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ABSTRACT. – In this paper we consider uniqueness and multiplicity results for single-peak
solutions for the nonlinear Schrödinger equation. For a suitable class of potentialsV and critical
pointsP we are able to establish exact multiplicity results. In particular we show that for any
nondegenerate critical point ofV there are only one solution concentrating atP . Moreover
some examples of single-peak solutions concentrating at the same pointP are provided.
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RÉSUMÉ. – Dans ce papier nous considérons les résultats d’unicité et de multiplicité pour les
solutions de seul-pic pour l’équation de Schrödinger non linéaire. Pour une classe convenable de
potentielV et critiques pointsP nous peuvons établir une multiplicité exacte.

1. Introduction

In this paper we study standing wave solutions of the nonlinear Schrödinger equation

ih
∂ψ

∂t
= − h2

2m
�ψ + V (x)ψ − |ψ |p−1ψ,

∣∣V (x)
∣∣� C, x ∈RN, (1.1)

i.e., solutions of the form

ψ(x, t) = ei
Et
h u(x), u :RN → R+. (1.2)

Substituting (1.2) in (1.1) and assuming thatm = 1
2 one has{−h2�u + (V (x) − E)u = up,

u > 0.
(1.3)
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A suitable choice ofE makesV bounded from below by a positive constant. Hence,
without loss of generality, it is possible to assume thatE = 0 andV � V0 > 0. If we set
h = ε, (1.3) becomes {−ε2�u + V (x)u = up in RN ,

u > 0.
(1.4)

In [7], Floer and Weinstein considered the caseN = 1,p = 3 and they proved that for
smallε there exists a family of standing wave solutions which concentrates at each given
nondegenerate critical point of the potentialV . This result was generalized by Oh [16]
of higher dimensions. The arguments in those papers are based on a Liapunov–Schmidt
reduction.

The existence of solutions of (1.4) in the possibly degenerate setting was studied by
many authors. In this context the first results seem due to Rabinowitz (see [17]) and
Ding and Ni (see [6]). In [17] it was shown that if infRN V < lim inf |x|→∞ V (x) then
the mountain pass theorem provides a solution for smallε. This solution concentrates
around a global minimum ofV asε → 0, as shown later by Wang (see [18]).

Later Ambrosetti, Badiale and Cingolani (see [1]) obtained existence of standing wave
solutions by assuming that the potentialV has a local minimum or maximum with
nondegeneratemth derivative, for some integerm.

Another result concerning degenerate critical points ofV is due to Li (see [12]), where
a degeneracy of any order of the derivative is allowed. In [12] the author proves the
existence of a solution for (1.4) by only assuming that the critical points ofV are “stable”
with respect to a smallC1-perturbation ofV . In [5] Del Pino and Felmer consider a more
general nonlinearityf (t) and obtained a solution of (1.4) by considering a “topologically
nontrivial" critical value of the energy functional associated. In such a this way they are
able to menage a wide class of critical points ofV . We point out that all these results are
obtained by suitable perturbation of the solutionUy of


−�u + V (y)u = up in RN ,
u > 0 in RN ,
u(x) → 0 as |x| → ∞.

(1.5)

This type of solutions are sometimes called single-peak solutions since they have only
one local maximum point (see Definition 2.3 for a more precise statement).

Moreover (see [18] or Theorem 2.7) concentration of single-peak solution may only
occur at critical point ofV . So the problem of the existence of at least one single-peak
solution concentrating atP seems to be completely described.
At this stage a question arises:

How many solutions are generated by a stable critical point P ofV ?
In this paper we try to give an answer to this question for a suitable class of potential

V . Now we briefly describe the class of potentialsV considered. Roughly speaking we
take in accountV ∈ C1 such that

∂V

∂xi

(x) = hi(x) + Ri(x) in a neighborhood ofP, (1.6)



M. GROSSI / Ann. I. H. Poincaré – AN 19 (2002) 261–280 263

wherehi is an homogenous function of degreeαi andRi is a higher order term (see
Section 3 for the precise definition). In this setting the functionshi play an important
role: indeed if we consider the following vector field

LP (y) =
(∫
RN

hi(x + y + P)U2
P (x)dx

)
i=1,...,N

, (1.7)

whereUP is the solution of (1.5) and

Z = {
y ∈RN such thaty is a stable zero ofL

}
, (1.8)

(see Definition 3.6 for the definition of stable zero) then we get the following theorem.

THEOREM 1.1. – Let V be an admissible potential(see Section3 for the definition)
and suppose that #Z < ∞. If, for anyy ∈ Z, it holds

det JacLP (y) �= 0, (1.9)

then there existsε0 > 0 such that for any0< ε < ε0 we have

#{single-peak solution of(1.4)concentrating atx = P } = #Z. (1.10)

In particular it is possible to show that, ifP is a nondegenerate critical point ofV

then there is only one solution which concentrates atP (see Corollary 6.4). However,
we think that the number of the solution of (1.4) concentrating atP is influenced by the
shape ofV in a neighborhood ofP instead of its nondegeneracy (see Proposition 6.3) and
example at the end of Section 6). Finally, again in the example at the end of Section 6,
we construct an example of a potentialV such that there exist exactly two single-peak
solutions concentrating at the same pointP . In the same way it is possible to give an
example where a concentration ofk single-peak solutions atP occurs. We do not know
any example of such a phenomenon in literature, even for similar elliptic perturbed
problems defined in bounded or unbounded domains.

