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ABSTRACT. — We define a “renormalized” Morse index, and prove a
Bahri-Lions type result for critical points df (u, v) = [,{Vu - Vv —
H(x,u,v)}dx; i.e., we establish an a priori bound for critical points

with bounded Morse index.
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous définissons un indice de Morse généralisé pour les
points critiques de la fonctiol (u, v) = [{Vu - Vv — H(x,u,v)}dx
défini Surl(£2) x H($2).

Le but principal de ce travail est la démonstration d’'une estimation
de type Bahri—Lions [2] pour les points critiques. Nous montrons pour
chaque entiem € N que I'ensemble des points critiques dont l'indice

renormaliséu satisfaitie < m est borné dans>®(£2) x L>®(£2).
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. INTRODUCTION AND MAIN THEOREM
In [1] we obtained existence and multiplicity results for critical points

in C3(£2) x C§(2) of the functional

fH(u,v)=/{Vu-Vv—H(x,u,v)}dx (@)}
2

whose Euler—Lagrange equations are the following semilinear elliptic
system

—AMZHU(.X,M,U), _szHu(-x’ M,U), (2)

with Dirichlet boundary conditions. If one chooses

|M|p+1 ) |v|q+l 3
H s Wy = +
(x,u,v) 01()6)[)4_1 (X)qul )
then (2) becomes
—Au =b(x)v?, —Av=a(x)u’. 4)

Our method in [1] is to use Floer's version of Morse theory. In fact our
motivation for this work and [1] was to see how well Floer’s approach
adapts to PDE problems involving indefinite functionals likg. In
Floer’s approach one defines a “renormalized Morse index” for critical
points, and then defines homology groups which allow one to estimate
how many critical points with a given indeky should have. It turned
out in [1] that Floer's method can indeed be used in a straightforward
way, provided one can establish enough compactness, both for the critical
points, and for the orbits of the gradient flow which connect the critical
points. To our surprise we found that the flow which gives the best
compactness properties for the connecting orbits is the gradient flow in
HE(£2) x H}($2), or more generallyH* x H?~S. This flow is well posed,
in contrast with thel? gradient flows that are usually chosen to define
Floer homology. For thd.? gradient flows ill-posedness of the initial
value problem caused by ellipticity of the gradient flow PDE is largely
responsible for compactness of the set of connecting orbits.

After establishing the Morse relations, and from there existence and
multiplicity results for critical points offy in [1] it was natural to ask
what could be said about the renormalized Morse index of critical points.
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To do this we needed a compactness theorem for critical points with
bounded index. Our main result in this paper is precisely such a theorem:

THEOREM 1A. —Let 2 c R" be a bounded domain with smooth
boundary 952. We assume: > 3, and we assume the systgd) is
superlinear, i.e.p, g > 1, and subcritical

1 1 2
—t—>1——. (5)
p+1 gqg+1 n

For anym € N there is a constanC,, depending onz, b and £2, such
that any critical point offy with lower indexu _ (zg) < m satisfies

sgp{lul,lvl}écm.

We recall the definition of the renormalized index in Section 2 below.
This theorem is similar to a theorem of Bahri and Lions [2] (see also
Yang [8]) who show that boundedness of the Morse index of solutions
of the scalar equatiod\u + u” = 0 imply a priori L*™ estimates for
the solutions. We cannot imitate their proof however, since they use the
minimax characterization of eigenvalues-efA + V (x) in terms of the
guotients

JIVOIZ+ V(x)p(x)? dx
J#(x)?dx

(See [3, Chapter 6].) This description always deals with “the first
eigenvalues” which makes no sense in our setting, since the second
variation & f,(z) at a critical pointz € CA(2) x C4(2) always has
infinitely many positive and negative eigenvalues. In Section 3 we
overcome this problem by giving an alternative description of the index
of a critical pointz in terms of the spectrum of an integral operator
associated with the matrix

Huu(x-z(-x)) Hvu(' : ))
Huv("') HUU("') ’

P(x) = (

In Section 4 we begin the compactness proof along the same lines
as Bahri and Lions. Assuming compactness fails, we use a blow-up
argument to reduce the problem to that of computing the index of entire
solutions to the “constant coefficient version” of (4), i.e., (4) witlx)
and b(x) independent ofc. This prompts us to study entire solutions,
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which we do in Sections 5-7, where we prove two Liouville type

theorems. In Sections 8-10 we then complete the compactness proof.
The proof we give actually applies to more general functighs

To state the more general result we consider a sequence of functions

H® e C?(£2 x R?). We say this sequence satisfies conditienif

For any sequence of poinfg < 2 and numberg, 1 oo
there is a sequendeg 1 co such that %) defined by

HO, U, V) =3 "V g0 (Pt ey, AP U MY, (%)

& = kk—(pq—l)/Z’

converges irC2.. to a|U |P* + b|V |2*1 for somea, b > 0.

2
loc
This hypothesis is satisfied by “lower order perturbations” of (3), i.e.,
functions of the form

|u|p+l |v|q+l
Hx,u,v)=alx)—— + b(x
( ) ()p+l ()q+1

+h(x,u,v),

with
h(x, u, v) = o(|ul "+ o] 7H),
and similar growth conditions for the first and second derivativés of
THEOREM 1B. —Let H® be a sequence of functions satisfyiag,
as well as
925 2H® 52 ®
dudv 2u ~ 92v
Then any sequencg of critical points of f;®» with uniformly bounded
renormalized Morse indices is uniformly bounded.iti (£2; R?).

