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ABSTRACT. - Given a system of ordinary differential equations with
lipschitzian right-hand sides, we state an existence and uniqueness theorem
for a "contingent solution" of the first-order system of partial differential
equations characterizing center manifolds, as well as the convergence of
the viscosity method.

Solution contingente à une équation de centrale.
- Etant donne un systeme d’equations difféientielles à second membre
lipsciitzien, on demontre uh theoreme d’existence et d’unicite d’une sol-
ution ’’’contingente" du systeme d’equations aux derivees partielles du
premier ordre earacterisant les variétés èentrales, ainsi que la convergence
de la methode de viscosite.

INTRODUCTION

Let us consider the system of differential equations
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14 J.-P. AUBIN AND G. DA PRATO

where X, Y are finite dimensional vector-spaces, and
g: X x Y H Y are lipschitzian maps and ~, > o.
The problem of finding maps r: X H Y whose (closed) graphs are viabil-

ity domains of this system (which can be called center manifolds) has been
studied in several frameworks: see [ 11 ], [12] to quote a few and their
applications (see [4], [8], [7] for instance). Knowing a center manifold and
a solution x ( . ) to

starting at xo, then the pair (x ( . ), y ( . )) is a solution to the system of
diffential equations starting at (xo, yo) where y (t) : = r (x (t)).
We can characterize the maps r: X H Y whose (closed) graphs are center

manifolds of this system thanks to Nagumo’s Theorem: it states that

where TK (x) denotes the contingent cone to K at x E K defined by

(See [1], [5] on viability and invariance domain for instance.) We recall
that for any map r, the contingent cone to the graph of r at (x, r (x)) is
the graph of the contingent derivative, which is the set-valued map from
X to Y defined by

Naturally, D r (x) (u) = r’ (x) u coincides with the usual derivative when-
ever r is differentiable at x. It has nonempty values when r is lipschitzian.
(See [3] for more details on the differential calculus of nonsmooth and
set-valued maps.)

Therefore, we can translate this characterization by saying that r is a
solution to the quasi-linear first-order system of "contingent" partial
differential inclusions.

One can say that such maps r are contingent solutions to the quasi-linear
first order system of partial differential equations

(called the center manifold equation), which we shall write in the form

because D r (x) (u) = r’ (x) u whenever r is differentiable.
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15CENTER MANIFOLD EQUATION

The classical Center Manifold Theorem states that there exists a local

~~2~-solution to this system when g is ~~2~, vanishes at the origin and when
, f ’ (x, y) = A x + fo (x, y) where the eigenvalues of A have zero real parts, fo
is ~~2~ and vanishes at the origin. The latter requirements are used for the

study of the asymptotic properties of the equilibrium.
In this paper, we shall show that there exists a global bounded and

lipschitzian contingent solution to this problem when f and g are only
lipschitzian, when

and when ~, is large enough. It is unique when ~, is even larger.
This type of result is known for equations (see [13], [17] for instance)

and is announced by P.-L. Lions and Souganidis in more general cases
by other methods (private communication.)
Denote by Ar the map of components 1, ..., m).
We shall prove futhermore that these solutions can be approximated in

the spirit of the "viscosity method" by solutions rE to the second-order
system

when E - 0. We use for that purpose the fact that the graph of such maps
rE are stochastic viability domains of the system of stochatic differential
equations

where W (t) is a Wiener process from X to X, provided that

(We refer to [2] for general results on invariant

manifolds by stochastic differential equations.)
The outline of the paper starts with the study of linear contingent partial

differential inclusions

where we prove that the solution is still given by the classical formula

where S~ (x, . ) is the unique solution to the differential equation

starting at x at time 0. In the process, we provide a priori estimates of the
sup-norm (the classical maximum principle) and the Lipschitz and Holder
semi-norms for first and second order systems.
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16 J.-P. AUBIN AND G. DA PRATO

In the second section, we use these results and fixed point theorems to
prove the existence of contingent solutions to the first and second order
quasi-linear systems and prove the convergence of the viscosity method.