Our results can be extended to the case of more general nonlinearitiesf (u), using for
example the assumption of [8]. However we state and prove our results only for the case
f (s) = sp .

The paper is organized as follows: in Section 2 we recall some known facts and
introduce the main definitions. In Section 3 we introduce the class of admissible
potentialsV . In Section 4 we prove that stable zero ofLP generates solutions to (1.4).
In Section 5 we establish an important estimate which allows, in Section 6, to deduce
the exact multiplicity result.

2. Known facts and main definitions

In this section we recall some known facts.
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THEOREM 2.1. – Let V a continuous function verifying0 < V0 � V � V1 in RN .
Then for anyy ∈RN the problem

−�u + V (y)u = up in RN,

u > 0 in RN,

u(x) → 0 as |x| → ∞,

(2.1)

with 1< p < N+2
N−2 , admits only one solutionUy ∈ H 1(RN) which satisfies

(i) Uy is spherically symmetric with respect to some point ofRN ,
(ii) Uy is in H 2

r (RN) = {u ∈ H 2(RN): u = u(|x|)},
(iii) lim |x|→∞ e|x||x|N−1

2 u(x) = a > 0,
(iv) the kernel of the linearized operatorL = −� + (V (y) − Up−1

y )Id

is spanned by the function∂U/∂xi for i = 1, . . . ,N. (2.2)

Proof. –See [11] for the uniqueness of the solution and the proof of (ii), [9] for (i) and
(iii), [14] for (iv). ✷

It is easily seen that (1.4) is equivalent to{−�u + V (εx + P)u = up in RN,

u > 0
(2.3)

for P ∈RN .
Now we give the following definitions.

DEFINITION 2.2. – We say thatuε is a family of bound state solutions of(1.4) if there
is a constantC which does not depend onε such that

εN

∫
RN

(
ε2|∇uε|2 + u2

ε

)
dx � C. (2.4)

So if we set

vε(x) = uε(εx + P),

whereuε is a bound state solution of (1.4), we get thatvε is a solution of (2.3) and∫
RN

(|∇vε|2 + v2
ε

)
dx � C. (2.5)

DEFINITION 2.3. – We say that a family of bound state solutionuε of (1.4) is single-
peaked if it has only one local maximum point. The pointPε ∈ RN where this maximum
is achieved is called the peak of the solution. IfPε → P we say thatuε concentrates
at P .

This paper deals with single-peak solution of (1.4). By blow-up arguments ([4]) we
get the following
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PROPOSITION 2.4. – Letuε be a family of single-peak solution of(1.4)concentrating
at P and letPε be its peak. IfUP is the unique solution of(2.1) symmetric with respect
to the origin we have

uε(x) = UP

(
x − Pε

ε

)
+ ωε(x), (2.6)

and

uε(x) � Ce−
∣∣ x−Pε

ε

∣∣
, (2.7)

whereωε → 0 in L∞(RN).

Proof. –This is a known result (see [4]) but we repeat the proof for reader’s
convenience. Setvε(x) = uε(εx + Pε). Sinceuε is a bound state solution of (1.4), by
standard boot-strap arguments we get thatvε is uniformly bounded on the compact set
of RN . Hence, passing to the limit in (2.3) we get thatvε → UP whereUP ∈ H 1(RN)

solves (1.5) withy = P .
Since positive solutions of (1.5) decay exponentially (see [9]) andUP ∈ H 1(RN) is

uniformly bounded we obtain the existence ofR > 0 such thatUP (x) < η for all |x| = R.
Let us chooseηp−1 < V0. But alsouε(x) < η if |x| = R andn large and then, sincevε

has only one local maximum we obtain thatvε(x) < η for all |x| > R. Then we can use
the maximum principle to conclude thatvε(x) < w0(x) for all |x| > R, wherew0 is a
suitable multiple of the fundamental solution of�w − bw = 0 with b = V0 − ηp−1 > 0.
Sincew0 decays exponentially we deduce (2.7) and that

vε → UP uniformly inRN. (2.8)

This ends the proof. ✷
Concerning single-peak solutions Wang (see [18]) proved this useful identity.

PROPOSITION 2.5. – Let us suppose thatuε is a family of single-peak solutions of
(1.4)and ∣∣∇V (x)

∣∣= O
(
eγ |x|) at infinity for someγ > 0. (2.9)

Then ∫
RN

∂V

∂xi

(εx + P)u2
ε(εx + P)dx = 0 for anyi = 1, . . . ,N. (2.10)

From the previous identity Wang deduced the following result.