The method used in this paper appears to give an optimal result with
respect to the exponengs andg. On the other hand our method does
impose restrictions on’d (z) and on the dimension of the domain. The
method used by Bahri and Lions and by Yang for semi-definite elliptic
equations does not share these restriction due to the direct variational
characterization of the eigenvalues which is possible in the semidefinite
case. We believe that the imposed restrictions 8H @) andn are of
technical nature and that the result (Theorem 1A) should hold true under
milder hypotheses or?d (z) and for alln > 1.
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2. THE RENORMALIZED INDEX

The second variation of; at a critical pointz = (%) is given by

P ru@) - (@, ¢) = ($.EP) 2 0m2, ¢ € H2NH(2;R?).

wheref is the elliptic operator given b§ = —d, — P (x), with
0 -A
—a= <—A 0 ) ’

Huu(xau(-x)’ U(X)) Hvu("')
Py = () o)
The operatof€ is elliptic and self-adjoint. It is also a bounded pertur-
bation of the operato9d, whose spectrum consists of the bi-infinite
sequence of eigenvalués/r, | k = 1,2, ...}, wherex, are the eigen-
values of—A on £2 with Dirichlet boundary conditions. Thus also has
a bi-infinite sequence of eigenvalues and the ordinary Morse index of the
critical pointz is infinite.

Let S, be the 3-dimensional space of symmetris 2 matrices, and
let B = L>°(£2,S,) be the space of “potentials”. We will first define
the index of€ = —9, — P(x) if £ is nondegenerate (invertible), so let
Bo be the set ofP € P for which —d, — P(x) is invertible. Py is
an open subset df8, and its complement can be written as the union
U=, B, where; consists of those potential for which —d, — P (x)
hasi-dimensional kernel. Eacf§; is a smooth submanifold &8 with
codimension (i + 1)/2 (see [4]).

We will define the indexu of the operator—ad, — P(x) by requiring
that it be locally constant ofy, and by specifying hovw (—d, — P(x))
changes wherP crosses from one component 9, to another. The
following lemma makes this possible.

LEMMA 2A.—*3; has a natural co-orientation.
Proof. —Let Py € B;. A co-orientation of3; at Py is an orientation of

TP()‘I;/ TP()‘I;].-

By definition 0 is a simple eigenvalue 6fd, — Py(x). Standard
perturbation theory implies that the operated, — P(x) has a simple
eigenvaluer(P) near O for allP € B near Py. The functionP — A(P)
is smooth, and its derivative is given by

dA(P)-8P =—(¢p,0P - Pp)2, (6)
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wheregp is a unit eigenvector of-d, — P(x) for the eigenvalue.(P).

If §P € Tp,P is not tangent t@31, then by the implicit function theorem
dr(Pp) - 8P # 0, and the sign of this expression provides us with a co-
orientation. O

The proof actually provides us witlivo co-orientations: we will call
3 P positive if di.(Pp) - 8 P is negative(!)

Given& = —d, — P, with P € 3o, we choose a generic paih, | 0 <
6 < 1} connectingPy = 0to P, = P. A generic path will not intersect any
of the P3; with i > 2 since they have codimension 3 or more. A generic
path can intersecéf,, but we may assume that it does so tranversally. The
co-orientation then assigns a sign to each intersection of the patfwith
We define the sum of these signs tob&). A generic homotopy of paths
will also miss all the3; with i > 2, and will also be transversal §;.
Therefore the number of intersections (counted with orientation) of the
path with)3; does not depend on the path.

Briefly, 1 (€) is the number of positive eigenvalues&f= —0d, — Py
which become negative d@sincreases from 0 to 1 minus the number
of negative eigenvalues ¢} = —d, — P, which become positive &
increases from 0 to 1 (cf. the “spectral flow formula” in [6]).

LEMMA 2B.—If Py, P; € Py and Pi(x) > Po(x) pointwise, then
u(—=0a — P1) = pu(—0da — Po).

Proof. —Since’l3, is open we may assume tht > Py + ¢l for some
smalle > 0. Now let P, = 6P, + (1 — 6)Py. One hasdP,/06 > el,
and any sufficiently smalC* perturbation of this path will also have
dPy/00 > 0. For a generic perturbation (6) tells us that every intersection
of the perturbed path witf, is positive. O

It is relatively straightforward to compute the index of operators with
constant coefficient potentials. Let

A —-C
Papc(x)= (—C B ) ;

whereA, B, C are constants.

LEmMMA 2C.-If —C = /(AB) is not an eigenvalue of-A, in
particular if AB < O, thenP € By. In this case the index 6fd, — P4 p.c
is determined as follows:

(a) If AB < Othen,u(—BA — PA,B,C) =0;
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(b) If AB>0and A, B > 0 thenu(—dx — Pa.p.c) is the number
of eigenvalues of A lying in the interval-C — \/(AB) < A <
—C + J/(AB);

(c) If AB>0and A, B <0 then u(—0dx — P4 p.c) iS minus the
number of eigenvalues ofA lying in the interval-C — /(AB) <
A< —C+ . J(AB);

Proof. —For anyg, ¥ one hag({)) € kern(—d, — P4 5,¢) iff

—Ap+ (C— ANy =0,
(C—A)p — By =0.
Add B times the first equation t&C — A) times the second to find that

{(C—A)?—AB}¢p=0.

A similar manipulation shows thai also satisfies this equation. If
—C + ,/(AB) are not eigenvalues ofA then this equation forces both
¢ andy to vanish, so thaP, g ¢ € PBo.

AssumeAB < 0 and P4 . ¢ € Po. SincePy is open, we can perturb
A and B slightly to causeAB < 0. Then, keepingd and B fixed, we
can varyC without ever causing-d, — P4 5.c t0o become singular; we
move C to C = 0. Finally we letA and B move linearly toA = 0 and
B =0, and again our operatefrd, — P, g ¢ remains nonsingular, while
the potentialP at the end of these deformations has become the zero
potential. Hence the original operate, — P4 5.c had index zero.

Let A > 0andB > 0, and assume agafy 3 ¢ € Po. After perturbing
C slightly we can assume thatC is not an eigenvalue of A. We now
deformA linearly to O, i.e., we consider the operates8, — Py4_p.c With
0< 0 < 1. This operator has a monotonically decreasing potential, so its
index drops at each for which it becomes singular. Thus for eaglfior
which—C +,/(6 AB) is an eigenvalue of A the index of—9, — Pya 5.c
jumps by the multiplicity of the eigenvalue in question. The end result
of this deformation is a nondegenerate operator with= 0. We have
just seen that such an operator has index zero, and hence the index of
our original —dx — P4 p.c must equal the number of eigenvalues-of
counted with multiplicity in the intervalt 4+ C| < /(AB).

