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ABSTRACT. – In this paper we study the Lawrence–Doniach model for layered superconduc-
tors, for a sample with finite width subjected to a magnetic field parallel to the superconducting
layers. We provide a rigorous analysis of the energy minimizers in the limit as the coupling be-
tween adjacent superconducting layers tends to zero. We identify a unique global minimizer of
the Gibbs free energy in this regime (“vortex planes”), and reveal a sequence of first-order phase
transitions by which Josephson vortices are nucleated via the boundary. The small coupling
limit is studied via degenerate perturbation theory based on a Lyapunov–Schmidt decomposi-
tion which reduces the Lawrence–Doniach system to a finite-dimensional variational problem.
Finally, a lower bound on the radius of validity of the perturbation expansion (in terms of vari-
ous parameters appearing in the model) is obtained.

RÉSUMÉ. – Nous analysons rigoureusement les minimiseurs du modèle de Lawrence–Doniach
pour les supraconducteurs en couche quand le paramètre de couplage de Josephson tend vers
zero. Le champs magnétique imposé est parallèle aux plans supraconductifs et l’échantillon est
de largeur fini. A l’aide d’une méthode de perturbation dégénérée basée sur une décomposition de
Lyapunov–Schmidt, nous réduisons le système de Lawrence–Doniach à un problème variationel
de dimension fini. Nous obtenons un minimiseur global unique (“les plans de vortex”) et
montrons qu’il y a nucléations des vortex de Josephson à la frontière via une suite de transitions
de premier ordre. Finalement, à l’aide d’estimations a-priori nous obtenons aussi une borne
inférieure sur le rayon de convergence du développement de Taylor en termes de paramètres
présents dans le modèle.

1. Introduction

In 1971 Lawrence and Doniach [18] introduced a Ginzburg–Landau type model
for superconducting materials with a planar layered structure. In this model, the
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superconductor occupies an array of parallel sheets with insulating material acting
as a buffer between the sheets. While this model was originally proposed to study
layered structures artificially produced by successively deposing thin planar sheets of
superconducting metal with organic separators, it has received renewed attention due
to the discovery of high temperature superconductors. Indeed, nearly all of these high-
Tc materials are crystals with a distinctly layered structure, consisting of copper oxide
superconducting planes stacked with intervening insulating (or weakly superconducting)
planes.

In this paper we will consider the case of a layered superconductor in a uniform
magnetic field imposed parallel to the superconducting planes. We assume that there are
a finite number of superconducting sheets, each parallel to thexy-plane, with uniform
separationp. We assume that the external magnetic field is applied along they-direction,
�H =H ŷ. We will take the planes to be of infinite extent in they-direction, and assume

the local magnetic field will be everywhere independent ofy and point in they-direction,

�h(x, y, z)= h(x, z)ŷ.

The vector potential�A may then be chosen to lie in thexz-plane,

�A(x, y, z)=Ax(x, z)x̂ +Az(x, z)ẑ, �h= curl �A=
(
∂Ax

∂z
− ∂Az

∂x

)
ŷ.

We assume that the sample has fixed width 2L in the x-direction, and hence the
superconducting sheets are described by the stack of parallel planar strips

�N : −L � x � L, −∞< y <∞, z= zn := np, n= 0,1, . . . ,N.

Since each sheet�N is superconducting it carries a (complex-valued) order parameter
ψn(x), n = 0, . . . ,N . We choose units in such a way that|ψn| = 1 represents a purely
superconducting state. The Lawrence–Doniach model is then formulated in terms of the
following Gibbs free energy functional:

Gr (ψn, �A)= H 2
c

4π

{
p

N∑
n=0

L∫
−L

[
1

κ2

∣∣∣∣
(

d

dx
− iAx

)
ψn

∣∣∣∣
2

+ 1

2

(|ψn|2− 1
)2

]
dx

+ r

2
p

N∑
n=1

L∫
−L

∣∣∣∣∣ψn −ψn−1 exp

(
i

zn∫
zn−1

Az(x, s)ds

)∣∣∣∣∣
2

dx

+ 1

κ2

L∫
−L

Np∫
0

(
∂Ax

∂z
− ∂Az

∂x
−H

)2

dzdx

}
,

wherer is the interlayer coupling parameter(or Josephson coupling parameter). We
have chosen units such that the in-plane penetration depthλab = 1, κ = λab/ξab is the
Ginzburg–Landau parameter (λab, ξab are the in-plane penetration depth and correlation
length, respectively), and the magnetic fields are measured in units ofHc/κ , whereHc

is the thermodynamic critical field. (See [24].)
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The coupling between the superconducting planes given by the second sum inGr

simulates the Josephson effect, by which superconducting electrons travel from one
superconducting sheet to another by quantum mechanical tunnelling. We will see this
explicitly in the Euler–Lagrange equations, where the currents in the gaps between
planes will be determined by the sine of the gauge-invariant phase difference. The
interlayer coupling parameterr gives the strength of the Josephson effect. In our units,

r = 2

λ2
J κ

2p2

where λJ is the (non-dimensional)Josephson penetration depth.In an anisotropic
Ginzburg–Landau model,λ2

J gives the effective mass ratio which determines the degree
of anisotropy. For highly anisotropic superconductorsλJ is very large, and hence when
κp∼ 1 we may treatr as a small parameter.

Due to the layered structure one expects these materials to be highly anisotropic.
A first attempt to model layered superconductors is by ananisotropic Ginzburg–Landau
model, which treats the sample as a three-dimensional solid with anisotropic material
parameters. For certain materials and temperatures close to the critical temperature
Tc this approximation seems valid, but for the most anisotropic superconductors the
anisotropic Ginzburg–Landau model does not give a good qualitative or quantitative
description of experimental observations. For example, when the sample is subjected to
a sufficiently strong magnetic field orientedparallel to the superconducting planes Kes,
Aarts, Vinokur, and van der Beek [16] observe a transition betwen “three-dimensional”
behavior (governed by the anisotropic Ginzburg–Landau model) and “two-dimensional”
behavior at a critical temperatureTC0 below TC . In the two-dimensional regime the
superconducting planes decouple and the applied magnetic field penetrates completely
between the planes, virtually unscreened by the superconductor. Despite the penetration
of the field, superconductivity within the planes is not destroyed even in very strong
applied fields. This “magnetically transparent” state is inconsistent with the anisotropic
Ginzburg–Landau model, where magnetic fields of moderate intensity are largely
expelled from the bulk except for an array of isolated vortices (the “Abrikosov lattice”).
In addition the Ginzburg–Landau model predicts the breakdown of superconductivity
when the applied field penetrates the material completely, which occurs when the field
exceeds a critical valueHc2.

We note that Chapman, Du and Gunzburger [9] have proven that solutions of the
Lawrence–Doniach model converge to solutions of the anisotropic Ginzburg–Landau
model (and in particular the convergence of energy minimizers) under the limitp→ 0
with κ,λJ fixed. This limit does not correspond to our “two-dimensional” regime,
since it would sendr → ∞, corresponding to a strong coupling between adjacent
superconducting layers. Indeed, we observe that the non-dimensional separation distance
p of our model is related to the (dimensionally dependent) physical separationp̄ via
p = p̄/λab. Sinceλab(T )→∞ asT → Tc, the limit T → Tc effectively corresponds to
p→ 0 (with κ,λJ , p̄ fixed) in our units, and therefore the Chapman, Du and Gunzburger
limit can be interpreted as lettingT → Tc. This is consistent with the observed
“dimensional crossover” to the anisotropic Ginzburg–Landau regime for temperatures
nearTc.
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In this paper we will study the minimizers (and low-energy solutions) of the
Lawrence–Doniach system forr near zero and thereby analyse the structure of the
resulting “transparent state”. The crucial observation is that whenr = 0 the planes
decouple, and the energy may be minimized explicitly by solving simplefirst order
equations. Even after gauge symmetries have been removed ther = 0 problem exhibits
an additional symmetry, corresponding to anN -dimensional torus action (whereN + 1
denotes the number of superconducting planes), and thus the minimization problem at
r = 0 degenerates on a finite dimensional manifold in function space. We can think of
the r = 0 problem in analogy with the self-dual point of the Ginzburg–Landau model
(κ = 1/

√
2), where minimizers satisfy a first-order Bogomolnyi system (in addition to

the usual second order Ginzburg–Landau equations), and the same minimum energy is
obtained by any configuration of vortices.

When r 
= 0 this symmetry is broken and a Lyapunov–Schmidt decomposition
reduces the problem of finding solutions withr � 0 to a finite dimensional variational
problem on the degenerate manifold. The minimum value of energy is O(r), and we
indeed recover the “transparent state” observed in experiments. The local magnetic field
h(x, z)=H +O(r) inside the sample, and superconductivity is hardly affected in each
plane,|ψn(x)| = 1−O(r). In particular the order parameters are never zero: “vortices”
correspond to local maxima of the local magnetic field, and lie between the layers. In the
physics literature these are referred to asJosephson vortices,as opposed to the Abrikosov
vortices typically observed in the Ginzburg–Landau theory.

The finite dimensional reduced problem may be solved explicitly to determine the
exact geometry of the Josephson vortex lattice. For a finite sample inx, z the minima of
energy form “vortex plane” configurations, in which the local magnetic field is uniform
in z. The vortices are not separated, but line up vertically at the local maxima of
h(x, z)= h(x). (See Fig. 1.) As the external fieldH is increased vortices are nucleated
at the edges, by a first-order phase transition. Formal asymptotic expansions for these
solutions were calculated by Theorodakis [23], and Kuplevakhsky [17] claimed that they
were the only solutions of the Lawrence–Doniach system. On the contrary, we find that
there are exactly 2N solutions with energy O(r): two represent vortex planes (one stable
and the other unstable), and the others (unstable) lattices of various geometries. (See
Theorem 4.1.)

