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ABSTRACT. — In this paper we consider uniqueness and multiplicity results for single-peak
solutions for the nonlinear Schrodinger equation. For a suitable class of poté&htals critical
points P we are able to establish exact multiplicity results. In particular we show that for any
nondegenerate critical point df there are only one solution concentratingfat Moreover
some examples of single-peak solutions concentrating at the samePpaiatprovided.
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RESUME. — Dans ce papier nous considérons les résultats d’unicité et de multiplicité pour les
solutions de seul-pic pour I'équation de Schrédinger non linéaire. Pour une classe convenable

potentielV et critiques points? nous peuvons établir une multiplicité exacte.
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1. Introduction

In this paper we study standing wave solutions of the nonlinear Schrédinger equatior

2y vy - iy V)| <C, xeRY (1.1)
at  2m ’ o ’ '

i.e., solutions of the form

w(x,t):ei%u(x), RN > R*. (1.2)

Substituting (1.2) in (1.1) and assuming that % one has

{—hZAIH—(V(X) — E)u=u?, (1.3)

u>0.
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A suitable choice off makesV bounded from below by a positive constant. Hence,
without loss of generality, it is possible to assume that 0 andV > Vy > 0. If we set
h=¢, (1.3) becomes

{ —szAu + V(x)u=u? in RN, (14)
u>0.

In [7], Floer and Weinstein considered the case- 1, p = 3 and they proved that for
smalle there exists a family of standing wave solutions which concentrates at each giver
nondegenerate critical point of the potential This result was generalized by Oh [16]
of higher dimensions. The arguments in those papers are based on a Liapunov—Schmi
reduction.

The existence of solutions of (1.4) in the possibly degenerate setting was studied b
many authors. In this context the first results seem due to Rabinowitz (see [17]) anc
Ding and Ni (see [6]). In [17] it was shown that if igf V < liminf,_.. V(x) then
the mountain pass theorem provides a solution for smallhis solution concentrates
around a global minimum o¥ ase — 0, as shown later by Wang (see [18]).

Later Ambrosetti, Badiale and Cingolani (see [1]) obtained existence of standing wave
solutions by assuming that the potent#lhas a local minimum or maximum with
nondegenerate:th derivative, for some integet.

Another result concerning degenerate critical point® @f due to Li (see [12]), where
a degeneracy of any order of the derivative is allowed. In [12] the author proves the
existence of a solution for (1.4) by only assuming that the critical pointsafe “stable”
with respect to a small't-perturbation ofv. In [5] Del Pino and Felmer consider a more
general nonlinearity () and obtained a solution of (1.4) by considering a “topologically
nontrivial” critical value of the energy functional associated. In such a this way they are
able to menage a wide class of critical pointd/ofWe point out that all these results are
obtained by suitable perturbation of the solutignof

—Au+V()u=u” inRY,
{u >0 in RY, (1.5)
ux)—0 & |x| — oo.
This type of solutions are sometimes called single-peak solutions since they have onl
one local maximum point (see Definition 2.3 for a more precise statement).

Moreover (see [18] or Theorem 2.7) concentration of single-peak solution may only
occur at critical point ofV. So the problem of the existence of at least one single-peak
solution concentrating @& seems to be completely described.

At this stage a question arises:

How many solutions are generated by a stable critical point Pof

In this paper we try to give an answer to this question for a suitable class of potentia
V. Now we briefly describe the class of potenti¥onsidered. Roughly speaking we
take in accoun¥ e C* such that

oV
8)6,‘

(x) = h;(x) + R;(x) inaneighborhood oP, (1.6)
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whereh; is an homogenous function of degregand R; is a higher order term (see
Section 3 for the precise definition). In this setting the functibpplay an important
role: indeed if we consider the following vector field

Lo(y) = (/hl(x +y+ PYUR() dx) , 1.7

N i=1,...N

whereUp is the solution of (1.5) and

Z ={y e R" such thaty is a stable zero of }, (1.8)

(see Definition 3.6 for the definition of stable zero) then we get the following theorem.

