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ABSTRACT. — Considering random noise in finite dimensional para-
meterized families of diffeomorphisms of a compact finite dimensional
boundaryless manifoldZ, we show the existence of time averages for
almost every orbit of each point @, imposing mild conditions on the
families; see Section 2.4. Moreover these averages are given by a finite
number of physical absolutely continuous stationary probability mea-
sures.

We use this result to deduce that situations with infinitely many sinks
and Hénon-like attractors are not stable under random perturbations,
e.g., Newhouse’s and Colli's phenomena in the generic unfolding of a
guadratic homoclinic tangency by a one-parameter family of diffeomor-
phisms.
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RESUME. — On considére un bruit aléatoire dans des familles para-
métrées de dimension finie de difffomorphismes d’'une variété compacte
sans bordM, de dimension finie, et on montre, sous certains conditions
pas trés fortes sur ces familles, I'existence de moyennes temporelles (as-
symptotiques) pour presque toute orbite de chaque poiM ¢eoir Sec-
tion 2.4). Ces moyennes sont données par un nombre fini de mesures de
probabilité stationnaires physiques absolument continues.

1 E-mail: vdaraujo@fc.up.pt.
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On utilise ce résultat pour déduire que les situations de coexistence
d’'une infinité de puists et d'attracteurs de type Hénon ne sont pas
stables par des perturbations aléatoires ; par exemple, les phénoménes de
Newhouse et de Colli dans le dédoublement générique d’'une tangence
homoclinique quadratique par une famille de difffomorphismes a un
parameétre.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Mots Clés:Perturbations aléatoires, Moyennes temporelles, Probabilités physiques,
Bifurcations homocliniques

1. INTRODUCTION

Newhouse proved in [16—18] that many surface diffeomorphisms have
infinitely many attracting periodic orbits (sinks), a serious blow to early
hopes that generic systems might have only finitely many attractors.
Indeed, see [18] and also [22], arbitrarily close to afydiffeomorphism
on a surfaceV with a homoclinic tangency there exist open subsets of
Diff X M) whose generic elements have infinitely many sinks or sources.

This result was extended to arbitrary dimensions by Palis and Viana
in [23], see also [25] and [11]. Diffeomorphisms with infinitely many
coexisting hyperbolic attractors were constructed by Gambaudo and
Tresser in [10]. Colli showed in [7] that diffeomorphisms displaying
infinitely many Hénon-like strange attractors are dense in some open
subsets of Diff(M), if dim M = 2. Even more recently, Bonatti and
Diaz in [4] showed that coexistence of infinitely many sinks or sources is
generic in some open subsets of &ifff), if dim M > 3.

However, apart from these existence results, diffeomorphisms with
infinitely many attractors or repellers are still a mystery. Results of [14,8,
5] show that maps which cannot be approximated by others with infinitely
many sinks or sources have properties of partial hyperbolicity. In this
case the dynamics of these maps can be understood to some degree, see
e.g., [3,24,12,6,1]. It would be nice to know that systems with infinitely
many sinks or sources are negligible from the measure theoretical point
of view. Indeed, it has been conjectured that such systems correspond
to zero Lebesgue measure in parameter space for generic families (finite
number of parameters) of maps, see [29] and [22]. Nevertheless this is
not yet know.
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Here we show that this phenomenon of coexistence of infinitely many
sinks or sources can indeed be discarded in the setting of maps endowed
with random noise. We prove that (Theoremelery diffeomorphism of
a compact finite dimensional boundaryless manifdldinder absolutely
continuous random perturbations along a parameterized family has only
finitely many physical measures whose basins cover Lebesgue-a.e. point
of M.

In the context of the generic unfolding of quadratic homoclinic
tangencies by uniparametric arcs of surface diffeomorphisms, where
the coexistence phenomenon of infinitely many attractors was first
shown to occur, we prove (Theorem 2) a result similar to the previous
one concerning points whose perturbed orbits visit a neighborhood of
the tangency infinitely often with positive probability, which we call
recurrent points

This result is a corollary of the former since we show the random
parametric perturbations applied on the recurrent points tabelutely
continuousas well. For an uniparametric arc to satisfy this property
in a surface a quadratic homoclinic tangency is used: the mixture of
expanding and contracting directions near a homoclinic tangency point,
in a neighborhood of it in the manifold for every diffeomorphism close
to the one exhibiting the tangency, is what permits us to get absolute
continuity even when only a single parameter is at hand.

We conclude (Section 14) thalhere cannot be infinitely many at-
tractors (or physical measur@swhose orbits(respectively, supports
pass near a quadratic homoclinic tangency point or its generic unfold-
ing under random parametric perturbatiorfse., random errors in the
parameters—in this sense, diffeomorphisms with infinitely many attrac-
tors are not stable under random perturbations

These results can be seen from the perspective of a broad program pro-
posed by J. Palis in [20]. In particular, he conjectured that systems with
finitely many attractors are dense in the space of all systems. Moreover,
these attractors should have nice statistical properties, including existence
of physical measures supported on them, and stochastic stability under
small random noise—see, e.g., [31].

Fornaess and Sibony in [9] have shown a result similar to Theorem 1
to hold in the context of random perturbations of rational functions. The
precise form of the statement of this theorem and of some definitions was
inspired on Theorem 1.1 of theirs.

Relevant setting and all definitions are in Sections 2 and 3 along with
the precise statement of the result, including the kind of noise to be used
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and some examples. A summary of the steps of the proof is given in
Section 4, where we also sketch the contents of Sections 5 through 9. In
Section 10 we apply our results to perturbations of an example of Bowen.
This provides a good insight into the meaning of these results.

Relevant settings, definitions and the statement of Theorem 2 are in
Section 11. Its proof in Sections 12 and 13.

Several questions arise in this context of systems with random noise
and the simple methods used in this work to derive Theorems 1
and 2 should be generalized and extended. Some of those questions are
presented in the last section (Section 15) of this paper.

2. SOME NOTATIONS, DEFINITIONS AND THE MAIN
THEOREM

Throughout this papeM will signify a compact boundaryless mani-
fold with finite dimension will be some normalizedn{(M) = 1) Rie-
mannian volume form oM andd, : M x M — R a distance given by
some Riemannian structure a#, fixed once and for all. When not oth-
erwise mentioned, absolute continuity will be taken with respect to the
probability m.

The random perturbations to be considered will act on the dynamics
of diffeomorphisms of a parameterized family given by thefunction
f:M x B" — M, whereB" = {y € R": ||y|l2 < 1} is the unit ball of
R", n>1,| - |2 is the Euclidean norm and the mgp: M — M, x €
M — f(x,t) is a diffeomorphism for everye B".

2.1. Perturbations around a parameter

Let us fixa € B" and takes > 0 such that the closegtneighborhood

of a be contained irB", B"(a, ¢) C B". We define th@erturbation space
arounda of sizee to be

Dn N . .
A=A(a)=B"(a,e) ={t=0))52 It —al2<e,j>1}

with the product topology, which is equivalent to the topology induced
by the metricd(z,s) = z‘;‘;lz—" Ntj —sjll2, t,s € A, and the measure
V> given by the product of the normalized Lebesgue volume measure
over eachB"(a, ¢). For setsAq, ..., A; of the Borel family inB"(a, &)

we have v™®(A; x -+ x Ay x E"(a,e)N) = v(Ay)---v(4y) and if
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A C B"(a,¢) thenv(A) = |B"(a,e)| ™t - |A|, where|A| will mean the
Lebesgue volume measure 4f
Now we define theerturbed iterate®f f by

@ =1 @1 =fro-ofu), zeM, 1eA
and state the useful convention th&k(z, 1) = z and
KW= U v)y={ff@:1tev.zeU}, UcM Vca

for every k > 1. We emphasize a very often used property in what
follows.

PROPERTY 2.1. — For every fixedk > 1 it holds that

() (2,11, ....) M x B (a,)x -~ xB"(a, ) > Xz, 11, ... 1)
= f, 0---o f,(z) € M is differentiable

(2) (z,t) e M x A Kz, t) e M is continuous(with the product
topology);

B) ze M fMz,t1,...,1) € M is a diffeomorphism for every
1, ..., 0% EE”(CZ,E)).

Givent € A andz € M we will call {ff(z)}°°, the t-orbit of z and
many times write)(z, 1). B

In this way, perturbations are implemented by a random choice
of parameters of a parameterized family of diffeomorphisms at each
iteration, the choice being made im-aeighborhood of a fixed parameter
according to a uniform probability. Such choices are represented by a
vectort in A, an infinite product of intervals, and the greater or lesser
importance of the set of perturbations taken into account will be evaluated
by the measure®.

This kind of random iteration will be referred to parametric noise
With the settings given above, the family of diffeomorphisms actingfon
with parametric noise of level aroundyf, will be written 7, . = {f,: t €
B"(a, )}. To simplify writing the factors ofA we setl’ = B" (a, ) from
now on, so thatt = 7N.

2.2. Stationary probabilities

We can define a shift operatdf: M x A — M x A, (z,t) —
(fi,(2),0(t)), whereo is the left shift on sequences af: o(z) ==
with ¢ = (11, 12, 13, .. .) ands = (1o, t3, 14, . . .). By the definition ofS and
Property 2.1(2) we deduce thé&itis continuous.
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A probability measure: in M is said astationary probabilityif the
measureu x v is S-invariant:

X v (STTA) = 1 x v (A),
for every Borel subset of M x A. (1)

This is equivalent to say that satisfies the following identity

//(p(f(z,t))du(z)dv(t)= / o) dp). Yoe M), (2)

In fact, writing (1) forA = U x A, whereU is a Borel subset oM,
we have

wxvX(STHU x A)) =p x UOO( U /71 W) x {s} x A)

seT

=1 x v< U £ w) x {s}) x 1V2(A)

seT
= [[ w6 dueraves) ®)
which is equal tqu x v>*°(U x A) = u(U), that is,

[ 1) dudve =p@) = [ 106 due,

where }; issuch that (x) = 1if x € U and 1, (x) = 0 otherwise. Then
(2) holds for everyy € L}L(M, R) D C(M, R), because simple functions
are dense i}, and the relation (2) is linear.

Conversely, if (2) holds for every € C%(M, R), then it holds for
every element oTLlﬁ(M, R) becausew andv are Borel measures and
f:M x B — M is continuous (so that the left hand side of (2) gives
a regular measure ove). In particular, it holds forp = 1,,, and (3)
is equal tof 1y (x)du(x) = u(U) =pu x v*°(U x A) proving that (2)
implies 1 x v°(S7H(U x A)) = u x v°(U x A). Now we see that, if
V C Ais also a Borel subset,

wx v (STHU x V) =pu x u‘”( U /71 W) x {5} x v)

seT

=1 x v( U 7wy x {s}) x v®(V)

seT
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= [[ (69 duexravis) x v< )

= /1U(x)du(x) x VX (V)=pu xv>*U x V)
proving the equivalence between (2) and (1).
2.3. Ergodicity, generic points, ergodic basin

In the same way we have defined a stationary probability, by utilizing
the shiftS, we will say thatu is astationary ergodigrobability measure
if u x v is S-ergodic.

In this situation, Birkhoff’s ergodic theorem ensures that

n—1

.1 ; :
Jim =37 (87 ) = [ wrdux )
n =0

for u x v™®-a.e(x,t) € M x A and for everyy € CO(M x A,R).

In particular, puttingy = ¢ o r, with ¢ € CO(M,R) and 7: M x

A — M the projection on the first factor, we obtaifa(S/(x,t)) =

o(f/(x,1)), j=0,1,2,...and[ ¥ d(n x v®) = [ @dpu, thus for every
continuousp : M — R

) ll’l—l )
Jim =3 o(f/x,1) = /fpdu,
j=0 '
for u x v©-a.e.(x,t)eM x A. 4)

We now remark that, becaugex v*° is a product measure, we have
the following property. LeX be the set ofx, ¢ ) that satisfy (4) for every
continuous functiorp : M — R. If {¢,}*, is a denumerable and dense
sequence irC%M, R) and X,, the set of those pointér, ) e M x A
that satisfy (4) forp,, n > 1, then it is easy to see (cf. [15, Chapter 11.6])
that X = (,>; X, is a set ofu x v>*-measure 1. Let us consider now
X(x) ={t € A: (x,t) € X}, the section ofX throughx € M. Then
we havev™(X (x)) = 1 for u-a.e.x € M. Indeed, by Fubini's theorem,
mx ve(X) = [v®(X(x))dp(x) =1 with 0< v (X (x)) < 1 for every
x € M. Hence, the last identity implies the statement, because a
probability measure.

The pointsx that satisfyv>(X (x)) = 1, that is, for which the limit
in (4) exists and equal§ ¢ du for v>°-a.e.r € A and every continuous
¢: M — R, will be called-generic pointsThe set ofu-generic points,
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wheny is stationary and ergodic, will be tleggodic basirof 1 and will
be writtenE (1).
To complete this setting of terms and symbols, those ergodic stationary
probability measureg. whose basin has positive voluma(E (1)) >
0, will be calledphysical measuresf the perturbed system. We also
convention to writef*(x, v>) for the push-forward ob> by f*(x, ),
that is f*(x, v>®)p = [ @(f*(x,1))dv>(r) for everyk > 1, x € M and
¢ € CO(M, R) by definition.

2.4. Statement of the results

THEOREM 1. — Let f: M — M be a diffeomorphism of clag%’, r >
1, of a compact connected boundaryless manifdlaf finite dimension.
If f = f, is a member of a parametric family under parametric noise
of levele > 0, as in SectiorR.1, that satisfies the hypothesikere are
K e Nandé&; > Osuch that, forallk > K andx e M
A) f4(x, A) D B(f*(x), &o);
B) fX(x,v™) < m;
then there is a finite number of probability measuyrgs. . ., u; in M with
the properties
1. uq,...,u; are physical absolutely continuous probability mea-
sures
2. suppu; Nsuppu; =P forall 1<i < j <I;
3. for all x € M there are open setg; = Vi(x),...,V,=V,(x) C A
such that
@ VinV,=0, 1<i<j<I;
(b) v¥(AN\ (V1U---UV)) =0;
(c) forall 1<i <l andv*-a.e.r € V; we have

n—1

.1 ;
lim =% o(f/(x,1)) = / ¢du;, foreveryp e C(M,R).
n—0oQ n j O
Moreover, the set¥;(x), ..., V;(x) depend continuously ane M

with respect to the distancé, (A, B) = v>°(A A B) betweenv*°-
mod Osubsets ofA.

The theorem assures the existence of a finite number of physical
probability measures with respect to the perturbed sys#m, as
defined in the previous subsections, which describe the asymptotics of
the Birkhoff averages of almost every perturbed orbit of every poi of
Section 10 gives perhaps a clearer meaning for this result.
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The conditions on the noise are about “how much spread” suffer the or-
bits under perturbation when compared with those without perturbation.
They demand that the perturbations “scatter” the orbits in an “uniform”
way around the nonperturbed ones, at least from some iterates onward,
and ask for negligible perturbations (¢ measure zero) to produce neg-
ligible effects: the result of such perturbations should only be a sat of
measure zero.