In the remaining casel < 0, B < 0, one can apply the same argument.
The only difference is now that the deformatierdy, — Pya.p.c has
monotonicallyincreasingpotential, so one arrives at the same numerical
value, but the opposite sign for the indexa
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In [1] we also introduced an upper and lower ingex(—dx — P(x))
andu_(—0dx — P(x)) for degenerate critical points, which are defined by

pi(=0a — P(x))
= lim sup{u(=da — P) [ |1P' = P~ <&, P € Po},
p—(—0a — P(x))
= Ii?g) inf{p,(—aA —P)|||P = P|~<e, P'e 2]30}.
They satisfy

pi(=0a — P(x)) — p—(=0a — P(x)) =dimkern(—d, — P(x)).

3. AVARIATIONAL PRINCIPLE FOR THE INDEX
Let€ = -9, — P(x) with

P(x)=( A _C(x)>,

—C(x) B(x)

and assume that (x), B(x) and C(x) are pointwise nonnegative. This
implies that the operatoer A + C(x) is invertible. We define the bounded
compact operator

Tpf=vVA(—A+CO)IB(-A+C)WAS
on L?(£2). One can writel» as(Sp)*Sp, where
Sp=~B(—A+C)" VA,

from which one sees thdl is selfadjoint and nonnegative.

LEMMA 3A.-The operator £ is nondegenerate iffl is not an
eigenvalue of'». The Morse index &f equals the number of eigenvalues
A of Tp with & > 1. If £ is degenerate, thedim kern & coincides with
dim kern(T» — 1). The lower index of is the number of eigenvlaues
of Tr exceedindl; the upper index is the number of eigenvaluesf 7»
with A > 1.

Proof. —¢ is degenerate iff there a|(§) such that
—A(X)¢ + (Cx) — Ay =0,
(C(x) = A)¢p — B(x)y =0.
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SinceC(x) > 0 the operatolC(x) — A has a bounded inverd€ (x) —
A)~ton L?(£2). This allows us to eliminate, after which we find that
£ is degenerate exactly when there is sapngith

¢ =(C(x)— A)HBW(CH) — A) AW},

i.e., whenever 1 is an eigenvalue of the operatpe= (C — A)"1B(C —
A)~1A. This operator is formally conjugate wiffp, namelyZ»[v/A /] =
VAT, 1.

To compute the index of, let A and B vary monotonically to O,
and count the number of tim&and 7» — 1 become degenerate: both
operators vary monotonically, so this number gives both the change
in index of £ and the number of positive eigenvalues Bf — 1.
Since operators of the forma, — (f’c _OC) are always nondegenerate
(provided C (x) > 0 of course) they all have the same index: this index
must be the index of-0, itself, i.e., zero. O

COROLLARY 3B. —If either A(x) = 0 or B(x) =0, then £ has
indexO.

Proof. —The operator7, vanishes, and hence has no eigenvalues
exceeding 1. O

COROLLARY 3C. —If A(x) = B(x), then the index of equals the
number of negative eigenvalues of the Schrédinger operatar —
A(x) 4+ C(x).

Proof. —The operatof; is the square of/A(C — A)~*V/A, which has
eigenvalue 1 exactly when the Schrodinger operatar+ A(x) + C(x)
is singular. Replacd (x) with 9 A(x), and letd vary monotonically from
1 to 0. All negative eigenvalues 6fA + A(x) + C(x) then move to
the positive real axis, sinceA + C(x) is positive definite. Every time an
eigenvalue of-A +6A(x)+ C(x) crosses 0, an eigenvalue®f, crosses
1. HenceT'» has as many eigenvalues with> 1 as—A + A(x) + C(x)
has negative eigenvaluest

The following corollary sheds some light on our hypothesis concerning
the signs ofH,,, etc. in Theorem 1B.

COROLLARY 3D. —If H satisfiesH,,, >0, H,, > 0andH,, <0, then
fu has no critical points with negative renormalized Morse index.
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4. THE BLOW-UP ARGUMENT

Let H® be a sequence of functions i@%(22; R?) satisfying the
conditions of Theorem 1B. Assume that there is a sequence of critical
pointsz; = (uy, vy) of fyw, with

lim fJug || oo + [ vgll oo = 00.
k—o00

Assume also that the renormalized index of thés <m — 1. Then we
define

— -1)/2
A = sup{max(Jug (x) Y4V o 0|V P, g = a PV

xef
We assume that the supremum is attaineé,ir 2 and define
U () = add T Vug (P + ery),

Ve(y) = B "0 (P + eny)
with «, 8 > 0 to be specified in a moment. We also define the rescaled
domains
2 — Pk
Ek '
A short calculation shows thaty, Vi) is a critical point of 7, on
C3(2;; R?), where

2=

- 1 ~
H®(y,U,V) = o5 H®(y,aU, V),
o

and H® is as described in the conditia®). By our assumptiorx) we

can extract a subsequence for whight (y, U, V) converges irc2. to

HU,V)=a|U|"** +b|V |7+,

for certain positive constants, 5. The H® (y, U, V) then converge in
C2.to
14 bB4
Hw. vy =22 gt 4 2Ly e
B o
By choosinge and 8 appropriately we can arrange thdtis given by

|U|p+l |V|q+l
+ .
p+1 qg+1

HWU,V)= (7)
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The (U, Vi) are uniformly bounded inL®, and satisfy the Euler—
Lagrange equations,

j70) JH®

. U,V), —AV, =

~AU; =
1% oU

.U, V). (8)

Elliptic regularity implies that theU,, V;) are uniformly bounded i@
for anya < 1. Hence there is some subsequence for whichtheV;)
converge inC2%. The limits (U,, V) are then bounded solutions of

—AU =V1, —AV =U". 9)
The domain ofU andV is 2, = lim;_, o £2;. If

. dist(Py, 052
lim supM =00
k—00 Ek

’

then we can extract a subsequence along wkigttonverges ta2, =
R". Otherwise we recall thai2 was assumed to be smooth, so that
along some subsequence t2g converge to a half spac@, containing
the origin in its interior.

