This implies (8) on [0, T]; the proof for [ - T, 0] is identical.
E -~ 0
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