These hypothesis try to translate the intuitive idea of random perturba-
tions not having “privileged direction or size”, causing deviations from
the ideal orbit that will “fill” a full neighborhood of that orbit and “ig-
noring” sets of perturbations of zero probability. In the light of this, para-
metric noise satisfying conditions A) and B) may aptly be referred to as
physical parametric noise

Examplel. — LetM =T" be then-torus,n > 1, and f5: T" — T" a
C’-diffeomorphism,r > 1. SinceT" is parallelizable, /' T" = T" x R",
we can findn globally orthonormal (hence nonvanishing) vector fields
in X"(M). For instance, through the identificati = R" /Z" via the
natural projection, we may tak&,(x) = e; = (1,0,...,0), Xo(x) =
e;=(0,1,...,0),....X,(x)=¢,=(0,0,...,1) forall x € T".

We construct a family of differentiable maps definifigT” x R" —
T" by

(x,0) e T" x R" > fo(x) +11.X1(fo(x)) + -
+ 1, X, (fo(x)) modZ",

or equivalently byf; (x) = f(x,f1,...,t,) = fo(x)+ (1, ..., t,) modZ".

We note that sincédiz||, < ¢ implies || f; — follcr < ¢ for everye > 0
and Diff"(T") is open inC" (T", T") (cf. [21, Chapter I]), there isy > 0
such that the restrictiorf, : T" x B"(0, eg) — T" is aC"-family of C"-
diffeomorphisms off™”.

It is not difficult to see thatf satisfies hypothesis A) and B) of
Theorem 1 forK =1 and for every familyF, . = {f;: ||t — all2 < ¢}
such thatB"(a, ) C B"(0, e9). We may say, in the light of this, that
this specific kind of random parametric perturbation isadosolutely
continuous random perturbation

Theorem 1 follows and we see thaty random absolutely continuous
perturbation of a diffeomorphism of the torgsr of any parallelizable
manifold is such that Birkhoff averages exist for almost every orbit
of every point of the torus. Moreover, their values are defined by a
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finite number of absolutely continuous physical stationary probability
measures

Remark2.1. — Example 1 shows that given any diffeomorphigraf
a parallelizable manifold we may easily embgdn a suitable parame-
terized family of diffeomorphisms satisfying hypothesis A) and B).

Example2. — We now construct an absolutely continuous random
perturbation around any given diffeomorphisfne Diff "(M), r > 1, of
every compact finite dimensional boundaryless manitélcassumingy
to be endowed with some Riemannian metric. It is most likely that
this kind of construction can be carried out with=dim(M) orn + 1
parameters.

We start by taking a finite number of coordinate chéits: B(0, 3) —
M} _; such that{y, (B(0, 3))}\_; is an open cover oM and {v;(B(0,
1))}i_, also (this is a standard construction, cf. [21, Section 1.2]). In
each of those charts we define= dim(M) orthonormal vector fields
Xi1, ..., X;n:B(0,3) — Ty, (80,3yM and extend them to the whole &f
with the help of bump functions. This may be done in such a way that
the extensionsy;; are null outsidey, (B(0, 2)) and coincide withX;; in
¥;(B(0,1),i=1...,1; j=1,...,n. We then see that

e Ateveryx € M there is some ¥ i <!/ suchthatX;;(x),..., X;,(x)

is an orthonormal basis fdf, M—and likewise forX;q, ..., Xi,—
becausd; (B(0, 1))}!_; was an open cover d#.
Finally we define the following parameterized family

F: (R = c (M, M),

((ul/); i:::::i)(x)_ (f(x) leluz/ ijs >,
L J

where®:TM x R — M is the geodesic flow associated to the given
Riemannian metric. Then for somg > 0 we get a finite dimensional
parameterized family of diffeomorphisma;: B"'(0, &) — Diff "(M)
satisfying conditions A) and B) of Theorem 1 f&r= 1 and somé&, > 0,
and for every familyF, . = {F;: ||t — a2 < &} wherea € B"!(a,¢) C
B”"(O, £0).

Example3. — In the context ofrandom perturbation of rational
functions as in [9], hypothesis A) and B) are immediate.

Indeed, letR:C x W — C be analytic, whereW c C is open
an connectedz — R(z,c) is rational for allc € W andc € W —
R(z, ¢) is nonconstant for every e C (i.e., R is a generic family of
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rational function$. Then it is easy to get & = &(cq, ¢) > 0 such that
R(z, B(co, €)) D B(R(z, cp), &) for all z € C, wheneveB(co, ) C W, by
compactness of and because analytic nonconstant functions are open.
Moreover, ifa is Lebesgue measure normalized and restricté{¢g, ¢),
thenR(z, 1) « Lebesgue orfC. Hence we get A) and B) witlk = 1.

Theorem 1 then proves something more than Theorem 0.1 of [9]:
we get physical measures whose support contains neighborhoods of the
attracting cycles oR., and which give the time averages of almost every
orbit of each point of the Riemann sphere.

Example4.— Letf:M x T — M be a parameterized family of dif-
feomorphisms as in Section 2 such that for same T the diffeomor-
phism f, is transitive. Let us suppose further that for some 0 the
parametric noise of level around f,, F, ., satisfies hypothesis A) and
B). Hence Theorem 1 holds and |et be one of the physical absolutely
continuous probabilities given by the theorem.

Since f, is transitive, there is a residual setin M whose pointscy €
R give densef,-orbits: { f*(xo)}z2o = M. Moreover, the c-invariance
of suppu; (v. Section 3, Definition 3.1) and hypothesis A) imply that
int(suppu;) # ¥, and thus there isg € (R Nint(suppu;)).

We deduce that

suppu; O { f*(xo, D12 D {fF (x0) )0 =M

and so there is only one physical absolutely continuous probabilitg,in
whose support is the whole o1.

In particular,every diffeomorphism of the tor@® (n > 1) with a dense
orbit, under absolutely continuous noise of arbitrary legel 0, has
a single physical absolutely continuous probability whose suppa is
(and likewise itM is any parallelizable compact boundaryless manifold

In Section 11 we shall see that certain arcs (uniparametric families) of
diffeomorphisms of clas€” (r > 3) generically unfolding a quadratic
homoclinic tangency satisfy both conditions of Theorem 1, restricted to
a neighborhood of the point of homoclinic tangency. For more specifics,
check the abovementioned section. We will then have

THEOREM 2. —There are open sets of arqsn the C3 topology)
{fi}iej—1.1; Of diffeomorphisms of class® of a compact boundaryless
surface generically unfolding a quadratic homoclinic tangencypauch
that, in a neighborhood? of a point of homoclinic tangency and for all
f1, sufficiently nearf, under parametric noise of sufficiently small level
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0 < ¢ < &o, there are a finite number of probability measuyes ..., us

in Q that satisfy the condition$) and 2) and also3) of Theoremil, for
pointsx € M whose orbitsO(x, t) have an infinite number of iterates
in @ with respect to a* positive measure set of perturbations.

This result, combined with Newhouse’s phenomenon, shows that
the infinity of periodic hyperbolic attractors (sinks) that coexist in a
neighborhood of a point of homoclinic tangency, for “many” parameter
values near the bifurcation parameter, cannot “survive” the random
parametric perturbation. Moreover it must subsist, at most, a finite
number ofanalytic continuations under random perturbatioha sink.
Section 14 will specify this conclusions and extend the result in a simple
manner to Colli's phenomenon, where the infinity of hyperbolic periodic
attractors is replaced by an infinity of Hénon-like strange attractors.

Now we will concentrate on the proof of Theorem 1.

3. INVARIANT DOMAINS

Let u be a stationary probability measure with respect to a parametric
perturbation of noise level > 0 aroundf,. Then supp is S-invariant:
S(suppp x v°)) C SUPP(L X V™).

Let us observe that since supp = supgu) x A we have for all
(x,t) € suppp) x Athat f*(x,t) € suppu, forallk > 1. That is, supp
is completely invariant according to

DEFINITION 3.1.— A part C of M is saidcompletely invarianor c-
invariantif f*(x,z)eCforallxeC, t € Aandk > 1.

With the purpose of showing the existence of the kind of stationary
probability measures stated in Theorem 1 and to better understand the
dynamics of the points in their support as well, we make a series of
definitions.

DEFINITION 3.2. — Aninvariant domain under astperturbation with
respect to the familyf around the parameter € I will be a finite
collectionly, ..., U,_, of pairwiseseparated open sets, thatis¢ j =
U; NU; =3, such thatf* Uo, A) C Uy moa, for all k > 1, and it will be
written D = (U, ..., U,_1). The number € N above will be referred to
as theperiodof the invariant domain.

Let us observe that the open $&thas a privileged role in the above
definitions.



V. ARAUJO / Ann. Inst. Henri Poincaré 17 (2000) 307369 319

DEFINITION 3.3.— An invariant domain that also satisfies
AU, A) SUgriy modr, Yk =1 (5)

whateveri € {0, ...,r — 1} will be a symmetrically invariantiomain or
s-invariantdomain.

This kind of domains will be at the heart of the arguments within next
sections and the proof of their existence and finite number is the key to
every other result in this paper.

Remark3.1. — Since thef, are diffeomorphisms for alt € 7', we
see that if the collectiorD = Uy, ..., U,_1) is s-invariant, therD =
Uy, ..., U,_1) also satisfies (5) and conversely: if the closire=
Uo, ..., U,_1) satisfies (5) witlify, . . ., U._1 pairwise disjoint open sets,
thenD = (U, ..., U,_1) is an s-invariant domain.

3.1. Partial order and minimality

Let D be the family of s-invariant domains. We define the following
partial order relation between its elements.

Let D = U, ...,U,—1) andD" = U, ..., U.,_,) be elements oD.

First, D = D' if there arei, i’ € N such thald 1) modr = Ui, 1) mod,»
Vk > 1 which impliesr = r’, because the open sets that form each
invariant domain are pairwise disjoint.

We sayD < D' if there arei, i’ € N such that/; modr S U,/ noq, DUL
Ui modr 7# U1 mod,» @NAU G 1) modr S Uiy 1) moa, fOr @ll k > 1 (see Fig. 1
for an example withr = 3 andr’ = 6).

We write D < D’ if,and only if, D= D" or D < D’.

Clearly (D, <) is now a patrtially ordered set.

Fig. 1. DomainsD,D’ with D’ < D.
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DEFINITION 3.4.— A minimal invariant domain is a domainD € D
which is minimal with respect to the partial orderjust defined.

Minimal domains will be represented by the lettet throughout this
text.

4. ATOUR OF THE PROOF

With the notions given in previous sections we can now divide the
proof of Theorem 1 in the following steps:

(1) To show thatD has some minimal invariant domain and that any

invariant domain contains some minimal one (Section 6.1).
(2) To show that minimal invariant domains are pairwise disjoint
(Section 6.2).
By now we can already deduce the number of minimals is finite.
In fact, a minimal invariant domain\ is completely invariant and
by hypothesis A) of Theorem 1 we see that every open set of the
finite collection forming. M contains a ball of radius: & > 0. The
compactness oM and step (2) above ensure there can only be a finite
number of such open sets and thus a finite number of minimals also.
(3) Every minimal domain isandomly transitiveor r-transitive, this
notion will be specified in Section 6.3.

(4) The orbits of every point € M under noise generate a station-
ary probability measurgw which is absolutely continuous (Sec-
tion 7.1).

From (3) and (4) we deduce that there exists an absolutely continuous
stationary probabilityu in the closure of each minimaM (since M
contains every orbit of € M) whose support is the closure 8 (by
the c-invariance of the support and item (3): sppg M.

(5) Every stationary absolutely continuous probability measure

supported on a minimal domait is ergodic and its ergodic basin
E () contains the whole aM: E (1) D M (Section 7.2).

Being ergodic, absolutely continuous and supported on the whole
of M, this probability u is physical, since the minimal invariant
domain is a collection of open sets. Consequently since for every such
measureE (1) O M holds, this is the only stationary ergodic absolutely
continuous probability measure supported/eh It will be referred to as
the characteristic probabilityof the minimal M.

(6) Every stationary probability measure is supported on some s-

invariant domain (Section 8).
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This crucial step gives the converse of the property deduced from
step (5). Moreover, combining with the results of the previous steps we
will deduce from step (6) that
(7) Every stationary probability measure is a finite convex linear
combination of characteristic probabilities (Section 8).

(8) Finally, in Section 9, we will use items (4) and (7) to deduce that
v>-a.e. perturbatiorr € A is such thatO(z, t) eventually falls
into some minimalM. The perturbations sendinginto different
minimals form the partition of item (3) of Theorem 1. Sind4
supports a characteristic measure which is physical, we further
derive that Birkhoff averages exist f6}(z, ¢ ) and satisfy (4).

5. FUNDAMENTAL LEMMAS

The measure theoretical lemma that follows will be used frequently
within the arguments of this and next sections.

LEMMA 5.1.— GivenV C A with v*°(V) > 0, we define for fixed
feAandk > 1

V(Q’k):{QE V: wl:91""’wk:0k}
thek-section ofV along6. Then we have
v®(c*V(8,k)) -1 whenk — oo

for v>©-a.e.0 € V, whereo: A — A is the left shift on sequences
o(¥)=¢withg, =v,,1, n=1,23....

Note — From now on we will say that a vectérsatisfying the above
limit with respect to a seV C A is V-generic

Fig. 2. Representation of the infinite product of the intef@al ], a vecto® and
the setsV andV (6, k).
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Proof. —-We may assume, for definiteness, that= [0, 1] with v the
Lebesgue measure [0, 1] so thatv™ is a probability inA. LetV c A
be such that> (V) > 0.

If Bisthe Borelo-algebra in0, 1] and

/—L
Bi=Bx---xBx[0,1]", k>1

then A = o (U2, Bx) is the o -algebra ofA over whichv™ is defined,
the o-algebra generated by a,. For every f € L1(A, A, v>®) and
eachk > 1 the mapA € By — [, fdv™ defines a finite measure on
(A, By, v™), which clearly is absolutely continuous with respect to the
measureA € B, — v°(A) (the restriction ofv™ to 5;). By Radon—
Nikodym’s theorem there i€ ( f|By) € L1(A, By, v™®), the conditional
expectation off with respect to the -algebraB,, such that

/E(lek)dvooz/fdvoo, VA € By (6)
A

A

and this function is unique with this property it (A, By, v™®).
Let X, = E(fIBy), k=1,2,.... We are going to see thk,};2, is
a martingale with respect to the sequefiBg};>, of o-algebras.
Indeed, becaus8; C By11 we have [, E(f|Byi1) dv>® = [, fdv™®
for all A € B, and by (6) and uniqueness of conditional expectation

E(Xy1|By) = E(E(f1BxsD)|By) = E(f1By) = X, v©-a.e.

By the martingale convergence theorem (cf. [19] for simple definitions
and proofs), the sequen¢&,}° ; has av>-a.e. limit that we shall write
X e L%A, A).

