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ABSTRACT. — In this paper we study the Lawrence—Doniach model for layered superconduc-
tors, for a sample with finite width subjected to a magnetic field parallel to the superconducting
layers. We provide a rigorous analysis of the energy minimizers in the limit as the coupling be-
tween adjacent superconducting layers tends to zero. We identify a unique global minimizer o
the Gibbs free energy in this regime (“vortex planes”), and reveal a sequence of first-order phas
transitions by which Josephson vortices are nucleated via the boundary. The small couplin
limit is studied via degenerate perturbation theory based on a Lyapunov—Schmidt decompos
tion which reduces the Lawrence—Doniach system to a finite-dimensional variational problem
Finally, a lower bound on the radius of validity of the perturbation expansion (in terms of vari-
ous parameters appearing in the model) is obtained.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous analysons rigoureusement les minimiseurs du modeéle de Lawrence—Doniac
pour les supraconducteurs en couche quand le paramétre de couplage de Josephson tend
zero. Le champs magnétique imposé est parallele aux plans supraconductifs et I'échantillon e
de largeur fini. A I'aide d’'une méthode de perturbation dégénérée basée sur une décomposition
Lyapunov—Schmidt, nous réduisons le systéme de Lawrence—Doniach a un probléme variation
de dimension fini. Nous obtenons un minimiseur global unique (“les plans de vortex”) et
montrons qu'il y a nucléations des vortex de Josephson a la frontiére via une suite de transitior
de premier ordre. Finalement, a I'aide d’estimations a-priori nous obtenons aussi une born
inférieure sur le rayon de convergence du développement de Taylor en termes de paramétr
présents dans le modéle.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

In 1971 Lawrence and Doniach [18] introduced a Ginzburg—Landau type model
for superconducting materials with a planar layered structure. In this model, the
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superconductor occupies an array of parallel sheets with insulating material acting
as a buffer between the sheets. While this model was originally proposed to study
layered structures artificially produced by successively deposing thin planar sheets c
superconducting metal with organic separators, it has received renewed attention dt
to the discovery of high temperature superconductors. Indeed, nearly all of these higt
T, materials are crystals with a distinctly layered structure, consisting of copper oxide
superconducting planes stacked with intervening insulating (or weakly superconducting
planes.

In this paper we will consider the case of a layered superconductor in a uniform
magnetic field imposed parallel to the superconducting planes. We assume that there a
a finite number of superconducting sheets, each parallel toyth@ane, with uniform
separatiorp. We assume that the external magnetic field is applied along-theection,

H = H y. We will take the planes to be of infinite extent in thalirection, and assume
the local magnetic field will be everywhere independent ahd point in they-direction,

l;(x, v,2) =h(x,2)y.

The vector potentiaﬁ may then be chosen to lie in the-plane,

- > > J0A 0A
A, v,2) = Au(x, F + A (x, )2, h=curlA=( 5 _ )

0z ox

We assume that the sample has fixed widih i the x-direction, and hence the
superconducting sheets are described by the stack of parallel planar strips

Yy: —L<x<L, —-oco<y<oo, z=z,:=np,n=0,1...,N.

Since each sheé&ly is superconducting it carries a (complex-valued) order parameter
Y.(x),n=0,..., N. We choose units in such a way thdt,| = 1 represents a purely
superconducting state. The Lawrence—Doniach model is then formulated in terms of th
following Gibbs free energy functional:

N
gr(wn»A)__{pZ/[ ( IAx>wn
n=0
N L
r
+ P — Y exp< A (x, s)ds)
3 -t ]
L Np 2
1 0A, 0A;
- P_{!( bz ox ) dde}’

wherer is theinterlayer coupling parametefor Josephson coupling parameteie
have chosen units such that the in-plane penetration depta 1, x = A,;/&.5 IS the
Ginzburg-Landau parametex,(, &,, are the in-plane penetration depth and correlation

length, respectively), and the magnetic fields are measured in unis/ef where H,
is the thermodynamic critical field. (See [24].)
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The coupling between the superconducting planes given by the second sgm in
simulates the Josephson effect, by which superconducting electrons travel from on
superconducting sheet to another by quantum mechanical tunnelling. We will see thi
explicitly in the Euler-Lagrange equations, where the currents in the gaps betweel
planes will be determined by the sine of the gauge-invariant phase difference. The
interlayer coupling parametergives the strength of the Josephson effect. In our units,

2
"= A3k2p2
where A, is the (non-dimensionalJosephson penetration deptn an anisotropic
Ginzburg—Landau model? gives the effective mass ratio which determines the degree
of anisotropy. For highly anisotropic superconductbyss very large, and hence when
kp ~1 we may treat as a small parameter.

Due to the layered structure one expects these materials to be highly anisotropic
A first attempt to model layered superconductors is bgmisotropic Ginzburg—Landau
model, which treats the sample as a three-dimensional solid with anisotropic materia
parameters. For certain materials and temperatures close to the critical temperatu
T, this approximation seems valid, but for the most anisotropic superconductors the
anisotropic Ginzburg—Landau model does not give a good qualitative or quantitative
description of experimental observations. For example, when the sample is subjected |
a sufficiently strong magnetic field orientpdrallel to the superconducting planes Kes,
Aarts, Vinokur, and van der Beek [16] observe a transition betwen “three-dimensional’
behavior (governed by the anisotropic Ginzburg—Landau model) and “two-dimensional”
behavior at a critical temperaturg-o below 7¢. In the two-dimensional regime the
superconducting planes decouple and the applied magnetic field penetrates complete
between the planes, virtually unscreened by the superconductor. Despite the penetrati
of the field, superconductivity within the planes is not destroyed even in very strong
applied fields. This “magnetically transparent” state is inconsistent with the anisotropic
Ginzburg—Landau model, where magnetic fields of moderate intensity are largely
expelled from the bulk except for an array of isolated vortices (the “Abrikosov lattice”).
In addition the Ginzburg—Landau model predicts the breakdown of superconductivity
when the applied field penetrates the material completely, which occurs when the fielc
exceeds a critical valu#l,,.

We note that Chapman, Du and Gunzburger [9] have proven that solutions of the
Lawrence—Doniach model converge to solutions of the anisotropic Ginzburg—Landat
model (and in particular the convergence of energy minimizers) under thegdimitO
with «, A, fixed. This limit does not correspond to our “two-dimensional” regime,
since it would send- — oo, corresponding to a strong coupling between adjacent
superconducting layers. Indeed, we observe that the non-dimensional separation distan
p of our model is related to the (dimensionally dependent) physical separatidia
p = p/rap- SinCer,,(T) — o0 asT — T, the limit T — T, effectively corresponds to
p — 0 (withk, A, p fixed) in our units, and therefore the Chapman, Du and Gunzburger
limit can be interpreted as lettind — 7.. This is consistent with the observed
“dimensional crossover” to the anisotropic Ginzburg—Landau regime for temperatures
nearT..
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In this paper we will study the minimizers (and low-energy solutions) of the
Lawrence—Doniach system far near zero and thereby analyse the structure of the
resulting “transparent state”. The crucial observation is that whenO the planes
decouple, and the energy may be minimized explicitly by solving sirfipté order
equations. Even after gauge symmetries have been removedtBeproblem exhibits
an additional symmetry, corresponding tordimensional torus action (whepé + 1
denotes the number of superconducting planes), and thus the minimization problem :
r = 0 degenerates on a finite dimensional manifold in function space. We can think of
ther = 0 problem in analogy with the self-dual point of the Ginzburg—Landau model
(x = 1/+/2), where minimizers satisfy a first-order Bogomolnyi system (in addition to
the usual second order Ginzburg—Landau equations), and the same minimum energy
obtained by any configuration of vortices.