THEOREM 1.1. — Let V be an admissible potentigkee Sectiol for the definition
and suppose thatZ < oo. If, for any y € Z, it holds

detJadCp(y) #0, 1.9
then there existsy > 0 such that for anyd < ¢ < gg we have
#{single-peak solution dfL.4) concentrating akc = P} =#Z. (1.10)

In particular it is possible to show that, # is a nondegenerate critical point &f
then there is only one solution which concentrate® gsee Corollary 6.4). However,
we think that the number of the solution of (1.4) concentrating & influenced by the
shape oV in a neighborhood of instead of its nondegeneracy (see Proposition 6.3) and
example at the end of Section 6). Finally, again in the example at the end of Section €
we construct an example of a potentlalsuch that there exist exactly two single-peak
solutions concentrating at the same pathtin the same way it is possible to give an
example where a concentration/ogingle-peak solutions &t occurs. We do not know
any example of such a phenomenon in literature, even for similar elliptic perturbed
problems defined in bounded or unbounded domains.

Our results can be extended to the case of more general nonlinegiitigsusing for
example the assumption of [8]. However we state and prove our results only for the cas
f(s)=sP.

The paper is organized as follows: in Section 2 we recall some known facts anc
introduce the main definitions. In Section 3 we introduce the class of admissible
potentialsV. In Section 4 we prove that stable zeroff generates solutions to (1.4).

In Section 5 we establish an important estimate which allows, in Section 6, to deduce
the exact multiplicity result.

2. Known facts and main definitions

In this section we recall some known facts.
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THEOREM 2.1. — Let V a continuous function verifyin@ < Vo < V < Vy in RV.
Then for anyy € R" the problem

—Au+Vu=u? inRY,

u>0 in RV, (2.1)
u(x) —0 as|x| — oo,
with 1 < p < &%2, admits only one solutioty, € H*(R") which satisfies

(i) U, is spherically symmetric with respect to some poirRdf,
(i) Uyisin HARN) ={u € H*(RY): u=u(x))},
(iii) 1M )00 €71]x|“Z u(x) =a > O,
(iv) the kernel of the linearized operatdr= —A + (V(y) — U~ Hld

is spanned by the functiail/ /ax; fori =1,..., N. (2.2)

Proof. —See [11] for the uniqueness of the solution and the proof of (ii), [9] for (i) and
(iii), [14] for (iv). O

It is easily seen that (1.4) is equivalent to

{—Au+V(ax+P)u=uP in RY, (2.3)

u>0

for P e RV,
Now we give the following definitions.

DEFINITION 2.2.—We say that, is a family of bound state solutionsdf.4)if there
is a constantC which does not depend ersuch that

&V /(82|Vu8|2+u§)dx <c. (2.4)
RN

So if we set
Us(x) = MS(SX + P),
whereu, is a bound state solution of (1.4), we get thais a solution of (2.3) and

/(|w8|2 +o?)dr < C. (2.5)
RN

DEFINITION 2.3. —We say that a family of bound state solutianof (1.4)is single-
peaked if it has only one local maximum point. The p&ing R" where this maximum
is achieved is called the peak of the solutionP}f— P we say thaiu, concentrates
at P.

This paper deals with single-peak solution of (1.4). By blow-up arguments ([4]) we
get the following
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PROPOSITION 2.4. — Letu, be a family of single-peak solution (df.4) concentrating
at P and let P, be its peak. IUp is the unique solution gR.1) symmetric with respect
to the origin we have

x — P,

us(x):UP( >+w5(X), (2.6)

and

x—P |
b

u,(x) < Cce™l 5 2.7)

wherew, — 0in L>®(RY).

Proof. —This is a known result (see [4]) but we repeat the proof for reader’s
convenience. Sel,(x) = u.(ex + P.). Sinceu, is a bound state solution of (1.4), by
standard boot-strap arguments we get thas uniformly bounded on the compact set
of RN. Hence, passing to the limit in (2.3) we get that— U, whereUp € HY(RY
solves (1.5) withy = P.

Since positive solutions of (1.5) decay exponentially (see [9]) @pdt HY(RY is
uniformly bounded we obtain the existencefof 0 such thal/» (x) < n for all |x| = R.
Let us choose”~* < V. But alsou,(x) < 7 if |x] = R andn large and then, since,
has only one local maximum we obtain thatx) < » for all |x| > R. Then we can use
the maximum principle to conclude that(x) < wo(x) for all |x| > R, wherewg is a
suitable multiple of the fundamental solutiontfv — bw =0 withb = Vo — n?~1 > 0.
Sincewg decays exponentially we deduce (2.7) and that

v, — Up uniformly in RY. (2.8)

This ends the proof. O
Concerning single-peak solutions Wang (see [18]) proved this useful identity.