Again, we note the distinction with the Ginzburg–Landau model: the geometry of
the Abrikosov lattice was determined by numerical comparison of a finite number of
possible lattice geometries. For the Lawrence–Doniach model in the small coupling
limit we are able to identify the absolute minimizer (and all low-energy solutions of
the Euler–Lagrange equations) explicitly and rigorously. This is a direct benefit of the
discrete nature of the model.

The basic idea that an infinite dimensional variational problem is actually governed by
a finite dimensional one in some parameter limit is a common one in analysis. Indeed, it
appears in such diverse contexts as the location of Ginzburg–Landau vortices asκ→∞
(Bethuel, Brezis and Hélein [5], Bethuel and Riviére [6]), spike-layer solutions (for
example, Li and Nirenberg [19], Gui [14], or Wei [25]), and blow-up for critical exponent
problems (for example in Bahri, Li and Rey [4], or Rey [22]). These examples are of
singular perturbation problems, though. The transparent state arises as adegenerate
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Fig. 1. Vortex planes, for a sample with a finite number of superconducting planes. The dotted
horizontal lines represent the superconducting planes, and horizontal arrows indicate the in-plane
currentsj (n)

x , which vanish to orderr in the interior of the sample. The vertical arrows indicate
the Josephson currentsj (n)

z in each gap. Except for an edge effect near the top and bottom of
the sample, the magnetic fieldh(x, z) and Josephson currentsjz arez-independent. The vortices
correspond to local maxima ofh, and lie along planesx =constant, indicated here by the dark
bands.

regular perturbation of ther = 0 problem, and hence it is more closely related to the
work of Ambrosetti, Coti-Zelati and Ekeland [3] and Ambrosetti and Badiale [2] on
homoclinic solutions of Hamiltonian systems and the Poincaré–Melnikov functions.

Analytically our results are unambiguous: for any choice of the other parameters
(L, κ ,N , H ,p) we can chooser sufficiently small so that the vortex planes configuration
minimizes the free energy. However, in a real superconductorr is not infinitessimally
small, which raises the question of how the interval of validity of ther-expansion is
affected by the values of the other parameters in the problem. For example, in the order
r term in the expansion of the solution (see (34), for example) we observe “secular”
terms, that is factors which become large without bound as the length of the interval
increases, and in general remark that the coefficients increase withL,κ and decrease
with H . We address this question in Section 5, where we produce a lower bound for the
interval of validity as a function ofN , L, κ , andH . We discover that this interval is
independent ofN and indeed increases with decreasingL, κ and increasingH . For the
high-Tc superconductors,κ is large and typical macroscopic sample widthsL are very
large compared with the in-plane penetration depthλab. This indicates that our analysis
may be more applicable to experiments with highly anisotropic organic or synthetic
multi-layer superconductors, where the material parameters are significantly different
from the high-Tc crystals.

In a subsequent paper [1] we address the question of minimizers of the Lawrence–
Doniach energy in very large samples, by consideringperiodicsolutions in an infinitely
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wide sample. In fact, in the periodic case we find a different geometry for the energy
minimizing configuration! The periodic solution with the least energy is a lattice
with period two inn, forming a diamond pattern of Josephson vortices, proposed by
Bulaevskĭı and Clem [8]. In the periodic case, the role ofL is now taken by the period,
which for minimizers will decrease as the applied fieldH increases. Therefore the small
r expansion will have a large range of validity in sufficiently large fieldsH , and the
result should better describe experiments with high-Tc superconductors.

1.1. Variational setting

We begin with the following basic energy estimate, which legitimizes the simplifica-
tion |ψn(x)| � 1 for smallr . Indeed, in the physics literature the approximation|ψn| ∼ 1
is widely assumed to hold: see for example Bulaevskii [7], Clem and Coffey [10], or Bu-
laevskii and Clem [8]. In particular, we see immediately that in the regimer � 0 there
will be no “Abrikosov vortices” in the sense that the order parameter is never zero.

PROPOSITION 1.1. – LetD := [−L,L] × [0,Np]. For anyr � 0 we have

inf
{

4π

H 2
c

Gr (ψn, �A): ψn ∈H 1([−L,L]), �A ∈H 1(D;R2)} � 2Np

(
L+ 1

pH

)
r.

Moreover, there exist constantsr0 > 0 andC = C(N,L,κ,H,p) > 0 such that for all
r ∈ [0, r0) the minimum is attained by(ψn, �A) with |ψn(x)| � 1− Cr1/2 > 0 for all
x ∈ [−L,L].

Proof. –We choose a test configuration,ψn(x) = exp{inpHx}, A = (Hz,0) to
estimate the free energy,

4π

H 2
c

Gr (ψn,A)= rp

N∑
n=1

L∫
−L

(
1− cos(pHx)

)
dx � 2N

(
L+ 1

pH

)
pr.

The fact that the minimum is attained can be easily proven once an appropriate choice
of gauge has been made: see [9] for details.

It remains to show that the order parameters lie near the unit circle. We recall the
“Diamagnetic inequality” (see for example p. 174 of [20]), which states

|∇|f ||(x) � |(∇ − iA)f |(x) (almost everywhere)

for everyf ∈ L2
loc with (∇− iA)f ∈L2

loc. Using the elementary inequality(1−|ψn|)2 �
(1− |ψn|2)2, and the energy bound we obtain

N∑
n=0

∥∥1− |ψn|
∥∥2
H1 �

N∑
n=0

L∫
−L

((
1− |ψn|2)2+ 1

κ2

∣∣∣∣ d

dx
|ψn|

∣∣∣∣
2)

dx

�
N∑

n=0

L∫
−L

((
1− |ψn|2)2+ 1

κ2

∣∣∣∣
(

d

dx
− iAx

)
ψn

∣∣∣∣
2)

dx
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� 4π

H 2
c

Gr (ψn,A) � 2N
(
L+ 1

Hp

)
pr.

Here we choose an equivalent norm forH 1([−L,L]),

‖f ‖H1 :=
√√√√√

L∫
−L

(
|f |2+ 1

κ2
|f ′|2

)
dx.

By the Sobolev embedding we have for eachn= 0, . . . ,N that|ψn(x)|� 1−Cr1/2 with
constantC depending onN,L,p, κ,H . ✷

The above proposition suggests the use of polar coordinates forψn in order to deal
more directly with the phase of the order parameter, which plays the essential role in
Josephson coupling. We definefn,φn via ψn(x) = fn(x)exp(iφn(x)), and note thatφn

is well-defined only up to an additive integer multiple of 2π . We then define our new
free energy in terms of the variables(fn,φn, �A) to coincide with4π

H2
c
Gr , that is:

%r(fn,φn, �A)= p

N∑
n=0

L∫
−L

[
1

2

(
f 2
n − 1

)2+ 1

κ2
(f ′n)

2+ 1

κ2

(
φ′n −Ax(x, zn)

)2
f 2
n

]
dx

+ r

2
p

N∑
n=1

L∫
−L

(
f 2
n + f 2

n−1− 2fnfn−1 cos(&n,n−1)
)

dx

+ 1

κ2

L∫
−L

Np∫
0

(
∂Ax

∂z
− ∂Az

∂x
−H

)2

dzdx,

where

&n,n−1(x) := φn − φn−1−
zn∫

zn−1

Az(x, z)dz,

is the gauge-invariant phase difference,zn = np and r = 2
λ2
J
κ2p2 . When fn = |ψn|

is bounded away from zero the conditionψn ∈ H 1([−L,L]) is equivalent to both
fn,φn ∈H 1([−L,L]).

We first define a base space, in which%r will be a smooth functional:

E :=



(fn,φn, �A): fn ∈H 1([−L,L]), φn ∈H 1([−L,L]), n= 0, . . . ,N

�A= (Ax,Az) ∈H 1(D,R2)

 .

We remark that we should really work in the convex subset ofE with fn � 0 for all
n = 0, . . . ,N , but Lemma 1.1 already guarantees that the solutions we will find will
havefn ∼ 1. Furthermore, Proposition 4.5 of [9] asserts thatfn(x) = |ψn(x)| � 1 for
any solution of the Lawrence–Doniach equations.
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We note that%r is a smooth (C∞) functional onE , and that variation with respect to
each of its arguments gives the Lawrence–Doniach system. First, we denote by

Vn := (
φ′n −Ax(x, zn)

)
, (1)

the supercurrent velocity. Then, variation of%r with respect tofn (for each n =
0, . . . ,N ) yields

− 1

κ2
f ′′n +

(
f 2
n − 1

)
fn + 1

κ2
V 2

n fn

=



r
2(fn−1 cos&n,n−1+ fn+1 cos&n+1,n − 2fn), n 
= 0,N ;
r
2(f1 cos&1,0− f0), n= 0;
r
2(fN−1 cos&N,N−1− fN), n=N ,

(2)

with boundary conditionf ′n(±L)= 0, n= 0, . . . ,N .
Variation with respect toAx produces the following equation in weak form:

∂h

∂z
(x, z)= 0 for all (x, z) ∈ (−L,L)× (zn−1zn), n= 0, . . . ,N, (3)

h(x, zn+)− h(x, zn−)=−pf 2
n (x)

(
φ′n −Ax(x, zn)

)
, n= 1, . . . ,N − 1, (4)

h(x, zN−)= pf 2
N(x)

(
φ′N −Ax(x, zN)

)
, h(x,0+)=−pf 2

0 (x)
(
φ′0−Ax(x,0)

)
.

In other words,h is independent ofz away from the superconducting planes, and
supercurrents in the SC planes create jump discontinuities. The dependence ofh(x, z)

onx in each gap is determined by (compactly supported) variations ofAz:

∂h

∂x
= rκ2p

2
fn(x)fn−1(x)sin&n,n−1(x), (5)

if −L � x � L andzn−1 < z < zn, n= 1, . . . ,N;
with boundary conditionh(±L,z)=H . It is therefore natural to define

h(x, z)= h(n)(x), when−L � x � L, zn−1 < z < zn, n= 1, . . . ,N, (6)

with h(n) determined by the ordinary differential equations (5) together with the
boundary conditionh(n)(±L)=H .