For now we shall assume th&, is all of R?, and at the end of this
section we indicate which changes must be made,ifs a half space.

We consider the index of the solutiong = (uy, v,). By Lemma 3A
the index ofz, equals the number of eigenvalues above 1 of the operator
T, = (Sk)*Sk, with

Sep () =\ HE (x, 2(0)) (= A — H®) (x, 23(x)))

x [V Hi¥ (v, 20) 9 ().

We have

uu

a _ ~
H® (x, 7 (x)) = Bki” D@D FO (y Ud(y), Vi),
,3 4y~
H® (x, 7;(x)) = &/\ffﬂ)(q YHE (v, U3, V().
H® (x, 20 (0)) = e 2H) (v, U (9), V().

Using these relations one then easily finds h&w changes under
rescaling.
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LEMMA 4A.-Giveng € C°(R") let ¢r(x) = ¢ ((x — Pr)/ex). Then

(Sk) (P + exy) = Sk (),

whereS; is the operator given by

$id () =V HS (v, 2e) (A = HE) (v, 2 () "

x [V A (v 2 ) e ).
We now letk tend to infinity.
LEMMA 4B. —If n > 3then

lim Sip(y) = Sp () (10)
uniformly on compact sets iR”. Here S¢ is defined by

S () = gV )| =) U] e (y).

Here(—A)~!is the Newton potential.

~ +1 1
Proof. —It follows from C? convergence off ¥ to % - % that

HY) = plum)rt, HY) - qvy)lrt and HY), -0

uniformly in compact subsets &".

Forn > 3 the Newton potentidl|>~" /(n — 2)w, iS positive (v, is the
surface “area” of the unit sphes#~1 in R"). Together withH .\, < 0 and
the maximum principle this implies that

SO dy’

A_g® -1
|( A Huv(xsZk(x))) f(y)| < (n— 2)a)an ly — y/ln—Z

forany f € C2°(82¢). This uniform bound allows one to pass to the limit
and conclude that

lim (—A — HY) (x,zk(x)))_lf =(-MN'f O

k—o00

In Section 8, Theorem 8A, we will prove for arbitrarye N ande > 0
that there exisp; € C°(R"),i =1,...,m, for which||S¢| ;2 > (/pq —
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e)|l¢|l, 2 for any linear combinatio® = c1¢1 + - -+ + ¢, ®,. ChoOSES
so small that,/pg — ¢ > 1. Then we find that for sufficiently large
there is ann-dimensional space on whidfs.¢ > = (¥, Tiv) > [[¥ |12,
and hence thal, must have at leasi: eigenvalues larger than 1. This
contradicts our assumption that the indices ofghwere all less tham,
so that our main theorem is proved as soon as we establish Theorem 8A.
We now briefly consider the situation in which diBt, 9£2) < Ce,. In
this case we may assume after passing to a subsequendg teats to
some pointP, on the boundary. One now “flattens the boundary”, i.e., one
chooses coordinates, . .., &, near P, such thatP, becomes the origin,
and$2 gets mapped to the half spaé = {¢ | &, > 0}.
Then we define

Ue) =2 " Pu (X @), Vi) = 4 PP (X (eem)).

whereé — X (&) is the inverse to the chart—~ (&1(x), ..., &,(x)).

Then theU, andV; are defined orBg, NH", with Ry ~ sk‘l, and they
satisfy (8), provided one interprets ase; 2x the Euclidean Laplacian
in n coordinates. In the limit — oo this equation ends to (9), and one
can extract a subsequence for which theand V; converge to bounded
nontrivial solutionsU and V of (9) on H* which vanish ondH" =
{0} x R"1. By odd reflection in0H" one can extend such solutions to
entire solutions of (9), and all results in the following sections therefore
apply. .

Forn > 3 the operatofS; also converges to

Se = V/PqIV 92 (Ag) LU | P2,

for the same reasons as in the case wh&e= R". Rather than
considering the action of, on functions onH", one can consider the
associated operator

Se = pqIV 4D 2(Apn)HU |PH2

acting on odd functions oR" (odd meaninge(—n1, 2, ..., n,) =

—¢ (M1, n2, ..., 1,)). All arguments in the following section apply to
this operator without modification, and thus one can again show that
1Sx¢ |l > ll#]l holds on some: dimensional subspace af(£2) for large
enoughk.
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5. THE BLOWN-UP EQUATION

THEOREM 5A. —Letu, v be solutions of9) on the ball with radiusr.
Then one has for large enoughand arbitrary smalle > 0

X m
‘/’O<E> {|M|P+l_|vlq+l}dx‘
Br

" C
< e/p(%) {|u|"“+ |v|‘f“}dx b
B

R

wherep(x) = 1 — |x|?. The constanC depends om, m, p, andg but
not on R or the solutionsu, v. Here m is large enough if it exceeds

20p+D@+D/(pg —D.
COROLLARY 5B. —If (u, v) are bounded entire solutions @), with

Sz lu|P* finite, then
/|v|q+1:/|u|p+l.
R” R”
In particular the (¢ + 1)-norm ofv is also finite.
We will show later on that: andv must actually vanish.
Proof. —Theorem 5A implies that

Ie= [ pG/RYWI™ Je= [ pG/RYI0I
satisfy
C C
1—e)lg— Esg Jr §(1+8)1R+f-
Letting R 1 oo one concludes thaf = [ |v]?*! converges, and that

(1—e)I <J < (1+¢)l foranye > 0, wherel = [ |u|?*1. Thusl = J,
as claimed. O

We now prove Theorem 5A. We may assume tRat 1, since the
general case then follows by rescaling. Put p™ and compute:

/g{|u|"+1— |v|q+1}dx=/§(vAu — uAv)dx

=/uV§-Vv—vV§-Vu.
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Hence, usingVe| = mp™ 1|V p| < Cp™~1 we arrive at
]/;{W“— |v|q“}dx]
<C [P ullVol+ [ol|Vul}
<o [ ot ol de G, [ oYU b dy

+C0/pmflfl/q|w|<q+l)/qu (11)
for arbitraryo > 0.