PROPOSITION 2.5. — Let us suppose that, is a family of single-peak solutions of
(1.4)and

IVV(x)| =0(e™) atinfinity for somey > 0. (2.9)
Then

Vv
/ T (ex+ P)u?(ex+ P)dx =0 foranyi=1,...,N. (2.10)
RN l

From the previous identity Wang deduced the following result.

THEOREM 2.6. — Let us suppose that satisfieg2.9)and it is nondecreasing in one
direction in’RY. Then there is no solution 1d.4).

Proof. —It follows by (2.10). O

THEOREM 2.7. — Letu, be a family of single-peak solutions(tb.4)and P, the point
of RY whereu, achieves its maximum. Suppd@e9) holds, ||z, — Up||y1 vy — O as
e — 0. If V e CY(RY) we have that’, — P with VV (P) =0.

Proof. —It follows by (2.10) (see [18]). O
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3. Assumptionson the potential V

This section is devoted to the assumptions on the potehtiaFor Q € R"Y and
p € R let us denote byB, , = {x € R" such thatx — Q| < p}. We give the following
definition.

DEFINITION 3.1.— We say that a functior : R — R is homogenous of degree
a € Rt with respect toP € RY if

h(tx + P) =t*h(x + P) foranyre R* andx e RV. (3.1)

Remark3.2. — Ifh € C(R") is homogenous of degreefrom the previous definition
it follows that

|h(x)| < Clx — P|* foranyx e RY, (3.2)
whereC is the maximum ot ondBp ;.
At this stage we can state our crucial condition on the potefitial

DEFINITION OF ADMISSIBLE POTENTIAL —Let us assume that € CY(R") satis-
fies

VvV (x)| <ce’™! atinfinity (3.3)
and
0< Vo < V(x) < V]_ (34)

for somey > 0. We say thatV is an admissible potential aP € R" if there exist
continuous functiong, : RY — R, R;: Bp, — R and real numbers;; >1,i =1i,...,
N, such that

(i) S—X(X) =h;(x) + R;(x) inBp,,

(i) Ri(x)<Clx—PJP inBp, withp; >a, foranyi =1,..., N,
(iii) h;(x)=0ifand only ifx = P,

(iv) h; is homogeneous of degreg (3.5)

Remark3.3. — We point out that ii? an isolated critical point o¥, (iv) holds and
R;(x) = 0 then (iii) holds. Indeed if by contradiction there existss R" such that
h;(y) = 0 then we have that;(t(y — P) + P) =0 for any re R*. Hence from (i) of
(3.5) we getg—)‘; (t(y — P) + P) = 0 for any positiver. So P is not an isolated critical
point and this gives a contradiction.

Remark3.4. — Itis easy to see that the functibnis determined in an unique way.

Remark3.5. — The assumptions (i) and (ii) of the previous definition are satisfied
if V e C*(Bp,) and admits a nonzero derivative with respectxtofor any index
i €{l,...,N}. In this casex; + 1 is the order of the first nonzero derivative and the
function i; are given by Taylor's formula. In order to state a sufficient condition which
implies (iii) we need some notations. Lkt= (k, ko, ..., ky) be a multi-index and
setlk| =ky +ky+ - +ky, Kl =klky!---ky!, and forw = (wq, wop, ... wy) € RN,
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ki, k k -
wk = witwy? - wy'. Soif

alkl £
Dkf: k1 ko kv
0xq 0x5" -+ 0xy
we have that

DKV (P
hi(x)= Y k‘( ) e = P, (3.6)

|k‘=(11+1
and condition (iii) becomes that the nonlinear system

DKV (P
> k!( )(x—P)k=O (3.7)

[K|=0;

admits only the solution = P.

DEFINITION 3.6.— LetG e C(RY;R") be a vector field. We say thatis a stable
zero forG if
i) G(y) =0,
(i) yisisolated,
(iii) if G, is a sequence of vector fields such th&, — G||cs,,) — O for some
o > 0then there exists, such thatG,(y,) =0andy, — y.