Variation with respect toφn produces the following current–conservation laws:

1

κ2

d

dx

(
f 2
n (φ

′
n −Ax(x, zn))

)

=



r
2[fnfn−1 sin&n,n−1− fn+1fn sin&n+1,n], n= 1, . . . ,N − 1;

− r
2f1f0 sin&1,0, n= 0;

r
2fNfN−1 sin&N,N−1, n=N ,

(7)

with boundary condition

f 2
n (x)

(
φ′n(x)−Ax(x, zn)

)= 0, x =±L, n= 0, . . . ,N,

which expresses the physical fact that current should not flow past the edge of the
material. Note that (7) does not yield any new information, since it can be obtained by
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differentiating the jump condition (4) and substituting from (5). This is not surprising,
since gauge invariance implies a nontrivial relationship between theφn and �A. Indeed,
denoting the supercurrents in the planes by

j (n)
x := Vnf

2
n , (8)

and the Josephson current in between then− 1 and thenth planes by

j (n)
z := r

2
κ2pfnfn−1 sin&n,n−1, (9)

Eq. (7) is a semi-discrete version of the classical continuity equation div�j = 0, and
gives the conservation law corresponding to theU(1) gauge invariance in accordance
with Noether’s Theorem.

We are most interested in the gauge invariant “observable” quantities, which enter
directly into the free energy: the density of superconducting eletronsfn, the supercurrent
velocity Vn, the gauge-invariant phase difference&n,n−1, and the local magnetic field
h(x, z). A very useful formula for&n,n−1(x) can be obtained by applying Stokes’
Theorem in the rectangleR = (0, x)× (zn−1, zn):

&n,n−1(x)=
x∫

0

(Vn − Vn−1)dx̄ + p

x∫
0

h(n)(x̄)dx̄ +&n,n−1(0), n= 1, . . . ,N. (10)

From these equations we easily verify the smoothness of observables associated to
weak solutions of the Lawrence–Doniach system:

PROPOSITION 1.2. – Suppose(fn,φn, �A) ∈ E are critical points of %r . Then
fn,Vn,&n,n−1 ∈ C∞([−L,L]), andh ∈C∞([−L,L] × (zn−1, zn)), n= 1, . . . ,N .

Of course, the regularity of the non-gauge-invariant quantitiesφn and �A depends on
the choice of gauge.

Remark1.3. – Some authors have (correctly) pointed out that it is not physically
correct to impose the external field via a Dirichlet conditionh=H on the boundary∂D
of the sample. A more appropriate model for the effect of an external field is obtained
by placing the superconductorD in a larger regionD̃ ⊃D, (with D̃ =R2 possibly) and
including the field energy iñD \D in the calculations of the free energy,

%̃r(fn,φn, �A) :=%r(fn,φn, �A)+
∫∫
D̃\D

(curl �A−H)2 dx dz.

For example, our sampleD may be lying at the center of a long cylindrical solenoid of
large radius (whose interior cross-section is a large diskD̃). All of the preceding analysis
can then be carried through for%̃r by choosing an appropriate space (see Rubinstein and
Schatzman [21] for a discussion of the correct setting whenD̃ = R2), but it is easy to
verify that the Euler–Lagrange equations yieldh(x, z)≡H for (x, z) ∈ D̃ \D. This is
due to the two-dimensional ansatz:∇ × (g(x, z)ŷ) = 0 in a domain implies thatg is
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constant there. Consequently we may use the simpler form of the energy%r with no loss
of generality or of physical relevance.

There is a large degree of degeneracy of%r in E due to the gauge invariance: if
χ ∈H 2([−L,L] × [0,Np]), and

f̂n = fn, φ̂n(x)= φn(x)− χ(x, zn), Â= �A−∇χ,

then%r(f̂n, φ̂n, Â)=%r(fn,φn, �A). As usual, we eliminate this troublesome degeneracy
by fixing a gauge. The most convenient choice is theCoulomb gauge, which allows us
to control theH 1 norm of the vector potential�A by its curl. We define a subspace ofE
to incorporate this choice of gauge,

Eg :=
{
(fn,φn, �A) ∈ E :

L∫
−L

φ0(x)dx = 0, div �A= 0 in D, and �A · �n= 0 on∂D

}
.

This choice is made with no loss of generality:

LEMMA 1.4. – For every (fn,φn, �A) ∈ E , there existsχ ∈ H 2(D) so that (fn,

φn − χ(·, zn), �A−∇χ) ∈ Eg.

We also have:

LEMMA 1.5. – For every(fn,φn, �A) ∈ Eg

‖ �A‖2
H1(D) � C0‖curl �A‖2

L2(D), (11)

where

C0= 2
[
1+ 4

π2

L2N2p2

N2p2+ 4L2

]2

. (12)

Proof of Lemma 1.4. –Given (fn,φn, �A) ∈ E we may solve the linear Neumann
problem, {

,χ = div �A for x ∈D,
∂χ/∂ �n= �A · �n for x ∈ ∂D.

By the divergence theorem there exists a unique (up to constants) weak solution,
χ ∈ H 1(D). Since �A ∈ H 1 we haveχ ∈ H 2

loc(D) by standard regularity theory. Since
the domainD is polygonal we must be more careful to determine the regularity at
the corners, but by Theorem 1.5.2.4 of Grisvard [13] we may find anH 2(D) function
whose normal derivative coincides with�A · �n on ∂D. Then Theorem 4.3.1.4 of [13]
provides global regularity,χ ∈ H 2(D). By subtracting a constant fromχ such that
φ0(x)− χ(x,0) has average zero we achieve the desired gauge change.✷

Proof of Lemma 1.5. –Assume(fn,φn, �A) ∈ Eg. We now solve the Dirichlet problem,

{
,η= curl �A for x ∈D,
η= 0 for x ∈ ∂D.

(13)
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By Theorem 4.3.1.4 of [13] the unique solutionη ∈ H 2(D), and Ã = (∂zη,−∂xη) ∈
H 1(D;R2) with div ( �A− Ã)= 0, curl( �A− Ã)= 0, and( �A− Ã) · �n= 0 on∂D. Hence
�A = Ã, and the explicit solution of the Dirichlet problem in a rectangle (via Fourier
analysis) provides the constantC0 > 0 such that:

‖ �A‖2
H1(D) � ‖η‖2

H2(D) � C0‖,η‖2
L2(D) = C0‖curl �A‖2

L2(D). ✷
2. Minimization at r = 0

Whenr = 0, the superconducting planes decouple, and we may solve the minimiza-
tion problem explicitly. The solution of the problemr ∼ 0 will require some detailed
second-order information on the minimizers atr = 0, so we first establish a functional
analytic setting for the equations. We exploit the Hilbert manifold structure ofEg , and
regard the first variation of energy as elements of the tangent Hilbert space

E = T Eg =
{
(un, vn, �a): un, vn ∈H 1([−L,L]),

L∫
−L

v0 dx = 0,

�a ∈H 1(D), div �a = 0 in D,�a · �n= 0 on∂D

}
,

and the second variation as a self-adjoint operator onE. We first introduce an equivalent
inner product: for(un, vn, �a), (Un,Vn, �A) ∈E, let

〈
(un, vn, �a), (Un,Vn, �A)

〉 := p

N∑
n=0

L∫
−L

{
2unUn + 1

κ2
[u′nU ′

n + v′nV
′
n] + vnVn

}
dx

+ 1

κ2

∫∫
D

curl �a · curl �Adx dz.

Then we define the gradient of%r(fn,φn, �A) via

〈∇%r(fn,φn, �A), (un, vn, �a)〉=D%r(fn,φn, �A)[un, vn, �a].
PROPOSITION 2.1. – With r = 0,
(a) inf{%0(fn,φn, �A): (fn,φn, �A) ∈ Eg} = 0. The minimum value is attained, and

the set of all minimizers coincides with the hyperplaneS , defined by the set of
(fn,φn, �A) ∈ Eg such that: fn ≡ 1;

φn(x)= αn +
x∫

0

Ax(s, zn)ds, α0= 0, αn ∈R, n= 1, . . . ,N; (14)

�A= (ηz,−ηx), where,η=H in D, andη|∂D = 0. (15)

In particular, the gauge invariant phase difference is given by&0
n,n−1= δn+Hpx,

whereδn := αn − αn−1, n= 1, . . . ,N .
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(b) For any elements = (f 0
n , φ

0
n,
�A0) ∈ S , the linearized operatorD2%0(s) :E→ E

defines a Fredholm operator with index zero. Moreover,

TsS = kerD2%0(s)�RN. (16)

Note thatT := TsS is independent ofs ∈ S . Note thatS may be parametrized
by either (α1, . . . , αN) or (δ1, . . . , δN) ∈ RN � T . We abuse notation and writes =
s(α1, . . . , αN) or s = s(δn, . . . , δN) to emphasize the dependence.

Proof. –Being a sum of non-negative terms we clearly have infEg
%0(fn,φn, �A) � 0.