When r # 0 this symmetry is broken and a Lyapunov—Schmidt decomposition
reduces the problem of finding solutions with~ 0 to a finite dimensional variational
problem on the degenerate manifold. The minimum value of energys, @nd we
indeed recover the “transparent state” observed in experiments. The local magnetic fiel
h(x,z) = H + O(r) inside the sample, and superconductivity is hardly affected in each
plane,|y,(x)] = 1 — O(r). In particular the order parameters are never zero: “vortices”
correspond to local maxima of the local magnetic field, and lie between the layers. In the
physics literature these are referred tdasephson vorticeas opposed to the Abrikosov
vortices typically observed in the Ginzburg—Landau theory.

The finite dimensional reduced problem may be solved explicitly to determine the
exact geometry of the Josephson vortex lattice. For a finite sample ithe minima of
energy form “vortex plane” configurations, in which the local magnetic field is uniform
in z. The vortices are not separated, but line up vertically at the local maxima of
h(x,z) =h(x). (See Fig. 1.) As the external fiel is increased vortices are nucleated
at the edges, by a first-order phase transition. Formal asymptotic expansions for the:
solutions were calculated by Theorodakis [23], and Kuplevakhsky [17] claimed that they
were the only solutions of the Lawrence—Doniach system. On the contrary, we find tha
there are exactly’2 solutions with energy @): two represent vortex planes (one stable
and the other unstable), and the others (unstable) lattices of various geometries. (S
Theorem 4.1.)

Again, we note the distinction with the Ginzburg—Landau model: the geometry of
the Abrikosov lattice was determined by numerical comparison of a finite humber of
possible lattice geometries. For the Lawrence—Doniach model in the small coupling
limit we are able to identify the absolute minimizer (and all low-energy solutions of
the Euler-Lagrange equations) explicitly and rigorously. This is a direct benefit of the
discrete nature of the model.

The basic idea that an infinite dimensional variational problem is actually governed by
a finite dimensional one in some parameter limit is a common one in analysis. Indeed, |
appears in such diverse contexts as the location of Ginzburg—Landau vortices as
(Bethuel, Brezis and Hélein [5], Bethuel and Riviére [6]), spike-layer solutions (for
example, Liand Nirenberg [19], Gui [14], or Wei [25]), and blow-up for critical exponent
problems (for example in Bahri, Li and Rey [4], or Rey [22]). These examples are of
singular perturbation problems, though. The transparent state arisesdegeaerate
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Fig. 1. Vortex planes, for a sample with a finite number of superconducting planes. The dottec
horizontal lines represent the superconducting planes, and horizontal arrows indicate the in-plar
currentsj}”), which vanish to order in the interior of the sample. The vertical arrows indicate
the Josephson currenjg) in each gap. Except for an edge effect near the top and bottom of
the sample, the magnetic fieldx, z) and Josephson currentsarez-independent. The vortices
correspond to local maxima &f, and lie along planes = constant, indicated here by the dark
bands.

regular perturbation of the: = 0 problem, and hence it is more closely related to the
work of Ambrosetti, Coti-Zelati and Ekeland [3] and Ambrosetti and Badiale [2] on
homoclinic solutions of Hamiltonian systems and the Poincaré—Melnikov functions.

Analytically our results are unambiguous: for any choice of the other parameters
(L,x, N, H, p) we can choose sufficiently small so that the vortex planes configuration
minimizes the free energy. However, in a real superconducisrnot infinitessimally
small, which raises the question of how the interval of validity of thexpansion is
affected by the values of the other parameters in the problem. For example, in the orde
r term in the expansion of the solution (see (34), for example) we observe “secular”
terms, that is factors which become large without bound as the length of the interva
increases, and in general remark that the coefficients increaseLwitland decrease
with H. We address this question in Section 5, where we produce a lower bound for the
interval of validity as a function oV, L, x, and H. We discover that this interval is
independent oV and indeed increases with decreasingc and increasingd. For the
high-T,. superconductorss is large and typical macroscopic sample widthsre very
large compared with the in-plane penetration depth This indicates that our analysis
may be more applicable to experiments with highly anisotropic organic or synthetic
multi-layer superconductors, where the material parameters are significantly differen
from the high7, crystals.

In a subsequent paper [1] we address the question of minimizers of the Lawrence:
Doniach energy in very large samples, by considegagodic solutions in an infinitely
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wide sample. In fact, in the periodic case we find a different geometry for the energy
minimizing configuration! The periodic solution with the least energy is a lattice
with period two inn, forming a diamond pattern of Josephson vortices, proposed by
Bulaevski and Clem [8]. In the periodic case, the rolelofs now taken by the period,
which for minimizers will decrease as the applied fiéidncreases. Therefore the small

r expansion will have a large range of validity in sufficiently large fielisand the
result should better describe experiments with Higlsuperconductors.

1.1. Variational setting

We begin with the following basic energy estimate, which legitimizes the simplifica-
tion |v, (x)| ~ 1 for smallr. Indeed, in the physics literature the approximatigp| ~ 1
is widely assumed to hold: see for example Bulaevskii [7], Clem and Coffey [10], or Bu-
laevskii and Clem [8]. In particular, we see immediately that in the regime0 there
will be no “Abrikosov vortices” in the sense that the order parameter is never zero.

PrRoOPOSITION 1.1. — Let D :=[—L, L] x [0, Np]. For anyr > 0 we have
inf{4—”g (Y A): ¥, € HY(—L, L)), A € H(D; RZ)} < 2Np (L + i)r
HCZ r n» . n ) ) N I pH .

Moreover, there exist constants > 0 and C =C(N,L,x,H, p) > 0 such that for all
r € [0, rp) the minimum is attained bgy,, A) with |y, (x)| > 1 — Cr¥? > 0 for all
xe[—L,L].

Proof. -We choose a test configurationy,(x) = explinpHx}, A = (Hz,0) to
estimate the free energy,

4 N 1
Fczgr(lﬂn,A)zran::l /L(l—codex)) dx<2N<L+p—H)pr.

The fact that the minimum is attained can be easily proven once an appropriate choic
of gauge has been made: see [9] for detalils.

It remains to show that the order parameters lie near the unit circle. We recall the
“Diamagnetic inequality” (see for example p. 174 of [20]), which states

IVIfll(x) < [(V—iA)f|(x) (almost everywhere)

for every f € L2 with (V —iA) f € L. Using the elementary inequalitf — [¢,,|)? <
(1 — |¥,1%?, and the energy bound we obtain

2

lel |wn|||Hl<i/( — Wal?)* + 5 %wm )dx
é/L( )+ (%—iAx)wnz)dx
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<o w A)<2N(L+ 1)
\ch r n» ~ Hp Pr-

Here we choose an equivalent norm fét((—L, L]),

1 f 1l 2= /L<|flz+ K—lzlf’lz) dx.

—L

By the Sobolev embedding we have for eack 0, ..., N that|y, (x)| > 1— Cr¥/? with
constantC depending orV, L, p,x, H. O

The above proposition suggests the use of polar coordinateg,for order to deal
more directly with the phase of the order parameter, which plays the essential role ir
Josephson coupling. We definfg, ¢, via ¥, (x) = f,(x) expig, (x)), and note thap,
is well-defined only up to an additive integer multiple of 2We then define our new
free energy in terms of the variablég,, ¢, A) to coincide withfi—’}g,, that is:

1 1
=074 U G (@ = A z) 7]

N L

- 1

(fo s A=p) /[5(
L

N L
+5050 (24 F20 = 26 fu-1008@, )
L

L 2
1 DA,  9A.
- — — H | dzdx,
+ K2 /Lo/( 0z ox ) .

where

Bpn1(X) 1= by — 1 — / A(x, ) dz,
in—1

is the gauge-invariant phase difference, = np andr = szpz When f, = [¥,]
J

is bounded away from zero the conditiah, € H'([—L, L]) is equivalent to both

fna ¢n € Hl([_La L])
We first define a base space, in whi2h will be a smooth functional:

. (fur &> A): fo€ HX(~L, L)), ¢, € H*(~L,L]),n=0,...,N
- A=(A,, A,) € H(D,R?