LEMMA 5C. —For arbitrary u € C3(B), 1 < p < oo and$ > 0, there
is aC;,, < oo such that

/p’"|w|f’dx < ca/pm*ﬂuvdx +6/p’"+P|Au|de.
B

B B

Proof. —This follows fromL? interior estimates for the Laplacian, and
a covering argument. O

We apply the lemma to (11). For the third term in (11) we find, using
Av=—u?,

/ P ST
gCa/pmfzfz/p|v|(p+l)/pdx+6/pm|Av|<p+l)/pdx

<G / 22y gy / P u|P+  dx. (12)

We now observe thatp + 1)/p <2 < g + 1, so that

p
r=——(>@+1) >1,
p+1(q )

and so that one has <t~"/" + tx", ¥ =r/(r — 1), for anyx >0 and
7 > 0. Thus

pm—2—2/p|v|(p+1)/p < I + T(pm—Z—Z/p|v|(p+l)/p)’

—r'/r mr—2(q+1)|vlq+l

=71 + 70

< .L,—r’/r + 'L',0m|U|q+l



292s.B. ANGENENT, R. VAN DER VORST / Ann. Inst. Henri Poincaré 17 (2000) 277-306

providedm > 2(¢ +1)/(r — 1) =2(p + 1)(¢ + 1) /(pg — 1). Apply this
inequality to (12), and you get

/,Om_l_l/p|VU|(p+l)/pdx

<C+r/p'"|v|q+ldx+8/p'"|u|"+ldx (13)

which implies the theorem.

6. A LIOUVILLE THEOREM

In this section we will prove:

THEOREM 6A. —Letu and v be bounded entire solutions ). If
Jgn lu|PT is finite, then both and v vanish.

We have shown thafg, |u|”™* < co implies that [ |v|7™! < oo, and
that both integrals are in fact equal.

The idea of the proof is as follows: first we show that the action of the
solution (u, v)

|u|p+l |v|q+1
E(u,v):/{Vu-Vv— — }dx
o p+1 g¢g+1

is finite. Then we observe that for aiy> 0 the functions
ut(x) = M u(x e, v (x) = AP u(x /e),

with ¢ = A=(P2=D/2are also solutions of our system. Moreover, these
solutions also have finite action. Direct substitution shows that the action
of (u*,v") is

E(u*,v") = \"E(u, v), (14)
with

n 2
Ot=—(p+1)(q+1)(1——————>#0.
2 n p

On the other hand thé:*, v*) are critical points of the action, so
E (u*, v*) should not depend oh. This can only happen if andv both
vanish.

We now go through the details of the argument.
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LEMMA 6B. —If u € LP*Y(R") then|Vu| € L” and|Vv| € L* where

1_1<1+ 1 1) 1_1(1 1 N 1 ) (15)
ro 2 p+1 g+1)° s 2 q ’

In particular, |Vu| - |Vv| € LY, and|uVv| + |vVu| € L' for somel < ¢t <
n/(n—1).
Proof. —-We haveAu € LV andu € LP*1, so that, by interpolation,

[Vu| € L", where
1 1 1
T -
r 2\p+1 g+1

which implies the first part of (15). The second part follows in the same
way.
Using the subcriticality ofp andg, one finds
1 n-1 1

- > .
r n qg+1

Holder’s inequality and € L9+ then imply|vVu| € L', where

1 1 1 n—1
=t . O
t r qg+1 n

This lemma implies the action is well defined, and moreover that, by
dominated convergence

E(u,v)= IJi_f)TlOER(u, v),

. p+1 q+1
ER(u,v):/n<£>{Vu-Vv— Jul — o] }dx,
R p+1 g+1

for any smooth compactly supported function witf0) = 1. We shall
assume that

=1 forix|<1/2,
”(x){zo for |x| > 1.

LEMMA 6C. —

1 1
Ewv)=(z-—— P gy < >/ a+1 gy
(@, v) <2 p+1>/|”| 27 gx1) )

(o) e
p+1 g+1
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Proof. —Formally we integrate by parts and use the Euler—Lagrange
equations. To deal with the infinite domain, we work wiR:

1 1 1 1
(u,v) n > 571 |u| > i1 [v] dx

1
—|—§/V17R A{uVv+vVu}dx
wheren®(x) = n(x/R). CombininguVv € L' with t < n/(n — 1) and
|[VnR| < C/R, one shows that the last integral vanishe®as oco. O
This lemma directly implies that the action scales as stated in (14).
LEMMA 6D. -2 E(u*, v*) =0.
Proof. —Again we deal withER first. Leth = %| 5—1 andk = % J—1-
Then
dER
da

=— /Vn -{hVv+kVu}dx.
On substituting

1
h=—§(pq —Dx-Vu+(qg+Du
and

1
k= —E(pq —Dx-Vv+(p+ Do,

one ends up with four integrals. Two of these are bounded by
/ IVnl{luVv|+ [vVu|} dx.

As in the previous lemma one shows that this(%)dor R — oc.

The other two integrals are of the forif(x - Vu)(Vn - Vv)dx. We
now recall thatp(x) = 1 for |x| < 1/2, so thatV(n(x/R)) is supported
on Bk \ Bg,2, and is bounded by’/R on this annulus. By Hdélder’s
inequality we then get that

|/(x-Vu)(Vn-Vv)dx‘<C / [Vu||Vu|dx,
' BR\'BR/Z

which, since|Vu||Vv| € L1(R"), is o(1) for large R. Thus we see that
liMg_oo TER=0. O
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The Liouville theorem now follows immediately, sindg&(u*, v') =
A*E(u, v) is found to be constant, and hence must vanish. The explicit
formula for E (u, v) then impliesu = v =0.