1. THE LINEAR CASE

1.1. Contingent solutions to first order systems

Let X:=R" and be given. We introduce two maps cp: X - X
and ~: X --~ Y.
We shall look for solutions r: X -~ Y to the first-order system of partial

differential equations

Actually, we shall look for Lipschitz (or even, closed graph) solutions r
to this equation. Usually, a Lipschitz map r is not differentiable, but
contingently differentiable in the sense that its contingent derivative associ-
ating to every direction u E X the subset

has nonempty values ( 1 ). Naturally, Dr (x) (u) = r’ (x) u whenever r is differ-
entiable at x. So, we shall provide contingent solutions to the first-order
system of differential equations (1), which are by definition the solutions
to the contingent inclusions

We recall that the (closed) graphs of solutions to the contingent inclusion
(2) are viability domains of the system of differential equations

thanks to Nagumo’s Theorem.
We shall also consider second order elliptic systems of partial differential

equations

(1) We recall that for any map r, the graph of the contingent derivative is the contingent
cone to the graph of r at (x, r (x)).
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17CENTER MANIFOLD EQUATION

which possess unique twice differentiable solutions whenever the functions
cp and 03C8 are lipschitzian.
We shall establish a priori estimates independent of E enjoyed by the

solutions to the first and second order systems.

1.2. The maximum principle and other a priori estimates

We introduce the Frechet Y) of continuous maps
r: X --~ Y supplied with compact convergence topology, as well as the

spaces = (X, Y) of m-times continuously differentiable maps. We
set

and

We recall that on the space ~P~1~, the semi-norms I~ r are equivalent to
the semi-norms (again denoted by)

and that for oc =1, they are both equivalent to the norm ]] r’ ~ ~ ~ .

. i . 2 . 1. The maximum principle

We begin by adapting the maximum principle to the case of systems:

PROPOSITION 1 . I . - Assume that r E ~~2~. Then the following a priori
estimates independent of E >_ 0

hold true.

Proof : - Assume first that there exists x achieving the maximum of
j ~ r The first-order necessary conditions for a maximum imply that

The second-order conditions yield
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18 . J.-P. AUBIN AND G. DA PRATO

By taking u = v = e~, we infer that

so that

Let us consider now a twice differentiable solution r to equation (3).
By applying r (s) to both sides of equation (3), we infer that

so that we derive the a priori estimate

If the nonnegative bounded function x ( . ) : - ~ does not achieve
its maximum, we use a standard argument which can be found in [10],
[19] for instance. One can find approximate maxima xn such that x (xn)
converges to sup x (x), x’ (xn) converges to 0 and x" ( . , . ) ~ 0. D

x~X

1.2.2. A priori estimates in ~~1~

Let a: X - R~be a positive twice differentiable function outside of the
origin. Denote by

In particular, r~ (r) = I r Ilex when we take a (z) : z Ilex.
We adapt to the case of systems a priori estimates known for equations

(see [9] for instance):

PROPOSITION 1 . 2. - Consider a twice dfferentiable solution to the second-
order equation (3).

Let us set

If r~ ()  + oo and ~,  + oo, then the a priori estimate independent of E
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19CENTER MANIFOLD EQUATION

holds true. In particular, if cp is monotone, then

and if cp is lipschitzian, then

Proof. - Assume first that exists a pair (x, y) achieving the maximum
of

The first-order conditions imply

and the second-order condition that

By taking and this formula yields

and consequently, by taking u = v, that

In particular, we obtain the following inequality

by summing up the above inequalities with u = e;, i = l, ..., n.
Consider now a twice differentiable solution to the second-order equa-

tion (3). By applying r (x) - r ( y) to both sides of this equation, we infer
that 

>
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Therefore, if we set

and if we assume that p  + ao, we obtain the a priori estimate (6)
after dividing both sides of this inequality by a (x - y)~.