We remark that we should really work in the convex subsef ofith f, > 0 for all
n=0,...,N, but Lemma 1.1 already guarantees that the solutions we will find will
have f, ~ 1. Furthermore, Proposition 4.5 of [9] asserts thiatx) = |, (x)| < 1 for
any solution of the Lawrence—Doniach equations.
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We note thak2, is a smooth ¢*°) functional on&, and that variation with respect to
each of its arguments gives the Lawrence—Doniach system. First, we denote by

Vn = (¢]/1 - Ax(-x9 Zn))» (1)

the supercurrent velocity. Then, variation ©f with respect tof, (for eachn =
0,...,N)yields

—K—lzfr:/ + (=D h+ K—lzvnzfn
5(fn-1€08P;, 1 + fu+1COSPyi1, — 2f,), n#0, N;
=< 5(f1cos®10— fo), n=0; (2)
5(fn-1C0SPy v_1 — fN), n=N,

with boundary conditionf, (£L) =0,n=0, ..., N.
Variation with respect tal, produces the following equation in weak form:

g—h(x,z) =0 forall(x,z) e (—L,L) x (zy-12,), n=0,..., N, 3)
Z

h(x, 20) — h(x, 2,—) = —pf2(x) (¢, — Ar(x,2,)), n=1,...,N—1, (4)
h(x,zn—) = pfa(x)(¢y — Ac(x,z))s  h(x,04) = —pfE(x) (dp — A (x,0)).

In other words,% is independent ot away from the superconducting planes, and
supercurrents in the SC planes create jump discontinuities. The dependérae 0f
onx in each gap is determined by (compactly supported) variatious :of

dh _ ri? i
8_ - ~ pfn(-x)fn—l(x) SInch,n—l(-x)’ (5)
X 2

if —-L<x<Landz,_1<z<z,, n=1,...,N;

with boundary conditiork(£L, z) = H. It is therefore natural to define
hix,z)=h™(x), when—L<x<L, zy-1<z<zm,n=1...,N, (6)

with 1™ determined by the ordinary differential equations (5) together with the
boundary conditiork ™ (+L) = H.
Variation with respect t@, produces the following current—conservation laws:

1d
ﬁa(ff(d),ﬁ — A (x,2,)))

%[fnfn—l Sinch,n—l - fn+lfn Sin®n+l,n]» n=1...,N-1;
=< —5f1fosin®y, n=0; @)
sInNfn-1SIN®y y_1, n=N,

with boundary condition
F200) (@,(x) = Ar(x,2,)) =0, x==%L, n=0,...,N,

which expresses the physical fact that current should not flow past the edge of th
material. Note that (7) does not yield any new information, since it can be obtained by



S. ALAMA ET AL./Ann. . H. Poincaré — AN 19 (2002) 281-312 289

differentiating the jump condition (4) and substituting from (5). This is not surprising,
since gauge invariance implies a nontrivial relationship betweeg,tted A. Indeed,
denoting the supercurrents in the planes by

W= Vo f2, ©)

and the Josephson current in betweenithel and thenth planes by

]Z(n) : 2K pfnfn 1S|nq)nn 1, (9)

Eqg. (7) is a semi-discrete version of the classical continuity equatioﬁ gi¥, and
gives the conservation law corresponding to thél) gauge invariance in accordance
with Noether's Theorem.

We are most interested in the gauge invariant “observable” quantities, which entel
directly into the free energy: the density of superconducting eletfprthie supercurrent
velocity V,,, the gauge-invariant phase differendg ,_1, and the local magnetic field
h(x,z). A very useful formula for®,,_;(x) can be obtained by applying Stokes’
Theorem in the rectangl® = (0, x) X (z,_1, Z,):

X

uns) = [(Vy= Vo) dit p [ HO@ &+ 0,000, n=1....N. (10)
0

From these equations we easily verify the smoothness of observables associated
weak solutions of the Lawrence—Doniach system:

PROPOSITION 1.2. — Suppose(fn,d)n,ﬁ) e £ are critical points of Q.. Then
Sus Vi, ©®pn_1 € C®°([—L, L]),andh € C*([—-L, L] X (zy—-1,22)),n=1,...,N.

Of course, the regularity of the non-gauge-invariant quant&,t'neandﬁ depends on
the choice of gauge.

Remark1.3. — Some authors have (correctly) pointed out that it is not physically
correct to impose the external field via a Dirichlet conditios H on the boundary D
of the sample. A more appropriate model for the effect of an external field is obtained
by placing the superconductdr in a larger regionD > D, (with D = R? possibly) and
including the field energy iD \ D in the calculations of the free energy,

Q) (fos s A) 1= @, (fors s A) + //(cumi ~ H)?dxdz.
D\D

For example, our samplB may be lying at the center of a long cylindrical solenoid of
large radius (whose interior cross-section is a large fiskAll of the preceding analysis
can then be carried through f&. by choosing an appropriate space (see Rubinstein and
Schatzman [21] for a discussion of the correct setting whea R2), but it is easy to
verify that the Euler-Lagrange equations yiélg:, z) = H for (x,z) € D\ D. This is

due to the two-dimensional ansatZ: x (g(x,z)y) = 0 in a domain implies thag is
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constant there. Consequently we may use the simpler form of the eRergith no loss
of generality or of physical relevance.

There is a large degree of degeneracyshfin £ due to the gauge invariance: if
x € H¥([-L, L] x [0, Np]), and
h=te B =¢(0)—x(x,z),  A=A-Vy,

thenQ, (fo, ¢, A) = Q. (f,, n, A). As usual, we eliminate this troublesome degeneracy
by fixing a gauge. The most convenient choice is@ulomb gaugewhich allows us

to control theH! norm of the vector potentla«l by its curl. We define a subspace &f

to incorporate this choice of gauge,

L
&= {(fn,d)n,ﬁ)es: /¢o(x)dx:O, divA=0in D, andA-ﬁ:OonaD}.

This choice is made with no loss of generality:

LEMMA 1.4.— For every (fn,qbn,ﬁ) € &, there existsy € H?(D) so that (f,,

We also have:
LEMMA 1.5. — For every(f,, ¢., A) € &

”A”Hl(D) COHCurlA”LZ(D), (11)
where
4 L2N2p2 2
Co=2|14 ————— 12
° [ +7r2N2p2+4L2 (12)

Proof of Lemma 1.4. Given (f,, ¢,, A) e £ we may solve the linear Neumann
problem,

{szdivé forx e D,

dx/on=A-n forxeaD.

By the divergence theorem there exists a unique (up to constants) weak solution
x € HY(D). SinceA € H! we havey € H2 (D) by standard regularity theory. Since
the domainD is polygonal we must be more careful to determine the regularity at
the corners, but by Theorem 1.5.2.4 of Grisvard [13] we may find7daD) function
whose normal derivative coincides with -z on dD. Then Theorem 4.3.1.4 of [13]
provides global regularityy € H?(D). By subtracting a constant fromp such that
¢o(x) — x(x,0) has average zero we achieve the desired gauge change.