By (6) and becausg € L(A, A, v™) we have, assuming > 0, that
X, > 0v>-a.e. .k > 1, and consequently¥ > 0 v>-a.e. Moreover

/|Xk|dv°°=/Xkdv°°=/fdv°°=/|f|dv°°

and soX € LY(A, A, v>°) by dominated convergence arfdX|dv>® =
J X dv*>® gives [ fdv>®. Furthermore, ifA € B then [, X;dv>™ =
J4 fdv>® for all j >k and from this we gef/, X dv>® = [, fdv™ for
all A e B, andk > 1.
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By the absolute continuity of the integral of lat-function and by
definition of A, for everye > 0 andA € Athere are > 0, k > 1 and Be
By such thab (A A B) <8, [, ,5|X|dv™® <eandf, ,z|fldv™ <e.
Now we have, in succession

/fdvoo—/Xkdvoo /fdvoo—/fdvoo
A B A B
/deoo—/Xkdvoo =‘/de°°—/de°°
A B A B

and from this we get [, X dv>® — [, fdv*>°| < 2¢ with ¢ > 0 arbitrary.

We conclude thaf, X dv>™°® = [, fdv™®, VA € A and soX = fv>°-
a.e.

In particular if f = 1, we haveX; — 1yv>-a.e.and/, E(1y|By) dv™
= [ 1y dv*™ equalsv™(V N B) by definition of conditional expectation.
But v>*(V N B) = [, 1y dv™ also equalsf, v (V (8, k))dv*(8) for
every B € B, andk > 1 by Fubini's theorem, wherg®(A) = v>°(c*A)
andvf(A) = vi (e (A)), A € A with m: A — [0, 1] the natural projec-
tion @ = (6)%2, — (01, ...,6). Thatisv®(V (0, k) = E(1y|By) = Xx
v>®-a.e.t € A, and the proof is complete.

< / fldv™ <e,

AAB

< / | X|dv™® < g,
AMNB

This lemma will be utilized essentially in the following way. Lét W
be subsets oft with v>°-positive measure anda V-generic vector. Then
there iskg € N such that

k>ko= v (WNo*V(t, k) >0. (7

Sincev™®(V(t,k)) =0 for allz € A andk > 1 we may wonder whether
we may use (7) in arguments proving sonie-a.e. result. The answer is
in the following

LEMMA 5.2.—LetV, W C A be such thabv>®(V), v>*(W) > 0. Then
for v>°-a.e.t € V there is akg € N such that for allk > ko and every
n>0

v¥{seV:d(s,t)<nando*s e W} > 0.

Hence we may not have (7) but we know we can choose with positive
probability a vector inV arbitrarily close tor whosekth shift is in W.
This will be enough for our purposes.

Proof. —Let V C A be such thabt®> (V) > 0. For everyn > 1 and;j >
1letK, ; be a compact set insidé such thav>(V \ K,, ;) < (n - 2/)~1
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andE(1ly|B;)x,, is continuous—we are using Luzin's theorem (v. [13,
Chapter IV, Section 21]). The@i, = (;>, K, ; is a compact subset of,
v(V\ C,) <ntandE(1y|B;)c, is continuous for every,n > 1.

We haveV =J,>, C,, v> mod 0 and s@>-a.e.t € V is in someC,,

n > 1. Moreoverv>®-a.e.t € V is av*®-density point of some&”, and
we may suppose*(C,) > 0 for all n > 1 (otherwise we consider only
n > ng for some bigng € N).

From now on we supposeis V-generic and a*-density point of
somecC,, with v*°(C,) > 0. We letW C A be such thav>*(W) > 0, set
8 = v®(W) > 0 and letko € N be such thab>®(c*V(z,k)) > 1- 3,
for everyk > ko by Lemma 5.1. By the choice af and C,, we have
v (B(t,n)NC,) > 0 forall n > 0 and for somejy; > 0 we have further
that, fixingk > ko,

d(s,1) <n0,s € C, = v (0" V (s, k) >1-25
by the continuity ofE (1y|By) ¢, atz. Therefore we deduce that
d(s,1) <n0,s € C, = v*(WNao*V(s, k) >25>0

and so, for any; > 0, we have
v¥{seV:d(s,t) <nando's e W}
>v®{s e V:d(s,t)<ni=min{no, n} ando*s € W}
> [ wetnaeo
B(1,1)NCy
= [ [ mwarwdte
B(£.1)NCn ok V (5.k)
= / v (WNokV(s, k) dvi(s)
B(1,1)NCy
> 25 -V (B(t,m) N Cy) =28 - v (B(£,n)NC,) >0
where we have used Fubini’s theorem afids as before in Lemma 5.1.
O
In Section 13 a slight generalization of Lemma 5.1 will be needed.
DEFINITION 5.1.— GivenV C A andt,s € A we define adouble
sectionthrought ands atk > 1 by V(t,k,s) ={p e V: o1 =11,...,
ok =ty and @2 = 51, Pry3 =52, ...}
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LEMMA 5.3.—LetV C A be such thav*(V) > 0. Then forv>-a.e.
t € V and for every0 < y, 8 < 1 there existsy € N such that for all
k > ko there is a seW, C V with the properties

1. te W

2. v (W) > 0;

3. v(pryaWi(t, k,5)) > 1— 6 for v™*°-a.e.t € W, ands in a subset of

A withv>®-measure> 1 — y,

wherep, : A — B is the projection on théth coordinate.

Proof. —(An application of Lemma 5.1 and Fubini’s theorem.)
DefiningV, ={t € V: vV (t,k)) >1—-68- (1 —y), Yk >n} we
haveV, C V,,1 and Lemma 5.1 sayg = (J,; V,, v>° mod 0. We set

ko € N such thab*(V}) > gv‘”(V) for everyk > kqg. Definition 5.1 and
Fubini’'s theorem imply

1-6-(1—y)<v¥(c*V(L, k) =/ V[pesaV (L, k,$)]dv®(s)
for everyr € Vi, andk > ko. We define now for eache V;, andk > ko
the set
Wi(t)={s €A v[pr1V(t, k,s)| >1-6}
and by the last inequality we see th&t(W,(z)) > 1— y. Then defining
for k > ko

Wi =|J{V(t.k.s): 1€V, ands € W(1)},

we get

v“(Wk>=/ / v [pesaV(L K, 8)] dv(s) dv (1)

Vg Wi (1)

> /(1— 8) - v (Wi(2)) dv*(t)

Vko
(1=8)-(1—y) v (Vi)
1=8)A—y) v®(Vy)

><1—8>(1—y>-g-v°°<V>>o.

>
=

We finally note thatv>-a.e.r € V is in every V, for sufficiently
bigk. O
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The following notions will be extremely useful. They are mere
adaptations of the usual notions @flimit to the context of random
parametric perturbations.

DEFINITION 5.2. — We takez to be some point id/, U some subset
of M, t some vector it and define

oz ={weM: Ing<ny<---inN
such thatf," (z) — w whenj — oo}
(the usual definition ob-limit for the orbit O(z, 1));
wU,t)={weM: u;}52 CM3Ing<np<---inN
such thatf;" (u;) — w whenj — oo}
(the w-limit of a set under a perturbation vectoy;
w(z,A)= {w eM: H{Q(j)}?il CAdmi<ny<---inN
such thatf,, (z) - w whenj — oo}
(the w-limit of a point under every perturbation
oW, A)={weM: Hu;}52, c MV}, CAdny<np<---inN
such thatf,(, (u;) — w when; — oo}
(the same as before with respect to g set

LEMMA 5.4.— Let us suppos&/ to be a subset o8/ whose orbits,
under a positivev™-measure se¥V C A of perturbations, go through a
finite family of pairwise separated open sdis ..., A;_1 in a cyclic way,
that is

f(U) C Agmodrs Yk =1 (8)

(example the setify of an invariant domainD € D with respect to
Z/{Q, ey Z/{,_l).

Then the set» (U, 6) of accumulation points of the_orbit af ugder
a V-generic perturbatior® € V is such thatw(U,0) C AgU---UA;
and ifz € 0(U,0) NA; with0<i <I—1andy € A, then f;(z) €
X(i+k) mod! for all £ > 1.

LEMMA 5.5.— If in the last lemma we had’ = A then the set
(U, A), besides having orbits that go in a cyclic way through the

A;, i =0,...,1 — 1, underany perturbation, would also be invariant
under every perturbation: fj(z) cw(U, A) for all k> 1, for all z ¢

(U, A) and for allyy € A.
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These lemmas essentially state that whenever we look at limits of
generic perturbations we find a point whose perturbed orbit does
depend on the perturbation chosen, in the sense that it is carried cyclically
through some specified family of sets. This property is the key idea
behind the construction of s-invariant domains in Lemma 5.6

Proof of Lemma 5.4. ket us fix ¥ € A and z € w(U,8) with
v®(@/V(,0,j)) — 1when j— oo.

Then there are sequenc@s;}i2, C U and {n;}52; CN with n; <
ny < --- such thatz; = " (u;,6) — z when j — oco. It is clear that
z€AgU---UA,_1.

Let us now fixk € N and assume e A; for somei € {0, ..., — 1}.
We want to show that*(z, ¥) € A1) modi-

Oncek is fixed, Property 2.1 implies that, for given> 0, there are
y, v > 0 such that

AW, @) <y, o€ A=du(f @ V), ff(z 9) <8
du(z1,22) <, 21,22 € M, 9 € A= dy (f*(z1, 9), [F(z2.9)) < 5. (9)

By Lemma 5.2 and the convergence(of} 32, makingW = B(y, y/2)
we may choose a sufficiently bigge N such thatdy, (f"/ (4;,0),z) <
v/2 and a sufficiently smalh > 0 such that, with positive probability,
there can be foung € V with

d(g,0)<n, d(oc"g, ) <y/2 andalso dy(f" (u;,¢),z)<v.
(10)
Hence, by the choice of andv we will have that:
du (f @z ¥), f*(zj,0"¢))

<du (@ ¥). f(z.0"%¢)) +du(f (z.0" ). f(zj.0"p))
<54+686=25.

But we can takey > 0 so small that besides (10) and we get
dy(w,z) <v, weAgU---UA,_1 =>z€A,. (1)

With this we havez; € A; and alsof*(z;, 0" ¢) € Ag1i) moar bY the
hypothesis (8), withs > 0 arbitrary, and the lemma follows immedi-
ately. O

Proof of Lemma 5.5. ket us takez € (U, A) and suppose € A; for
somei € {0, ...,/ — 1}. We fixk > 1 andy € A.
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Then there argd'}52, C A, {u;}52; C U and {n;}?2, C N with
ny <np <---insuch away that; = f" (u;,0Y) — z when;j — oo.

Foré > 0 let us takev > 0 as in (9), andv so small that (11) holds.
Moreover, letjo € N be such thay > jo = du (f" (u;,0Y), 2) < v.

We now have

Ay (F* ), £ ) = du (Ff @), £ (. 87)) <6

for j > jo, whered” = @, ..., 09D, Yu, ..., Y, Yis1, ...) € A. But

> Vng o

8 > O is arbitrary, thus we get that

50

57 (g, 077) > fi(z) whenj — oo.

Now we see that forf*(z, ¥) there exist{é(j)}j?il CAfu;}52, CU
and{k+n,-}‘]?ilcN with k + n1 < k + np < --- in such a way that
Az, ¥ en, 4). O

We state the following lemma (which should be a corollary of the
previous two) with a slight abuse of language: we say an invariant domain
D = Uy, ..., U,_1) contains (is contained by) a S€tf LpU---UU,_1 D
C (respectivelyC D Ug U --- UU,_1).

LEMMA 5.6.— If C is a c-invariant set contained in some domain
D = Uy, ..., U,_7) invariant with respect to a systenf,. under
parametric noise satisfying hypothegi$ of Theoremnd, then it contains
some s-invariant domain.

Proof. —Let C and D be as stated and let us considér= w(C, A)
(cf. Definition 5.2).

By Lemma 5.5 we know thaX € C C UoU ---UU,_, is a c-invariant
set whose points are carried cyclically throughtthei = 0,1, ...,r —1.

By hypothesisA) of Theorem 1 it holds that inkK) # #. Thus the
collection D = U NiINt(X), ..., U,_1 NiINt(X)) is a member ofD, an
s-invariant domain.

Indeed, since the¢, are diffeomorphisms for all € B, the interior of
X must be sent into the interior &f. But, by Lemma 5.5, the orbits of
points of X must respect the cyclic order of thg, i =0, ...,r — 1.

We conclude thatX contains an s-invariant domain in its interior
(the open sets forming are pairwise separated by construction). Since
X c C, we have the same f&. O
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DEFINITION 5.3.—LetD = (U, ...,U._1) be an s-invariant domain
(D eD)andz e M. We defineG(z) = Gp(z) = {t € A: In € N such
that f"(z) € D} and H(z) = Hp(z) = A\ G(z), the perturbation vectors
that will sendz into D and those that never do so, respectively.

LEMMA 5.7. - Letus suppose thate M is such thabv*°(Hp(z)) > 0
for someD € D andt is a H-generic vectoH = H(z) = Hp(2)).
ThenH (w) = Hp(w) = A for everyw € w(z, t).

This lemma assures that those points whose perturbed orbits never
fall in some invariant domainD for many (v*>°-positive measure)
perturbations have-limit points (under generic perturbations) which are
neversent into the same domain by every perturbation. This is another
“independence of perturbation” property for the orbitgwelimit points.

Proof. —Let us fix aH -generic perturbation vecterandw € w(z, 1).

By contradiction, let us suppose there are A andn € N such that
fl(w) € D. Then there must be a neighborhobg of w in M and a
neighborhoodV; of s in A such thatf"(U,, x V,) € D by the continuity
of f":M x A — M (by Property 2.1).

But w € w(z,t) andt is H-generic, thus there atee N and6 € H
very close tor, with positive probability, such that*(z,¢) € U,, and
o0 € V, by Lemma 5.2, since>(H) > 0. Thereforef**"(z,0) € D
contradictingd e H. O

LEMMA 5.8.— Let z be a point ofM and V a subset ofA, with
v (V) > 0, such that forv>°-a.e. vectorz € V and everyw € w(z,t)
there iss € A (s = s(t, w)) such that the orbitO(w, s ) eventually falls
in some minimal invariant domain:

IM = M(s) minimal3dn =n(s) € N: /i (w) e M.

Then we will have a<x-minimal domain M, a setW < V, with
v (W) > 0, and am € N such thatfé" (z) € M for everyd in W.

Let us observe that the hypothesis does not prevent the point from
being sent into different invariant domains by different perturbations, but
the lemma ensures there will be a positive measure set of perturbation
vectors sending the poiirito the same invariant domain! In other words,
the system under parametric noise cannot be unstable to the extent
of sending a given point into completely different places by nearby
perturbations.
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Proof. —As in the proof of Lemma 5.2 let us fix> 0 and a compaaf
contained inV such thab>(V \ C) <8 and E(1y|B;)|c is continuous
for everyj > 1. We may assume™(C) > 0.

Now we taket € C such thatr is both V-generic and a*°-density
point of C.