The ~°‘ estimates of the solutions are obviously obtained by taking
a (z) : _ ~ ~ ~ ~ ~°‘, the derivative of which is equal to a’ (z) = a ~ ~ z ~ ~°‘ - ~ ~. In this
case, ~, measures the lack of monotonicity since

We observe that whenever 03C6 is monotone (in the sense that
(x) - c~ (Y), x - Y ~ >__ 0 for every pair (x, y)) and that ~. (c~) __ cp ~ ~ 1

whenever cp is lipschitzian.
When the function ~, (x; y) : _ ~ ~ r (x) - r ( y) ~ ~ /a (x - y) does not achieve

its maximum, the argument used above allows to find approximate maxima
xn such that x (xn, yn) converges to r~ (r), ~‘ (xn, yn) converges to 0 and
~" (JiCn, in) ( . , . ) ~ o. m

~ . 2 . 3. A priori estimates in ~~2~

PROPOSITION 1. 3. - We assume that the functions 03C6 and 03C8 are continu-
ously differentiable. Consider a solution to the second-order equation (~).
Then

Proof - Actually, we shall prove a more general a priori estimate. Let
a: X --~ R + be a positive twice differentiable function outside of the origin.
Denote by

In particular, r~’ (/)= ~/ ~ when we take 
Let us assume that there exists (ac, y, fi) achieving the maximum of

The first conditions imply
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21CENTER MANIFOLD EQUATION

By taking u1=v1 and w = 0, we infer that

Let r be a (2)-solution to the linear equation (I): it satisfies the equation

By applying (r’ M fi - r ( y) M) to both sides of this equation, we obtain

thanks to (10).
Therefore; after dividing both sides of this inequality by a (.z- y)2 ~~ u ~~2,

we obtain

If the function

does not achieve its maximum, we use again the approximation argument.
In the case when a (z) : z It, we obtain the estimate (9).

1.3. Existence of contingent solutions

When cp is lipschitzian (and thus, with linear growth), we denote by
S~ (x, . ) the unique solution to the differential equation

starting at x at time d.

PROPOSITION 1 . 4. - Assume that cp is lipschitzian and that 03C8~03B1 is
bounded. Then for all ~, > 0, the map r defined by

is the unique solution to the contingent inclusion (2) and satisfies
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Proof. - Let p be a nonnegative smooth function with compact support

and integral to one and set x : = 1 ). We approximate the mapsg Pn ~ ) pp

cp and 03C8 by their convolution products

which are smooth functions satisfying

We recall that the explicit solution rh to the first-order system

is given by formula

By the a priori estimate (4), we infer that

The graph of rh is a viability domain of the system of differential
equations

By Nagumo’s Theorem, the solutions (xh ( . ), yn ( . )) to this system of
differential equations satisfy

They remain in a compact subset 00; X x Y) because they
enjoys the same linear growth, so that a subsequence (again denoted by)
(xh ( . ), yh ( . )) converges uniformly on compact intervals to a function

(x ( . ), y ( . )). Since the maps cph and 03C8h remain in an equicontinuous set,
we infer that (x ( . ), y ( . )) is a solution to the system

On the other hand, it is easy to check that when Xh converges to x, the
solutions (xh, . ) converge to a solution S~ (x, . ) uniformly on compact
intervals. Since the maps ~rh remain in an equicontinuous set, we infer
that ~rh (xh, t)) converges pointwise to ~r (Sp (x, . )). Therefore, the map
B~/ being bounded, rh (x) converges also to the map r defined by the

theorem, which satisfies
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This amounts to saying that the (dosed) graph of a map r is a viability
domain of this system of differential equations, that is to say that r is a
solution to the contingent inclusion (2).

Uniqueness follows from 
Finally, a priori estimates (8) imply that rh are holderian with

(These estimates can also be obtained directly from the explicit expres-
sion of rh.) D

2. THE QUASI-LINEAR CASE

We consider now the quasi-linear first-order systems

of partial differential equations, and, more generally, their contingent
version

We recall that the (closed) graphs of solutions to the contingent equation
(13) are viability domains of the system of differential equations

thanks again to Nagumo’s Theorem.

THEOREM 2 . I . - Assume that the maps f X X Y ~ X and g: X X Y ~ Y
are lipschitzian and that

Then for 03BB>max (c, 4 ( ( f I I 1 I gill)’ there exists a bounded lipschitzian sol-
ution to the contingent inclusion (13). It is unique for ~, large enough.