Proof of Lemma 1.5. Assume( f,,, ¢,, A) e &,. We now solve the Dirichlet problem,

Anp=curlA forxeD, 13
{,7:0 forx € 9D. 49
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By Theorem 4.3.1.4 of [13] the unique solutione HZ(D) and A = (3.1, —dn) €

H'(D; R?) with div(A — A)=0, curl(A — A) =0, and(A — A) -7 = 0 ond D. Hence
A=A, and the explicit solution of the Dirichlet problem in a rectangle (via Fourier
analysis) provides the constafi§ > 0 such that:

A2 2 2 A2
”A”Hl(D) < ||77||H2(D) < C0||A77||L2(D) = COHCurlA”LZ(D)- O

2. Minimizationat r =0

Whenr = 0, the superconducting planes decouple, and we may solve the minimiza-
tion problem explicitly. The solution of the problem~ 0 will require some detailed
second-order information on the minimizersrat 0, so we first establish a functional
analytic setting for the equations. We exploit the Hilbert manifold structur&, odnd
regard the first variation of energy as elements of the tangent Hilbert space

L
E:ng:{(”n» vn»a): Uy, Upn EHl([—L,L]),/Uodx=O,

—L
ae HY(D), dva=0in D.a -ﬁ=00naD},

and the second variation as a self-adjoint operatak owe first introduce an equivalent
inner product: for(u,, v,, a), (U,, V,, A) € E, let

N L
- e 1
un’vnya ) n»s n» :p un n+_u +U +Un n
( )s (Un, Vi, A) 2u, U 5, U, +v,V, ] V, ¢ dx
— K

1 -
+— //curl& -curl A dx dz.
K
D
Then we define the gradient &.(f,,, ¢, ﬁ) via

<VQr(fna ¢n» g)» (I/ln, Un,s a)> = DQr(fna ¢n» g)[”n» Up, a]

PROPOSITION 2.1. — Withr =0,

(@) Inf{Q(fn, dn, A): (fr, ns A) € E} = 0. The minimum value is attained, and
the set of all minimizers c0|nC|des with the hyperplahedefined by the set of
(fur du» A) € &, such that f, = 1;

¢n(x):otn—|—/Ax(s,Zn)ds, ap=0, a,eR, n=1,..., N; (14)

A:(nz,—nx), whereAn = H in D, andn|yp =0. (15)

In particular, the gauge invariant phase difference is giver@lﬂ%_l =6,+ Hpx,
wheres$, :=a, —a,_1,n=1,..., N.
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(b) For any element = (12, ¢, A% € S, the linearized operatoD?Q(s) : E — E
defines a Fredholm operator with index zero. Moreover,

T,S = ker D?Qy(s) ~ R". (16)

Note that7 := TS is independent ok € S. Note thatS may be parametrized
by either (ay,...,ay) or (81,...,8y) € RY ~ 7. We abuse notation and write=
s(ag,...,ay) Ors =s(8,,...,8y) to emphasize the dependence.

Proof. —Being a sum of non-negative terms we clearly have, i€¥%( /.., ¢x, [() > 0.

The infimum of zero will be attained atf?, ¢°, A% if and only if they solve the
following first-order equations in our spaée:

=1 ¢ (x)—A(x,z,)=0, curlA=H. (17)

Note that by Lemma 1.4 the last equation is uniquely solvedAfdoe H1(D), with
solution as in (15). By the trace theorem (x, z,) € HY?([—L, L]), and thereforeg,

is uniquely determined by integration, except for {é& + 1) constants of integration
«,. Note thaty is even inx, and hencely AS(t, z,) dt is an odd function. In particular,
«, gives the average value ¢f and thusug = 0 is fixed by the definition of the space
&, leaving N free parametergxy, ..., ay) to parametrize the solution set. The explicit
form for CDS,n_l is then obtained from (10). This completes the proof of (a).

Writing the linearized operator around a solutigff, ¢°, A9 as a quadratic form,

D?Q0(f2, ¢°, A%[u,,, v,, d]

N L
1 1 1 .
:pz(; /{2“5+ p[uﬁz]2+ =l _ax(x=Zn)]2}dx+ ﬁ//|curla|2dxdz
n=0_", 5

N L

- B 2,
:<(”n» Un,a)»(un,vn,a»—PZ /{ﬁvn(x)ax(x»zn)+v3(x)}dx (18)

n=0_",

where(u,, v,,a) € E.

First note that by the second identity in (18)2Q0( 2, ¢2, A°) is of the form identity
plus compact (since the trace embeddingiof> a(-, z,) is compact fromH(D) to
L2([—L, L])). Next assume thal,, v,, a) € ker D2Qq( f2, ¢°, A%). Clearlyu, = 0 for
alln=0,..., N. By Lemma 1.5 we must havé= 0, and hence, are constant. Since
the definition of the spacé& forces vg(x) with mean zero, we are left witlv free

parameters, and

ker D?Q (2, ¢0, A%) = {(uy, vy, @) € E: (u,), =0,d =0,

(vo, ...,on) =(0,¢1,...,¢n), €1, ...,cn €R}
=T,S. O
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3. Degenerate perturbation theory

We now perturb away from the degenerate minimasf, using a variational
Lyapunov—Schmidt procedure. This method has been used by Ambrosetti, Coti-Zelat
and Ekeland [3], Abrosetti and Badiale [2], Li and Nirenberg [19] (and many others) in
a variety of situations involving heteroclinic solutions of Hamiltonian systems and in the
semiclassical limit of the nonlinear Schrodinger equation.

We now proceed according to the usual Lyapunov—-Schmidt reduction. Sinee
hyperplane,7 = 7,S is independent of € S. Let W =T+, so any(f,, ., A) € &,
admits the unique decompositic(o‘n,d)n,ﬁ) =s+w with s € S, w e W, and any
U := (u,,v,,a) € E decomposes uniquely d$ =+ w with r € 7, w € W. We
denote the orthogonal projection maps E — 7, P+:E — W so that PU =1t,

P+U =w wheneveU =1+ w. As in the previous section we interpret the first variation
VQ,(fq. ¢n, A) @s an element of itself, and project the equatiovi2, (£, ¢,, A) =0
into the two linear subspac&sandWw,

Fi(r,s,w) :=P[VQ, (s + w)] =0; (29)
Fo(r,s,w) := PT[VQ,(s + w)] =0. (20)

By Proposition 2.1(b), the second equation can be solved uniquelw ferw(r, s)

in a neighborhood ofS for » small, using the Implicit Function Theorem. Because
our functional €2, is smooth we can expand(r,s) in powers of r. Note that
Q,(s(ag,...,ay) + w) is periodic in (a,...,ay) SO that we may think ofS as

a (compact)N-torus. Therefore the expansion will be uniform sn We obtain the
following variant of Lemma 2 of [2]:

LEMMA 3.1.— There exist constantg > 0 and§ > 0, depending orV, L, «, and
H, and a smooth function

w=w(rs):(—rg,70) xS—> WCE

such that
(i) There exists smooth functions, w, such that

w(r,s) =rwi(s) + rzwz(r, s)

forall |[r| <rgand foralls € S;

(i) PV (s +w(r, )] =0.

(iii) Conversely, ifPL[VQ,(s + w)] = 0 for somer € (—rg, r9) and w € W with
lwllg <8, thenw = w(r, s).

(iv) For any choice of_g, kg, Hy > 0 the constanty, may be chosen uniformly for all
N>1, 1<L<L0, 1<« < Ko, andH}Ho.

Parts (i)—(iii) follow easily from the Implicit Function Theorem. The dependences on
the various parameters is more delicate: we provide the full proof in Section 2.5.
We define

S, :={s+w(rs):seS}Cé,.
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S, is a smooth manifold smoothly diffeomorphic to the hyperpl&herhe important
role played bys, is that it is a natural constraint fét, (see Lemma 4 of [2]), and hence
Eqg. (19) may be solved variationally:

LEMMA 3.2. - . .

@ If (fy, ¢, A) € S, satisfiesD(2,5,)(fu, du, A) = 0, then VQ, (f,,, ¢,, A) =0
in E.

(b) There existsg = eo(N, L, k, H) > 0such thatif( f,,, ¢,, ﬁ) € &, is acritical point
of , with

Q (fu du» A) < g0, (21)

then(f,, ¢u, A) € S,.
(c) There exist$o = 7o(N, L, k, H) such that for all0 < r < 7o, infe, , =infs, Q..