Letw be a pointinw(z, t) and{n;}2; € N a sequence; <np < ---
such thatf;"” (z) — w when j — oo. We will fix, from the hypothesis,
a minimal domainM, an integerk € N and a perturbation vectére A
such thatf*(w, ) € M.

Since M is open andf*:M x A — M is continuous (see Prop-
erty 2.1), there are neighborhoods, of w in M andU, of § in A such
that fX(U,, x Ug) € M.

By the choice ofw and: there ism € N with the property

j>m= (an'i(z) eU,andB=v>*(c"V(t,n;)NUy) > 0).

BecauseE (1y |B;)c is continuous, there is > 0 such that

s€B(t,p)NC = |E(Ly|B,,)(s) — ELy|B,,)(1)] < g

and f"(z, B(t, p)) C U,, by the continuity off" : M x A — M.
Then we havev>*(c"V(s,n,) N Uy) = B/2 > 0 for every se
B(t, p) N C because

(e V (t,nm) NUg) — v (0" V(s,n,) NUp )|
v [(UgNo™V(t,nn)A(Ug No™V (s, ny))]
v [Up N (6™ V (L, nn)Ac™ V (s, )]
<v®(a"V (t,nu) AoV (s, ny))

= ‘voo(gnm V(L nm)) _ UOO(O'n’”V(Q, nm))’ - g

It follows that

W= U {(s1, ..oy Snpour,uz, .. ) u€ (6"V(s,n,) NUG)}
seB(1,p)NC

is a subset o¥/ such that
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V(W) = / v (o™ V (s, n,) NUp)dv™ (s)
B(1.p)NC

;g.voo(B(L,p)ﬂC)>0

because is av*°-density point ofC. Moreover

"z, W) S f"(z, (B(t, p)NC)) S [ (z, B(t, p)) S U,

and f5(U, x Ug) € M with o"W C U,. Thus f"+*(z, W) € M,
completing the proof of the lemma.O

6. FINITE NUMBER OF MINIMAL INVARIANT DOMAINS

Two basic properties of the members Bfare the following direct
consequences of hypothesis A) of Theorem 1 and Definitions 3.2 and 3.3.

PROPERTY 6.1. — Any s-invariant domairD = (Uy, ..., U,_1) is such
that every open sét; contains some ball of radiug >0, i =0, ...,
r — 1. Consequently, each open set has a volymeneasurg greater
than some constati > O.

PROPERTY 6.2. — The period of any invariant domai® € D is
bounded from above by a constahite N dependent oy (T, < 1/ lo).

6.1. Minimals exist

We start by showing that Zorn’s lemma can be applied to the partially
ordered setD, <) of completely and symmetrically invariant domains
of M. Having established this, we conclude that there are minimal
invariant domains inf.

Let C be a<-chain in(D, <), that is, if D, D’ € C then eitherD < D’
or D' < D. By Property 6.2, the domains 6f have a finite number of
distinct periods. So ip :C — N is the map that associates to edelke C
its periodp (D) € N, thenp(C) = {r1.....r} andC = U,_; p~*{r;}. We
need to find a lower bound fat in (D, <). We can suppose thatdoes
not have a minimum, otherwise we would have nothing to prove. Now
we establish

CLAIM 6.1.-There is ajo € {1,...,1} such that the subchai§ =
p~{rj,} does not have a lower bound ¢h MoreoverS precedesvery
element of: for all D € C there is aD’ € S such thatD’ < D.
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(0) (a)
(o) 1

c

\/ \/

Fig. 3. D, < Dy with Dy, D, in a subchain of period three after suitable
arrangement of indexes.

Indeed, if every subchain of constant perid= p~*{r;} had a lower
bound D; € C for j =1,...,/, then the minimum of the subchain
S ={Dy, ..., D;} CC (which always exists becaus® is finite) would
be a minimum forC, in contradiction to the supposition we started with.
So there is somé& = S, without a lower bound ii.

Now for the second part of the claim. Let us suppose, by contradiction,
that there is & < C such thatD £ D for everyD € S. But we are within
a chain, thusD < D for all D € S, that is, D would be a lower bound
for S in C, and this contradiction proves the claim.

Now we just need to show th& has some lower bound D, <) in
order to get a lower bound far.

To do that, let us first observe th& is made by nested invariant
domains of equal period, all symmetrically invariant. Thus we can
always writeD € S as D = Uy, ...,U,_1) and, for any otherD’ =
Uy, ..., U/ _4), we can never have two differeif, Z/{j’. intersect the same
Ui, i, j,kel{0,...,r —1}andi # j (see Fig. 3 for a representation &f
with period three).

Hence we can rearrange the lower indexes of the open sets that form the
domains ofS in order to obtairs = {D,}yc.4 With D, = U, ..., U“)
for o € A, A some set of indexes, and satisfying the following property

Dy <Dy & UP U™, i=0,....r—1);
forall o, o’ € A. N
We can now consider the intersectiotfs = ﬂaeAZ/{f"‘), i=0,...,

r—1, arld observe that, because edd}) is s-invariant, the family
Uy, ..., U,_1) satisfies

YW, A) € Uiy moar» VE=1Vi=0,....r—1  (12)
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and since fixingag € A we havelf; c 4 for i =0,...,r — 1, the
Uo, ..., U,_, are pairwise separated, becauseaﬁi’@) u<"‘°) already
were pairwise separated.

Finally, hypothesis A) of Theorem 1 and (12) ensure that eietyas
nonempty interior{=0, ..., — 1). Since thef; are diffeomorphisms
forr € B, hence open maps we deduce that (int(Up), ..., int(U,_1))
is an s-invariant domain ob which clearly is a Iower bound for the
subchainS. Consequently we got a lower bound for the ché&irwe
started with and proved that Zorn’s lemma can be applig®to<).

Moreover, it is easy to see theach member dP contains a minimal
domain.

In fact, let us now fixDg € D and consider the partially ordered set
(Dp,, <), WhereDp, = {D € D: D < Dg}. Since it can be shown that
each chain ofDj,, <) has a lower bound i®,, in the same way we
did before, there must be some minimal domair(dn,,, <) which, by
the definition ofDp,, is also a minimal domain afD, <).

We conclude that each domain i contains a minimal domain of
(D, X).

6.2. Minimals are pairwise disjoint

Let us now observe that, because each open set of the collection that
forms an invariant domain has a volume (Riemannian measwe M)
of at leastly > 0 by Property 6.1, to prove there is a finite number of
=<-minimals we need only show they are pairwise disjoint.

Let D = (U, ..., U,_1) and D' = U, ..., U,,_;) be two minimals of
(D, <) whose open sets have some intersectigm) Z/{j/. #+ () say, for
somei € {0,...,r—1}andj €{0,...,r — 1}.

Because botlD and D’ are s-invariant, we have for &l> 1

AU N UY C fAU) C Uiy modr  @Nd
k k
SaWUi U C faU C Ui mods
and thusf% U; N Z/{;) C Ui +k) modr N Z/{(’Hk) mod, - 1herefore if we define
= (Ui N U}, U(i+1) modr N u(/j+l) mods’s <+ + >
Ui+1r.r1-1) modr N U(/jJr[r,r’]fl) mod)

we will get D € D (here[r, r'] is the least common multiple efandr).



334 V. ARAUJO / Ann. Inst. Henri Poincaré 17 (2000) 307369

The invariance property is clear. Let us check that the open sets
forming D are pairwiseseparatedIndeed, if we had

Ui+kyy modr O Ulj iy modr N Uiy modr N Uiy modr 7 ¥
with 0 < ky < kp <[, #'] — 1 then, in particular,
U i+ky) modr N U(j4kp) modr # ¥ and

u/(i+k1) modr’ N u;jJrkz) modr’ 3"é @.
However by Definitions 3.2 and 3.3 we conclude that k, (modr)
andk; =k, (mod ') with 0 < k1 < kp < [r, '] — 1, contradicting the
Chinese Remaigder Theorgm.

We have nowD < D andD =< D’, so the minimality of bothD and D’
implies D = D = D’. We have shown that if twe-minimals intersect
then they are equal. Consequently, we have that they are pairwise disjoint
and, as mentioned above, we conclude there is a finite number of
minimals in(D, <).

6.3. Minimals are transitive

The following is an expression of the dynamical indivisibility of
minimal invariant domains.

LEMMA 6.1. — Every minimal invariant domaitM = (U, ..., U,_1)
is transitive in the following sense. For everye M (meaningz €
UoU---UU,_1) the sequencéf’(z)}52, is dense inM.

We will say that minimal invariant domains ar@ndomly transitiveor
r-transitive when referring to this kind of transitiveness.

Proof. —In fact, let M = Uy, ...,U,_1) € D be a minimal and let us
take some point € U; with i € {0,...,r — 1} and X = w(z, A) (cf.
Definition 5.2).

By Lemma 5.5, we hav&l € M =UoU ---U U,_4, X is c-invariant
and goes cyclically through they, ..., U,_1, under every perturbation
vector of A. Besides, by Lemma 5.6 therelise D such thatD C X. So
D < M, in contradiction with thex-minimality of M.

Hence it must be thatM = D and then{f%(z)}:2, is dense in
UgU---UU,_q, as stated. O

Given a minimalM = Uy, ...,U,._1), since it is s-invariant, it will
also be invariant with respect tfy for everyr € T, because the vector
(t,t,t,...)isin A,
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This means we havg‘t"(ui) C Uiitkymodr for all k > 1 andi =0,
o, r—1.

However, we cannot state any kind of indivisibility for this domain
with respect tof; because the domain was originally a minimal domain,
but with noise. The perturbations around the systgmmay have
mixed, in a single collection of open sets, several attractors indivisible
with respect tof;, but that under random choices of parameters were
indistinguishable. We cannot proceed further in this because we made no
hypothesis about the dynamics of tiiewithout noise.

7. STATIONARY PROBABILITY MEASURES

7.1. Existence and absolute continuity

Let z be a point ofM. The formalization of the dynamics under noise
by means of the operatdrenables us to naturally associate a probability
measure to the orbits of the system: the push-forwaidofrom A to M
via the mapf* given by f*(z, v™>), k > 1. We have defined this as the
probability which integrates continuous functionsM — R as

Fv®)p = [ )™)p = /cp(f"(z, D)dve(1), k>1

These probabilities are not stationary in general, but if we consider
their averages

1 .
o= =3 @), =12, (13)
j=1

we obtain a sequence of probability measures/invhich, by compact-
ness of the spad®(M) of probabilities measures ovaf with the weak
topology, has some limit point,, = lim;_, o ni ’}":1 f7(z,v>®). This

means the integral of a continuous M — R with respect tqu is given

by

1 .
ool = im =3 [ o(fi(. ) av= (o).
lj:l
This accumulation point is a stationary probability. In fact,

/ 9o fw,s)dps(w)dv(s)
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/[hm —Z/(prfv (F o)) dv <r>]dv<s>

11— 00

and

/ H; JCE f;)(ff(z,z))dv”(z)] dv(s)
= ni;//sﬂ(f o fiy 00 (@) dv¥(1)dv(s)
- n—lijnzzil/w(f,_j“(z)) dv®(t)
= n—lig/so(fﬂz))deu)

] fotrri@a=w - [o(r@)a=w)

fori > 1. Since sup.,, lp(w)| = [l¢]| is finite, the second term of the last
expression converges to zero when- co, while the first term gives the
integral ofp with respect tqu.., that is

] . 1 ni . ) -
[oduw=jim | ln—g J@o (s o) ay (z)] dv(s)
/[hm —Z/(wfs ) z)) dv (t)]dv(s)

_ / / 90 f;(w) dpos(w) dv(s),

where we have used the dominated convergence theorem to exchange the
limit and the integral signs. In addition, becaus& M, R) is dense in
LY(M, j1s0) With the L*-norm, we see the last identity holds for every
Uoo-integrablep : M — R.

Moreover, ifE is any Borel subset aff we can write

Uoo(E) = / 1p djis = / 16 (1)) dptoo () dv (1)
_ / / / 15 (fiy © fis()) ditoo () dv(ty) dv(t2)



V. ARAUJO / Ann. Inst. Henri Poincaré 17 (2000) 307—369 337
:// Le (ff0) ditos (x) dv™ (1)
= [ [ 1A @) av=(0) dpinto
:/fk(x,voo)(E)d,uoo(x)

for k = 1,2,3.... Hypothesis B) of Theorem 1 guarantees that
f(x,v>®) < m for k > K. Thus s (E) = 0 whenevem (E) = 0. We
have just proved

LEMMA 7.1.— Givenz € M, any accumulation point of the aver-
ages(13)is a stationary absolutely continuous probability measure over
M.

Let us remark thati., = 1. (z) depends or € M and the accumula-
tion point of the averages (13) may not be unique.

7.2. Ergodicity and characteristic probabilities

Let us suppose € D for someD € D. Then it is clear that supp., C
D, whatever accumulation point of the averages (13) we choose.
Moreover, by Remark 3.1 we have tit= (U, ...,U,_1) satisfies (5)
also. Thus ifw € suppu,, we get by hypothesis A) that*(w, A) D
B(ft’(‘)(w),f;‘o) for all k > K, and by the invariance of the support we
conclude supp N D # ¢ because ind D) = int(dLp U --- U U, _1) = @.
In addition, ifz belonged to a minimaM € D, then the invariance of the
support, the fact that suppn D # ¢ and the r-transitiveness @#f (given
by Lemma 6.1) together imply supp= M.

LEMMA 7.2.— If M € D is a minimal invariant domain angk a
stationary absolutely continuous probability measure gitippu = M,
then

(x) = /cp(f,(x)) dv(t), p-a.e.x = ¢ is u-a.e. constant

for every bounded measurable functionM — R.

Proof. —What we want to prove is equivalent to the following for every
Borel setE:

1z(x) = / 1 (fi(x))dv(r), p-aex=p(E)y=0o0rl (14)
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Let E be a Borel set that satisfies the left hand side of (14) and let us
suppose that(E) > 0. Sinceu <« m we havem (E) > 0 and thus there
is a closedF C E such thatn(E \ F) =0= u(E \ F). Moreover the
following holdsu.-a.e.

1p(x) = 15(x) = / 16 (f,(0)) dv(r)

=// 16 (£, (f;()) dv(s) dv(). (15)

In fact, let NV be the set of those pointswhich do satisfy the left hand
side identity of (14). Them(N) =1 and alsqu x v*°(N x A) = 1. Since
w is stationary we havg x v>®°(S™1(N x A)) = 1, that is (cf. Section 2.2)
S r(f7HN)) dv(s) =1 n(f7HN)) =1forv>-a.e.s € T. Moreover
the set

N, = {x e M: 1o (£i() =/1E(ﬁ(ﬂ.(x)))dv(t)}

is equal to( f;,)~X(N) for all s € T. Thereforeu(N,) = 1 forv-a.es e T.
This means A(f;(x)) = [ 1e(fi(fs(x)))dv(z), for v-a.e.s € T and u-
a.e.x.
In particular we get (15) when integrating both sides with respect to
Likewise we can have (15) with any number of compositions, that is

lp(x):lE(x):/1E(fk(x,g))dv°°(g), p-aex, k=12, ...,

and we can write

/1E(fk(x,z>)dv°°<z> = R, v°)E) = f*(x, v™®)(F)
fork > K (16)

by hypothesis B) of Theorem 1. From the last two identities we arrive at
1) = [Lr(F@n)dv (0. paex,

This identity implies that foru.-a.e.x € F we have f*(x,t) € F
for v*-a.e.t € A andk > K. However, sincg € A — ff(x,t) e M
is continuous for every fixed > 1 and f(x,t) € F for a dense set of
vectorst in A (becausev™-a.e. implies density im), we deduce that
fK(x,t) e F forall t € A (becauseF is closed) and > K. Then, if we
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definels; = U; N U, cp sk iNt(f*(x, A)), i =0,...,r — 1, we see that
thelt! C F are open, nonempty (by hypothesis A) and because supp
M and intM) = M =Ug U --- U U,_1) and soD = U, ..., U ;) is
an s-invariant domain.