THEOREM 2.6. – Let us suppose thatV satisfies(2.9)and it is nondecreasing in one
direction inRN . Then there is no solution to(1.4).

Proof. –It follows by (2.10). ✷
THEOREM 2.7. – Letuε be a family of single-peak solutions to(1.4)andPε the point

of RN whereuε achieves its maximum. Suppose(2.9) holds,||uε − UP ||H1(RN) → 0 as
ε → 0. If V ∈ C1(RN) we have thatPε → P with ∇V (P ) = 0.

Proof. –It follows by (2.10) (see [18]). ✷
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3. Assumptions on the potential V

This section is devoted to the assumptions on the potentialV . For Q ∈ RN and
ρ ∈ R let us denote byBQ,ρ = {x ∈ RN such that|x − Q| � ρ}. We give the following
definition.

DEFINITION 3.1. – We say that a functionh :RN �→ R is homogenous of degree
α ∈R+ with respect toP ∈RN if

h(tx + P) = tαh(x + P) for any t ∈ R+ andx ∈RN. (3.1)

Remark3.2. – Ifh ∈ C(RN) is homogenous of degreeα from the previous definition
it follows that ∣∣h(x)∣∣� C|x − P |α for anyx ∈RN, (3.2)

whereC is the maximum ofh on ∂BP,1.

At this stage we can state our crucial condition on the potentialV .

DEFINITION OF ADMISSIBLE POTENTIAL. – Let us assume thatV ∈ C1(RN) satis-
fies ∣∣∇V (x)

∣∣� Ceγ |x| at infinity (3.3)

and

0< V0 � V (x) � V1 (3.4)

for someγ > 0. We say thatV is an admissible potential atP ∈ RN if there exist
continuous functionshi :RN �→ R, Ri :BP,r �→ R and real numbersαi � 1, i = i, . . . ,

N , such that
(i) ∂V

∂xi
(x) = hi(x) + Ri(x) in BP,r ,

(ii) Ri(x) � C|x − P |βi in BP,r with β1 > αi for anyi = 1, . . . ,N ,
(iii) hi(x) = 0 if and only ifx = P ,
(iv) hi is homogeneous of degreeαi. (3.5)

Remark3.3. – We point out that ifP an isolated critical point ofV , (iv) holds and
Ri(x) ≡ 0 then (iii) holds. Indeed if by contradiction there existsy ∈ RN such that
hi(y) = 0 then we have thathi(t (y − P) + P) = 0 for any t∈ R+. Hence from (i) of
(3.5) we get∂V

∂xi
(t (y − P) + P) = 0 for any positivet . SoP is not an isolated critical

point and this gives a contradiction.

Remark3.4. – It is easy to see that the functionhi is determined in an unique way.

Remark3.5. – The assumptions (i) and (ii) of the previous definition are satisfied
if V ∈ Ck(BP,r) and admits a nonzero derivative with respect toxi for any index
i ∈ {1, . . . ,N}. In this caseαi + 1 is the order of the first nonzero derivative and the
functionhi are given by Taylor’s formula. In order to state a sufficient condition which
implies (iii) we need some notations. Letk = (k1, k2, . . . , kN) be a multi-index and
set |k| = k1 + k2 + · · · + kN , k! = k1!k2! · · · kN !, and forw = (w1,w2, . . .wN) ∈ RN ,
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wk = w
k1
1 w

k2
2 · · ·wkN

N . So if

Dkf = ∂ |k|f
∂x

k1
1 ∂x

k2
2 · · ·∂xkN

N

we have that

hi(x) = ∑
|k|=αi+1

DkV (P )

k! (x − P)k, (3.6)

and condition (iii) becomes that the nonlinear system

∑
|k|=αi

DkV (P )

k! (x − P)k = 0 (3.7)

admits only the solutionx = P .

DEFINITION 3.6. – Let G ∈ C(RN ;RN) be a vector field. We say thaty is a stable
zero forG if

(i) G(y) = 0,
(ii) y is isolated,
(iii) if Gn is a sequence of vector fields such that||Gn − G||C(By,ρ) → 0 for some

ρ > 0 then there existsyn such thatGn(yn) = 0 andyn → y.

A sufficient condition onG andy which implies thaty is a stable zero is that the index
i(G,y,0) �= 0, where the index ofy at zero is given by

i(G,y,0) = lim
ρ→0

deg(G,By,ρ,0),

with deg(G,By,ρ,0) denoting the Brouwer degree.
Now let us set

LP (y) =
(∫
RN

hi(x + y + P)U2
P (x)dx

)
i=1,...,N

, (3.8)

whereUP is the solution of (2.1). By Remark 3.2 and the exponential decay ofUP we
have that (3.8) is well-posed. Finally set

Z = {y ∈RN such thaty is a stable zero ofL}. (3.9)

Remark3.7. – Condition (1.9) implies that any zero ofLP is stable. Indeed if
LP (y) = 0 by (1.9) we have that the Brower degree deg(LP ,BP,1,0) �= 0 (see [13])
and this gives thaty ∈ Z.