Proof. —The assertion (a) is exactly Lemma 4 of [2]. To prove (b), assume that
(fn, . A) € &, is a critical point on with energy bounded by (21). As remarked

inthe beglnnlng of the sectiof,, ¢., A) decomposes uniquely &§,, ¢., A)=s+w,
s=(f2=1,0¢p, AO) e S, w e W. Now we use the energy bound to estimate the distance

between( f,,, ¢,, A) ands: by Lemma 1.5,
||A A0||H1 C0||curIA — curIA0||Lz = C0||curIA H| ;2 < Cogor’?;

1 1
pZO/[p(f,bZHl—fn)ﬂdx<p2(j)/[;<f,;>2+(1—ff)2 dr < eo;
n=0_", n=u_p

3 / (@), — ¢,0)°dx

n=| O—L

N L
1
=0 [ 58— Awtx ) ds
n=0 L

K

Al 2 1 2
§ /( — A (x, Zn)) + F(AX(X, Zn) — Axo(x, Zn)) ) dx
n=0_"p

< 2604 C1l|A — Aoll 1 < Cato,

where C; comes from applying the Trace theorem (see Lemma 5.2 in Section 5) in
the last line. Finally, sincé(f,, ¢,, A) —s] e W, each¢, — ¢° has mean value zero.
Therefore, thed*([—L, L])-norm of the difference is controlled by the difference of the
derivatives, as estimated above, and we may chegsmall enough such that

diSt((fn’ ¢n’ K)? (an’ ¢nOa IKO)) <ceEp < 8, (22)

wheres = §(N, L, «, H) is_given by Lemma 3.1. It then follows by assertion (iii) of
Lemma 3.1 that if( f,,, ¢,,, A) is a critical point of the Lawrence—Doniach system with
the given energy bound it must lie df. This completes the proof of (b).



S. ALAMA ET AL./Ann. . H. Poincaré — AN 19 (2002) 281-312 295

To prove (c) we note that Proposition 1.1 implies thagjist, < 2Np(L + Hip)r, and
hence we can choo$g < rg such that Ap(L + H%,)fo <ég. O

Remark 3.3. — We note that we cannot make the same statement abavit thec, H
dependences @ in (c) of Proposition 3.2 as we make fgyin Lemma 3.1. The uniform
bounds onr, are possible because lfcal estimates on the solution set of (20) and
a continuity argument fromr = 0. (See Section 5.) We have no such control on the
distances from S to solutions which dmot lie on on the manifoldS,. This would
entail uniform (in the parameterg)obal (i.e., non-perturbative) information about the
solution set, which energy bounds do not provide. This leaves open the possibility of ar
interval r € (g, ro) for which the solutions o5, continue to exist and are represented
by a perturbation expansion iy but the absolute minimizer might not be an element of
this family.

In conclusion, we have achieved a complete finite-dimensional reduction of our
problem, for small. That is to say, when & r < 7 all low energy solutions of the
Lawrence—Doniach system can be found on Ahe€limensional surface,. Moreover,
an explicit form for these solutions may be determined by a simple procedure of Taylor
expansion of the equations and energy in powers ab is legitimized by Lemma 3.1.

4. Vortex planes

We now apply the theory of the previous section to determine the minimizer (and other
stationary states) of the Lawrence—Doniach energy; tarl.
We summarize our results in the following:

THEOREM 4.1. — Assume thasin(HpL) # 0. There existg; = r1(N, L, k, H) such
that for everyr with 0 < r < rq, the global minimum of free energy is attained by
the vortex plane solutions, given asymptotically (B8)—(34) below. Moreover, when
0 <r < r; , admits exacth2" physically distinct critical points with energy bounded
as in(21).

4.1. Minimizing ,|s,

By Proposition 3.2 we seek critical points of the finite dimensional variational problem
Q,|s,. Using Lemma 3.1(i) we expand a poif)f,, ¢,, A) € S, as

fur > A) =5 +w(r,9) = (£2, ¢°, A%) + r(uy, vo, @) + O(r?),

where (72, ¢2, A% € S solve the first-order system (17), and the error term is uniform
overs € S. We observe tha®, has the form,

Q% (fur s A) = Q0(fur s A) 4 1T (fr, b A, With

N L
DCfutne D=2 [(J24 f20 = 2fp o008y, 1) .
n:l_L
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Since2, (s + w(r, s)) is a smooth function of = s(84, ..., §y) andr, it admits a Taylor
expansion of the form,

Q (s +w(r,s)) =Qo(s) + r%Qr (s +w(r,s)) + O(rz)

r=0

=r (F(s) + VQ0o(s) [ (o, s)} +0O(r?) = rI(s) + O(r?)

N L
:rpz /[1—C0§3n+pr)]dx+O(r2)
n=l_L
=2p <NL Mzcosén>r+0( ), (23)
l{p n=1

with remainder term uniform for € S.
DefineG:R x RY — R by:

G(r, 81, ....88) = (s +w(rs))/r, s=501,...,8N).
ThenG is a smooth function which is periodic in each coordiniteand

2sin(HpL
G(0, 81, ...,8y) = 2NpL — 'n( 2sin(HpL) <

Zss

Note that when
Sin(HpL) #0

G(0,s) possesses exactly”2critical points for (81,...,68,) € K := RN/(2nZ)V
corresponding to any permutation of

8, € {0, 7} mod 2r.

It is easy to see that each is rn-degeneratecritical point of G(0,s). By the
Implicit Function Theorem, there exists > 0 such that for allr € (0, 7,), and for
any critical point(sj, ..., 8%) of G(0,481,...,dy) there exists a unique critical point
81(r), ..., 8n() Of G(r, 681, ...,8xn), with

(81(r), ..., 85(r)) =(87,...,8%) + O).

Since G is periodic in each$, we may also conclude (via a compactness argument)
that these are the only critical points 6f(r, é1,...,8y) for small r. SinceQ,|s =
rG(r,81,...,8y), by Lemma 3.2, therefore, for allwith 0 < r < min{ry, 71} := r; and
whenever sinHpL) # 0, , admits exactly 2 critical points (mod 27in eachg, (x))

with energy bound (21).
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The absolute minimizer afi (0, s) is obtained for

24
T, whenw<O,foreveryn=1,...,N. (24)

{O, whenm >0, foreveryn=1,..., N;
8" =

By the Implicit Function Theorem argument in the previous paragraph, we conclude tha
for all r € (0, r1), 2,|s, IS minimized by a unique, = s(81(r), ..., dx(r)) with

8,(r)=8"+0(@r), n=1...,N,

wheres* € {0, 7} is chosen as in (24). Finally, by Lemma 3.2 we conclude that for
all » € (0,r1) and sifHpL) # 0 the absolute minimizer of2, in &, is given by
(fas Oy A) = 5, + rwi(s,) + O(r?), with minimum energy

)r +0O(r?).

When sifiHpL) = 0 then, s, is degenerate at ordet Normally we should go
to a higher order in the expansion to determine the stationary configurations at thes
exceptional values o = mn/Lp, m =1,2,3,..., but (as we will see later in the
section) the existence of these degenerate points is explained by the exchange of stabil
of two families of solutions when vortices are nucleated into the sample from the
boundary. We note that the treatment of the periodic problem in the subsequent pape
[1] will require an expansion of the energy to ordérto resolve the degeneracy at any
applied fieldH.