A sufficient condition orG andy which implies thaty is a stable zero is that the index
i(G,y,0) #0, where the index of at zero is given by

i(G,y,0)= Iim0 degG, B, ,, 0),
p—

with dedg G, B, ,, 0) denoting the Brouwer degree.
Now let us set

Lo(y) = (/hmx +y+ PU2() dx) , (3.8)

N i=1,...,.N

whereUyp is the solution of (2.1). By Remark 3.2 and the exponential decdypoive
have that (3.8) is well-posed. Finally set

Z ={y e R" such thaty is a stable zero of}. (3.9)

Remark3.7. — Condition (1.9) implies that any zero d@f, is stable. Indeed if
Lp(y) =0 by (1.9) we have that the Brower degree d&g Bp 1, 0) # 0 (see [13])
and this gives thay € Z.

4. Theexistenceresult

We start this section by recalling the following result.
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THEOREM 4.1. — Let us assume thaV satisfies(3.4). Then there exist positive
constants and e such that for every and e with |y| < § and0 < ¢ < g there exists
uy. € H*(RY) such that

N
_ oUu
—Auy o+ V(ex +y)uy, — |uy P 1uyyg = Zci,yyga—x_y, (4.1)
i=1 i
with
”uy’g — Uy”HZ(RN) — 0 ase — 0, (42)

for some constant; , . € R. HereU, is the unique solution qf.1).
Proof. —The result is classical (see [16] for exampleln
In the next lemma we give some useful estimates:
LEMMA 4.2. — Let us consider the functiam, . given by Theorem.1. Then
() u,.decays exponentially at the infinity,
(ii) u,.— U, uniformly onR".

Proof. —First of all we show that, foly| < §, ¢;y, — 0 ase — O for anyi =

{1,..., N}
Indeed, multiplying (4.1) by%% and integrating we get

/( ) Z oU oU

Ciy Cz ) ~

Jye 0x; e 0x; ax,
RN RN

oU
=- / (Bttyo Vx4 Yty — ity oy ) 5 e 0. (43)
RN Xj
by (4.2). Then, by using the weak Harnack inequality (see [16], or [8,18]) it is possible
to prove that

uy(x) — 0 uniformly as|x| — oo. (4.4)

So there exist® > 0 such that/ (sx + y) — |u|?"1u > % > O for |x| > R. At this stage
we can repeat the same proof of Lemma 6.4 of [15] which proves (i).
Concerning the proof of (ii) this follows from (i) and the standard boot-strap (here we

are using that k& p < M%), O

Now we are able to prove the main result of this section.

THEOREM 4.3. — Let us suppose that (x) is an admissible potential andZt< oco.
Then there existg > 0 such that for any) < ¢ < gg we have that tsingle-peak solution
of (1.4) concentrating atP} > #Z.

Proof. —Let us multiply (4.1) byad“;g and integrate. We have that

_ ou
/(_A”yya — luy,el” 1”%8) ox; e

RN

“ dv =0, (4.5)
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(see [18] for a detailed proof) and

oU o 0
E:c,y5 M”:dx:/V(sx—l—y)uy,5 Ure iy
ox; 0x; : 0x;
oV
= —g 8—(8)6 + y)u (4.6)
RN

Letyo € Z and sety = P + ¢y with y € B, 1. By the assumption ol we get

Vv _ -
/g(sx—i-y)uisdx: / (aa’hj(x+y+P)+Rj(8X+J’)M§,8dx)
RN ! lex+y—PI<r
Vv
+ / —(ex + y)ui o dx. 4.7)
8)6]' ’

lex+y—P|>r

So by (ii) of (3.5) we deduce

/

lex+y—P|<r

<C / |gx+y—P|’3iu§’5dx§C£ﬁ"/|x+§|ﬂui’sdx
N

lex+y—P|<r

< Cefi /(le - 1);3“;8 dx =O(e#) uniformly with respect to).  (4.8)
RN

Finally sinceg—)‘é(x) = O(e’) at infinity and Lemma 4.2 we have

[ Dlrry-misce [ ervietia
lex+y—P|>r lex+y—Pl|>r
<C / el :O(e‘g) uniformly with respect to. (4.9)
[x[> 55