7. A SECOND LIOUVILLE THEOREM

THEOREM 7A. —Letu, v be bounded entire solutions of9). Then,
if (a+ bix1+ -+ byxy)|u(x)|?~Y/2 belongs toL?(R"), bothu andv
must vanish.

Proof. —If b; = 0 for all i, then our hypothesis ig |u(x)|?~1dx <
oo, which by boundedness af implies [ |u(x)|”*1dx < co. The first
Liouville theorem now forces andv to vanish.

Assume henceforth that sorbg=£ 0.

Sinceu andv are bounded solutions, their gradients are also bounded.
Let M = sup|Vu|. For anyx € R"” we define

. |u ()|
oM’

B, = B(x,r,), 5B, = B(x, 5r,).

On the larger ball B, it follows from |Vu| < M that we have

1 3
§|M(X)| <lu(y)| < E!M(X) , VyeoB,,
and hence
/ lu()|" " dy < Clu@) " < Cfux)|7H (16)
5B,
On B, we have
/(a +biy1+ -+ bnyn)2 dy > crfj*z a7)

B,

for some constant which only dependsarby, ..., b,. Hence

p—1
[@tbit ot b oy > (ML) e

X

= c’|u(x)|p+”+1. (18)
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Putting (18) and (16) together we get

1 cr 1
/|u<y>|”+ dx<7/(a+b1y1+...+bnyn>2|u<y>|” dy.
5B, By

We can now choosey, xz, ..., such that theB,, are pairwise disjoint, and
such that the B,, coverR” (see [7, Section I.1.6]). One then has

[luo" ay <3 [ ]y

Rn i 5B,

C’ _
<Y [@tbat by ey

i By,

C’ 1
<;/<a+b1y1+---+bnyn>21u<y>|” dy
R

and we find again thaf |«|”*! < oo, which implies that: andv vanish,
as claimed. O

By slightly modifying the proof we get the following stronger version
of this theorem.

THEOREM 7B. —Let ¢ € C*(R"), with | (x)| + |V¥ (x)| — O for
|x| = 0o. Then(a + bix1 + - - - + byx, + ¥ (x))v(x)9~Y/? can only be in
L>’RYifa=by=---=b,=0.

Proof. —The proof proceeds exactly as before, the only difference
being that (17) no longer holds. However, outside some large enough
ball Bk, one hady| << a and|Vy| << |b|, so that (17) does hold for
all balls B, outsideBg,. O

8. INDEX OF ENTIRE SOLUTIONS

Let u andv be entire solutions to (9). We will essentially show in this
section that the generalized Morse index of such a solution is infinite.
Thus we would like to consider the operator

T=pq¥o(—A)tod?c(—A)1toV,

wherey is multiplication with|v(x)|“~1/2 and @ is mutiplication with
lu(x)|P~Y/2, Unfortunately this operator is not necessarily well defined
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on L%(R"), even if we restrict its domain to, sy (R"). Thus instead
of studyingT we consider

S=./pqdo(—AN) 1oy,
l.e., forg € C we define

)T P u(y)| P2
(n — 2w, |x — y|"~2

Sp(x) =/prq ¢ (y)dy. (19)

Rn

This way we have a continuous integral operator fiGgh to L*°.
Formally,7¢ = S*S¢, whereS* is the “L2-adjoint” of S. To make this
precise, we choose a domain fHmwhich makes it a possibly unbounded
operator inL2. Let® c C> be the subspace of all testfunctions which

satisfy

/|u(x)|(p71)/2¢(x)dx: /xi|u(x)’(p71)/2¢(x)dx:0, 1<i<n.
Rn Rn

To motivate this definition recall that the Newton potential of a compactly
supported functiony has an asymptotic expansion of the form

1 V() Mo | M%) N M(X) L
(n —2)w, 2 |x —yjn=2 7" ypn—2 -l rn ’
wherer = |x|, x = x/r and theM, (x) are spherical harmonics of order
The M, depend linearly on théth order moments of,. If the moments
of order< k — 1 of y vanish, then the Newton potentiat A) 1y decays
like O(r—"*+2).

Consequently, sinc® consists of those for which the moments of
order 0 and 1 ofu|?~Y/2¢ vanish,S¢ (x) is bounded byC(¢)/r" when
¢ €®. Forn > 3 this impliesS¢ € L%(R"), i.e., our definition of®
makesS :® — L? a well defined (perhaps unbounded) operator.

The main result in this section is

THEOREM 8A. —For anye > 0 and any integern there existpq, ...,
¢, €D such that

ISoll2 = (Vpg —e)lldll 2
holds for allp =c1¢p1 + - - - + ¢ P
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Since formally we havée, T¢) = ||S¢|/?, we find by choosing >
JPq — 1that(¢, T$) > ||¢||> on somem dimensional subspace &f,
which, in view of our characterization of the generalized Morse index,
we interpret as indexu, v) > m. Sincem is arbitrary we sayu, v) has
infinite index.

The main technical tools in proving the theorem are the following two
lemmas.

LEMMA 8B.—The domain® is dense inL2. The operatorS:® —
L?(R") has a closed extension.

Proof. —If © were not dense, then songee L? would be perpen-
dicular to ®. By linear algebra thisg must be a linear combination
of |u|?»~Y/2, and thex;|u|?~Y/2 (1 < i < n). Thus for somez, b; we
find that(a + bix1 + - - - + b,x,) |u|P~P/? is an L? function. Our second
Liouville type theorem excludes this.

We now prove thaf|p is closeable, i.e., we show that for any sequence
fi e ® with || fi]|;2 — 0 andSf; — g in L? one must haveg = 0.

Let

B = (—=A) 2 (ju| Y2 £).

Sinceu € L*®, and sincef; — 0 in L?, it follows that VA, — 0 in L?,
for V2h, is the Riesz transform df:|?~Y/2f,, and the Riesz transform
is bounded or 2.