Sin(HpL

inf 2, =2Np(L —
& Hp

4.2. Expanding the solutionsto order r

Because&, is a smooth functional we may use the Implicit Function Theorem and
the decomposition of Lemma 3.1 to obtain an expansion to arbitrary ordeofirany
critical point satisfying the energy estimate (21). Here we generate the expansion t
orderr, to get a better idea of the nature of the global minimizers. Take any such critical
point of ©,|s., with expansion as in (i) of Lemma 3.4f,, ¢, A) =s+rwi(s) +0@?),

s =s(81,...,8y). We deduce the equation satisfiedby(s) by implicit differentiation
of Eq. (20):

d .
0= d_rP (VQ, (s +w(r,s)))

r=0
_pt (vr(s) + D200 (s) [aa—’f(o, s)D

= P*(VI(s) + D*Q0(s)[w1(s)]). (25)

Since D?Q(s) is an invertible map fromiv — W this formula uniquely determines
wi(s). Now we represenivi (s) = (4.1, Un.1, dy 1, dz.1), IN Other words

fn=1+run’1+0(r2), s =an+anx+vn71+O(r2),
A, :Hz—l—rax,l—i—O(rz), A, :raz,l—i—O(rz),
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and denoté (x, z) = curla; = d,a, 1 — d.a, 1. In terms of these coordinates (25) takes
the following simple form:

1 1 c094, + Hpx) + co6,41+ Hpx) —2, 1<n<N -1,
— 5y, 1+ 22U, 1= 5§ COSy + Hpx) — 1, n=N,
e CcoS61 + Hpx) — n=0,
with u), (L) =0
1d
—25( — ay1(x, z))
sin(é, + Hpx) —sin(8,;1+ Hpx) —I,, 1<n<N-1,
sin(éy + Hpx) — Iy, n=N,
—sin(éy + Hpx) — Iy, n=0,
with boundary condition,, ;(+L) — a, 1(+L, z,) = 0 and
1 [ JELIsinG, + Hpx) = sin@,1 + Hpo)ldx, 1<n<N -1,
I”:i f_LLSin((SN—i-pr)dx, n=N,
— [*, sin(81 + Hpx) dx, n=0
and
- & 0§
al(x’Z):<8_z’_§>’ AE =b(x,2), &|,;=0, (26)

whereb(x, z) = b™ (x) for z,_1 < z < z,,, With

2 L
= % lsin((Sn + Hpx) — % /sin((Sn + Hpx) dx] , b"(£L)=0, (27)

—L

ab™
ox

forn=1,...,N.

Now assume that s{itf pL) # 0 and consider the absolute minimizets= §.. with
3, € {0, w} chosen according to (24). Except for an edge effect at the top and bottom
layers ¢ = 0, N) the gauge-invariant quantities are independent @&t orderr. In
particular, the magnetic field, and Josephson current densjw) are (at orderr)
completely independent af n:

2

]Z(n) = ]cfnfn—l sin cI)n,n—l = }"% sin((S + pr) + O(rz)’ (28)
2
h(x,2)=H + rzK_H (cos8 + HpL) — cos8 + Hpx)) + O(r?) (29)

wherej. =r 21’ is the critical Josephson current. The in-plane supercurrent vanishes a
orderr for all interior planes,

J;”)_O(rz)’ n:l,,..,N—l,
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but the top and bottom of the sample carry current at order
2
- (cos(8 + HpL) — cos(8 + Hpx)) + O(r?), (30)
p

2
Hp (cos(8 + Hpx) — cos8 + HpL)) + O(r?). (31)

(N)_O
+r2

(0)_0
+r2

Similarly, the order expansion of modulus of the order parametet-independent on
the interior planes, but is modified at the top and bottom at order

fu)=1+r (-% + Acosk(iéx) + Bcogs + pr)) +0(r?),
K
n=1,...,N-1, (32)

fo=fv=1+ % (—% + Acosk(%éx) + Bcog$ + pr)) + o(rz), (33)

where
_ k3Hp sin(d + HpL) _ K2
ﬁ(H2p2+2K2) Slnl’(%) ’ H2p2+2K2-

Expansion to order? in the solutions will show these quantities to be independent of
(or n) except for the top and bottotwo planes and the top and bottom gaps.
We note that the gauge-invariant phase difference,

2

K
nn 1(x)—8+pr+”2 >

(xHpcoss + HpL) —sin(é + Hpx) +¢,) + O(rz),

(34)
contains constants, which can only be determined by higher order expansion.in
Indeed, they represent the ordecorrection to the choice af, when minimizing the
finite dimensional probleng, |s, .

We call this configuratiorvortex planes- see Fig. 1. Unlike the Ginzburg—Landau
case, the order parameter does not vanish at the “core” where the local field attains i
maximal value and around which supercurrents circulate. The “vortices” are then the
planes{x = const.} over whichh(x) attains its relative maxima. These planes are nodes
for the current, and flux per plane per cycle of the Josephson current is, torottier

usual flux quantum (2sn our units).

Remark4.2. — (a) The distinction between the energies of the various lattice
geometries at the lowest order termrQin expansion (23) is gurface termin the
sense that it scales like the length of the lateral edges of the sarNplea® opposed
to the free energy itself which scales like the cross-sectional area of the bulk.2h Np
other words, the vortex plane configuration is preferred for the effect it has on the surface
currents on the left and right edges of the sample, with no regard to energy minimizatior
in the interior. As we will see in the periodic case in [1] the effect on the bulk will be
observed in an ordef term. For all other parameters fixed, eventually we can tak®
small enough so that the(©) surface term dominates. But in a real superconductor the
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value ofr is given, and hence when the widkhis increased eventually the bulk(€3)
term will compete with the surface(® term. This suggests that the interval of validity
of the r expansion may not be uniform, but rather deteriorate with increasing sample
width L.

(b) Another indication that the radius of convergence of the expansion depends
inversely on the widttL is the presence of a linearly growing factor (secular term) in the
orderr term of expansion (34) ob,, ,_1(x).

4.3. Vortex plane nucleation

The very precise desciption of minimizers for~ 0 allows us to identify the
transitions which the sample undergoes as new vortices are nucleated in an increasit
applied fieldH. When 0< H < r/pL we observe the Meissner state for this problem:

h attains its maximum at the boundary= +L, and decreases to a line of minima at
x = 0. For our solutions the lower critical fieltf-; = 7r/pL: at this point the finite
dimensional minimization probler& (0, s) = O degenerates, and whéh is increased
slightly the minimizing configuration has phasgs=n foralln =1, ..., N. Note that

at this critical value ofH a new node appears in the Josephson current (28) at each
endpoint. The switch id,, amounts to a flip in sign for the Josephson currents and for
the variation ofz from H, so the newly nucleated nodes correspondntnimaof #,

with the former minimum at = 0 becoming a locanaximum. The same phenomenon
will occur every timeH crosses a valué%, k=2,3,.... Eachtime, two new nodes for
the Josephson current will be nucleated, and the changgfadm zero tor (or vice-
versa) will exchange minima and maxima/oin the interior, resulting in the creation of
exactlyonenew vortex plane. Since the minimum energy is given asymptotically by

2sin(HpL)

e(H):=minQ, = Npr <2L - ‘
Hp

ot
the magnetizationM (H) := d¢/d H is discontinuous at each nucleation, indicating a
first-order phase transition.

5. Thevalidity of the expansion

In this section we prove Lemma 3.1 which justifies the finite dimensional reduction
in a neighborhood of. While parts (i)—(iii) follow easily from the Implicit Function
Theorem, the real interest is in the dependence of the interval of vallidity »o on the
many parameters in the model, especially the sample dimenkiandM = Np, «, and
the applied fieldd. Here we give a lower bound for the “radius of convergence? in
as a function of these parameters. We show that the snaplibroximation is essentially
independent of the number of plan¥s but that its validity can be expected to decrease
with increasing widthZ or increasing«. On the other hand, increasing the external
field H enhances the approximations somewhat. This lower bound is consistent witt
experiments on the higl: materials, where the vortex planes have not been observed,
perhaps because the large values ahd the large size of typical samples (measured in
terms ofi,;,) reduce the radius of validity of the expansion below the appropriate value
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of r for such materials. For other types of layered superconductors with smaller value:
of k we are more likely to see configurations similar to the solutions produced in our
r — 0 limit.