Then by (4.7), (4.8) and Lemma 4.2 we get

N
E c[’y’g
i=0

U duy o

s 8)6,' E)xj

dx = g% (/ hi(x+y+ P)ui’sdx + O(sﬁ"_“")) (4.10)
N
Again by (ii) of Lemma 4.2 and Remark 3.2 we obtain that

hi(x+y+ P’ dx — /h,-(x+y+ P)UZdx (4.11)
N

lex+y—P|<r
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uniformly in B,, 1. So by the definition of stable zero we get that there exists- yo
such that

/ —(ex + yg)u Ldx=0. (4.12)
0x;
Thus
0 ev. O .
Zc, e psene Btever g (4.13)
X,‘ an

From the uniqueness of the solution of (2.1) and the implicit function theorem we get
thatUp.y, — Up in H?(R") (see Lemma 4.1 of [8] for a detailed proof). Then

AUpoey, OUpie [ (AUp\?
/ Ptey, OUp " gy — 8 /( P) 20 (4.14)
RN RN

ax,- an 8)6,'

and this implies that, fos small, the linear system (4.13) admits only the trivial solution
ciy.e =0foranyi ={1,..., N}. This proves that, for any stable zefec Z there exists
a solutionu, of (2.3) such that

”I/lg - UP”HZ(RN)QLDC(RN) —0 ase—0. (415)

By standard arguments (see [8] or [18] for example), we getthat0 in RV . In order
to prove our claim we have to show that two different stable zeypesd y, generates
two different solutions.

Setu; . andu,,. the solutions of (2.3) generates byandy, andy? — y1, y2 — ¥,
with y; # y,. We recall thait; . andu, . solve

—Aug,+V(Ex+ P+ sygl)ul,s = “11),5»

and
—Auz,+V(ex+ P+ sysz)uz,g = ug’s.
Let
x—(P+eyh
Zl,s(x) =Ule <—€>
£
and

x—(P+sy§)>
&

12,5()5) =U2e (
the corresponding solutions of (1.4). By (4.15) we deduce that
21.6(P + &y} =u1.(0) > Up(0),

22(P+ey)) =u1.(yr — y2) = Up(y1— y2) # Up(0).
This proves thaii; . #up,.. O
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5. A crucial estimate
The aim of this section is to compute asymptotics for the ratio

P-P
&

: (5.1)

where P, is the peak olt,. We know thatP, — P ase — 0. Next proposition gives
more information.

PrROPOSITION 5.1. — Assume thatV(x) is an admissible potential and, is a
solution of(1.4). Then there exists a positive constahsuch that

P—P
‘ <cC. (5.2)

&

Proof. —By contradiction let us suppose that there exists a sequgnee0 such that

| Pe, — P
— > 00
En

(5.3)
SetP, = P,, andv,(x) = u,, (¢,x + P,). By Proposition 2.4, — Up in L?(R") and
then

vV
/ (e + PV e =0 (5.4)
RN i
Hence

/ ﬂ(s,,x + P)v2(x) dx
8)6,'
RN

= / hi(enx 4+ P)v2(x) dx + / Ri(e,x + P,)v>(x) dx

lenx+Py—P|<r lenx~+Py—P|<r
v )
+ / (e + PV ) G, (5.5)
enrt By Plor

Concerning the first integral we have

hi(enx 4+ P)v(x) dx

lenx+P,—P|<r

=P, - PI"
lenx+P,—P|<r

Uptoa subsequenqén%; — ¢ with |¢] = 1. Then we get

En pP,—P
h,-( a

P)v? : :
e AL

Il’n:|Pn—P|°‘"h,-(§+P)/Uz(x)dx+0(|Pn—P|°‘"). (5.7)
RN
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Moreover, from the definition oR;,

N e B R L
|enx+Py,—P|<r
:c|P,,—P|ﬁf/UZ(x)dx+o(|Pn—P|ﬁf). (5.8)
RN
Finally sinceg’T"i(x) = O(e’*) at infinity and (iii) of Theorem 2.1 we have

oV
I3, = / a—(snx + Pn)v,f(x) dx<C / @ lenx+Pul g=21x1 4y
|enx+Pu=P|>r i lenx+Pa—P|>r
< / el = O(e_g). (5.9)
|x|>r/2¢,