4. The existence result

We start this section by recalling the following result.
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THEOREM 4.1. – Let us assume thatV satisfies(3.4). Then there exist positive
constantδ and ε0 such that for everyy and ε with |y| < δ and 0 < ε < ε0 there exists
uy,ε ∈ H 2(RN) such that

−�uy,ε + V (εx + y)uy,ε − |uy,ε|p−1uy,ε =
N∑

i=1

ci,y,ε

∂Uy

∂xi

, (4.1)

with

‖uy,ε − Uy‖H2(RN ) → 0 asε → 0, (4.2)

for some constantci,y,ε ∈R. HereUy is the unique solution of(2.1).

Proof. –The result is classical (see [16] for example).✷
In the next lemma we give some useful estimates:

LEMMA 4.2. – Let us consider the functionuy,ε given by Theorem4.1. Then
(i) uy,ε decays exponentially at the infinity,
(ii) uy,ε → Uy uniformly onRN .

Proof. –First of all we show that, for|y| < δ, ci,y,ε → 0 as ε → 0 for any i =
{1, . . . ,N}.
Indeed, multiplying (4.1) by∂Uy

∂xj
and integrating we get

cj,y,ε

∫
RN

(
∂U

∂xj

)2

=
N∑

i=0

ci,y,ε

∫
RN

∂U

∂xi

∂U

∂xj

= −
∫
RN

(
�uy,ε + V (εx + y)uy,ε − |uy,ε|p−1uy,ε

) ∂U
∂xj

dx → 0. (4.3)

by (4.2). Then, by using the weak Harnack inequality (see [16], or [8,18]) it is possible
to prove that

uy,ε(x) → 0 uniformly as|x| → ∞. (4.4)

So there existsR > 0 such thatV (εx + y)− |u|p−1u � V0
2 > 0 for |x| > R. At this stage

we can repeat the same proof of Lemma 6.4 of [15] which proves (i).
Concerning the proof of (ii) this follows from (i) and the standard boot-strap (here we

are using that 1< p < N+2
N−2). ✷

Now we are able to prove the main result of this section.

THEOREM 4.3. – Let us suppose thatV (x) is an admissible potential and #Z < ∞.
Then there existsε0 > 0 such that for any0< ε < ε0 we have that #{single-peak solution
of (1.4)concentrating atP } � #Z.

Proof. –Let us multiply (4.1) by∂uy,ε

∂xj
and integrate. We have that

∫
RN

(−�uy,ε − |uy,ε|p−1uy,ε

)∂uy,ε

∂xj

dx = 0, (4.5)
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(see [18] for a detailed proof) and

N∑
i=0

ci,y,ε

∂U

∂xi

∂uy,ε

∂xj

dx =
∫
RN

V (εx + y)uy,ε

∂uy,ε

∂xj

dx

= −ε

2

∫
RN

∂V

∂xj

(εx + y)u2
y,ε dx. (4.6)

Let y0 ∈ Z and sety = P + εỹ with ỹ ∈ By0,1. By the assumption onV we get∫
RN

∂V

∂xj

(εx + y)u2
y,ε dx =

∫
|εx+y−P |�r

(
εαihj (x + ỹ + P) + Rj(εx + y)u2

y,ε dx
)

+
∫

|εx+y−P |>r

∂V

∂xj

(εx + y)u2
y,ε dx. (4.7)

So by (ii) of (3.5) we deduce∣∣∣∣ ∫
|εx+y−P |�r

Rj(εx + y)

∣∣∣∣u2
y,ε dx

� C

∫
|εx+y−P |�r

|εx + y − P |βiu2
y,ε dx � Cεβi

∫
RN

|x + ỹ|βu2
y,ε dx

� Cεβi

∫
RN

(|x| + 1
)β

u2
y,ε dx = O

(
εβi
)

uniformly with respect toy. (4.8)

Finally since∂V
∂xi

(x) = O(eγ |x|) at infinity and Lemma 4.2 we have

∫
|εx+y−P |>r

∂V

∂xi

(εx + y − P)u2
y,ε dx � C

∫
|εx+y−P |>r

eγ |εx+y|e−2|x| dx

� C

∫
|x|> r

2ε

e−|x| = O
(
e− r

ε
)

uniformly with respect toy. (4.9)

Then by (4.7), (4.8) and Lemma 4.2 we get

N∑
i=0

ci,y,ε

∫
RN

∂U

∂xi

∂uy,ε

∂xj

dx = εαi

(∫
RN

hj (x + y + P)u2
y,ε dx + O

(
εβi−αi

))
. (4.10)

Again by (ii) of Lemma 4.2 and Remark 3.2 we obtain that∫
|εx+y−P |�r

hj (x + ỹ + P)u2
y,ε dx →

∫
RN

hj (x + ỹ + P)U2
y dx (4.11)