In fact, fixingy e U for some 0<i <r —1, s € A andn > 1, there
arek > K ands$ > 0 such thatB(y, §) C f*(x, A) and f*(B(y, 8)) C
FE(x, A) CUiry mod, by definition oftd!. Hence " (y) € int( ¥ (x,
A)) NUin mod, after Property 2.1(3). -

We have built an s-invariant domaib € D such thatD < M. The
minimality of M gives D = M and henceF 2> M, that is, u(E) =
w(F) ZpuM)=1. O

Lemma 7.2 implies that, is ergodic, that isp, x v*° is S-ergodic.
(For ease of writing we make = 11, in the following discussion.)
Indeed, let us assume that: M x A — R is anS-invariant bounded
measurable functiont (S(z, 1)) = ¥ (z,t), u x v™®-a.e.(z,t) € M x A.
For eacht > 0 we define

Y (X, t1, ..., ) = /W(x, 1,02, oty a1, - - ) AV (1) dv(fre2) - ..
and we have, by the invariance f
Yol(x) =/1/f(x,t1,t2,...)a’v(tl)dv(tz)...
=/1/r(f,1(x),t2,t3,...)dv(tz)dv(tg)...dv(tl)

=/ Vol fu() dv(t), p-a.ex e M.

Therefore, by Lemma 7.2, we conclude thiatis n-a.e. constant. In
general, fork > 1,

wk(X, tls R tk) :/w(x’ tls t2’ [ERE] tk’ tk+1s .. )dv(tk—f—l) dU(tk+2) e

= / U(fiu (), t2, o i g1, ) d(fgn) dv(Grg2) -

=Y (f (), b, t),  poxvi-ae(x,n, ... 8).

We then havel, = o, p x v-a.e.;9> = v, u x v2-a.e.... and so,
by induction

Y = Yo =constant u x vk-a.e., for everyt > 1.
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However if we identify v (x,2) with ¥ (x,t1,...,%), then ¢,
coincides withE (¥ |B;), n x v>*-a.e. and we have seen in Lemma 5.1
that E(y|By) — ¢, u x v>*-a.e., whenk — oo. Hence we have also
Y = constant  x v>°-a.e., and conclude that x v>° is S-ergodic.

Ergodicity, Birkhoff's theorem and the absolute continuity imply
that 1 = o is physical. Indeed, supp= M = E(u) p-a.e. be-
causeu(E(un)) = 1 by Birkhoff’s ergodic theorem. So, it = E(u),
then 1:(x) = [1(f(x,1))dv(t) for p-a.e.x becauseE is invariant.
Hence, recalling the proof of Lemma 7.2, we gét= E(u) D M and
m(E(un)) > m(M) > 0 (M is a collection of open sets).

We easily deduce that any two physical probability measurg$:,
whose support ig/f must be equal. Indeed, since bdiliuw,) andE (i)
contain M, the time averages of every continuopsM — R on the
orbits of somer € M must equal bothf ¢ dp; and [ ¢ dus.

The above arguments prove the existence dfaracteristic measure
for each minimal invariant domain.

PrROPOSITION 7.3. — Given a minimalM e D there is only one
physical absolutely continuous probability measure whose support is
contained inM. Moreover, every € M is in the ergodic basin of this
characteristic measure.

8. DECOMPOSITION OF STATIONARY PROBABILITIES

Let u be a stationary probability. Then supgs a c-invariant set. By
hypothesis A) of Theorem 1 we deduce thatsuoppu) # @.

Let Cy, Co, ... be the connected components of(&uppw): it is an at
most countable family of connected sets andsappu) = U;~; C:.

Since f; is a diffeomorphism for every € T, thus a continuous open
map, we deduce that eagh(C;) is a connected open set contained in
suppu, by the c-invariance. Hence there is sore- j(i,t) such that
fi(C;) C C; by openness and connectedness.

In particular, by the same reasoning, we see that every poi@ ia
sent by f, in the interior of supp for all ¢t € T andi > 1.

We show thatj = j (i, r) does not depend ane T'.

By contradiction, let us suppose there dare= 1, 1o andr, in B
such thatjo = j (i, 1) # j(i,t1) = j1 and let us fixx € C;. We take a
continuous curve : [0, 1] — T with endpointsg andz, in B: y(0) =1
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andy (1) = ;. We know that

f(x.y(s)) €int(suppu) = | J C; forall s € [0, 1],
i>1

but Sincef(x’ J/(O)) = f(x’ tO) € C/o and f(x’ J’(l)) = f(x, tl) € C/1
with C;,, C;, distinct connected components of(siipp.), we conclude
there iss €10, 1[ such that

f(x,7(3)) €9Cj, C d(suppu) = suppu \ (int(suppu)),

a contradiction. So everg; is sent into some”;;, by any f; and the
permutationi — j (i) does not depend anc T'.

We remark, in particular, that if far € C; we havef*(x,t) e C; for
somej, k > 1 and_re A, thenf*(x, A) C C;.

Sinceu x v°°(C xA)>0@G@>=1) Pomcares recurrence theorem guar-
antees that x v*®-a.e. pair(x,t) € C; x A is w-recurrent with regard
to the action ofS. By last remark, we see thgt (C;, A) returns toC; in-
finitely often, for every fixed. Hence, again by hypothesis (A), eaCh
contains &p-ball. Thus, becaus#® is compact, the pairwise disjoint fam-
ily C1, Ca, ... must be finite and so ifisuppu) = C1U - - - UC, (a disjoint
union).

The open set€",, ..., C; may not be pairwise separated. However,
the following reflexive and symmetric relatiof, ~ C; < C; N C; #
#,(1<i,j <) generatesa unique equivalence relatlcm such that
if Cl,.. C, are the~-equivalence classes, thén = UCl,..., W, =
qu are pairwise separated open sets. Moreover, these sets are inter-
changed by any; (r € T) in the same way th€’, ..., C; were, that is,
the permutation of their indexes by the actionfptioes not depend an

The permutation of the indexes of thé,, ..., W, has a finite number
of cycles which are a finite collection of pairwise separated open sets
satisfying Definition 3.3. We have proved

PROPOSITION 8.1. — Every stationary measurg is such that the
interior of its support is made of a finite number of s-invariant domains.

Remark8.1. — If © were ergodic, then

n 1

lim = left(x)) w(W;) >0

n—-oon
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for u x v®-a.e.(x,t) e M x A and 1< i < ¢g. So almost every point
of Wy U ---U W, returns toW; infinitely many times. In this case the
interior of suppu is made of a single s-invariant domain

Let now My, ..., M, be all the minimal domains inside the s-
invariant domains given by Proposition 8.1 (recall Section 6.1). Provi-
sionally we assume the following

LEMMA 8.2.— The normalized restriction of a stationary measure to
a c-invariant set is a stationary probability.

Let the normalized restrictions bea,, (A) = ﬁ (AN M),
i=1...,h, whereA is any Borel set andi(M;) > 0 (becauseM;
is a collection of open sets inside (suppu)). By Proposition 7.3 4,
must be the characteristic probability ®;, i =1, ..., h.

Remark8.2. — This means the characteristic probability of eAdh
must give zero mass to the borda@M;, since it coincides with its
normalized restriction to the interior gf1;.

To see that these probabilities are enough to defingve consider
A= — M) -y — o — (M) - paq,- If A #0, theni is a
stationary measure (of course, being stationary is an additive property)
whose support is nonempty. By Proposition 8.1 and by Section 6.1 we
have some minimal domain in suppr with A(M) > 0. But supp C
suppu \ (MU ---UM,) and theMy, ..., M, are the only minimals
in suppu. We have reached a contradiction,Js& 0 and we have proved
(apart Lemma 8.2)

ProPOSITION 8.3. — Every stationary probability is a linear finite
and convex combination of characteristic probabilities.

Let us note that these arguments show that sugpsuppi,U- - - U
suppurg, and consequentlye(Mj) + --- + u(M,) =1, that is, the
linear combination above is indeed convex.

To end this section we prove the remaining lemma.

Proof of Lemma 8.2. Let u be a stationary measure ait a c-
invariant set.

We remark that we know every point ¢f stays inC, but we do not
know whether points in the complement sypp C enter inC by the
action of f;.

First, we showD = suppu \ C to bealmostcompletely invariant.
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In fact, we may assumg(D) > 0 (otherwiseC = suppu, p-mod 0)
and write

0< (D) = [ 1@ dntx) = [ [ 1o(£x.0) diatx) dv(o

becauseu is S-invariant. By the invariance of, x € C = f(x,1) €
C = 1p(f(x,t)) =0foreveryr e T and so

[[ 1000 duwavo = [ [ 15(7 6 0) duxr v,
D

Defining D1(t) = {x € D: f(x,t) € D} and Dy(¢t) ={x € D: f(x,1)
¢ D} fort € T, we have

woy=[ [ () duwdvn = [u(Diw)dvi >0

" DinUD(1)

where u(D1(1)) < u(D) for everyt € T. Thus u(D1(1)) = w(D) for
v-a.e.t, thatis, f(x,t) € D for u x v-a.e.(x,r) € D x T. In other words,
points outsideC almost never enter i@

Now we know that &(x) = 1c(f(x,1)) for u x v-a.e. pair(x, ).
Hence,

[o-1cdn= [ [o(fi0) 1e(£i0) dutx v
= [ [o(fi0)  Le@dutx v

for anyg € CO(M, R), that is, the restriction ofi to C is stationary. O

9. TIME AVERAGES AND MINIMAL DOMAINS

What remains to be done is essentially to fit together previous results.
Indeed, Sections 6 and 7 prove items 1 and 2 in the statement of
Theorem 1. To achieve the decomposition of item 3 we are going to
show that every point € M is sent into some minimal domain by*-

a.e. perturbation oft and thev>*-mod 0 partition ofA obtained by this
property satisfies 3(a), 3(b) and 3(c), since we already knowrikate.
point inside a minimal belongs to the respective ergodic basin.

Let z € M and let u be a stationary probability given by some
accumulation point of the averages (13). By Proposition 8.3 we kinow
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decomposes in the following way
M=o g+ o 17)

where O< oy, ..., <1, a1+ ---+a,=1anduq,..., u, are the
characteristic probabilities of the minimal4, ..., M, respectively.

Decomposition (17) and the constructiorpoénsure there is, for every
i=1...,h, asetV, C A with v*(V;) > 0 such that there i¥ ¢ N
satisfying f*(z, s ) € M; for everys € V;.

Indeed, ;. (M;) > 0 implies there exist open setsC U C V C M,
such thatu(U) > 0 and sop € C(M,R) with 0< ¢ <1, suppp C V
andg)y = 1 satisfiegu(p) =lim; 0 - 3701 [ @(f7 (2, 1)) dv>®(2) > 0.
Then we have, for somge N:

v lre A fia) e M) > /cp(ff'(z,z))dvm(z) -0,

Now we claim the setd; occupy the entire spaca or equivalently
(cf. Definition 5.3)

PrRoOPOSITION 9.1. — For everyz e M we haveGy,(z) U --- U
Gm(z) = A, v®-mod O0and Gy, (z) N G, (2) =0 for every pair
1<i < j<lwhereMaq,..., M, are all the minimal invariant domain
of D.

Proof. —By contradiction, let us suppose ther&/ig- A with v (V) >
0 such tha™(V N Gy, (2) =0, i =1,....1 (or V C (N Hay, (2),
v>°-mod 0).

Let ¢+ be aV-generic vector and letv € w(z,t). By Lemma 5.7
we haveﬂﬁzl Hy, (w) = A, v°-mod 0, that is, the orbit ofv under
almost every perturbation never falls jvt; U - -- U M,. Consequently
any stationary probability obtained from the orbitsuofs in Section 7.1
will admit a (nontrivial) decomposition (according to Proposition 8.3)
pw=pr-fa+---+pj-fpsuchthat &<y, ... g <1, pa+---+ B =1
and eachi; is the characteristic probability o$1;, i =1, ..., h, where
each of theM, ..., M,, is distinct fromM, ..., M,.

This contradict the supposition that thet,, ..., M; are all the
minimal invariant domains o and so such a sé&t cannot exist. O

We now easily derive the continuous dependence of thé/setsfrom
x € M with respect to the distance betweefi-mod 0 setsA, B C A
given byd, (A, B) = v*°(A A B).



V. ARAUJO / Ann. Inst. Henri Poincaré 17 (2000) 307369 345

We fix x € M and note that eacli; (x) can be written as

Vi(x) = J Vik(x) whereV;, (x) = {te A: fH(x,1) e M;},
k=1
k>1, (18)

are open and; ;(x) € V;11(x) for all k > 1 by the complete invariance
of M;, i =1,...,1. This implies that for somé& > 0 we can findkg € N
such that > (V;(x) \ Vi (x)) < s forall 1 <i <1.

On the one hand, by the finitenesskef Property 2.1 and the openness
of the domains that forma\1;, we get the existence gf > 0 with the
property V; i, (y) 2 Viso(x) for all y € B(x,y). Hencev>(V;(y)) >
VX (Vi () = v (Vg (x)) = v*(Vi(x)) — & wheneverdy (y,x) <y
and foreveryi =1,...,1.

On the other hand

VX (Vi(») =1=v=(Vi(y)) — - = v (Vica(y)
=¥ (Viga () = - = v (Va(y)
<L—v®(Vi(x)) — - — 1™ (Vi (x))
X (Vg1 (0) = o= (Vo) + (= 1) - 8

=v°(Vi(x))+(h—=1) -8

forall 1 <i <! and continuity follows.

We are left to show item 3(c) of Theorem 1 holds with respect to this
decomposition.

Let us fix 1< i <! such thav>(V;) > 0.

We note that (18), the openness of tild; and the continuity
Property 2.1(1) imply thé; (z) to be open subsets df, that is, for every
t € Vi(z) there arek € N and p > 0 such thatf*(z, B(t, p)) C M; and
soV;(z) D B(t, p). According to Section 7.2 we have

M; CE(u) andthus {seVi(2): fz )€ E(u)} D B(t, p).
(19)
This means that every in B(z,p) C V; = Vi(z) is such thatw =
fH(z.5) € E(uy), that is,
n—1

lim }Z(p(fj(w,g)) =/(pdui for everyp € CO%(M, R)
=0

n—-oon “

andv>*-a.e.u € A.
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Since time averages do not depend on any finite number of iterates,
item 3(c) of Theorem 1 follows and the proof of Theorem 1 is complete.