Thus (5.5) becomes

_ Y
e @

_. 5.10
|Pn_P|ai ( )

n+P) [ VR dr=o(IP, - PP +
'RZ
This clearly impliesh; (¢ + P) = 0 and sincd¢| = 1 we have a contradiction with
(i) of (3.5). O
PROPOSITION 5.2. — Let ¢, be a sequence which goes to zero and= u, the
corresponding solutions dfL.4). Then, up to a subsequence,HAf denotes the peak
of the solutiont,, we have
pP,—P

&n

-y, (5.11)

wherey satisfiesC(y) = 0.
Proof. —By the previous proposition we have th&t" is bounded and so we can

assume that (up to a subsequen€gf: — y.
Again as in (5.5) we get

Vv
0= / o (X + POV: (x)dx =TIy, + Iop + I3, (5.12)
Xi
RN

Now

P,—P
Iy, =¢% / h; <x + + P) vZ (x)dr

En

lenx+Py,—P|<r

e [ bt + 3+ PUP0) e + (D). (5.13)
RN
Proceeding as in Proposition 5.2 we get

Inn = O(sh), (5.14)
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and
I3, =O(e77/n), (5.15)
Then (5.12) becomes

/ hi(x +y + P)U?(x) dx = O(efi ). (5.16)
RN
Passing to the limit in (5.16) we get the claimo
From the previous proposition we get the following “local” nonexistence result

COROLLARY 5.3. — Let us suppose thaf is an admissible potential and(y) # 0
for any y. Then there is no single peak solution(bf4) concentrating atP.

In the next lemmas we show some cases wizeig nonempty.

LEMMA 5.4.— Let P be a nondegenerate critical point f € C3(Bp,). Then
Z ={0}.

Proof. —By Taylor’s formula we have that

1M 8%y
Vx)=V(P)+ > > (P)(xj — P))(xx — P) + R(x). (5.17)
k=1

~, 0x;0x;

So in this case

Y. 9%y IR (%)
h,-(x)_jz_:laXiaxj(P)(xj—Pj) and R;(x)= e

Then

0=3" ax.axjw)/(xi +aUi =3
RN =

0Xx;

2
L (P)/yiUz(x)dx. (5.18)
j=1 ! 8x‘] RN

Since the matrixaz—"(P) is invertible we have that the linear system

0x;0x

2
i -(P)y; =0 (5.19)

0x;0x;

N
D
i=1

admits only the solutiony = 0. Moreover, again by the invertibility of the matrix
02y (P) we have detJa€p(0) £ 0 and so0 yis a zero stable of;. O

0x;0x;

More in general we have the following

LEMMA 5.5. — Let us suppose that (x) =co+ >_/.; a,-xf"'*l in a neighborhood of

P =0. Hereq; are positive even integers; € R with a¢; #0andcg > 0. ThenZ = {0}.
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Proof. —We have that

hi(x) = (a; + Da; /x;""Uz(x)dx.

RN

Let us look for the zeroes df;.

/(xi +y)%U?(x)dx =0 foranyi=1,...,N. (5.20)
RN

Sinceq; are even numbers arid is an even function we get

/ (5 43 U de =Y (“") / xf 3 T UR () dx (5.21)
N o \k

RN

Z /o
S (52) [ v 622

k=0 N

Because of the functiol y;z% is strictly increasing ify; is positive ands; is odd
we get that (5.22) admit only the solution= 0. Moreover it is easy to verify that
detJacCp,(0) #0and soZ ={0}. O

As application of Corollary 5.3 we obtain the following nonexistence result.

PROPOSITION 5.6. — Let us suppose that(x) = co+3__; a;x* in a neighborhood
of x = 0. Assume that at least one of the integersis odd,a; € R with a; # 0 and
co > 0. Then there is no solutiom, concentrating atP = 0.