270 M. GROSSI / Ann. I. H. Poincaré – AN 19 (2002) 261–280

uniformly in By0,1. So by the definition of stable zero we get that there existsyε → y0

such that ∫
RN

∂V

∂xj

(εx + yε)u
2
yε,ε

dx = 0. (4.12)

Thus
N∑

i=0

ci,yε,ε

∂UP+εyε

∂xi

∂uP+εyε

∂xj

dx = 0. (4.13)

From the uniqueness of the solution of (2.1) and the implicit function theorem we get
thatUP+εyε

→ UP in H 2(RN) (see Lemma 4.1 of [8] for a detailed proof). Then

∫
RN

∂UP+εyε

∂xi

∂uP+εyε

∂xj

dx → δ
j
i

∫
RN

(
∂UP

∂xi

)2

�= 0 (4.14)

and this implies that, forε small, the linear system (4.13) admits only the trivial solution
ci,yε,ε = 0 for anyi = {1, . . . ,N}. This proves that, for any stable zeroy0 ∈ Z there exists
a solutionuε of (2.3) such that

‖uε − UP‖H2(RN)∩L∞(RN) → 0 asε → 0. (4.15)

By standard arguments (see [8] or [18] for example), we get thatuε > 0 in RN . In order
to prove our claim we have to show that two different stable zeroesy1 andy2 generates
two different solutions.

Setu1,ε andu2,ε the solutions of (2.3) generates byy1 andy2 andy1
ε → y1, y2

ε → y2

with y1 �= y2. We recall thatu1,ε andu2,ε solve

−�u1,ε + V (εx + P + εy1
ε )u1,ε = u

p
1,ε,

and

−�u2,ε + V (εx + P + εy2
ε )u2,ε = u

p
2,ε.

Let

z1,ε(x) = u1,ε

(
x − (P + εy1

ε )

ε

)
and

z2,ε(x) = u2,ε

(
x − (P + εy2

ε )

ε

)
the corresponding solutions of (1.4). By (4.15) we deduce that

z1,ε(P + εy1
ε ) = u1,ε(0) → UP (0),

z2,ε(P + εy1
ε ) = u1,ε(y

1
ε − y2

ε ) → UP (y1 − y2) �= UP (0).

This proves thatu1,ε �= u2,ε. ✷
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5. A crucial estimate

The aim of this section is to compute asymptotics for the ratio

P − Pε

ε
, (5.1)

wherePε is the peak ofuε. We know thatPε → P asε → 0. Next proposition gives
more information.

PROPOSITION 5.1. – Assume thatV (x) is an admissible potential anduε is a
solution of(1.4). Then there exists a positive constantC such that∣∣∣∣P − Pε

ε

∣∣∣∣� C. (5.2)

Proof. –By contradiction let us suppose that there exists a sequenceεn → 0 such that

|Pεn − P |
εn

→ ∞. (5.3)

SetPn = Pεn andvn(x) = uεn(εnx + Pn). By Proposition 2.4vn → UP in L2(RN) and
then ∫

RN

∂V

∂xi

(εnx + Pn)v
2
n(x)dx = 0. (5.4)

Hence∫
RN

∂V

∂xi

(εnx + Pn)v
2
n(x)dx

=
∫

|εnx+Pn−P |�r

hi(εnx + Pn)v
2
n(x)dx +

∫
|εnx+Pn−P |�r

Ri(εnx + Pn)v
2
n(x)dx

+
∫

|εnx+Pn−P |>r

∂V

∂xi

(εnx + Pn)v
2
n(x)dx. (5.5)

Concerning the first integral we have∫
|εnx+Pn−P |�r

hi(εnx + Pn)v
2
n(x)dx

= |Pn − P |αi

∫
|εnx+Pn−P |�r

hi

(
εnx

|Pn − P | + Pn − P

|Pn − P | + P

)
v2
n(x)dx. (5.6)

Up to a subsequencePn−P
|Pn−P | → ζ with |ζ | = 1. Then we get

I1,n = |Pn − P |αi hi(ζ + P)

∫
RN

U2(x)dx + o
(|Pn − P |αi

)
. (5.7)
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Moreover, from the definition ofRi ,

|I2,n| �C

∫
|εnx+Pn−P |�r

|εnx + Pn − P |βi v2
n(x)dx

=C|Pn − P |βi

∫
RN

U2(x)dx + o
(|Pn − P |βi

)
. (5.8)

Finally since∂V
∂xi

(x) = O(eγ x) at infinity and (iii) of Theorem 2.1 we have

I3,n =
∫

|εnx+Pn−P |>r

∂V

∂xi

(εnx + Pn)v
2
n(x)dx � C

∫
|εnx+Pn−P |>r

eγ |εnx+Pn|e−2|x| dx

�
∫

|x|>r/2εn

e−|x| = O
(
e
− r

εn
)
. (5.9)

Thus (5.5) becomes

hi(ζ + P)

∫
R2

U2(x)dx = o
(|Pn − P |βi−αi

)+ e− γ
εn

|Pn − P |αi
. (5.10)

This clearly implieshi(ζ + P) = 0 and since|ζ | = 1 we have a contradiction with
(iii) of (3.5). ✷

PROPOSITION 5.2. – Let εn be a sequence which goes to zero anduεn = un the
corresponding solutions of(1.4). Then, up to a subsequence, ifPn denotes the peak
of the solutionun we have

Pn − P

εn

→ y, (5.11)

wherey satisfiesL(y) = 0.