The setO = {x € R" | v(x) # 0} is open and nonempty, and since
Sfi = [v|9~Y/2p; the h; converge inL2.(O) to g|v|~@~1/2,

It follows that &, actually converges iv2Z2(R") to some functior,
whose second derivatives vanish, ilgx) =a + byxy + - - + b, x,,.

Thus we find thatg = (a + byx1 + - - - + b,x,)|v|“~D/2 belongs to
L?(R™). The second Liouville theorem now forcessv=0. O

LEMMA 8C. —Leto®(x) = n(x/R)u(x)?*tV/2, Then

1SRl
liminf ———— > ,/pq.
R—oo  [|@R]| 2

This lemma does not claim thaf® € D, in fact one expects this not to
be the case in general. ThiiS¢%|| is defined by the integral (19), and
may be infinite.
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Proof. —We suppress the subscriptfrom our notation for the duration
of this proof. Thus

Se(x) = v A= 2) @/ Ryux)”).
Defineyr by
(=) e/ Ryu(x)’) = nv+ .
Then, usingAv + u” = 0 one computes that satisfies

—AY =2Vn-Vu+vAn=2V - (vVn) — vAn, (20)

so that
Y =2V(=A) "t wVn) — (=A)H(vAn). (21)
As in Section 4 we define

I=lp= [Pl ide, T =ge= [t

The Liouville theorem implies that, / — oo asR — oo, so by Theorem
4A we have

Ig=(140(1)Jr (R— 00).
We now compute thé2 norm of S¢ on Bg:

/ S () |Pdx = / ()| 0202 + 2009 + ¥ 2 de

Br Br

> [ Aol ™+ 20

Br

=/(n2]v(x)]q+l—2uA(n¢))dx
Bpg

=Jr— 2/{u11fA77 +2uVy -V +unAy}dx.
Br

At this point we substitute the formulas (20) and (21) for which on
expansion turns the last integral into one with six terms:

/|S(p(x)’2dx ZJr+ K1+ + Ks,
Br
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where
Kl:—4/uAnV(—A)_1(vVn)dx,
K2=+2/uAn(—A)_l(vAn)dx,
K3=—8/uV77 -V(=A)"V - (vVi) d,
K4=+4/uV77 V(—=A)"YvAn) d,
Ks= +2/M77V77 -Vudr,

K= /uvnAn dx.

We now proceed to estimate these terms one by one. It turns out that all
terms excepk’s can be estimated following the same scheme. We show
how to estimateX4, and leave the other terms to the reader.

In doing such estimates it is convenient to have a slightly different
notation for theL” norms of functions oiR”. We write

Il = { f: ﬂ

With this notation Hélder’s inequality appears as

[feia+Bl<[f;a]l-[g:B8] O<a, B, a+B<]

while one has the following estimates for the operaton)—!

[(=A) T fia] <Cn,a)

f;a—%] 2/n<a <,

V(=AM fa] <Cn,a)

f;a—%] I/n<a<l,

[VA(=A)" fia] <Cn,alfse]l (O<a<l).

Here the last estimate simply statéd boundedness of the Riesz
transforms for 1< p < oo, while the first two are restatements of/L?
mapping properties of the Riesz potentials (see [7, Section V.1]).

We shall also use that the specific form of our cutoff function, i.e.,
n=n(x/R)=(1—|x/R®™ implies

R|Vn|+ R?|An| < Cn*~2/m, (22)
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Moreover, we shall assume thatis “large”.
We then have

1
Kal <C|u|Vn|: —— V(—A
|Kal < C [ul V) p+1} |V (-2)° +1]
C _1
<Sip x;e]-{ , P }
R p+1
1
<CR™ 1+"911’+1 {|mn|;—p —9+—]
p+1 n
Ling ;7T p 1
SCR I Ay —2— —o4 =
R {|U nl P +n]
1
CCR-M0 7 R { Ly —}
k ’77 p—|—1 +n
1 11
< CR-30 1T [ Py ———}
Xl p+1 +n g+1

1 1
_L =1
CR 3+n9+n( 9+n q+1)1 Jngrl

l

=CR™ "“1”“1 ,

where
_ 1 n 1 n- 2
p+1 g¢g+1 n
is positive becaus@ andg are subcritical. In this calculation we have

choserd € (0, 1) so that we can legitimately apply Hélder’'s inequality
and theL” mapping properties o7 (—A)~. The constan must satisfy

1 1 . 1 1 1 1
max(———,O) <6<m|n<1— ,1—- — +—).
n p+1 p+1 p+1 qg+1 n

Such6 exist.

As we mentioned before, a similar argument gives exactly the same
estimate for the term¥4, K>, K3, and Kg. To estimateKs we first
observe the following

K5=/an2-Vvdx=—/n2uAvdx—/nZVu-Vvdx

=—IR—/772VM-VUC|X.
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By Theorem 4A we havé; = Jz + Eg, whereE, = 0(Ig) asR — oo.
Hence

K5=—JR—/n2Vu~Vvdx—ER
_ .2 2
_—/77 vAu—/n Vu-Vvdx — Eg

=—/.772V-(vVu)dx—ER:/vVu-nzdx—ER

17 E

:—/{vVu-n2+qu-n2}dx——R

2 2
Er

1
ZE/MUAUZCIX— 7

Here the remaining integral is of the same type K&s and can be

estimated in the same way &%, with the same result. The last term
Er/2 was already known to be g, so the we can finally add all
estimates together to obtain

[ 1800 ds > (pg + (D) I
Bg
Sincell¢||;2 = I this completes the proof of Theorem 8C

9. PROOF OF THEOREM 8A WHEN S IS BOUNDED

If the operatorS:® — L2 is bounded then it extends uniquely to a
bounded operatos$; : L2 — L2. When¢ € C>*(R") we have a formula
that definesS¢ as a function inL>(R") (but not necessarily.?). The
following lemma addresses this ambiguity.