6. An exact multiplicity result

In this section we prove Theorem 1.1. Let us start with the following

PROPOSITION 6.1. — Lete, be a sequence which goes to zero apdhe correspond-
ing single-peak solution dfL.4). Let P, the peaks ofi, and assume thgb.11) holds.
Then

u,(x) — Up (x — y) — 0 uniformly inR". (6.1)

Proof. —Let us consider, (x) = u,(¢,x + P,). Sov, is a positive solutions of
Av, + V(e,x + Py, =vP in RN, (6.2)

Proceeding as in the proof of Proposition 2.7 we get

v, — Up uniformly in RY. (6.3)
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Moreover||v, [« = V4’ and then we get thdt » = 0. Since

P,—P
vn( ) =u,(P,) = maxu,(x)
xXeRN

n

we derive
Up(y) = maxUp(x).
xeRN
But Up is radially symmetric with respect to some point (see [9]) so thatx) =
Up(Jx — y|). This proves the claim. O
Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 4.3 we know that{gingle-peak solution of
(1.4) concentrating at = P} > #Z. By contradiction let us suppose thgsthgle-peak
solution of (1.4) concentrating at= P} > #Z. Since # < oo and Proposition 5.2 there
existy € Z, ¢, — 0 and two distinct positive solutions , andu, , of (1.4) withe =¢,
such that ifP, , and P,,, are their peaks we have

. P,—P . P,—P
lim 22—~ — |im 22—~ — . (6.4)

n— oo 8}1 n—>oo 8}1
From Proposition 6.1 the functions , (x) = u1,(e,x + P) andvy,, (x) = up,(e,x +
P) satisfyvy ,(x),v2,(x) = Up(]x — y|) uniformly onR".
Sinceus , # u,, we can consider

Vi1, — VU2 .
wy(x) = T2 N (6.5)
”Ul,n — U2 Iloo

and sow,, satisfies
—Aw, + V(e,x + P)w, =c,(x)w, inRY (6.6)

with
cp(x) = p/(tvl,n(x) +(1- z‘)vz,n(x))p_1 dr, (6.7)
0

andc, (x) — U},"l(|x —yDin CL(RN) N L=®(RY).
Passing to the limit in (6.6) we get that, — w in CL.(R") wherew solves

—Aw+ V(P)w=pUp(lx —y)" 'w inRY. (6.8)

By (iv) of Theorem 2.1 we obtain that

N
w(x) Z 8UP(|7C—)’|)

Xj
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with aj € R.
Now the proof will be divided in two steps.
Stepl: we have that; =0 forany j=1,..., N.
From (2.10) we get

oV

0
/ aV (enx + P02, (x) d = / (e + P, (1) e =0, (6.9)
N Xi N Xi
Then we have
A%
/ g(snx + P)w, (x) (v1,,(x) 4+ v2,(x)) dx = 0. (6.10)

RN

Since|w,| < 1 andv, , andv, , decay exponentially (see Lemma 4.2) we can proceed
as in the previous sections. So by (6.10) we obtain

dUp(|x —yI)U

ox; P(|x—y|)dx:O. (6.11)

N
Zaj /h,(x#— P)
j=1 RN

Recalling the definition of » we have

1

JacLp(y) = (Z/hj(x—I—P)MUP(Ix—yI)dx) i (6.12)
x; i,j=1,..,N
RN

Hence (1.9) implies that the linear system (6.11) admits only the trivial solafien0
foranyj=1,...,N.Sow =0.

Step2: w = 0 cannot occur.

Letx, be such thatv, (x,) = ||lw,||.c = 1 (the same proof appliesif,(x,) = —1). If
|x,| < C a contradiction arises since by the previous stgp—~ 0 in Cl})C(RN). On the
other hand ifix,| — oo we haveAw, (x,) <0 and by (6.6)Vo < V(g x + P) = ¢, (x,,).
This gives a contradiction sineg(x,) — 0 and so the claim of the theorem followst

THEOREM 6.2. — Let V be an admissible potential and suppose t{aB) holds.
Then fore small enough any single-peak solutionof (1.4) is nondegenerate, i.e., the
linear problem

—2Ap+V(x)p=ul"1¢p inRY, 6.13
{ vV E Hl(RN)( ) ’ ( ' )
admits only the trivial solutior = 0.