Proof. –By the previous proposition we have thatP−Pn

εn
is bounded and so we can

assume that (up to a subsequence)P−Pn

εn
→ y.

Again as in (5.5) we get

0=
∫
RN

∂V

∂xi

(εnx + Pn)v
2
εn
(x)dx = I1,n + I2,n + I3,n. (5.12)

Now

I1,n = εαi
n

∫
|εnx+Pn−P |�r

hi

(
x + Pn − P

εn

+ P

)
v2
εn
(x)dx

= εαi
n

∫
RN

hi(x + y + P)U2(x)dx + o(1). (5.13)

Proceeding as in Proposition 5.2 we get

I2,n = O
(
εβi
n

)
, (5.14)
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and

I3,n = O
(
e−γ /εn

)
. (5.15)

Then (5.12) becomes∫
RN

hi(x + y + P)U2(x)dx = O
(
εβi−αi
n

)
. (5.16)

Passing to the limit in (5.16) we get the claim.✷
From the previous proposition we get the following “local” nonexistence result

COROLLARY 5.3. – Let us suppose thatV is an admissible potential andL(y) �= 0
for anyy. Then there is no single peak solution of(1.4)concentrating atP .

In the next lemmas we show some cases whereZ is nonempty.

LEMMA 5.4. – Let P be a nondegenerate critical point ofV ∈ C3(BP,r). Then
Z = {0}.

Proof. –By Taylor’s formula we have that

V (x) = V (P ) + 1

2

N∑
j,k=1

∂2V

∂xj∂xk

(P )(xj − Pj )(xk − Pk) + R(x). (5.17)

So in this case

hi(x) =
N∑

j=1

∂2V

∂xi∂xj

(P )(xj − Pj) and Ri(x) = ∂R(x)

∂xi

.

Then

0=
N∑

j=1

∂2V

∂xi∂xj

(P )

∫
RN

(xi + yi)U
2(x)dx =

N∑
i=1

∂2V

∂xi∂xj

(P )

∫
RN

yiU
2(x)dx. (5.18)

Since the matrix ∂2V
∂xi∂xj

(P ) is invertible we have that the linear system

N∑
i=1

∂2V

∂xi∂xj

(P )yi = 0 (5.19)

admits only the solutiony = 0. Moreover, again by the invertibility of the matrix
∂2V

∂xi∂xj
(P ) we have det JacLP (0) �= 0 and so yis a zero stable ofhi . ✷

More in general we have the following

LEMMA 5.5. – Let us suppose thatV (x) = c0 +∑m
i=1 aix

αi+1
i in a neighborhood of

P = 0. Hereαi are positive even integers,ai ∈ R with ai �= 0 andc0 > 0. ThenZ = {0}.
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Proof. –We have that

hi(x) = (αi + 1)ai

∫
RN

x
αi

i U2(x)dx.

Let us look for the zeroes ofhi .∫
RN

(xi + yi)
αiU2(x)dx = 0 for anyi = 1, . . . ,N. (5.20)

Sinceαi are even numbers andU is an even function we get∫
RN

(xi + yi)
αiU2(x)dx =

αi∑
k=0

(
αi

k

) ∫
RN

xk
i y

αi−k
i U2(x)dx (5.21)

=
αi

2∑
k=0

(
αi/2

2k

) ∫
RN

x2k
i y

αi−2k
i U2(x)dx. (5.22)

Because of the function
∑

γiz
δi is strictly increasing ifγi is positive andδi is odd

we get that (5.22) admit only the solutiony = 0. Moreover it is easy to verify that
det JacLP (0) �= 0 and soZ = {0}. ✷

As application of Corollary 5.3 we obtain the following nonexistence result.

PROPOSITION 5.6. – Let us suppose thatV (x) = c0+∑m
j=1 ajx

αj in a neighborhood
of x = 0. Assume that at least one of the integersαj is odd,aj ∈ R with aj �= 0 and
c0 > 0. Then there is no solutionuε concentrating atP = 0.

6. An exact multiplicity result

In this section we prove Theorem 1.1. Let us start with the following

PROPOSITION 6.1. – Letεn be a sequence which goes to zero andun the correspond-
ing single-peak solution of(1.4). Let Pn the peaks ofun and assume that(5.11)holds.
Then

un(x) − UP

(
x − P

εn

− y

)
→ 0 uniformly inRN. (6.1)

Proof. –Let us considervn(x) = un(εnx + Pn). Sovn is a positive solutions of

�vn + V (εnx + P)vn = vp
n in RN. (6.2)

Proceeding as in the proof of Proposition 2.7 we get

vn → UP uniformly inRN. (6.3)
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Moreover‖vn‖∞ � V
1/(p−1)
0 and then we get thatUP �≡ 0. Since

vn

(
Pn − P

εn

)
= un(Pn) = max

x∈RN
un(x)

we derive

UP (y) = max
x∈RN

UP (x).