Throughout this section, we concentrate on the parameferls, x, H, and assume
O<p<1,k>1,andL > 1. We also define a norm on the spaée= [T S]*: let
w = (u,, v,,a) € W. Then we denote

N L
1wl? = NGt v DI =p /((u;)2+u5+<v;)2+v3) d
n:O_L

+//[|va|2+ |a|?] dx dz.
D

Our approach is to calculagepriori estimates on the solutions to Eqg. (20) to determine
when that equation can degenerate. As a first step, we must recognize the system
differential equations satisfied by the solutions to (20). For@@ny ( f,,, ., A) we write
U=s+w,s), wheres =s(81,...,8y) €S, andw(r, s) = (u,, v,,a) € W. We recall
the effect that this decomposition has on some familiar quantities:

Sa=14u,, Vn(x):¢;l_Ax(van):U;l_ax(xyzn)a
a(-x?z)=(8zgv_ax§)? Ag:b(-x?z)a §|3D=O, h(x,z)=H+b(x,Z),

Zn
®ppt = by — s — / A, (v, 1) dt = Hpx + 8, + @nn_1,
1

Zn—

Zn

whereg, ,1(x) = () — vy-1(0) = [ a.(x. 0

Zn—1

The equations for(u,, v,,a) will differ from the unconstrained Euler—Lagrange
equations derived in Section 2 because of Lagrange multipliers created by projectiol
into the subspac#’.

To sayw(r, s) solvesP+DQ, (s + w(r, s)) = 0 is equivalent to saying tha®, (s +
w(r, s)) is stationary with respect to variations Wi. Taking the variation with respect
to just one of the, yields the exact same Egs. (2) as the unconstrained case, which we
rewrite in terms ofy,,:

1 1 2 1 2
_ﬁug + (Mn + 1)(”/1 + Z)Mn + ﬁ(v}; - ax(-x» Zn)) U, = _p(v; - ax(x» Zn))

5((1+ up-1) €08P;, -1+ (L + up41) COSPy 11, — 21+ u,)), n#0,N;
+ < 5((L+u1) cos®y o0 — (1+ uo)), n=0; (35)
5((1+uy-_1)cos®y y_1— (1 +uy)), n=N,
with boundary conditions/, (L) = 0.

For v,, n = 0,..., N, the integral constraint gives rise to the usual Lagrange
multiplier, without which the equations generally could not be integrated:
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1d

g (0 = acx, 2)) (36)
%[fnfn—l Sinq)n,n—l - fn+lfn Sinch+l,n] —Cy, n= 1, ,N—-1;
=< 5fvfn-1SiIN®y y_1—Cy, n=N,
—35 fof1sin®1 0+ Co, n=0,
where

i I_LL %[fnfn—lslnq)n,n—l - fn-‘,—lfn Slnq)n_;,_l’n]dx, n=—= l’ e, N — l,
Cn = iI—LL 5fnfn-1Sin®y y_1dx, n=N,
if_LL 5 fofisin®y odx, n=0

The equations fop, also include a no-flux boundary condition,
fnz(v; —ac(,zw)|,_; =0, n=0,...,N.

Finally, we derive the Euler—Lagrange equationsdfoAs in our previous calculations
it will be easier to deal with the associated magnetic figld z) = curla(x, z).

LEMMA 5.1. — If (£u, ¢, A) = s + w(r, s) satisfieg20), thenb(x, z) = h(x,z) — H
satisfies:

b(x,2) =b"(x), zp1<z<2zp, n=1...,N, (37)
b (x) —b" P (x)=p(v) —a,(x,z,)), n=1...,N—1, (38)
pM(x) = p((y —ac(x,zx)) f3), P (x)=—p(W)—a.(x,z0) 1),  (39)

dp™ B rpi?
dx 2

fnfn—l Sinq)n,n—l(x) - Dna b(n) (:l:L) = O= (40)

L
1 2 .
whereD,, = oT / %fnfn_lsmén,n_l(x)dx.
L

Proof. —First we derive the equation farin the weak form. Any admissible variation
for @ in E can be represented in the forin= (3.n, —d,n) with n € H? N HI(D).
(Indeed,n solves An = curla in with n|;p = 0: see Lemma 1.5.) Taking the first
variation of energy in the direction afwe obtain:

N L
1 /
O:_pz/_z(vn_ax(x’zn))fnzazn(x’zn)dx
n:O_L k
N L Zn 1
r .
+3 / / {;b(x,zmwgfnfn_lsmcbn,n_laxn}dzdx, (41)
n:l_LZn_l

foralln € H>N HY(D).



S. ALAMA ET AL./Ann. . H. Poincaré — AN 19 (2002) 281-312 303

Next, we observe that there ezdst functiobs(x) € H(—L, L) which solve the
system (38)—(40). Indeed, we defibeby integration,

X

2
b (x) = /(%fn(x)fn_l(x)sincpn,n_l(x) - Dn> dv, n=1,...,N.

L
Thenb” (x) € HY([—-L, L)) and satisfies (40). Far=1,..., N — 1 we have:
2

d n+1 n rpk .
a (b (x) b ( )) —(fn+lfn sin cI)n+1 n fnfn—l Slnq)n,n—l) - Dn+1 + Dn

— —P%((U; — Clx(X, Zn))fn2)’

by (36). For the top and bottom gaps=£ 1, N) we obtain:

d . d

6= ”’K f fu-aSin®y 1 = Dy = p (0 — (v, 2 £7).
d - . d

ab%c) = Tfoflslnq)l,o — Do= —pa«vg —a,(x,z0) f3).

In each case we integrate (and use the boundary condititipsL) = 0 = v (=L) —
a.(—L, z,)) to verify thath" satisfies conditions (38) and (39).

Next we defineb(x, z) = b"(x) for z,_1 < z < z,, and show thab also solves (41).
By an integration by parts in each summand,

Zn

v L
;{ / —b(x 7)Andzdx

Zn

Zn

N L
:Z{ / —b (x)Andzdx

n=1 1

1 N
_22{/]? (x) 9 (x, 2n) — 9.0 (X, Zn— l)

n=1 \"p

xn(x, 7)dz dx}

X

—LzZp-1
L

l ~ A
=5 / 6" (1)0.1(x. z) — B*0)3.n(x, 0)] dx
L
1 N1 L

+ 52 [0 - @) ) dr

n:l_L

v L
Z ( pfnfn—lsinq)n,n—l(x) - Dn) axndzdx
/7
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N L 1
=PZ/—Z(U,g—Clx(X,Zn))ffazn(x»Zn)dx
L

N L zp
_Z//%fnfn_lsinqw_l(x)axndzdx
n=1

T —LZp-1

for all n € H?> N H}(D). That is, b also solves Eg. (41). Now consider the func-
tion g(x,z) defined byg(x,z) = b(x,z) — b(x,z). Then g € L%(D) and solves
[, 8(x,2)Andxdz = 0 for all n € H2 N Hy(D). Taking n to be the solution to the
Dirichlet problem,An = g, nl;p = 0 we arrive at the desired conclusign= 0, and
henceb(x, z) = b(x, z) and the lemma is establishedo

As before, we observe that the gauge-invariant phase difference satisfies a usefi
equation (see (10)), which derives from Stokes’ Theorem:

%‘pn,n—l(x) = (U,g - ax(x, Zn)) - (v;/,l_]_ - ax(x, Zn—l)) + Pb(n)(x)- (42)

We now begin the proof of Lemma 3.1.

Step 1.Getting started. By the implicit function theorem, applied to Eq. (20), for
everys € S, and for every fixed choice of parameté¥s L, x, H, there exist constants
o > 0, r1 > 0 such that (20) admits a unigue solutian= w(r, s) with |r| < r; and
lw| < p. Since,(s + w(r, s)) is periodic ins we may compactify the problem by
treatingS as anN-torus, and hence the constan{sp may be chosen independently of
s € S. Statements (i)—(iii) of Lemma 3.1 then follow from standard arguments involving
the Implicit Function Theorem and the regularity of the functiofal(see [2]). What
remains to prove is the dependence of the valumn the various parameters.

We first observe that Lemma 3.1(i) implies that the solutiens s) satisfy a uniform
(in s) estimatg|w (7, s)|| < Cq|r|, with constantC; possibly depending on all parameters,
N, L,«, H, p. From this preliminary argument we may, by reducing- O if necessary,
assume that

3
<HEO<S, n=0..N, (43)

NI

for |r| <ry.