LEMMA 9A. —If S is bounded theisi1¢ = S¢ for all ¢ € C°(R").
Proof. —Let ¢, € D converge inL? to ¢ € C>°(R"). Define

Un=(0)TH P4 = (—a) o)

Then, since the Riesz transforé(—A)~! are bounded oi.?, V2,
converges inL? to V2. Moreover, ¥, converges toy +a + b - x
in W22, for somea € R, b € R". But then S¢, = ./pglv|@D/2y,
converges tQ/pq|v|“ Y2y +a+b-x) sothatjv|“Y/2(y +a+b-x)
belongs tal2. Sincey is the Newton potential of a compactly supported



S.B. ANGENENT, R. VAN DER VORST / Ann. Inst. Henri Poincaré 17 (2000) 277-308

function, we may apply Theorem 7B to conclude thaand b vanish.
ConsequentlySi¢ = lim S¢, = /pq|v|9 Y%y =S¢. O

LEMMA 9B.—For any f € L%(R") one has

R
im Y g

R—oo R

Proof. —First assume thay is compactly supported, i.e., suppc
Bg, for someR; > 0. Sincep® = n(x/R)u(x)P*V/2 andn(x) = 1 for
|x| < 1/2, the inner producte?®, f) is independent oR for R > 2R;.
But [|¢® |12 = [ n(x/R)?|u(x)|"** dx becomes infinite a8 — oo, so for
compactly supported the lemma holds.

For generalf € L? we decomposef = fo + f1, with fo compactly
supoorted and f1]|;2 < &. Then

limsu

R—o0

R R
p{(q)af) — lim ((pafl) <.

=limsup
llo®l R—oc | @R

This holds for arbitrarys > 0 and thus the lemma holds for afl €
L2 O

LEMMA 9C. —Given anye > Oandm there existR; < Ro < --- < R,
such that

(@1, )|+ [(Shi, Spp| <& (0 # 1), (23)
and ||S¢; |2 > pq — ¢ hold. Hereg; = ¢®i /|| %]

Proof. -By Theorem 8C we can assume thig§e'||?> > pg — e,
provided all R; are chosen above sonk. We chooseR; = R, and
proceed by induction. LeRy, ..., R,,_1 be given. Since is bounded its
adjoint $* is well defined, and we can writ€e,,, S¢;) = (¢n, S*S¢;).
By Lemma 9B we can therefore mak&a,,, S¢;)| < ¢ forall j <m
by choosingR,, sufficiently large, whileR,, > R; = R, ensures that
IS¢ l>> pg —e. O

To conclude the proof of Theorem 8A, at least assuming boundedness
of S, we note that) = c1¢1 + - - - + ¢, ¢, Satisfies

m

P12 <Y 2+ iy < (14 (m—1De) Y 2
1 i#j 1
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and

m

IS¢12 > (VPg—e) D> i —ed cic; > (JVpg—me) Y L,
1

i) 1

so that

ISpl _ /Pd—me -
6]~ 1+m_ne  VPITE

10. PROOF OF THEOREM 8A WHEN S IS NOT BOUNDED

We recall how one constructs the bounded self-adjoint operator
T = (I + §*S)~! from the closed densely defined operat(see [5,
Section 118]).

Let ¥ be the Hilbert space completion ®f with inner product

It follows from the closedness ¢f that®J can be identified with a dense
subspace of.? (the inclusion map :® — L? extends naturally to a
bounded linear map : 0 — L?; closedness of is needed to conclude
the injectivity ofi’.)

The Riesz representation theorem implies that for #ny L? there
exists ag € U with

(& P)u=(f.¢) VoeU.
We defineT f = g. One then easily shows thatis a bounded selfadjoint
operator orn.2.

LEMMA 10A.-AssumeS is unbounded. ThefT is injective, and
Oeo(T).

Proof. —If Tf =0thenf 1 0, so f = 0, which proves injectivity.
Assume 0 is not in the spectrum &f ThenT is invertible, and we
have for arbitraryp € ©

1% = (@, )= (T d.0) < IT M- lIgl?2.

This impliessS is bounded, against our assumptior
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By the spectral theorem for bounded self adjoint operators we can write
T = folAdPA, where{P; | 0 < A < 1} are the spectral projections @f.
Assuming thatS is not bounded we find that O is in the spectrumTof
while T is injective, i.e., 0 is not in the point spectrum Bf It follows
that there exisk, | 0 such that the projections, = P,, — P, , are non
zero. Choose, € rangd,) with ||¢,||;2 = 1.

LEMMA 10B. -Theg, are mutually orthogonal. They belong®so
that S¢, is well defined, and they satisfy

Spn L SO (nF#m),

2 1
||S¢n||L2 > X -1
n+1
Proof. —Let
)"VL:F].
VU, = / A7 1dP, ¢, (24)

)"n
thenT vy, = ¢,, SOV, € rangeéT) C U andy,, = T1¢,. We have
1S@ull72 = (S, Sh) 12 = (Pu, B — lpull72

= (Tlﬁm ¢n)m -1= (Wn’ ¢n)L2 -1
= / }(qub b))z —1> !
— )\ A¥WnsWn)L = )x

n+1
[)"n+1s)\n)

Fork #£ [ we have(¢y, ¢;) = 0 and also
(Sor, Sb1) = (P, dw — (Gx, &) = (Y, Y1)

-1

71
= [ S@Pgu g2 =0
0

|

If we assume that;, < 1/(1+ 2,/pg) then we have|S¢, 1> > 2pq
for all n. Moreover, since the, and S¢, are pairwise orthogonal sets,
any linear combinatiogp = c1¢1 + - - - + ¢, ¢, Will also satisfy|[S¢|[|? >
2pqll¢|l?. Since® C U densely in thel norm, we can approximate
¢1, ..., bn IV as closely as we like by’ € D; in particular any linear
combinationp’ = c1¢; + - - - + ¢, ., Will satisfy [|S¢’ (|12 > pqll¢’||%. This
completes the proof of Theorem 8A, and hence of the main Theorem 1B.
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