But UP is radially symmetric with respect to some point (see [9]) so thatUP (x) =
UP (|x − y|). This proves the claim. ✷

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. –By Theorem 4.3 we know that #{single-peak solution of
(1.4) concentrating atx = P } � #Z. By contradiction let us suppose that #{single-peak
solution of (1.4) concentrating atx = P } > #Z. Since #Z < ∞ and Proposition 5.2 there
existy ∈ Z, εn → 0 and two distinct positive solutionsu1,n andu2,n of (1.4) withε = εn

such that ifP1,n andP2,n are their peaks we have

lim
n→∞

P1,n − P

εn

= lim
n→∞

P2,n − P

εn

= y. (6.4)

From Proposition 6.1 the functionsv1,n(x) = u1,n(εnx +P) andv2,n(x) = u2,n(εnx +
P) satisfyv1,n(x),v2,n(x) → UP (|x − y|) uniformly onRN .

Sinceu1,n �≡ u2,n we can consider

wn(x) = v1,n − v2,n

‖v1,n − v2,n‖∞
in RN, (6.5)

and sown satisfies

−�wn + V (εnx + P)wn = cn(x)wn in RN (6.6)

with

cn(x) = p

1∫
0

(
tv1,n(x) + (1− t)v2,n(x)

)p−1
dt, (6.7)

andcn(x) → U
p−1
P (|x − y|) in C1

loc(RN) ∩ L∞(RN).
Passing to the limit in (6.6) we get thatwn → w in C1

loc(RN) wherew solves

−�w + V (P )w = pUP

(|x − y|)p−1
w in RN. (6.8)

By (iv) of Theorem 2.1 we obtain that

w(x) =
N∑

j=1

aj

∂UP (|x − y|)
∂xj
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with aj ∈ R.
Now the proof will be divided in two steps.
Step1: we have thataj = 0 for any j= 1, . . . ,N .
From (2.10) we get∫

RN

∂V

∂xi

(εnx + P)v2
1,n(x)dx =

∫
RN

∂V

∂xi

(εnx + P)v2
2,n(x)dx = 0. (6.9)

Then we have ∫
RN

∂V

∂xi

(εnx + P)wn(x)
(
v1,n(x) + v2,n(x)

)
dx = 0. (6.10)

Since|wn| � 1 andv1,n andv2,n decay exponentially (see Lemma 4.2) we can proceed
as in the previous sections. So by (6.10) we obtain

N∑
j=1

aj

∫
RN

hj (x + P)
∂UP (|x − y|)

∂xi

UP

(|x − y|)dx = 0. (6.11)

Recalling the definition ofLP we have

JacLP (y) =
(

2
∫
RN

hj (x + P)
∂UP (|x − y|)

∂xi

UP

(|x − y|)dx
)

i,j=1,...,N
. (6.12)

Hence (1.9) implies that the linear system (6.11) admits only the trivial solutionaj = 0
for anyj = 1, . . . ,N . Sow ≡ 0.

Step2: w ≡ 0 cannot occur.
Let xn be such thatwn(xn) = ||wn||∞ = 1 (the same proof applies ifwn(xn) = −1). If

|xn| � C a contradiction arises since by the previous stepwn → 0 in C1
loc(R

N). On the
other hand if|xn| → ∞ we have�wn(xn) � 0 and by (6.6)V0 � V (εnx + P) = cn(xn).
This gives a contradiction sincecn(xn) → 0 and so the claim of the theorem follows.✷

THEOREM 6.2. – Let V be an admissible potential and suppose that(1.9) holds.
Then forε small enough any single-peak solutionuε of (1.4) is nondegenerate, i.e., the
linear problem {−ε2�φ + V (x)φ = up−1

ε φ in RN,

v ∈ H 1(RN).
(6.13)

admits only the trivial solutionφ ≡ 0.

Proof. –By contradiction let us suppose that there exists a sequenceεn → 0 and a
solutionφn of (6.13) withuε = uεn such that{−ε2

n�φn + V (x)φn = up−1
εn

φn in RN ,
φ ∈ H 1(RN).
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Setuεn = un and let us denote byPn the peak of the solutionun. Considerφ̃n(x) =
φn(εnx + P). SinceV is admissiblePn−P

εn
→ y with y ∈ Z andφ̃n(x) satisfies{

−�φ̃n + V (εnx + Pn)φ̃n = up−1
n (εnx + Pn)φ̃n in RN ,

φ̃n ∈ H 1
(
RN
)
.

(6.14)

Finally set

vn = φ̃n

‖φ̃n‖L∞(RN)

.

As in the previous theorem it is easily seen that

vn(x) →
N∑

j=1

aj

∂UP (|x − y|)
∂xj

in C1
loc

(
RN

)
.