Remark9.1. — We note thatliffeomorphismin the arguments and
definitions of Sections 2 through 9 may be replaced throughout by
continuous open map. This means Theorem 1 is a resuominuous
Ergodic Theoryand not specific oflifferentiable Ergodic Theory: a°-
continuous family of continuous open mapis M — M, ¢ € B, would
suffice.

Remark9.2. — The conclusions of Theorem 1 can be obtained with
weaker hypothesis instead of the stated A) and B).

Indeed, itis very easy to see that the intelyemay depend or in the
statement of A). Thus it can be replaced by

A’) There isty > 0 such that for alk € M there existsV = N(x) e N

satisfying f*(x, A) D B(f*(x), &) forallk > N.

Moreover, B) can be weakened so that the absolute continuity of a
stationary probability. still holds by allowing f* (x, v>®°) <« m for some
k > 1. If this k does not depend ane M, then we can still write (16)
and proceed to prove Lemma 7.2.

Other weakenings of B) are possible, one such will be of use
following Section 11 dealing with random parametric perturbations near
homoclinic bifurcations.

10. BOWEN'S EXAMPLE

This is the answer to a question raised by C. Bonatti. This example
captures the meaning of Theorem 1. even if a gid@ierministic
(noiseless) system is devoid of physical measures (its Birkhoff averages
do not exist almost everywhere) we may nevertheless get a finite number
of physical probabilities describing the asymptotics of almost every orbit
just byaddinga small amount of random noise.

Example 5. — Bowen'’s examplésee [28] for the not very clear reason
for the name) is a folklore example showing that Birkhoff averages need
not exist almost everywhere. Indeed, in the system pictured in Fig. 4
Birkhoff averages for the flowo not exist almost everywhetdey only
exist for the sourcess, s4 and for the set of separatrixes and saddle
equilibria W = Wy U Wo U Wa U Wy U {s1, s2}.

The orbit under this flow, of every pointz € S* x [—1, 1] = M not
in W accumulates on either side of the separatrixes, as suggested in the
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Fig. 4. A sketch of Bowen’s example flow.

figure, if we impose the conditioh; A, > A A3 on the eigenvalues of
the saddle fixed points, ands, (for more specifics on this see [28] and
references therein).

We apply Theorem 1 to this case. We remark thdtis not a
boundaryless manifold, but its bordét x {£1} is sent by¢; into
St x [—1, 1]. Moreover, Theorem 1 refers not to perturbations of flows,
so we will consider the time one mag, as our diffeomorphism
f:M — M and, sinceM is parallelizable, we can make an absolutely
continuous random perturbation, as in Example 1 of Section 2.4. In this
circumstances the proof of Theorem 1 equally applies.

For everything to be properly defined, though, we must restrict the
noise levels > 0 to a small intervalO, ¢o[ such that the perturbed orbits
stay inS'x ] —1, 1[. After this minor technicalities we proceed to prove

PropPoOsSITION 10.1. — The system above, under random absolutely
continuous noise of level €10, o[, admits a single physical absolutely
continuous probability measure whose support is a neighborhood of
the separatrixesint(suppw) D W. Moreover the ergodic basin ¢f is
the entire manifoldE () = M, pmod Q

Proof. —Let ¢ €]0, g¢[ be the fixed noise level from now on and l&t
be the ball of radiug /4 arounds,. We will build fundamental domains
for the action off = ¢, overM \ W in U, as explained below.

We choose two strait linels, /> throughs; crossingU and letly, [, be
theirimages undep, as sketched in Fig. 5. Now we choose two points in
each linelq, I, on either side ofy: p1, p2, p3 and p4, and consider their
orbits under the flowp for positive time, until they return t& and cut
I3, 15, as depicted in the abovementioned figure.
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i !
o1

Fig. 5. How the fundamental domains are obtained.

The four intersections of the orbit @f; with the proper;, I, together
with portions of the orbit and af;, /; define a “square’r; (shadowed in
Fig. 5) which is a fundamental domain for the dynamicg et ¢; on the
connected components df \ W, i =1,2,3,4 and j=1or 2.

This means that everye M \ W is such that there is &> 1 with
2w = f¥z) e F = F,U F, U F3U F4. Moreover, by the choice dff, z;
may be sent into any;, i = 1, 2, 3,4, by adding to a vector of length
smaller thare. Thus we deduce that*(z, A) D F; U F, U F3 U F, and
even more;ff(z, A)D U.

Keeping in mind that forn > 1 we havef ™ (z, A) = f"(f*(z.4),
A)={f"(w, A): w e f¥(z, A)}, we see thaf*+" (z, A) will contain all
the f-images of eacl¥y, F», F3 and F,, which will return toU infinitely
many times. Furthermore, at each return the points may again be sent into
any Fy, F,, F3 or F, by ane-perturbation. Hence the sets of the sequence
{f"(z, A)}>2, contain Fy, F>, F3 or Fy for infinitely manyn’s and also
all their f-images.

We conclude thab (z, A) contains a neighborhood & .
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The same holds fow € W, since f*(w, A) is an open set and so
contains some € M \ W. That is,everyz € M is such thatw(z, A)
contains a neighborhood &7

Therefore, there can be only one minirged in the perturbed system,
such thatM > W and into which every point € M finally falls by
almost every perturbed orbit (this is a consequence of Sections 6.2, 7,
8 and 9). We have further that the characteristic probability is the
physical probabilityu of the system, withE(u) = M, pn mod 0, and
suppu D M D W, as stated. O

11. HOMOCLINIC BIFURCATIONS AND RANDOM
PARAMETRIC PERTURBATIONS

We consider arcs (one-parameter families) of diffeomorphisms exhibit-
ing a quadratic homoclinic tangency and derive similar properties for
their random parametric perturbations to those stated in Theorem 1.

11.1. One-parameter families
The arcs we will be considering are given bg'& function
fiM?x]-1,1[— M?

such that for every—1 <t <1, f,:M? - M? x v+ f(x,t) is
a diffeomorphism of the boundaryless surfag€?. The family of
diffeomorphismsF = ( f;) _1.. 1 satisfies the following conditions.

1. F has dirst tangencyatr = 0, that is (v. [22, Appendix 5])

(@) fort <0, f;is persistently hyperbolic;

(b) fort =0 the nonwandering s&2 ( fo) consists of a closed hy-
perbolic set2 (fo) = lim, - $2( f;) together with a homoclinic
orbit of tangency® associated with a hyperbolic fixed saddle
point po, so that2(fo) = 2(fo) U O;

(c) the branchesW (po), W!(po) of the invariant manifolds
W*(po), W"(po) have a quadratic tangency alo@gunfolding
generically as pictured in Fig. 6 (v. [22, Chapter 3):is the
only orbit of tangency between stable and unstable separatrixes
of periodic orbits offy;

2. The saddlepy has eigenvalues & 1o < 1 < og satisfying the

conditions for the existence af? linearizing coordinates in a

neighborhood of pg, 0) in M?x ]—1, 1[ (v. [27]).
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p=(0,00| u i 1 : X
t t w (pt)\f\*/‘/\_\ \

Fig. 6. A sketch of the situation to be considered.

Condition 1 imposes bounds on the region where new accumulation
points can appear for > 0 (small)—Section 11.3 will specify this
(cf. [22, Appendix 5]).

We note that condition 2 above is generic in the space af @llone-
parameter families satisfying 1. Moreover, those families that satisfy 1
are open (cf. [22, Chapter 3, Appendix 5] and references therein).

11.2. Statement of the results

For some smalt* > 0, to be explained in the following sections, we
fix 10 €10, 1*[, g0 = min{|o|, |t* — o]} and thenoise levele €10, gql.
We consider the systeryi, under a random parametric perturbation of
noise levele, 7, ., as defined in Section 2.1. We lat= A, (1) be the
perturbation spackg — ¢, 1o + ¢]".

We will be interested in studying what happens d¢h a closed
neighborhood of; to be constructed. We need an effective definition of
interesting points.

DEFINITION 11.1 (First Return Times). -Given some; € M? and
t € Awelet
r(z,t,) =min{k > 0: f*(z,1) € Q}

and inductively define(z, ¢, n + 1) = min{k > 1: fRELIk(z 1) e Q)
for everyn > 1, whereR(z,t,n) = >_,r(z,t,i), with the convention
miny = +o0.

DEFINITION 11.2. — A V-recurrent poinis a z € Q for which there
exists aV C A satisfying
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1. v>®(V) > 0;
2. r(z,t,n) < oo foreveryn > landv®-a.ereV.

In other wordsz € Q is interestingif its perturbed orbits pass through
Q infinitely often under a positive measure set of perturbations.
We can now state

THEOREM 2. — For everyC* arc of diffeomorphisms as described
in Sectionl11.1and any given homoclinic tangency poiptassociated
to the saddlepg, there are a closed neighborhood of ¢ and t* > 0
such that, for eachy, ¢ > 0 satisfying0 <o < and0 < ¢ < g9 =
min{|fl, |t* — 0]}, the random parametric perturbatiaf;, . of f;, with
noise levele admits a finite number of probabilitieg, ..., u; whose
support intersect® and that

1. u1,...,u; are physical absolutely continuous probability mea-

sures

2. suppu; Nsuppu; =P forall 1<i < j <1

3. forall ze Q andV C A such thatz is V-recurrent there are open

setsVy = Vi(z), ..., V, = V,(z) C V such that
@ VvinVv,=0, 1<i<j<|;

(b) v(V\ (V1U---UV))=0;

(c) forall 1<i <! andv*-a.e.r € V; we have

n—-oon -

1}171 )
lim —Z¢(f](z,£))=/(pdﬂi, for everyp € C(M, R).
j=0

11.3. Adapting the linearization

As preparation for the proof of Theorem 2 by using Theorem 1 we
study the adaptation of the linearizing coordinates to our setting.
Condition 2 enables us to consider a change of coordingtes C
R? — M?in a neighborhood. of everyp,, where|t| < +* for some small
t* > 0and

filo(x, ») =@ - x, 00+ y) (20)

with 0 < A; < 1 < o, the eigenvalues of the hyperbolic saddle fixed
point p,. These coordinates will be adapted much like [22, p. 49 and
Appendix 5]. Specifically, after choosing a homoclinic pajrassociated
to po:
1) we suppose; € W*(pg) N W*(po) to be in L—to achieve this
we may extend. alongW+*(po) as explained in [22, Chapter 2];
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II) we extendL along W"(po) in order that = fofl(q) beinL;
[l) we use the implicit function theorem and two independent
rescalings of the- and y-axis to get, because of condition 1(c):
(a) q = (1s O)s r= (Os 1)s Pt = (0’ O) and Wlli)c(pt)’ Wllléc(pt)
are thex- and y-axis, respectively;

(b) f:(0, 1) is alocal maximum of the-coordinate restricted to
W*(p.);

© ¢rto fiop(0,1) =(L1);

for every|t| < ¢* in the coordinates defined lpy;

IV) writing Ap the basic set to whichyg belongs (possiblydg =
{ po} trivially) by condition 1(b) we havéV*(Ag) = W*(AqUO)
and W*(Ag) = W"(Ag U O) and there exists a filtratiofd £
M, C M, C M such that (v. [22, Appendix 5, pp. 212-214] and
cf. [26, Chapter 1]):

() M; is closed andfy(M;) C int(M;) fori =1, 2;
(b) My Cint(M), and '
(€) AqUO = (N;0/3d (M2)N (N0 S0’ (MF));

V) since Ag is a basic set (of saddle type) there is a small compact
neighborhood/ of Aq where extensiong(*, H" of the stable
and unstable foliationdV*(Aq), W*(Ap) are defined (v. [22,
Appendix 1] and references therein), and by 1V(c) there is
N* e N such that: '

@ (No" £ M) (NG fo ! (M$)) € UUQ* whereQ* C
L is a neighborhood of the portion of outside U
with finitely many component®;, Q,, ..., Q; and @* N
U = ). Moreover we can assume they satisfy(Q1) C
Do,y fo(Q) C O Withge Q=0,, ie{l,...,1};

(b) makings* > 0 smaller if need be an@* and U a little
bigger, we get also for at, ..., ty, 1, ..., 1y €] —1*, 1*[

N*-1 N1

( m Iy o-..of,l(M2)> N ( m fz’_lo"'of,/_l(Mf)>
j=0 j=0 1 N
—UuUQ

and alsof,,(Q1) C Qz, ..., f;, ,(Q-1) C Q forall#, ...,
o1 €117, 1"

(©) fi(M;) Cint(M;) forall |t] <t*andi =1, 2;

(d) A, =N,ez fI(U) is the analytic continuation afl, for all
1] < 1*;
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VI) for every closed neighborhoo@ c O c L of g ands* > 0 small

we have that:

(a) there isNy € N such thatf; o--- o f;,(Q) C L for all
t,....tie]l—t,t*[andi =1,..., Np;

(b) in the neighborhoo® = U, f; *(Q) of r = (0, )—we
may supposé&k C L by makingQ and:* smaller, keeping
(a) by increasingVo—the mapf, = ¢ o f, 0 ¢, has the
form

(x, 1+ y) > (1+ay+nx + Hi(t, x, y);
BY? +yx+1t+Hyt,x,y), (21)

wherew - 8 -y # 0, Hy is of order 2 or higher and/> is of
order 3 or higher iry and order 2 or higher in, r andy - z;

(c) for all 7] < t* we make f;(0,1) € int(Q) by taking r*
smaller if needed and keepin@ and N, unchanged
satisfying (a) and (re)defining as in (b);

(d) for any givensy > 0 and all sufficiently small@ and ¢*,
we may keep everything up until now increasing and
imposing|D,H;|, |D3H;| < 89, i =1, 2;

VII) since all of the above holds for every small (compact) neigh-
borhoodQ C Q of ¢ ands* > 0, except thatV,, increases, we
may suppose& is so small thatv, > N* and then make* so
small that item V) holds withQ in the place of© for some inte-
gerN > N*. Furthermore writing?’ for this new neighborhood
we may suppose that, still is the maximal invariant set inside
B(U, p) =U,cy B(z, p) for |t| <t* and B(U, p) N B(Q', p) =
¢ for some smalp > O;

VIII) we may suppose the extended foliatiort$’, H", which are
defined in a neighborhood gf (sincepg € Ap), were extended

by positive and negative iterations g} to cover all of L.

Moreover we may assume also that there are extended foliations

H;, H; defined all overl with respect tof, for every|t| < 1*;

IX) ina small neighborhoo of R given by A = (U, B(z,€))\

R, & > 0 small (we may think of it as a smahnulusaround

R), every point is sent by; outside ofU U @', for everyr € T,

becausd/ andQ’ are separated according to item \(il.is open

and will be called themonreturnannulus.
We note that Fig. 6 was made having these items already in mind.
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11.4. Another tour of another proof

To begin with, pick & -recurrent point € Q and deal with its generic
w-limit points w, which are alwaysegular by the following

ProPoOSITION 11.1. — There exists/ € N such that ifz € Q is V-
recurrent for som&/ C A = A, (to) withv>° (V) > 0, then the first return
times ofw € w(z, t), for all V-genericz, do not depend om € A and
are bounded by':

r(w,s,n)=r(w,n) <J foreveryn>1.