The infimum of zero will be attained at(f 0
n , φ

0
n,
�A0) if and only if they solve the

following first-order equations in our spaceEg:

fn(x)≡ 1, φ′n(x)−Ax(x, zn)≡ 0, curl �A=H. (17)

Note that by Lemma 1.4 the last equation is uniquely solved for�A0 ∈ H 1(D), with
solution as in (15). By the trace theoremAx(x, zn) ∈H 1/2([−L,L]), and therefore,φn

is uniquely determined by integration, except for the(N + 1) constants of integration
αn. Note thatη is even inx, and hence

∫ x

0 A0
x(t, zn)dt is an odd function. In particular,

αn gives the average value ofφ0
n and thusα0= 0 is fixed by the definition of the space

Eg, leavingN free parameters(α1, . . . , αN) to parametrize the solution set. The explicit
form for &0

n,n−1 is then obtained from (10). This completes the proof of (a).
Writing the linearized operator around a solution(f 0

n , φ
0
n,
�A0) as a quadratic form,

D2%0(f
0
n , φ

0
n,
�A0)[un, vn, �a]

= p

N∑
n=0

L∫
−L

{
2u2

n +
1

κ2
[u′n]2+

1

κ2
[v′n − ax(x, zn)]2

}
dx + 1

κ2

∫∫
D

∣∣curl �a∣∣2dx dz

= 〈
(un, vn, �a), (un, vn, �a)〉− p

N∑
n=0

L∫
−L

{
2

κ2
v′n(x)ax(x, zn)+ v2

n(x)

}
dx (18)

where(un, vn, �a) ∈E.
First note that by the second identity in (18),D2%0(f

0
n , φ

0
n,
�A0) is of the form identity

plus compact (since the trace embedding of�a → �a(·, zn) is compact fromH 1(D) to
L2([−L,L])). Next assume that(un, vn, �a) ∈ kerD2%0(f

0
n , φ

0
n,
�A0). Clearlyun ≡ 0 for

all n= 0, . . . ,N . By Lemma 1.5 we must have�a ≡ 0, and hencevn are constant. Since
the definition of the spaceE forces v0(x) with mean zero, we are left withN free
parameters, and

kerD2%0
(
f 0
n , φ

0
n,
�A0)= {

(un, vn, �a) ∈E: (un)n ≡ 0, �a ≡ 0,

(v0, . . . , vN)= (0, c1, . . . , cN), c1, . . . , cN ∈R
}

= TsS. ✷
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3. Degenerate perturbation theory

We now perturb away from the degenerate minima of%0, using a variational
Lyapunov–Schmidt procedure. This method has been used by Ambrosetti, Coti-Zelati
and Ekeland [3], Abrosetti and Badiale [2], Li and Nirenberg [19] (and many others) in
a variety of situations involving heteroclinic solutions of Hamiltonian systems and in the
semiclassical limit of the nonlinear Schrödinger equation.

We now proceed according to the usual Lyapunov–Schmidt reduction. SinceS is a
hyperplane,T = TsS is independent ofs ∈ S . Let W = T ⊥, so any(fn,φn, �A) ∈ Eg

admits the unique decomposition(fn,φn, �A) = s + w with s ∈ S , w ∈ W , and any
U := (un, vn, �a) ∈ E decomposes uniquely asU = t + w with t ∈ T , w ∈ W . We
denote the orthogonal projection mapsP :E → T , P⊥ :E → W so thatPU = t ,
P⊥U =w wheneverU = t+w. As in the previous section we interpret the first variation
∇%r(fn,φn, �A) as an element ofE itself, and project the equation∇%r(fn,φn, �A)= 0
into the two linear subspacesT andW ,

F1(r, s,w) :=P [∇%r(s +w)] = 0; (19)

F2(r, s,w) :=P⊥[∇%r(s +w)] = 0. (20)

By Proposition 2.1(b), the second equation can be solved uniquely forw = w(r, s)

in a neighborhood ofS for r small, using the Implicit Function Theorem. Because
our functional %r is smooth we can expandw(r, s) in powers of r . Note that
%r(s(α1, . . . , αN) + w) is periodic in (α1, . . . , αN) so that we may think ofS as
a (compact)N -torus. Therefore the expansion will be uniform ins. We obtain the
following variant of Lemma 2 of [2]:

LEMMA 3.1. – There exist constantsr0 > 0 and δ > 0, depending onN,L,κ, and
H , and a smooth function

w =w(r, s) : (−r0, r0)× S→W ⊂E

such that:
(i) There exists smooth functionsw1,w2 such that

w(r, s)= rw1(s)+ r2w2(r, s)

for all |r|< r0 and for all s ∈ S ;
(ii) P⊥[∇%r(s +w(r, s))] = 0.

(iii) Conversely, ifP⊥[∇%r(s + w)] = 0 for somer ∈ (−r0, r0) and w ∈ W with
‖w‖E < δ, thenw=w(r, s).

(iv) For any choice ofL0, κ0,H0 > 0 the constantr0 may be chosen uniformly for all
N � 1, 1� L � L0, 1� κ � κ0, andH � H0.

Parts (i)–(iii) follow easily from the Implicit Function Theorem. The dependences on
the various parameters is more delicate: we provide the full proof in Section 2.5.

We define

Sr := {
s +w(r, s): s ∈ S

}⊂ Eg.
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Sr is a smooth manifold smoothly diffeomorphic to the hyperplaneS . The important
role played bySr is that it is a natural constraint for%r (see Lemma 4 of [2]), and hence
Eq. (19) may be solved variationally:

LEMMA 3.2. –
(a) If (fn,φn, �A) ∈ Sr satisfiesD(%r |Sr

)(fn, φn, �A) = 0, then∇%r(fn,φn, �A) = 0
in E.

(b) There existsε0= ε0(N,L, κ,H)> 0 such that if(fn,φn, �A) ∈ Eg is a critical point
of %r with

%r(fn,φn, �A) � ε0, (21)

then(fn,φn, �A) ∈ Sr .
(c) There exists̃r0= r̃0(N,L, κ,H) such that for all0< r < r̃0, infEg

%r = infSr
%r .

Proof. –The assertion (a) is exactly Lemma 4 of [2]. To prove (b), assume that
(fn,φn, �A) ∈ Eg is a critical point of%r with energy bounded by (21). As remarked
in the beginning of the section,(fn,φn, �A) decomposes uniquely as(fn,φn, �A)= s+w,
s = (f 0

n ≡ 1, φ0
n,
�A0) ∈ S , w ∈W . Now we use the energy bound to estimate the distance

between(fn,φn, �A) ands: by Lemma 1.5,

‖ �A− �A0‖H1 � C0‖curl �A− curl �A0‖L2 =C0‖curl �A−H‖L2 � C0ε0κ
2;

p

N∑
n=0

L∫
−L

[
1

κ2
(f ′n)

2+ (1− fn)
2
]

dx �p

N∑
n=0

L∫
−L

[
1

κ2
(f ′n)

2+ (
1− f 2

n

)2
]

dx � ε0;

p

N∑
n=0

L∫
−L

1

κ2
(φ′n − φ′n0)

2 dx

= p

N∑
n=0

L∫
−L

1

κ2

(
φ′n −Ax0(x, zn)

)2
dx

� 2p
N∑

n=0

L∫
−L

(
1

κ2

(
φ′n −Ax(x, zn)

)2+ 1

κ2

(
Ax(x, zn)−Ax0(x, zn)

)2
)

dx

� 2ε0+C1‖ �A− �A0‖H1 � C2ε0,

whereC1 comes from applying the Trace theorem (see Lemma 5.2 in Section 5) in
the last line. Finally, since[(fn,φn, �A) − s] ∈ W , eachφn − φ0

n has mean value zero.
Therefore, theH 1([−L,L])-norm of the difference is controlled by the difference of the
derivatives, as estimated above, and we may chooseε0 small enough such that

dist
(
(fn,φn, �A), (fn0, φn0, �A0)

)
< cε0 < δ, (22)

whereδ = δ(N,L, κ,H) is given by Lemma 3.1. It then follows by assertion (iii) of
Lemma 3.1 that if(fn,φn, �A) is a critical point of the Lawrence–Doniach system with
the given energy bound it must lie onSr . This completes the proof of (b).
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To prove (c) we note that Proposition 1.1 implies that infEg
%r � 2Np(L+ 1

Hp
)r , and

hence we can chooser̃0 < r0 such that 2Np(L+ 1
Hp

)r̃0 � ε0. ✷
Remark3.3. – We note that we cannot make the same statement about theN,L,κ,H

dependences ofr̃0 in (c) of Proposition 3.2 as we make forr0 in Lemma 3.1. The uniform
bounds onr0 are possible because oflocal estimates on the solution set of (20) and
a continuity argument fromr = 0. (See Section 5.) We have no such control on the
distanceδ from S to solutions which donot lie on on the manifoldSr . This would
entail uniform (in the parameters)global (i.e., non-perturbative) information about the
solution set, which energy bounds do not provide. This leaves open the possibility of an
interval r ∈ (r̃0, r0) for which the solutions onSr continue to exist and are represented
by a perturbation expansion inr , but the absolute minimizer might not be an element of
this family.

In conclusion, we have achieved a complete finite-dimensional reduction of our
problem, for smallr . That is to say, when 0< r < r̃0 all low energy solutions of the
Lawrence–Doniach system can be found on theN -dimensional surfaceSr . Moreover,
an explicit form for these solutions may be determined by a simple procedure of Taylor
expansion of the equations and energy in powers ofr , as is legitimized by Lemma 3.1.

4. Vortex planes

We now apply the theory of the previous section to determine the minimizer (and other
stationary states) of the Lawrence–Doniach energy, forr! 1.

We summarize our results in the following:

THEOREM 4.1. – Assume thatsin(HpL) 
= 0. There existsr1= r1(N,L, κ,H) such
that for everyr with 0 < r < r1, the global minimum of free energy is attained by
the vortex plane solutions, given asymptotically by(28)–(34)below. Moreover, when
0< r < r1 %r admits exactly2N physically distinct critical points with energy bounded
as in(21).