Actually, we shall also prove the convergence of the "viscosity method"
by introducing the second-order system

We shall prove that solutions to the second-order system converge to

contingent solutions when E - 0.

THEOREM 2. 2. - Assume that the maps f X x Y --~ X and g: X x Y -~ Y
are lipschitzian and that
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Then for ~, > max (c, 4 ~,1 ~ ~ g ( ~ 1 ), there exists a solution YE to the second-order
system (15) converging to a solution to the contingent inclusion (13) when
E - 0.

Proofs.
1. A priori estimates. - We shall denote by H~ the operator defined on

lipschitzian maps s by
r : = Hg (s) is the solution to À r (x) = E Ar (x) - r’ (x) f (x, s (x)) + g (x, s (x)).

(This makes sense since this (linear) elliptic problem does have a 
solution whenever E > 0 and f ( . , s ( . )) and g (., s ( . )) are lipschitzian.) and
by Ho the operator defined on lipschitzian maps by

r : = H o (s) is the solution to ~, Y (x) = g (x, s (x)) - Y’ (x) f (x, s (x)).
We observe that the functions cp (x) : = f(x, s (x)) and 03C8 (x) : = g (x, s (x))

satisfy

By above a priori estimates, the map HE obeys the inequalities

and

which are independent of 8e[0, oo [. We first observe that when ~, > c,

When we denote by

the smallest root of the equation

We observe that for large À,

We thus infer that
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Let us denote by A~ {~,) the subset of twice continuously differentiable
maps defined by

We have therefore observed that whenever ~, > max (c, the

maps Ht send A~ (~,) to the compact subset B~ (~,) defined by

We now check that they are uniformly equicontinuous on A (X).
Indeed, let s 1 and s2 given in A~ {~,) and let us set r 1 : = H£ {S 1 ), r2 : = Hg (S2)
and r : = r 1 - r2 their difference. The map r is a solution to the equation

By the maximum principle, we deduce that

because

Since the 1 are equivalent on ~~ 1 ~, we
infer that there exists a constant v such 

Hence, for every ~~0, s1 and s2 given in A1~ (03BB), we obtain the inequality

Therefore, we can extend by continuity these maps HE to maps (again
denoted by) HE mapping the ball B (~,) to itself and satisfying the same
inequalities.

2. Existence and uniquenes. - Assume that gilt).
Since the ball B~ (~,) is compact and convex and Hg is continuous from
this ball to itself, there exists a fixed point B (~,) of the map HE by
the Brouwer-Schauder-Fan Fixed-Point Theorem in locally convex spaces,
i. e., a solution to the equation (15).
For 8=0, is a solution to the contingent inclusion ( 13).
Uniqueness is guaranteed for large enough ~,’s, actually when

This is possible because
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3. Convergence of the viscosity method. - Since the maps r£ remain in
an equicontinuous and pointwise bounded subset, which is compact, a
subsequences (again denoted by) rE converges to a map r. It remains to
prove that r is a solution to the contingent inclusion (13).

For that purpose, we observe that the graph of a solution to the second-
order equation (15) is a viability domain of the system of stochastic
differential equations

where W (t) is a Wiener process from X to X, provided that
rE (x)) = E r£ (x).

Indeed, if the graph of a is a viability domain of this system
of stochastic differential equations, then, for any initial state 
the solution to .

satisfies y (t) = r (x (t)) for every t >_ o, so that Ito’s formula implies that r
is a solution to (15).

Conversely, Ito’s formula implies that for any ~~2~-solution r to the
system (15) r (x)), we have

so that (x (t), r (x (t))) is a solution to the system of stochastic differential
equations.

Let (xE ( . ), yE ( . )) be solutions to the system
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Ltisfying

it is well known that when E converges to 0, the

solutions (xE ( . ), y£ ( . )) converges almost surely to a solution (x ( . ), y ( . ))
to the system of differential (14). Since the maps rE remain in an equiconti-
nuous subset, they satisfy

This shows that r is a solution to the quasi-linear contingent inclusion

(13). D
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