DEFINITION 11.3. —The pointsw € M? which satisfy the conclusion
of the proposition above will be calleggular points (with respect to
-7:[0,8)'

Taking advantage of the regularity of, the expression (21) fof; |
and condition 1, we will derive versions of hypothesis A) and B) of
Theorem 1:

PROPOSITION 11.2. — Let w € M? be a regular point. Writing,, =
r(w,n), n > 1, the following holds.
1. For everys €ltp — ¢, o + €[ there is a&y = &y(s) > 0 such that for
alln>2

R, A) D B(ff(w), &) whereR, => r;

i=1

2. For all n > 2it holds that f ® (w, v™>) < m.

In other words, we get conditions A) and B) of Theorem 1 for the
return times ofw, which do not depend on the perturbation chosen, since
w is regular. Behind Proposition 11.2 is the geometrically intuitive idea of
mixing expanding and contracting directions ngaiue to the homoclinic
tangency, together with condition 1 that keeps the orbits of regular points
confined in a neighborhood ofy, U O (v. Section 12).

This is enough to prove Theorem 2.

Indeed, settingk = 2(J + 1) then R, = Ry(w) < K for every regu-
lar pointw and fork > K there aren > 2 and 0<i <r,41 — 1< J
(by Proposition 11.1) such that= R, + i. After item 1 of Proposi-
tion 11.2 we haveff(w, A) = fi(fR(w, A), A) D f,i)(B(ﬁoR”(w), £0))
and since i < J there is somég} > 0 such thatf,i)(B(ﬁoR" (w), &)) D
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0

have hypothesis A).

For hypothesis B) we letv andk > K be as above. Theh=R +i
with i > 0 and R= R, = Ry(w). We supposeé > 1 for otherwise item
2 of Proposition 11.2 does the job. We take a measurablé setM?
such thatm(E) = 0 and observe thaf®+ (w, v™®)E = v*(F) where
F= {(ll, o) € T*: fR+i(U),ll, .)€ E}

Defining for every(tgy1,...,t%) € T' the sectionF (g1, ..., 1) =
{(s1,...,58) € TR: (s1,..., 5k, tre1, ..., 1) € F} we have by Fubini’s
theorem

B(fi" ' (w). &) = B(ff(w), &) becausef, is a diffeomorphism. We

v"(F):u’”%F):/vR(F(tR+1,...,tk))dvi(tm,...,zk). (22)

However
F(tpsas .. ot)={Cs2,....sp) TR ff o fF (w)eE}

={(s1eeusp): fR L wye (fi L ) TE)

and eachf, is a diffeomorphism, so the inverse image of a set of
measure zero is a set of measure zero. HemBeF (tzi1,....4))

is given by f*(w, v)[(f},, ) HE)] =0 since ff2(w,v>*) < m

by Proposition 11.2(2). We deduce from (22) thaf* (w, v®)E =
fEw, v™®)(E) = v*(F) = 0 whenevem(E) = 0, i.e., f*(w, v>®°) < m

for everyk > K.

It is clear that Theorem 2 holds by consideriff@, <) as the set of s-
invariant domaing = (Uo, . . ., U,_1) With respect taF,, . whose points
Up U ---U U, are regular points, with the same relatisnas before,
and using Theorem 1.

We should explain how to get the decomposition of item 3 of
Theorem 2 forV -recurrent point € Q. We use two previous ideas:

(1) Going back to Section 9, taking a genetice w(z,t) (i.e.,t is
V-generic) provides a stationary probability; as in Sections 7
and 8, which decomposes as in (17) and we get thelsets{ s €
A: 3k > 1 such thatf*(w, s ) € M,} as in item 3 of Theorem 1.

(2) The previous item together with Proposition 11.1 just says that a
V-recurrent point, € Q satisfies Lemma 5.8, i.e., there &ecC V
with v*°(W) > 0 and me N such thatf,"(z) € M for every
0 € W, where M is some minimal of(D, <). We know there is
just a finite numbeM,, ..., M, of minimals in(D, <) and define
Vi = Vi(z) = {s € V: 3k > 1 such thatf*(z,s) e M;}, 1 <i <.
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Repeating the arguments of Proposition 9.1 witheplaced by
throughout gives item 3 of Theorem 2 and completes the proof.

12. PHYSICAL PARAMETRIC NOISE WITH A SINGLE
PARAMETER

We start the proof of Proposition 11.2 deducing the following conse-
guence of condition 1 in Section 11.1 and items V and VI.

LEMMA 12.1. - For every small* > 0 and © and everyz € Q
recurrent under some vector= (tj)‘;’il with |7;] <t*, j > 1, i.e., such
thatw(z,1) N Q # ¥, the following holds

fl(z,t)eL for0<j< Ny and
fi(z,t)eUUQ* forj > Ny. (23)

Proof. -We letz € Q@ C U U Q* C M, N Mj be arecurrent point under
¢ as stated, and suppose thlt(z, 1) ¢ U U Q* for somej > N*. Then
by item Vb it must hold

N*-1

flye |J fiyoofi (M5 or
i=0

N*—-1
flz1) e UO fikoro (M.

Sincez € U U Q* C M» we have by item Vc thatfi(z,t) € M»
for everyi > 0. Hence only the right hand side alternative above can
hold, otherwise we would have for some<0i < N* — 1 that fi; 0
0 fu(z) € fi; 00 fi, ,(M3) and sOf,, ., o---0 fi,(z) € M3 with
j —i—1>0 because we took > N*, a contradiction. But then we get
fijo -0 fu(2) € f,;ll 0---0 f,jfji(Ml), i.e., fiti(z,t) € My, and item
Ve saysf/tith(z, 1) e My forall k > 0 with Q c U U Q* C M{. Thatis,
w(z,t) N Q=¢, contradicting the choice afandz.

We have show (23) to hold fof > N*, since @* C L. However, by
item Vla, we know f/(z,z) € L for 1 < j < No, whereNy > N* by
itemVIl. O

Remark12.1. — The arguments above show that if we replace
by N and assum& = Q as in item VII, then writingQ’ for this new
neighborhood of the portion dD outsideU, we may ensure under the
same conditions of Lemma 12.1 that(z,t1) e U U Q forall j > N.
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This confinemenproperty in turn implies

LEMMA 12.2. —For every giverbg > 0, ¢o > 0 ando > 1there are
e a sufficiently small compact neighborho@ic Q* c L of ¢, and
e asmall enough* > 0
such thatV,, of itemVla be big enough in order that whenever
e voe T,,M?with zg € O;
o 1=(1;)72, is a sequence satisfyirig;| < ¢*, j > 1, and
e there isk € N such thatN, < k < oo is the first integer satisfying
ff@er;
then we have
1. slopévg) > co = slope D f*(zo)vo) = bo, and
2. | DfFzo)voll = o lvoll,
where | - ||, the maximum norm o c R?, and the slope are to be
measured in the linearizing coordinates givendgy L — M?.

In other words, every vector sufficiently away from the tangent
directions of H* at Q will keep pointing away fron?H* when it first
arrives atR, i.e., there are no folds in between by the actiory,of

Proof. —By items | through VIl of Section 11.3 there is an expanding
cone fieldC* defined ovelU U Q* U L respected by allf; with || < ¢*
outside ofR. It may be seen as a cone field centered around the tangent
vectors toH*, and we may assume that vectorsdth at points of L
have slope> by, since’ H* is given byx = cont. in the domainL of
the coordinate chatty.

We let vg € T,;M?, z0€ Q, t and Np < k < oo be as in the
statement of the lemma. If slopg) > co, then by Vla it holds that
Ny = f,_NQ (z0) € L and vy, = Df,_NQ (z0)vo € C*(zn,)- Indeed by (20)
we have slopey,) > CNe . slopgup), whereC =~ aokgl > 1, andNy
may be taken sufficiently big according to item VI, by shrinki@gandz*.
Likewise we may arrange fdfuy, || > o |lvo|| to hold.

If Kk = Ny, then the lemma is proved. Otherwise we can wrjte=

fHo) = i7"z, € R wheres = o*Ver and v, = Df(zo)vo =
foNQ (zny)Un,- Moreover, Lemma 12.1, the construction @f and
the definition ofk > 1 as the first iterate to arrive & together imply

that the iteratesy,,, ..., v_1, v, are all in the respective cones 6f,
and therefore sloge;) > bo and||vi || = |luw, |l = ollvoll. O

Now for the effect of the tangency i@, recalling that the slope and
norm are measured in thg coordinates.
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LEMMA 12.3. - Given ¢ > 0 there is by > 0 such that for all
sufficiently small compact neighborhoo@of ¢ and smalk* > 0Ot holds
for every|t| < t* that

zeR,veT,M? N sIOpe(Df,(z)v) ¢ and
andslopgv) > bg IDfi(z)vll = || Il

Proof. —We takez € R, v € T.M? and¢ > 0. By the differentiability
of ¢, with respect tor we know thatf, = g5 o f; o ¢ has the same
local expression (21) ag,. We may supposeq(z) = (z,y + 1) and
Dyo(v) = (v1, vp) and derive from (21) that

slopeg Dyt (f(x, y + 1) Dfi(x, y + D(v1, v2))
— [Z,By + D3H2([,X, )’)] : U2+ [V + DZHZ([,X, )’)] %
oo + D3Hy (2, x, y)] - va+[p + DaHy(t, x, y)] - v1

- |28y + D3Ha(t, x, y)| + |y + D2Ha(t, x, y)| - [v1/v2]
= e+ D3Ha(t, x, y)| — |p + D2Ha(t, x, y)| - [v1/v2]
If slope&(vy, v2) > bg then we can write

|2ﬂ)’+D3H2(l x, M|+ 1y + D2Hs(t, x, y)| - bo
||01+D3H1(f x, V)| = |p+ D2Hy(t, x, )| - by|

We easily see that ibg is big enough ands; > 0 in item VI is
small enough, then since - 8 - y # 0 the last quotient approximates
12By|/lee| = |2Ba| - |y|, which can be made smaller then any positive
¢ > 0 by shrinkingR via taking @ ands* > 0 smaller. Moreover making
the compact neighborhoo@ of ¢ ands* > 0 smaller just enable& to
be smaller, so we are safe.

The denominator in the last quotient has a modulus bigger than

|l + D3Hy(t, x, y)| - |v2| — |p 4+ D2Ha(t, x, )| - |val|
> |va| - |l + D3Hy(t, x, y)| — |p 4+ D2Ha(t, x, )| - [v1/v2||

> H(vl, v2)| - [l + DaHa(t, x, y)| = |p + D2Ha(t, x, y)| - by |
2 — - |[(v1,
100 [(r, v2)||
since  # 0 and |D3H,|, |D,H,| and bgl may be made very small.
Also |vp| = maxX{|vy], |vz|} because we may take,/v1| > bg > 1. This
provides the result on the normo
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Fig. 7. The iterations in the proof of Proposition 11.2.

We letzg, ¢ > 0 be such thalt| < r* ande < min{|z|, |t* — fo|} as in the
statement of Theorems 1 and 2 and observe the following.

Remark12.2. — Expression (21) foﬁm implies there arég, n > 0
such that the smooth curve:T = [fo — &, 1o + ] — M?, t — f(z,1)
has slope> n and velocity> [y at every pointc,(¢) independently of
zeRandreT.

If we make¢ = /3 we get, by Lemma 12.3, & > 0 such that
this lemma holds for all sufficiently small and r*. Settingcy = n
and using the just obtained, Lemma 12.2 holds for every sufficiently
small * and Q. We note that (23) of Lemma 12.1, on which both
Lemmas 12.2 and 12.3 rest, still holds if we shrigk and * and,
moreover, Lemmas 12.2 and 12.3 are independent of each other.

Hence there are a compact neighborho@df ¢ ands* > 0 such that
both Lemmag2.2and12.3hold with somég > 0andco =1n,¢ =n/3 >
0.

We are now ready for the

Proof of 11.2. We letw € Q be a regular point with respect 18, .
according to Definition 11.3 and pick some& A = A, (fy) andn > 1.
Thenw, = ff(w,t) e Qandz = &~ 1(w,t) e R. Moreover sincav
is regular, its perturbed orbit®(w, s ) have the same return times @
independently of € A, and soc, is a smooth curve irQ with slope
> co = n and speeg: Io.

Settings = 0"t then

c= f;wl—l oc it €T fri (e (), bty v sty 1o1)
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is a curve inR with slope > by and speed> oglp by Lemma 12.2,
whereas, by Lemma 12.3,, o ¢ is a curve inQ with slope< ¢ =n/3
and speed jgzo0lo forallu € T = 1o — ¢, 10 + ¢].

The regularity ofw implies @(t,u) = f(c(t),u) to be such that
@(t,u) € fR+1(w, A) c Qforevery(t,u) e T x T. In short we have

{ slopg D1 ®) < /3, g {slope(qu>) >,

o
1D1 ] > L= - ool 1D 1| > Io. (24)

Noting thatD @ is the derivative off ®»+1(w, .) with respect to the&?, th
andR,1th coordinates at, we haveD® = Dy, g, ., fR+i(w, 1) R? —
T,,..M? is a surjection for every € A. We conclude thaff,f1: A —
M?,t > fR1(w, 1) is a submersion. This immediately gives 11.2(2) by
definition of f&+1(w, v™°), because the inverse image by a submersion
preserves sets of measure zero.

Makingr = (s, s, s, ...) € A for somes € T, since the bounds in (24)
do not depend on, we deduce fromf®+1(w, A) D &(T x T) that
there is&y = &y(s) > 0 such thatf®+1(w, A) contains a ball of radius
£ aroundd (s, s) = fF+1(w) as stated in 11.2(1).O

13. REGULARITY OF LIMIT POINTS

Let z € Q be V-recurrent withv*>(V) > 0 and let: be aV-generic
vector andw € w(z, t).

CLAIM 13.1.—If somef € A takesw to Q after k > 1 iterates, then
every otherp € A must do the same.

Indeed, ifk > 1 and fe A are such thatf*(w,8) € Q and there is
@ € A such thatf*(w, ¢) ¢ Q, then we must have¢*(w,0) e R and
[ lw, ) ¢ R.

By connectedness of ! and continuity of f¥ (v. Property 2.1)
there must bey € A such thatf**(w, ) € A. Since A is open and
w € w(z,t) with ¢ V-generic, we may find for small > 0 an € N
(according to Lemma 5.2) such that for everg V satisfyingd(s,t) <
8, du(f"(z,5), w) <8 andd(c"s, ¥ ) < 4§ it holds that f"*1(z,s) €
A, and sof"*(z,s) € (U U Q). Moreover, these points form a set of
positivev®™-measure.