4.1. Minimizing �r|Sr

By Proposition 3.2 we seek critical points of the finite dimensional variational problem
%r |Sr

. Using Lemma 3.1(i) we expand a point(fn,φn, �A) ∈ Sr as

(fn,φn, �A)= s +w(r, s)= (
f 0
n , φ

0
n,
�A0)+ r(un, vn, �a)+O

(
r2),

where(f 0
n , φ

0
n,
�A0) ∈ S solve the first-order system (17), and the error term is uniform

overs ∈ S . We observe that%r has the form,

%r(fn,φn, �A)=%0(fn,φn, �A)+ r;(fn,φn, �A), with

;(fn,φn, �A)= p

2

N∑
n=1

L∫
−L

(
f 2
n + f 2

n−1− 2fnfn−1 cos(&n,n−1)
)

dx.
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Since%r(s+w(r, s)) is a smooth function ofs = s(δ1, . . . , δN) andr , it admits a Taylor
expansion of the form,

%r

(
s +w(r, s)

)=%0(s)+ r
∂

∂r
%r

(
s +w(r, s)

)∣∣∣∣
r=0
+O

(
r2)

= r

(
;(s)+∇%0(s)

[
∂w

∂r
(0, s)

])
+O

(
r2)= r;(s)+O

(
r2)

= rp

N∑
n=1

L∫
−L

[
1− cos(δn +Hpx)

]
dx +O

(
r2)

= 2p

(
NL− sin(HpL)

Hp

N∑
n=1

cosδn

)
r +O

(
r2), (23)

with remainder term uniform fors ∈ S .
DefineG : R×RN →R by:

G(r, δ1, . . . , δN) :=%r

(
s +w(r, s)

)
/r, s = s(δ1, . . . , δN).

ThenG is a smooth function which is periodic in each coordinateδn, and

G(0, δ1, . . . , δN)= 2NpL− 2sin(HpL)

H

N∑
n=1

cosδn.

Note that when

sin(HpL) 
= 0

G(0, s) possesses exactly 2N critical points for (δ1, . . . , δn) ∈ K := RN/(2πZ)N

corresponding to any permutation of

δn ∈ {0, π}mod 2π.

It is easy to see that each is anon-degeneratecritical point of G(0, s). By the
Implicit Function Theorem, there exists̃r1 > 0 such that for allr ∈ (0, r̃1), and for
any critical point(δ∗1, . . . , δ∗N) of G(0, δ1, . . . , δN) there exists a unique critical point
(δ1(r), . . . , δN(r)) of G(r, δ1, . . . , δN), with

(
δ1(r), . . . , δN(r)

)= (δ∗1, . . . , δ
∗
N)+O(r).

SinceG is periodic in eachδn we may also conclude (via a compactness argument)
that these are the only critical points ofG(r, δ1, . . . , δN) for small r . Since%r |Sr

=
rG(r, δ1, . . . , δN), by Lemma 3.2, therefore, for allr with 0< r < min{r̃0, r̃1} := r1 and
whenever sin(HpL) 
= 0, %r admits exactly 2N critical points (mod 2πin eachφn(x))
with energy bound (21).
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The absolute minimizer ofG(0, s) is obtained for

δ∗n =



0, when sin(HpL)

Hp
> 0, for everyn= 1, . . . ,N ;

π, when sin(HpL)

Hp
< 0, for everyn= 1, . . . ,N .

(24)

By the Implicit Function Theorem argument in the previous paragraph, we conclude that
for all r ∈ (0, r1), %r |Sr

is minimized by a uniquesr = s(δ1(r), . . . , δN(r)) with

δn(r)= δ∗ +O(r), n= 1, . . . ,N,

whereδ∗ ∈ {0, π} is chosen as in (24). Finally, by Lemma 3.2 we conclude that for
all r ∈ (0, r1) and sin(HpL) 
= 0 the absolute minimizer of%r in Eg is given by
(fn,φn, �A)= sr + rw1(sr)+O(r2), with minimum energy

inf
Eg

%r = 2Np

(
L− sin(HpL

Hp

)
r +O

(
r2).

When sin(HpL) = 0 then%r |Sr
is degenerate at orderr . Normally we should go

to a higher order in the expansion to determine the stationary configurations at these
exceptional values ofH = mπ/Lp, m = 1,2,3, . . . , but (as we will see later in the
section) the existence of these degenerate points is explained by the exchange of stability
of two families of solutions when vortices are nucleated into the sample from the
boundary. We note that the treatment of the periodic problem in the subsequent paper
[1] will require an expansion of the energy to orderr2 to resolve the degeneracy at any
applied fieldH .

4.2. Expanding the solutions to order r

Because%r is a smooth functional we may use the Implicit Function Theorem and
the decomposition of Lemma 3.1 to obtain an expansion to arbitrary order inr of any
critical point satisfying the energy estimate (21). Here we generate the expansion to
orderr , to get a better idea of the nature of the global minimizers. Take any such critical
point of%r |Sr

, with expansion as in (i) of Lemma 3.1,(fn,φn, �A)= s+ rw1(s)+O(r2),

s = s(δ1, . . . , δN). We deduce the equation satisfied byw1(s) by implicit differentiation
of Eq. (20):

0= d

dr
P⊥

(∇%r(s +w(r, s))
)∣∣∣∣

r=0

=P⊥
(
∇;(s)+D2%0(s)

[
∂w

∂r
(0, s)

])

=P⊥
(∇;(s)+D2%0(s)[w1(s)]). (25)

SinceD2%0(s) is an invertible map fromW → W this formula uniquely determines
w1(s). Now we representw1(s)= (un,1, vn,1, ax,1, az,1), in other words

fn= 1+ run,1+O
(
r2), φn = αn + nHpx + vn,1+O

(
r2),

Ax =Hz+ rax,1+O
(
r2), Az = raz,1+O

(
r2),
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and denoteb(x, z)= curl �a1 = ∂zax,1− ∂xaz,1. In terms of these coordinates (25) takes
the following simple form:

− 1

κ2
u′′n,1+ 2un,1= 1

2




cos(δn +Hpx)+ cos(δn+1+Hpx)− 2, 1� n � N − 1,
cos(δN +Hpx)− 1, n=N ,
cos(δ1+Hpx)− 1, n= 0,

with u′n,1(±L)= 0;

1

κ2

d

dx

(
v′n,1− ax,1(x, zn)

)

= 1

2




sin(δn +Hpx)− sin(δn+1+Hpx)− In, 1 � n � N − 1,
sin(δN +Hpx)− IN, n=N ,
−sin(δ1+Hpx)− I0, n= 0,

with boundary conditionv′n,1(±L)− ax,1(±L,zn)= 0 and

In = 1

2L




∫ L

−L[sin(δn +Hpx)− sin(δn+1+Hpx)]dx, 1� n � N − 1,∫ L

−L sin(δN +Hpx)dx, n=N ,

− ∫ L

−L sin(δ1+Hpx)dx, n= 0;

and

�a1(x, z)=
(
∂ξ

∂z
,−∂ξ

∂x

)
, ,ξ = b(x, z), ξ

∣∣
∂B
= 0, (26)

whereb(x, z)= b(n)(x) for zn−1 < z < zn, with

∂b(n)

∂x
= pκ2

2

[
sin(δn +Hpx)− 1

2L

L∫
−L

sin(δn +Hpx)dx

]
, b(n)(±L)= 0, (27)

for n= 1, . . . ,N .
Now assume that sin(HpL) 
= 0 and consider the absolute minimizers,δn ≡ δ∗ with

δ∗ ∈ {0, π} chosen according to (24). Except for an edge effect at the top and bottom
layers (n = 0,N ) the gauge-invariant quantities are independent ofn at orderr . In
particular, the magnetic fieldh, and Josephson current densityj (n)

z are (at orderr)
completely independent ofz, n:

j (n)
z := jcfnfn−1 sin&n,n−1= r

κ2p

2
sin(δ +Hpx)+O

(
r2), (28)

h(x, z)=H + r
κ2

2H

(
cos(δ+HpL)− cos(δ+Hpx)

)+O
(
r2) (29)

wherejc = r
κ2p

2 is the critical Josephson current. The in-plane supercurrent vanishes at
orderr for all interior planes,

j (n)
x =O

(
r2), n= 1, . . . ,N − 1,
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but the top and bottom of the sample carry current at orderr :

j (N)
x = 0+ r

κ2

2Hp

(
cos(δ+HpL)− cos(δ+Hpx)

)+O
(
r2), (30)

j (0)
x = 0+ r

κ2

2Hp

(
cos(δ+Hpx)− cos(δ+HpL)

)+O
(
r2). (31)

Similarly, the orderr expansion of modulus of the order parameter isn-independent on
the interior planes, but is modified at the top and bottom at orderr :

fn(x)= 1+ r

(
−1

2
+Acosh

(√
2

κ
x

)
+B cos(δ+Hpx)

)
+O

(
r2),

n= 1, . . . ,N − 1, (32)

f0= fN = 1+ r

2

(
−1

2
+Acosh

(√
2

κ
x

)
+B cos(δ+Hpx)

)
+O

(
r2), (33)

where

A= κ3Hp√
2(H 2p2+ 2κ2)

sin(δ+HpL)

sinh(
√

2L
κ

)
, B = κ2

H 2p2+ 2κ2
.

Expansion to orderr2 in the solutions will show these quantities to be independent ofz

(or n) except for the top and bottomtwoplanes and the top and bottom gaps.
We note that the gauge-invariant phase difference,

&n,n−1(x)= δ+Hpx + r
κ2

2H 2

(
xHp cos(δ+HpL)− sin(δ+Hpx)+ cn

)+O
(
r2),
(34)

contains constantscn which can only be determined by higher order expansion inr .
Indeed, they represent the orderr correction to the choice ofδn when minimizing the
finite dimensional problem%r |Sr

.
We call this configurationvortex planes– see Fig. 1. Unlike the Ginzburg–Landau

case, the order parameter does not vanish at the “core” where the local field attains its
maximal value and around which supercurrents circulate. The “vortices” are then the
planes{x = const.} over whichh(x) attains its relative maxima. These planes are nodes
for the current, and flux per plane per cycle of the Josephson current is, to orderr , the
usual flux quantum (2πin our units).