Proof. —By contradiction let us suppose that there exists a sequgnee 0 and a
solutiong, of (6.13) withu, = u,, such that

{ —e2Ad, + V(X)p, =ul"'¢, inRY,
¢ € HY(R").
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Setu,, = u, and let us denote by?n the peak of the solutionn Consider&bfn x) =

¢ (e,x + P). SinceV is admissibleZ2=L — y with y € Z andqbn(x) satisfies
— Ay + V(enx + P)by =ul " Heax + P)gy  inRY, (6.14)
¢, € HY(RY). '
Finally set
_
Vyy = —=——"—.
lPnll Loo(mm)
As in the previous theorem it is easily seen that
° aUp<|x 3Up(x =y
v, (x) = Z a; : in Cieo(RY).
]
Let us write down the equation satisfied gjy
v, Vie,x+ P) 10U, . N
—A V(enx + P En——— U =u) — INRY,
{ ax, TV (et ) x, 0x; On =t 0x; nR (6.15)
ve HY(RV).
Multiplying (6.14) by 4= and (6.15) by, we get
n P n
/ WVEnx + P)dun gy g, (6.16)
ox; X;
RN
Passing to the limit in (6.15) we have
N
oUp(lx — yl)
— ;

RN

As in the previous theorem, by (1.9) we obtajn=0forany j=1,..., N. Sov, — 0in
CL.(RM) and from this a contradiction follows (see Step 2 of the previous theorem).

Example — Here we show an example of a potenttabuch that (1.4) admits exactly
two single-peak solutions concentratingPat

Let V(x1, x2) € CL(RY) N L®(RY) such thatV (x1, x2) = Vo + x§ — x1x3 in Bo1,
Vo > 0. Of course 0 is an isolated critical point BfandV is admissible.

By direct computation we have that, for= (y1, y2),

Lo(y) = (2 / x2U?(x1, x2) dxy dxp + (3y2 — y3) / U?(x1, x2) by dxp,
RN RN

—6)’1y2/U2(X1,X2) dxldx2>- (6.18)
RN
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Moreover
L(z1) = L(z2) =0,
for

2772 -
= O’ZI'Rlelé (x1, x2) dxg dxp and 2= (0, _szlelé (x1, x2) dxq dx, ‘
Jrn U?(x1, x2) dxg dxo Jren U2(x1, x2) dxy dxy

If we prove that Ja€(z;) and Jad’(z,) are invertible matrixes by Theorem 1.1 and
Remark 3.7 we deduce the claim. Indeed

6y1/U2(x1,x2)dx1dx2 —2y2/U2(x1,x2)dx1dx2

Jaclo(y) = R , R , (6.19)
—6y2/U (x1, x2) Oxq dx —6y1/U (x1, x2) Oxq dx
RN RN

and detJa€(z;) = detJadC(z,) # 0.

We point out that with a little bit of computation it is possible to construct an example
of V such that (1.4) admitk solution which “concentrate” in the same poit We give
a short proof of this.

SetV (x1, x2) € CL(RY) N L>*(RY) such that

L
V(x1,x2) =Vo+ Z a,-jxixé with a;; e RandL e N.
ij=1

We choosey;; so that the following system

|
[

M~
B
<

ajj (i’) (DA fon Xk U2 (xg, x2) dxp vz = 0,

7= M=

(6.20)

N
3
Il
o
—~ =
Il
P o

aij (1) ()" 5" frn X1 xB U2 (x1, x2) ey dhep = O

MN.
~

2

~

N
3
Il
o
=
I
o

admitsk solutionszy, zo, . . ., z; € R2. Itis also possible to prove that we can chooge
in order to have that

detJadC(z;) #0 foranyi=1,... k. (6.21)

and this proves the claim.O

The shape oV near its critical pointP plays an important role for multiplicity results
of (2.3) of solutions concentrating at a poiAt Next proposition tries to give partial
answers in this direction.

PROPOSITION 6.3. — Let us suppose that

V(x)=co+ Zaixf”ﬂ
i—1
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in a neighborhood of = 0. Hereq; are positive even integers; € R with a; £ 0 and
co > 0. Then either
(i) atleast one of the integets is even and then there is no solution(2f3) or
(i) the integersy; are odd and then there is only one nondegenerate soluti¢?. 8
which concentrates at = P.

Proof. —(i) follows by Corollary (5.3). Concerning (ii) we point out that in this case
Lo(y) = (aiyf“'_l)izle and so Jag£y(0) is invertible. Hence the claim follows by
Theorem 1.1 and Remark 3.7

In the next corollary we deduced a uniqueness result for nongenerate critical point:
(see [2] for a similar result)

COROLLARY 6.4. — Let us suppose thak is a nondegenerate critical point of.
Then there is only one single-peak solutior{lofl) concentrating atP

Proof. —By Theorem 1.1 it is enough to prove thatis a singleton. This follows by
Lemma5.4. O
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