Let us write down the equation satisfied by∂vn

∂xi−�
∂vn

∂xi

+ V (εnx + P)
∂vn

∂xi

+ εn

V (εnx + P)

∂xi

vn = up−1
n

∂vn

∂xi

in RN ,

v ∈ H 1(RN).

(6.15)

Multiplying (6.14) by ∂un

∂xi
and (6.15) byvn we get∫

RN

∂V (εnx + P)

∂xi

∂un

∂xi

vn dx = 0. (6.16)

Passing to the limit in (6.15) we have

N∑
j=1

aj

∫
RN

hi(x + P)UP

(|x − y|)∂UP (|x − y|)
∂xj

dx = 0. (6.17)

As in the previous theorem, by (1.9) we obtainaj = 0 for any j= 1, . . . ,N . Sovn → 0 in
C1

loc(RN) and from this a contradiction follows (see Step 2 of the previous theorem).✷
Example. – Here we show an example of a potentialV such that (1.4) admits exactly

two single-peak solutions concentrating atP .
Let V (x1, x2) ∈ C1(RN) ∩ L∞(RN) such thatV (x1, x2) = V0 + x3

1 − x1x
2
2 in B0,1,

V0 > 0. Of course 0 is an isolated critical point ofV andV is admissible.
By direct computation we have that, fory = (y1, y2),

L0(y) =
(

2
∫
RN

x2
1U

2(x1, x2)dx1 dx2 + (3y2
1 − y2

2

) ∫
RN

U2(x1, x2)dx1 dx2,

− 6y1y2

∫
RN

U2(x1, x2)dx1 dx2

)
. (6.18)
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Moreover

L(z1) = L(z2) = 0,

for

z1 =
(

0,2

∫
RN x2

1U
2(x1, x2)dx1 dx2∫

RN U2(x1, x2)dx1 dx2

)
and z2 =

(
0,−2

∫
RN x2

1U
2(x1, x2)dx1 dx2∫

RN U2(x1, x2)dx1 dx2

)
.

If we prove that JacL(z1) and JacL(z2) are invertible matrixes by Theorem 1.1 and
Remark 3.7 we deduce the claim. Indeed

JacL0(y) =


6y1

∫
RN

U2(x1, x2)dx1 dx2 −2y2

∫
RN

U2(x1, x2)dx1 dx2

−6y2

∫
RN

U2(x1, x2)dx1 dx2 −6y1

∫
RN

U2(x1, x2)dx1 dx2

 (6.19)

and det JacL(z1) = det JacL(z2) �= 0.
We point out that with a little bit of computation it is possible to construct an example

of V such that (1.4) admitsk solution which “concentrate” in the same pointP . We give
a short proof of this.

SetV (x1, x2) ∈ C1(RN) ∩ L∞(RN) such that

V (x1, x2) = V0 +
L∑

i,j=1

aij x
i
1x

j
2 with aij ∈R andL ∈ N.

We chooseaij so that the following system
L∑

i,j=1

i−1∑
m=0

j∑
h=0

iaij

(h
j

)( m

i−1

)
yi−1−m

1 y
j−h
2

∫
RN xm

1 xh
2U

2(x1, x2)dx1 dx2 = 0,

L∑
i,j=1

i∑
m=0

j−1∑
h=0

jaij

( h

j−1

)(m
i

)
yi−m

1 y
j−h−1
2

∫
RN xm

1 xh
2U

2(x1, x2)dx1 dx2 = 0
(6.20)

admitsk solutionsz1, z2, . . . , zk ∈R2. It is also possible to prove that we can chooseaij

in order to have that

det JacL(zi) �= 0 for anyi = 1, . . . , k. (6.21)

and this proves the claim.✷
The shape ofV near its critical pointP plays an important role for multiplicity results

of (2.3) of solutions concentrating at a pointP . Next proposition tries to give partial
answers in this direction.

PROPOSITION 6.3. – Let us suppose that

V (x) = c0 +
m∑

i=1

aix
αi+1
i
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in a neighborhood ofx = 0. Hereαi are positive even integers,ai ∈ R with ai �= 0 and
c0 > 0. Then either

(i) at least one of the integersαi is even and then there is no solution of(2.3)or
(ii) the integersαi are odd and then there is only one nondegenerate solution of(2.3)

which concentrates atx = P .

Proof. –(i) follows by Corollary (5.3). Concerning (ii) we point out that in this case
L0(y) = (αiy

αi−1
i )i=1,...,N and so JacL0(0) is invertible. Hence the claim follows by

Theorem 1.1 and Remark 3.7.✷
In the next corollary we deduced a uniqueness result for nongenerate critical points

(see [2] for a similar result)

COROLLARY 6.4. – Let us suppose thatP is a nondegenerate critical point ofV .
Then there is only one single-peak solution of(1.4)concentrating atP

Proof. –By Theorem 1.1 it is enough to prove thatZ is a singleton. This follows by
Lemma 5.4. ✷
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