Remark4.2. – (a) The distinction between the energies of the various lattice
geometries at the lowest order term O(r) in expansion (23) is asurface term, in the
sense that it scales like the length of the lateral edges of the sample 2Np, as opposed
to the free energy itself which scales like the cross-sectional area of the bulk 2LNp. In
other words, the vortex plane configuration is preferred for the effect it has on the surface
currents on the left and right edges of the sample, with no regard to energy minimization
in the interior. As we will see in the periodic case in [1] the effect on the bulk will be
observed in an orderr2 term. For all other parameters fixed, eventually we can taker > 0
small enough so that the O(r) surface term dominates. But in a real superconductor the
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value ofr is given, and hence when the widthL is increased eventually the bulk O(r2)

term will compete with the surface O(r) term. This suggests that the interval of validity
of the r expansion may not be uniform, but rather deteriorate with increasing sample
width L.

(b) Another indication that the radius of convergence of the expansion depends
inversely on the widthL is the presence of a linearly growing factor (secular term) in the
orderr term of expansion (34) of&n,n−1(x).

4.3. Vortex plane nucleation

The very precise desciption of minimizers forr � 0 allows us to identify the
transitions which the sample undergoes as new vortices are nucleated in an increasing
applied fieldH . When 0� H < π/pL we observe the Meissner state for this problem:
h attains its maximum at the boundaryx = ±L, and decreases to a line of minima at
x = 0. For our solutions the lower critical fieldHC1 = π/pL: at this point the finite
dimensional minimization problemG(0, s) = 0 degenerates, and whenH is increased
slightly the minimizing configuration has phasesδn = π for all n= 1, . . . ,N . Note that
at this critical value ofH a new node appears in the Josephson current (28) at each
endpoint. The switch inδn amounts to a flip in sign for the Josephson currents and for
the variation ofh from H , so the newly nucleated nodes correspond tominimaof h,
with the former minimum atx = 0 becoming a localmaximum. The same phenomenon
will occur every timeH crosses a valuekπ

pL
, k = 2,3, . . . . Each time, two new nodes for

the Josephson current will be nucleated, and the change ofδn from zero toπ (or vice-
versa) will exchange minima and maxima ofh in the interior, resulting in the creation of
exactlyonenew vortex plane. Since the minimum energy is given asymptotically by

ε(H) :=min%r =Npr

(
2L−

∣∣∣∣2sin(HpL)

Hp

∣∣∣∣
)
+O

(
r2),

the magnetizationM(H) := ∂ε/∂H is discontinuous at each nucleation, indicating a
first-order phase transition.

5. The validity of the expansion

In this section we prove Lemma 3.1 which justifies the finite dimensional reduction
in a neighborhood ofS . While parts (i)–(iii) follow easily from the Implicit Function
Theorem, the real interest is in the dependence of the interval of validity|r|< r0 on the
many parameters in the model, especially the sample dimensionsL andM =Np, κ , and
the applied fieldH . Here we give a lower bound for the “radius of convergence” inr

as a function of these parameters. We show that the smallr approximation is essentially
independent of the number of planesN , but that its validity can be expected to decrease
with increasing widthL or increasingκ . On the other hand, increasing the external
field H enhances the approximations somewhat. This lower bound is consistent with
experiments on the high-Tc materials, where the vortex planes have not been observed,
perhaps because the large values ofκ and the large size of typical samples (measured in
terms ofλab) reduce the radius of validity of the expansion below the appropriate value
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of r for such materials. For other types of layered superconductors with smaller values
of κ we are more likely to see configurations similar to the solutions produced in our
r→ 0 limit.

Throughout this section, we concentrate on the parametersN,L,κ,H , and assume
0 < p < 1, κ � 1, andL � 1. We also define a norm on the spaceW = [T S]⊥: let
w= (un, vn, �a) ∈W . Then we denote

‖w‖2= ‖[(un, vn, �a)‖2=p

N∑
n=0

L∫
−L

(
(u′n)

2+ u2
n + (v′n)

2+ v2
n

)
dx

+
∫∫
D

[|∇�a|2+ |�a|2]dx dz.

Our approach is to calculatea priori estimates on the solutions to Eq. (20) to determine
when that equation can degenerate. As a first step, we must recognize the system of
differential equations satisfied by the solutions to (20). For anyU = (fn,φn, �A) we write
U = s +w(r, s), wheres = s(δ1, . . . , δN) ∈ S , andw(r, s)= (un, vn, �a) ∈W . We recall
the effect that this decomposition has on some familiar quantities:

fn = 1+ un, Vn(x)= φ′n −Ax(x, zn)= v′n − ax(x, zn),

�a(x, z)= (∂zξ,−∂xξ), ,ξ = b(x, z), ξ |∂D = 0, h(x, z)=H + b(x, z),

&n,n−1= φn − φn−1−
zn∫

zn−1

Az(x, t)dt =Hpx + δn + ϕn,n−1,

whereϕn,n−1(x)= vn(x)− vn−1(x)−
zn∫

zn−1

az(x, t)dt.

The equations for(un, vn, �a) will differ from the unconstrained Euler–Lagrange
equations derived in Section 2 because of Lagrange multipliers created by projection
into the subspaceW .

To sayw(r, s) solvesP⊥D%r(s + w(r, s)) = 0 is equivalent to saying that%r(s +
w(r, s)) is stationary with respect to variations inW . Taking the variation with respect
to just one of theun yields the exact same Eqs. (2) as the unconstrained case, which we
rewrite in terms ofun:

− 1

κ2
u′′n + (un + 1)(un + 2)un + 1

κ2

(
v′n − ax(x, zn)

)2
un =− 1

κ2

(
v′n − ax(x, zn)

)2

+



r
2((1+ un−1)cos&n,n−1+ (1+ un+1)cos&n+1,n − 2(1+ un)), n 
= 0,N ;
r
2((1+ u1)cos&1,0− (1+ u0)), n= 0;
r
2((1+ uN−1)cos&N,N−1− (1+ uN)), n=N ,

(35)

with boundary conditionsu′n(±L)= 0.
For vn, n = 0, . . . ,N , the integral constraint gives rise to the usual Lagrange

multiplier, without which the equations generally could not be integrated:
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1

κ2

d

dx

(
f 2
n (v

′
n − ax(x, zn))

)
(36)

=



r
2[fnfn−1 sin&n,n−1− fn+1fn sin&n+1,n] −Cn, n= 1, . . . ,N − 1;
r
2fNfN−1 sin&N,N−1−CN, n=N ,

− r
2f0f1 sin&1,0+C0, n= 0,

where

Cn =




1
2L

∫ L

−L
r
2[fnfn−1 sin&n,n−1− fn+1fn sin&n+1,n]dx, n= 1, . . . ,N − 1;

1
2L

∫ L

−L
r
2fNfN−1 sin&N,N−1 dx, n=N ,

1
2L

∫ L

−L
r
2f0f1 sin&1,0 dx, n= 0.

The equations forvn also include a no-flux boundary condition,

f 2
n

(
v′n − ax(·, zn))∣∣x=±L

= 0, n= 0, . . . ,N.

Finally, we derive the Euler–Lagrange equations for�a. As in our previous calculations
it will be easier to deal with the associated magnetic fieldb(x, z)= curl �a(x, z).

LEMMA 5.1. – If (fn,φn, �A)= s +w(r, s) satisfies(20), thenb(x, z)= h(x, z)−H

satisfies:

b(x, z)= b(n)(x), zn−1 < z < zn, n= 1, . . . ,N, (37)

b(n)(x)− b(n+1)(x)= p
(
v′n − ax(x, zn)

)
, n= 1, . . . ,N − 1, (38)

b(N)(x)= p
(
(v′N − ax(x, zN))f 2

N

)
, b(1)(x)=−p

(
(v′0− ax(x, z0))f

2
0

)
, (39)

db(n)

dx
= rpκ2

2
fnfn−1 sin&n,n−1(x)−Dn, b(n)(±L)= 0, (40)

whereDn= 1

2L

L∫
−L

rpκ2

2
fnfn−1 sin&n,n−1(x)dx.

Proof. –First we derive the equation for�a in the weak form. Any admissible variation
for �a in E can be represented in the form̃a = (∂zη,−∂xη) with η ∈ H 2 ∩ H 1

0 (D).
(Indeed,η solves,η = curl ã in with η|∂D = 0: see Lemma 1.5.) Taking the first
variation of energy in the direction ofã we obtain:

0=−p

N∑
n=0

L∫
−L

1

κ2

(
v′n − ax(x, zn)

)
f 2
n ∂zη(x, zn)dx

+
N∑

n=1

L∫
−L

zn∫
zn−1

{
1

κ2
b(x, z),η+ rp

2
fnfn−1 sin&n,n−1∂xη

}
dzdx, (41)

for all η ∈H 2∩H 1
0 (D).
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Next, we observe that there exist functionsb̂n(x) ∈ H 1(−L,L) which solve the
system (38)–(40). Indeed, we defineb̂n by integration,

b̂n(x)=
x∫

−L

(
rpκ2

2
fn(x)fn−1(x)sin&n,n−1(x)−Dn

)
dx, n= 1, . . . ,N.

Thenb̂n(x) ∈H 1([−L,L]) and satisfies (40). Forn= 1, . . . ,N − 1 we have:

d

dx

(
b̂n+1(x)− b̂n(x)

)= rpκ2

2
(fn+1fn sin&n+1,n − fnfn−1 sin&n,n−1)−Dn+1+Dn

=−p
d

dx

(
(v′n − ax(x, zn))f

2
n

)
,

by (36). For the top and bottom gaps (n= 1,N ) we obtain:

d

dx
b̂N(x)= rpκ2

2
fNfN−1 sin&N,N−1−DN = p

d

dx

(
(v′N − ax(x, zN))f 2

N

)
,

d

dx
b̂0(x)= rpκ2

2
f0f1 sin&1,0−D0=−p

d

dx

(
(v′0− ax(x, z0))f

2
0

)
.

In each case we integrate (and use the boundary conditionsb̂n(−L) = 0= v′n(−L) −
ax(−L,zn)) to verify thatb̂n satisfies conditions (38) and (39).