According to Remark 12.1 (tha above can be made arbitrarily
big, bigger thanN in particular), thoses cannot define a perturbed
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orbit O(z, s) with infinitely many returns toQ, which contradicts the
assumptions op andV.
The previous arguments readily prove

CLAIM 13.2. —The orbit ofw under anyp € A cannot fall outside of
UuQ.

CLAIM 13.3. - If somed € A keeps the orbitO(w, 0) insideU for
all kth iterates withk > ko, then every othep € A must do likewise.

In fact, if & € A is such thatf*(w,0) e U for all k > ko for some
ko € N and there aré; > ko andg € A such thatf 1 (w, ¢) ¢ U, then by
the connectedness @ft, Property 2.1 and the separation betwéeand
Q' given by item VII, there is) € A satisfying f*1(w, ¥ ) € (U U Q)°.
We may now repeat the arguments proving the preceding claim.

For w € w(z,t) with ¢ a V-generic vector we have the following
alternatives:

1. w returns toQ a finite number of times only under evetye A;

2. w never passes throudgd under every € A;

3. w returns to @ infinitely often andr(w,s,n) = r(w,n), s €

A, n>1.

Sincew cannot get out fron/ N Q' by Claim 13.2, alternatives 1 and 2
imply that the orbits ofw stay forever inU after some finite number of
iterates or never leav&, respectively. For our purposes it is enough to
supposaw € w(z,t) N Q.

13.1. Finite number of returns

First we eliminate alternative 1. By Claims 13.1 and 13.3 the return
times toQ and the iterate after which the orbits remain forevet/imo
not depend on the perturbation vector.

Letro € N be the last return iterate af to Q under everyd € A. The
point w is like aregular point up to iterate and so the arguments in
Section 12 show that"(w, A) contains a curve with slope> n and
speed> [y at every point. So its length is 2¢ - [ = ag > 0 and since
w € w(z,t), no orbit is allowed to leavé&/ U Q'. Hence f*(c, A) c U
forall k > 1. In particularc, = ff(c) = f*(c.10) C U, k> 1.

According to the previous section, aftay, iterates curve will have
allits tangent vectors i6" and keep them this way for all iterates onward,
because;, c U for all k > 1. SinceC" is a field of unstable cones, the
length of ¢, will grow without bound withc, being anunstable curve
always insideU .
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This is a contradiction, sindé is a small neighborhood of a hyperbolic
setA,, of saddle type which is the maximal invariant set inside

13.2. No returns

Let w be as in alternative 2. Consequenyfg(w) eU forall k > 1.
Since A,, is the maximal invariant set inside€, we deduce that if/“
is a small segment ot (w) centered atw, then it is not possible
that f;5(y*) C U for all k > 1. Likewise if we replacel/ by B(U, p),
by item VII. Hence, writingy, y* the two segments such that' U
y*=y" andyl Ny* = {w}, there arek. > 1 and nonempty intervals
I, C yy, I_ C y" satisfying f(I+) C B(U,p) for 1 <i <k and
St () € (B(U, p) U B(Q', p))‘—becauseB(U, p) N B(Q', p) =¥
and by connectedness pf (v. Fig. 8).

Letx € 1. andy € H; (x). Then we have

du (/5. fE()) < CA*dy (x, y)

where 1> & > [a,] for [t < #*. So everyy € H; (x) with dy (x,y) <
C~'a*. p/2 satisfiesf (y) € (U U Q).

Geometrically this means that nearthere are two strip8. made of
H; -leaves with lengthC~*A~* - p/2 and whose intersection with" is
L (cf. Fig. 8).

Making y* small andk big we can make the length &, big and the
distance tow small. The angle between leavesBa andy" is near a
straight angle in the,,-coordinates of. > Q > w, since the slope df{;
is near O.

Letny <np <nz <---besuchthat; = f"(z,t) - wwhenj — oo.

Fig. 8. The situation nean and the image of ..



V. ARAUJO / Ann. Inst. Henri Poincaré 17 (2000) 307369 363

We definec;:T — L, u+— f,(f"(z,t)), the perturbation curve
throughz; and observe that eithék, or B_ intersects:;(T') in a segment
of positive length> a; > 0, since slop&’; (1)) > n and the length of;
iS>ag>0,forallueTand; > 1.

This means there is a segmesjtof length > a, > 0 in T such that
Cj (S/) C B+ and thUSftléJrl(Cj (S,)) c(UUQ)-.

According to Lemma 5.3, for every Q y,§ < 1 we can findkg € N
such that for allj > ko we havev(p,;V,,-1(t,n; —1,5)) > 1 -4 for
a positive measure séf,, ; C V and a set of € A with v>*°-measure
> 1 — y. Hence, sincé is fixed, we may find forj big as € A very
close torg = (1o, to, . . .) (takingy > 0 small) such that

V(SN pn;Va,—1(t.nj—1,5)) >0 and fA_,kH(cj(Sj)) c (UUQ)H-.

We have shown that insid& there is a positive measure set whose
perturbation vectors sendnto (U U Q') aftern; + k + 1 iterates, where
Jj (andn;) may be made arbitrarily big. This contradicts the assumption
of V-recurrence on, since those perturbed orbits will never again return
to Q. Alternative 2 is thus impossible.

13.3. Bounded first return times

The pointsw € w(z,t) N @ with ¢t a V-generic vector satisfy
alternative 3. Going back to the arguments in Section 13.1, we have an
unstable curver in f*(w, A) whose length cannot grow unbounded.
Therefore it must leavé/ and go to Q(since w no orbit may leave
U U Q') after a finite number or iterates bounded by same N. We
observe that since the length ofis > 2¢ - [y and the diameter oR is
finite, we must have2ely) - 0/ ~ diam(R).

This proves Proposition 11.1 and Theorem 2.

Remark13.1. — We may drop the first tangency condition of Sec-
tion 11.1 if we strengthen Definition 11.2 &f-recurrent point by adding
the following item

3. forv>®-a.e.t € V there isn =n(t) > 1 such thatf*(z,t) e U U Q

forall k > n,

whereU is a fixed neighborhood of the basic ggtbelongs to and? a
neighborhood of the piece of the orbit of tangency outéide

Lemma 12.1 is now needless and the rest of the proof is unchanged.
The scope of the theorem is enlarged and next section shows how this
extra condition or¥ -recurrence is not too restrictive.
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14. INFINITELY MANY ATTRACTORS

We start with the particular case of perturbations of sinks.

DEFINITION 14.1. — We sayf e Diff{(M), [ > 1, has aperturbation
of a sinkin a finite collection(y, ...,U,_,) of pairwise disjoint open
sets ofM if there exists a neighborhood of £ in Diff /(M) such that, for
every continuous arg = {g;},cp C V with go = f, the following holds

1. g"(U:) CUi1m)mod, Toreveryn > 1, t € BN and0<i <r — 1;

2. There is a constang > 0 such that for every point € I/;, 0<i <

r—1,everyv e T, M \ {0} and every € BY it holds that

. 1
limsup=log||Dg} (x) - v|| < —B;
n—+oo N -
3. With the notation introduced at Definitidh2 we have
diam(w(U;, A:(0)) N U;) — 0 whene — 0"

forevery0<i <r— 1
[WhereB = B/(0,1) and A, (0) = (B/(0, ¢))" as in Sectior2.1.]

Next proposition characterizes this kind of invariant domains.

PROPOSITION 14.1. — Let f be aC' diffeomorphism of\, [ > 1.
Then f has a hyperbolic sinky with periodk > 1 if, and only if, f has
a perturbation of a sink in a neighborhoo@, ..., 4, _1) of the orbit
50,51 = f(50), ..., Sr—1= f""1(s0) Of 50.

Proof. —First some results that locate the limit points near a perturbed
sink.

If so € M is a hyperbolic sink forf with period r, then for some
0 < A1 < 1 every eigenvaluen € C of Df"(sg) satisfies|i| < Aq.
Moreover, given some; < v < 1 there areS > 0 and a neighborhood
Y of f in Diff (M)—both may be made arbitrarily small—such that
each eigenvaluea € C of Dg"(x) satisfies|A| < v for everyg € V and
X € B(sg, §). Consequently

du(g"(x), 8" (y)) <v-d(x,y)
for everyx, y € B(sg, §) andg € V. (25)

So, writings; = f'(so), we see thatlly = B(so, 8), ..., Ur_1 = B(s,_1,
3)) is a finite collection of pairwise disjoint (we may take< (1/2) x
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min{dy (si,s;): 0<i < j <r —1}) open sets ofM that satisfies
conditions 1 and 2 of Definition 14.1.
To get condition 3 we have the next

LEMMA 14.2. -Let G = {g;};e; C V be some continuous arc in
Diff/(M) with go = f. Let P, = {s;(¢): t € B} be the set of analytic
continuations of the orbi® (sq) of the sinksg with respect tq,, ¢ € B.

If we fixx elf;, 0<i <r—1,ands € A, then we have

dy(y. P}) < lL -max{diam(P,): 0<k <r — 1},
’ — U
foreveryy ew(x,t)NU;, j=0,....,r =1L

Proof. —This is an easy consequence of (251

We now know thato (x,t) C B(P, y) wherey = 1 -max{diam(P,):
0< h <r—1}and, sinceyg is an hyperbolic sink forf = gg, we have

diam({s,(t): t € B/(0,¢)}) - 0 whens — 0"

by the structural stability results for such attractor.

Therefore item 3 holds fofl, ...,U,._1) constructed above and we
have shown that in a neighborhood of the orbit of every hyperbolic sink
there is a perturbation of sink.

Conversely, let us supposthas a perturbation of a sink in some col-
lection (U, . ..,U,_1) of pairwise disjoint open sets and tade= {g;};¢;
as in Definition 14.1. Then we will have by definitien(ls;, A, (0)) <
wU;, A.,(0)) for every small O< g1 < &2 and every 0<i <r — 1.
Property 3 of Definition 14.1 now ensures there is a pejnsuch that
{so} = Ne=olew Uo, A.(0)) N Up] SinCcew (Up, A:(0)) is a closed set.

Writing 0 = (0,0, ...) then Oe A,(0) and w(sg, 0) C w Uy, A.(0))
for everye > 0. Thus{so} = w(so, 0) N Uy = ws(s0) N Up. Considering
the dynamics induced iy, . . ., U,_1) by the arag we see thab ((so) =
{so,...,s._1} wheres;, = f'(sg), i=0,...,r — 1.

Since the limit is f-invariant, we havef’ (so) = so and found ar-
periodic orbit of /. In addition, Property 2 of Definition 14.1 guarantees
that for eachv € ToM = {u € T,yM: |ju|| = 1} such thatv is an
eigenvector ofDf” (sg) corresponding to the eigenvalues C (using the
complexification of Df" (so) : T,,M — T,,M if need be) the following
holds

0> —B>lim supi log|| Df"" (s0) - v|
n—+oo I'n

1
=—log|A| = A <exp(—rB) <1
.
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and so spDf" (sg)) C {z € C: |z| < 1}. Hencesy, ..., s,_1 is the orbit of
an hyperbolic sink forf. 0O

14.1. Newhouse’s and Colli's phenomena

Let us suppose the family' satisfying the conditions specified in
Section 11.1 is also in the conditions of Newhouse’s theorem (cf. [16,
17] and [22]) on the coexistence of infinitely many sinks, thapisis a
dissipative [detD fo(po)| < 1) saddle point.

We may now choose a parametes 0 such thatf, has infinitely many
hyperbolic sinks inQ. Moreovera > 0 may be taken arbitrarily close to
zero (see [22, Chapter 6]) and thus all the results of previous sections
apply to the present setting.

Let N be some positive integer and let us pidk distinct orbits
of hyperbolic sinks forf, in Q: O(s®), i =1,...,N. Since they
are hyperbolic attractors, they are isolated: there exist pairwise disjoint
— even separated — open neighborhodtisof O(s®), i =1,...,N.
Moreover, by the previous subsection, we may construct a perturbation
of a sink inside eacly; associated t@(s") with respect to an ar&, .,
for someg; > 0, and every Ki < N.

We now observe that a perturbation of a sink obviously is, in particular,
a completely and symmetrically invariant domain. Specifically, each
perturbation of a sink constructed ¥is a completely and symmetrically
invariant domain with respect to the afg ,,i =1,..., N.

Hence, settingg = min{ey, ..., ey}, we havesg > 0 and the former
invariant domains are also completely and symmetrically invariant with
respect to the aré, . for every O< ¢ < go. Then, by Section 6.1, there
is a minimal domainM;? inside each perturbation of a sirik, for every
1<i < N and noise level & ¢ < .

We have thus constructed distinct minimal invariant domains i@
for the arcF, . for every O< ¢ < g9 and proved

PROPOSITION 14.3. — Given an arcF as in SectiorL1l.1wherepg is
a dissipative saddle point, for every parameter 0 sufficiently close to
zero such thayf, has infinitely many sinks i@, we have the following.

For every N € N there existsg > 0 such that, for ever < ¢ < &g,
the number of minimal invariant domains @ for the arcF, . is no less
thanN.

We now remark that what enables us to build an invariant domain
in a neighborhood of a sink is the fact that it is attractive: given any
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neighborhoodU of the orbit of a sinks,...,s._; there is another
neighborhoodV c V C U of the same orbit such that(V) c V (a

trapping region. By continuity, this persists for any diffeomorphisgn
close tof and hence we get an invariant domain.

In [7] E. Colli shows how to have infinitely many Hénon-like attractors
when generically unfolding an homoclinic tangency under the same
conditions of Newhouse’s theorem. These attractors are separated like
the infinity of sinks in the Newhouse phenomenon and each one admits a
trapping regionaccording to [2] and [30]. Specifically, the constructions
described in [7] can be carried out verbatim within a restricted set of
parameter values having this property, without altering the statements of
any theorem in that paper.

Consequently we may state and prove a proposition analogous to 14.3
replacingsink by Hénon-like attractoiin the paragraphs above.

15. SOME CONJECTURES

The methods used in this paper are prone to generalization. We propose

some here.

(1) Is there somsimilar result to Theorem 1 for flows? The kind of
perturbation to perform is part of the question.

(2) In Section 14 a characterization is given for invariant domains
originating from a perturbation of a sink. Is there sosiilar
characterization of an invariant domain obtained by a perturbation
of an Hénon-like strange attractor?

(3) The same question regarding perturbations of elliptic islands. This
is more subtle: we may ask whether there is some invariant domain
near an elliptic island.

(4) We did not look at what happens to the physical probabilities when
the noise levet > 0 tends to zero. Does the limit exist? If it does
then it must be ary-invariant probability measure. Is it an SRB-
measure?

(5) Globally what can we say about the stochastic stability of the
infinitely many Dirac (in Newhouse’s phenomemon) or SRB (in
Colli's phenomenon) measures in a neighborhood of a homoclinic
tangency point? Here a global notion of stochastic stability is
required, see, e.g., [31]: jk; are the SRB measures ¢f (i =
1,2,...), time averages of each continuoygsalong almost all
random orbits should be closed to the convex hull of fhed u;
for smalle > 0.
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