Next we defineb̂(x, z)= b̂n(x) for zn−1 < z < zn, and show that̂b also solves (41).
By an integration by parts in each summand,

N∑
n=1

L∫
−L

zn∫
zn−1

1

κ2
b̂(x, z),ηdzdx

=
N∑

n=1

L∫
−L

zn∫
zn−1

1

κ2
b̂n(x),ηdzdx

= 1

κ2

N∑
n=1

{ L∫
−L

b̂n(x)
(
∂zη(x, zn)− ∂zη(x, zn−1)

)
dx −

L∫
−L

zn∫
zn−1

db̂n

dx
∂xη(x, z)dzdx

}

= 1

κ2

L∫
−L

[
b̂N (x)∂zη(x, zN)− b̂1(x)∂zη(x,0)

]
dx

+ 1

κ2

N−1∑
n=1

L∫
−L

(
b̂n(x)− b̂n+1(x)

)
∂zη(x, zn)dx

−
N∑

n=1

L∫
−L

zn∫
zn−1

(
rp

2
fnfn−1 sin&n,n−1(x)−Dn

)
∂xηdzdx
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= p

N∑
n=0

L∫
−L

1

κ2

(
v′n − ax(x, zn)

)
f 2
n ∂zη(x, zn)dx

−
N∑

n=1

L∫
−L

zn∫
zn−1

rp

2
fnfn−1 sin&n,n−1(x)∂xηdzdx

for all η ∈ H 2 ∩ H 1
0 (D). That is, b̂ also solves Eq. (41). Now consider the func-

tion g(x, z) defined by g(x, z) = b(x, z) − b̂(x, z). Then g ∈ L2(D) and solves�
D
g(x, z),ηdx dz = 0 for all η ∈ H 2 ∩ H 1

0 (D). Taking η to be the solution to the
Dirichlet problem,,η = g, η|∂D = 0 we arrive at the desired conclusiong ≡ 0, and
henceb(x, z)= b̂(x, z) and the lemma is established.✷

As before, we observe that the gauge-invariant phase difference satisfies a useful
equation (see (10)), which derives from Stokes’ Theorem:

d

dx
ϕn,n−1(x)= (

v′n − ax(x, zn)
)− (

v′n−1− ax(x, zn−1)
)+ pb(n)(x). (42)

We now begin the proof of Lemma 3.1.
Step 1.Getting started. By the implicit function theorem, applied to Eq. (20), for

everys ∈ S , and for every fixed choice of parametersN,L,κ,H , there exist constants
ρ > 0, r1 > 0 such that (20) admits a unique solutionw = w(r, s) with |r| < r1 and
‖w‖ < ρ. Since%r(s + w(r, s)) is periodic ins we may compactify the problem by
treatingS as anN -torus, and hence the constantsr1, ρ may be chosen independently of
s ∈ S . Statements (i)–(iii) of Lemma 3.1 then follow from standard arguments involving
the Implicit Function Theorem and the regularity of the functional%r (see [2]). What
remains to prove is the dependence of the valuer1 on the various parameters.

We first observe that Lemma 3.1(i) implies that the solutionsw(r, s) satisfy a uniform
(in s) estimate‖w(r, s)‖� C1|r|, with constantC1 possibly depending on all parameters,
N,L,κ,H,p. From this preliminary argument we may, by reducingr1 > 0 if necessary,
assume that

1

2
� fn(x) � 3

2
, n= 0, . . . ,N, (43)

for |r|< r1.
Step 2.Uniform estimates inn. We now use the Euler–Lagrange equations (35)–(40)

derived above to estimate the gauge-invariant quantities, in the supremum norm and
individually in each plane or gap.

First we make rough bounds, then iterate to improve the dependence on parameters.
Since we can estimate the constants|Cn|� r and|Dn|� rκ2p/2, we have

‖b(n)‖∞ � crκ2pL, (44)

‖v′n − ax(·, zn)‖∞ � crκ2L. (45)

(Here and in the followingc will denote a pure constant, independent of all other
parameters.)
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Now consider the equations forun. Suppose first that maxx,k uk(x) = un(x0) � 0. If
n ∈ {1, . . . ,N − 1}, we observe that the extremal property ofun(x0) implies that

un−1(x0)cos&n,n−1+ un+1(x0)cos&n+1,n − 2un(x0) � 0,

while if n= 0 orn=N the corresponding terms

uN−1(x0)cos&N,N−1− uN(x0) � 0, or u1(x0)cos&1,0− u0(x0) � 0.

Consequently, at the maximum point the right-hand side of (35) is non-positive. By the
maximum principle we obtainun(x0) < 0. (Note this argument holds in general, for any
value of the parameters, for any solution of the Lawrence–Doniach system.)

Next assume that minx,k uk(x) = un(x0) < 0. By the same arguments as above at the
point x0, the extremalun satisfies an equation of the form− 1

κ2u
′′
n(x0)+ c(x0)un(x0) �

− 1
κ2 (v

′
n − ax(x0, zn))

2− 2r, with c(x) � 1
2. In conclusion we may boundun via

0> un(x) �− 2

κ2
sup
x

(
v′n − ax(x0, zn)

)2− 4r. (46)

Applying the simple estimate (45) we obtain a preliminary bound onun, 0> un(x) >

−cr(rκ2L2+ 1). We use the calculus inequality

sup
x∈[−L,L]

|f ′(x)|� 2

δ
sup

x∈[−L,L]
|f (x)| + δ

2
sup

x∈[−L,L]
|f ′′(x)|, for any 0< δ � L,

with δ = 1, and obtain‖u′n‖∞ � cr(rκ2L2+ 1).
To improve the above estimates we need to take into account the fact that the

integrands and right-hand sides contain terms which oscillate rapidly whenH is large.
In particular,&n,n−1 = Hpx + ϕn,n−1, and we expect that terms containing the sine or
cosine of&n,n−1 tend to zero in the weak sense asH →∞. Since these oscillatory
terms are sources in the equations for the fields and currents, we should obtain stronger
convergence to zero asH →∞, and hence sharper estimates for largeH than we
obtained in bluntly measuring these terms in the supremum norm. With this in mind,
we require one further ingredient: a bound forϕ′n,n−1 using Eq. (42),

sup
x
|ϕ′n,n−1(x)|� crκ2L

(
1+ p2). (47)

We now integrate by parts inCn, Dn, and in the integrals representingb(n)(x) and
v′n − ax(x, zn):

sup
x

∣∣b(n)(x)
∣∣ � c

rκ2p

Hp
(1+L‖u′n‖∞)+L‖ϕ′n,n−1‖∞

� c
rκ2p

Hp

(
1+ rL2κ2)(1+ rL), (48)
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and similarly

sup
x
|v′n(x)− ax(x, zn)|� c

rκ2

Hp

(
1+ rL2κ2)(1+ rL). (49)

Substituting into (46) we obtain a more refined estimate forun,

0> un(x) >−Cur

(
1+ r

κ2

H 2p2

(
1+ rκ2L2)2

(1+ rL)2
)
, (50)

with constantCu independent ofN,κ,L.
Step 3.A lower bound on the linearization atr = 0. We define

λ= λ(N,L,κ,p) := inf
{
Q0(E,E): E = (µn, νn, �α) ∈W,‖(µn, νn, �α)‖ = 1

}
,

with

Q0(E,E)=D2%r=0(f
0
n , φ

0
n,
�A0)[E,E]

= p

N∑
n=0

L∫
−L

(
1

κ2
(µ′n)

2+ 2µ2
n +

1

κ2

(
ν′n − αx(x, zn)

2))dx

+ 1

κ2

L∫
−L

Np∫
0

(curlα)2 dzdx.

Recall that, as an operator on the whole tangent spaceE, D2%0(s) has anN -dimensional
kernel for anys ∈ S . Here we consider its restriction to the orthogonal subpaceW =
T S⊥ = ker(D2%0(s))

⊥. From the proof of Proposition 2.1(b) we may conclude that
λ > 0 for any choice ofN,L,κ,p. Here we will obtain the more precise information on
its dependence on these parameters.

Note first that (trivially, sinceκ � 1 by hypothesis),

p

N∑
n=0

L∫
−L

(
1

κ2
(µ′n)

2+µ2
n

)
dx � 1

κ2
p

N∑
n=0

‖µn‖2
H1.

We require the following lemma to estimate the terms including the vector potential�a
appearing in the linearizations:

LEMMA 5.2. –For any �a ∈H 1(D) with �a · n̂= 0 on ∂D,

p

N∑
n=0

‖ax(·, zn)‖2
L2(D) � (p+ 1)(N + 1)

N
‖ax‖2

H1(D), (51)

N∑
n=1

∥∥∥∥∥
zn∫

zn−1

az(z)dz

∥∥∥∥∥
2

L2(D)

� p

∫∫
D

a2
z (x, z)dx dz. (52)
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Proof. –Let χ+n (z) = (z − zn−1)/p, n = 1, . . . ,N . Then we apply the divergence
theorem to the vector field(a2

x(x, z)χ
+
n ,0) in the strip[−L,L] × (zn−1, zn) to obtain

L∫
−L

(
a2
x(x, zn)

)2
dx =

L∫
−L

zn∫
zn−1

∂

∂z

(
χ+n (z)a2

x(x, z)
)

dzdx

�
[
1+ 1

p

] L∫
−L

zn∫
zn−1

(
a2
x +

∣∣∣∣∂ax

∂z

∣∣∣∣
2)

dzdx (53)

for n= 1, . . . ,N . Similarly, usingχ−n = (zn+1− z)/p in the strip[−L,L] × (zn, zn+1)

we obtain
L∫

−L

(
ax(x, zn)

)2
dx �

[
1+ 1

p

] L∫
−L

zn+1∫
zn

(
a2
x +

∣∣∣∣∂ax

∂z

∣∣∣∣
2)

dzdx, (54)

for n= 0, . . . ,N − 1.
Clearly there exists an indexn0 such that

L∫
−L

zn0∫
zn0−1

(
a2
x +

∣∣∣∣∂ax

∂z

∣∣∣∣
2)

dzdx � 1

N

∫∫
D

(
a2
x +

∣∣∣∣∂ax

∂z

∣∣∣∣
2)

dzdx.

For 0� n � n0− 1 we use estimate (54) for‖ax‖2
2, and forn0 � n � N we use (53). In

doing so we require theH 1-norm ofax in each interval exactly once, except for the strip
zn0−1 < z < zn0 which appearstwice.In this way we arrive at the desired estimate (51).

The estimate (52) is an elementary consequence of the Cauchy–Schwartz inequal-
ity. ✷

We now estimate the second term ofQ0: since

2|ν′nαx(x, zn)|� (1− ε)(ν′n)
2+ 1

1− ε
α2
x(x, zn),

for anyε > 0, we have

L∫
−L

(
ν′n − αx(x, zn)

)2
dx �

L∫
−L

ε(ν′n)
2 dx −

L∫
−L

ε

1− ε
α2
x(x, zn)dx.

We now use (51) and the elliptic estimate (11)–(12) to estimate

∫∫
(curlα)2 dx dz− p

N∑
n=0

L∫
−L

ε

1− ε
α2
x(x, zn)dx

�
(

1

2

(
1+ 4

π2

L2N2p2

4L2+N2p2

)−2

− 2ε

(1− ε)

)
‖�α‖2

H1
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�
(

1

2

(
1+ 4

π2
L2

)−2

− 2ε

(1− ε)

)
‖�α‖2

H1,

uniformly inN . Now chooseε= 1
4 min{1, 1

2(1+ 4
π2L

2)−2}. From the Poincaré inequality
(for H 1 functions on[−L,L]with vanishing mean) we may then obtain the lower bound

p

N∑
n=0

L∫
−L

(ν′n − αx(x, zn))
2 dx +

∫∫
D

(curl �α)2 dx dz

� εp

N∑
n=0

L∫
−L

(ν′n)
2 dx + 1

4
min

{
1,

(
1+ 4

π2
L2

)−2}
‖�α‖2

H1

� ε

(
1+ 4

π2
L2

)−1

p

N∑
n=0

‖νn‖2
H1 + 1

4
min

{
1,

(
1+ 4

π2
L2

)−2}
‖�α‖2

H1

� 1

4
min

{
1,

(
1+ 4

π2
L2

)−3}[
p

N∑
n=0

‖νn‖2
H1 + ‖�α‖2

H1

]
.

We then obtain

λ � 1

4κ2
min

{
1,

(
1+ 4

π2
L2

)−3}
. (55)

Note in particular thatλ is bounded away from zero uniformly inN , but the bound
deteriorates as eitherL→∞ or κ→∞. (See Remark 5.3.)

Step 4.An upper bound on the linearization. We defineQr to be the quadratic form
representing the second variation of energy around the solutions + w(r, s) ∈ Sr , with
respect to variationsE = (µn, νn, �α) in the subspaceW :

Qr(E,E) := 1

2

d2

dt2

∣∣∣∣
t=0

%r(s +w(r, s)+ tE)

= p

N∑
n=0

L∫
−L

{
1

κ2
(µ′n)

2+ 1

κ2
(v′n − ax)

2µ2
n +

(
3f 2

n − 1
)
µ2

n

+ 4

κ2
(v′n − ax)fnµn

(
ν′n − αx(x, zn)

)+ 1

κ2
f 2
n

(
ν′n − αx(x, zn)

)2
}

dx

+ r

2
p

N∑
n=1

L∫
−L

{
(fnµn−1+ fn−1µn)sin&n,n−1

[
νn − νn−1−

zn∫
zn−1

αz dz

]

+ fnfn−1 cos&n,n−1

[
νn − νn−1−

zn∫
zn−1

αz dz

]2

+µ2
n +µ2

n−1− 2µnµn−1 cos&n,n−1

}
dx + 1

κ2

∫∫
B

(curl �α)2 dx dz.
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As long as the linearizationQr remains non-singular (as an operator onW ), we may
invoke the Implicit Function Theorem to ensure that the solutions to Eq. (20) in the form
s + w(r, s) determined by Lemma 3.1 remain valid. Hence, the critical valuer0 which
determines the radius of convergence of the expansion is bounded below by the smallest
value ofr for whichQr admits zero as an eigenvalue. IfQr degenerates atr∗, then there
exists a test vectorE ∈W , ‖E‖ = 1, such thatQr∗(E,E)= 0. Using the lower bound
onQ0, we have:

λ � Q0(E,E)=Qr∗(E,E)+ (Q0−Qr∗)(E,E)= (Q0−Qr∗)(E,E). (56)

An estimate of the difference between the linearization atr = r∗ and atr = 0 in terms of
r∗ (and the norm ofE) will then yield a lower bound on the critical valuer0 � r∗. This
estimate follows from the sup-norm bounds on eachun, (v′n− ax(·, zn)) obtained in (50)
and (49):∣∣Qr∗(E,E)−Q0(E,E)

∣∣
� p

N∑
n=0

L∫
−L

{
1

κ2
(v′n − ax)

2µ2
n + 3

∣∣f 2
n − 1

∣∣µ2
n

+ 4

κ2
|v′n − ax ||µn||ν′n − αx(x, zn)| + 1

κ2
|f 2

n − 1|(ν′n − αx(x, zn)
)2

}
dx

+ r∗
2
p

N∑
n=1

L∫
−L

{
(|µn−1| + |µn|)

∣∣∣∣∣νn − νn−1−
zn∫

zn−1

αz dz

∣∣∣∣∣
+µ2

n +µ2
n−1− 2|µnµn−1| +

[
νn − νn−1−

zn∫
zn−1

αz dz

]2}
dx

� cr∗
[
1+K

(
1+ r∗κ2K

)]‖E‖2,

whereK := 1
Hp

(1+ r∗L2κ2)(1+ r∗L). Inserting the above estimate and (55) into (56)
produces a lower bound on the first point of degeneracyr∗,

r∗
[
1+K

(
1+ r∗κ2K

)]
� λ � 1

4κ2
min

{
1,

(
1+ 4

π2
L2

)−3}
. (57)

We observe that the left-hand term is monotone increasing inr∗, and therefore implies
a lower bound of the formr0 � r∗ � R(L,κ,H), where the constantR can be chosen
uniformly in N , but decreases with increasingL andκ and increases with increasingH .

Step 5.Conclusion. The above estimates have all been based on the (unsatisfactory)
initial hypothesis|r|< r1(N,L, κ,H) chosen small enough to ensure (43). However, we
observe that the only role of this hypothesis is to obtain (43), and the estimates obtained
thereafter are valid whenever (43) holds. Since‖un‖∞ is a continuous function ofr , the
estimates obtained forun, vn, �a andr∗ above persist as we increaser , either until (43)
is first violated or until we reachr = r∗. From (50), if condition (43) is violated thenr
satisfiesCur[1+ rκ2K2]� 1

2, a condition onr which also defines a lower bound which
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is independent ofN , decreasing with increasingL,κ , and increasing asH increases
(just as forR(L,κ,H) above). In either case, the perturbation argument remains valid
for an intervalr ∈ [0, r0) with r0 bounded below by a constant which is independent of
N , with the dependences onL,κ,H claimed in the statement of (iv). This concludes the
proof of Theorem 3.1.

Remark5.3. – We note that the lower bound onr∗ obtained above improves with
smallerL, κ and largerH . Of course this is only a one-sided bound, and we cannot be
sure that the solutions obtained by the degenerate perturbation method really do cease
to exist ifL or κ are too large. Indeed, solutions with a similar form may persist beyond
the range of validity of Lemma 3.1, and the estimates which gave the lower bound (57)
are certainly not sharp. However, we can show that the smallest eigenvalueλ(N,L,κ)

of the linearization atr = 0 does tend to zero as eitherL,κ →∞. From the Implicit
Function Theorem we may then infer thatw(r, s) grows rapidly nearr = 0, which in
turn suggests that the interval of validity is diminished asL, κ increase.

LEMMA 5.4. – For any fixedN ,

λ(N,L,κ)� 9

2κ2p2L2
→ 0

asL,κ→∞.

Proof. –As before, setM =Np. Let ξ ∈H 2∩H 1
0 (D) be the solution to the Dirichlet

problem

,ξ = 1, ξ |∂D = 0,

and define�α = (∂zξ,−∂xξ). Note thatξ is even inx, and 1
κ2

�
D
(curl �α)2 dx dz= 2LM

κ2 .

We next chooseνn with d
dx νn(x)= αx(x, zn),

∫ L

−L νn(x)dx = 0. Sinceαx(x, z) is even
in x we haveνn(x)= ∫ x

0 αx(x
′, zn)dx′, andνn is odd. Applying Stokes’ Theorem to the

rectangle[−L,L] × [zn−1, zn],

2px =
zn∫

zn−1

x∫
−x

curl �α dx dz

=
x∫

−x

(
αx(x, zn)− αx(x, zn−1)

)
dx +

zn∫
zn−1

(
αz(−x, z)− αz(x, z)

)
dz

= 2

(
νn(x)− νn−1(x)−

zn∫
zn−1

αz(x, z)dz

)
.

In particular,

2
N∑

n=0

‖νn‖2
2 �

N∑
n=1

[‖νn‖2
2+ ‖νn−1‖2

2

]
� 2Np2

9
L3−

N∑
n=1

L∫
−L

( zn∫
zn−1

αz(x, z)dz

)2

dx
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� 2Np2

9
L3− p

∫∫
D

[αz(x, z)]2 dzdx.

Takingµn = 0, E = (µn, νn, �α), we have

‖E‖2
E � p

N∑
n=0

‖νn‖2
2+‖�α‖2

2 � Mp2

9
L3,

assuming (as usual) that 0< p � 1. We may then conclude that:

λ(N,L,κ)� Q0(E,E)

‖E‖2
E

�
1
κ2

�
D
(curl �α)2 dx dz
Mp2

9 L3
� 9

2κ2p2L2
. ✷
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