Step 2Uniform estimates im. We now use the Euler—Lagrange equations (35)—(40)
derived above to estimate the gauge-invariant quantities, in the supremum norm an
individually in each plane or gap.

First we make rough bounds, then iterate to improve the dependence on parameter
Since we can estimate the constaidts| < » and|D, | < r«?p/2, we have

||b(n)||oo <CFK2pL, (44)
||U;/1 - ax(" Zn)”oo < chzL. (45)

(Here and in the followinge will denote a pure constant, independent of all other
parameters.)
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Now consider the equations fay,. Suppose first that max u; (x) = u, (x0) > 0. If
ne{l,..., N —1}, we observe that the extremal propertyugtxo) implies that

un—l(XO) Cosq)n,n—l + un—i—l(xO) Cosq)n-i—l,n - 2Mn (XO) < Oa
while if » =0 orn = N the corresponding terms
un-1(x0) COSPy y_1 — un(xg) <O, Or ui(xg)Ccosdy— up(xg) <O.

Consequently, at the maximum point the right-hand side of (35) is non-positive. By the
maximum principle we obtain,, (xg) < 0. (Note this argument holds in general, for any
value of the parameters, for any solution of the Lawrence—Doniach system.)

Next assume that mjn u,(x) = u,(xo) < 0. By the same arguments as above at the
point xq, the extremal,, satisfies an equation of the formK—lzuj;(xo) + c(xo)u, (xg) =
— % (v}, — ax(xo, 24))? — 2r, With ¢(x) > 3. In conclusion we may boung, via

2
0> u,(x) > —— sup(v,, — a, (xo, zn))2 — 4. (46)
K X

Applying the simple estimate (45) we obtain a preliminary boundgr0 > u,,(x) >
—cr(rk?L? 4+ 1). We use the calculus inequality

2 8
sup |f'(x)| <= sup |f(x)|+§ sup |f”(x)|, foranyO<s§<L,

xe[~L,L] 8 xel-L.L] xe[—L,L]

with § = 1, and obtain|u/, || < cr(ri?L? +1).

To improve the above estimates we need to take into account the fact that the
integrands and right-hand sides contain terms which oscillate rapidly Whisrarge.
In particular,®, ,_1 = Hpx + ¢, ,—1, and we expect that terms containing the sine or
cosine ofd, ,_; tend to zero in the weak sense Hs— oo. Since these oscillatory
terms are sources in the equations for the fields and currents, we should obtain strong
convergence to zero a8 — oo, and hence sharper estimates for lafethan we
obtained in bluntly measuring these terms in the supremum norm. With this in mind,
we require one further ingredient: a bound ¢§gr, , using Eq. (42),

suplg, ,_1 ()| <cri?L(1+ p?). (47)
X

We now integrate by parts i@, D,, and in the integrals representing” (x) and
v, — ac (X, Z,):

2

rK—-p

i (A4 L llco) + LI@), 1l
2

’;Ipp (14 rL%32)(1+7rL), (48)

sup|b™ (x)| < ¢

<c
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and similarly
2
/ rK 2.2
suplv) (x) — ay (x, z,)| écH—(l—i—rL k) (1+rL). (49)
x 14

Substituting into (46) we obtain a more refined estimate«for

2

0> u,(x) > —cur<1+r (1+r:<2L2)2(l+rL)2>, (50)

H2p2

with constantC, independent ofV, «, L.
Step 3A lower bound on the linearization at= 0. We define

)\Z)L(N, L?’C? p) = Inf{QO(\Ijv \Ij) \Ij = (/’Ln» vn9&) e Wa ”(I’an Un,&)” = 1}7

with
Qo(V, W) = D2Q,_o( 12, 90, AO)[W, W]

N L
1 1
=p 50/(p(u;)2+2uﬁ+ﬁ(v,§ —ozx(x,zn)z))dx
n= _L

L Np

1
+—2//(curla)2dzdx.
K

L0
Recall that, as an operator on the whole tangent spad# Qo (s) has anV-dimensional
kernel for anys € S. Here we consider its restriction to the orthogonal subpéice
TS+ = ker(D?Q(s))*. From the proof of Proposition 2.1(b) we may conclude that
A > 0 for any choice ofv, L, «, p. Here we will obtain the more precise information on
its dependence on these parameters.

Note first that (trivially, sincec > 1 by hypothesis),

N L 1 1 X
pZ/(ﬁ(M;)Z'F Mﬁ) dr>=p> luallys
n=0_L n=0

We require the following lemma to estimate the terms including the vector poténtial
appearing in the linearizations:

LEMMA 5.2. —For anyd € H*(D) witha -7 =00ndD,

(p+DH(N+D

v lax 21 p)- (51)

N
2
p E llax (-, Zn)”LZ(D) <
n=0

Zn

/ a,(2) &z

Zn—-1

N

D

n=1

2
<p 4 / a2(x, z) dx dz. (52)

L2(D)
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Proof. —Let x/(z) = (z — z,—1)/p, n = 1,..., N. Then we apply the divergence
theorem to the vector fieldzf(x, 2)x,7, 0) in the strip[—L, L] % (z,-1, z,) to obtain

/L( 2(x, Zn) / / X (2)a2(x, 7)) dz dx

—L —Lzp-1

<[] ] (s

—Lzp-1

8ax

) dz dx (53)

forn=1,..., N. Similarly, usingx,” = (z,.+1 — 2)/p in the strip[—L, L] X (2, Zu+1)

we obtain
[sarecfiad] [ [(@fg)ae o9

forn=0,...,N —1.
Clearly there exists an inde» such that

Yot [

For 0< n < np — 1 we use estimate (54) fdj, |3, and forng < n < N we use (53). In
doing so we require th&/-norm ofa, in each interval exactly once, except for the strip
Zng—1 < Z < Zn, Which appearswice.In this way we arrive at the desired estimate (51).

The estimate (52) is an elementary consequence of the Cauchy—Schwartz ineque
ity. O

Zn

[ ]

—L Zng-1

oay E)ax

)dzdx.

We now estimate the second term@j: since
1 1\2 1 2
2y, (x,z)| < 1 —e)(v,)" + max(x, Zn),
foranye > 0, we have
L

/(v,/l —le(X,Zn))z /s(v Y2 dx — / —oz (x z,) dx.

—L
We now use (51) and the elliptic estimate (11)—(12) to estimate

//(curla) dxdz—pZ/—a (x, z0) dx

1 4 L2N?p?2 \T? 2 N\ _,
2(— 14 2 LT N 112,
2 72412+ N2p2 1-2¢)
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1 4 -2 2
>(2(1+ 2r2) - 12,
(2< T ) (1—8))”“”’“

uniformly in N. Now choose: =  min{1, 5(1+ 2, L2)~2}. From the Poincaré inequality
(for H* functions on—L, L] with vanishing mean) we may then obtain the lower bound

N L
P> [ () —an(x,z)2dx + [ [ (curld)®dy dz
n—O_‘{ ‘é‘/

N L 1 4 -2
’\2 i 2 a2
>8pz;)/<vn) av+gmind1, (14 502) hiag,
n= —L
ce(14202) oS ze 4 tmind (14 4 22) Va2
>e +;L pZ||vn||Hl+Zm|n , +;L lloell %

n=0

1 4 N3
>mindl, (1+ —L?
amnfe (1 50°) )

We then obtain

n=0

N
Y lvallf + ||&||§,1] .

A > 1 min{l (1+ iLZ) _3} (55)
~ 42 ’ w2 ’
Note in particular that is bounded away from zero uniformly iN, but the bound
deteriorates as eithdr— oo or k — co. (See Remark 5.3.)

Step 4.An upper bound on the linearization. We defi@e to be the quadratic form
representing the second variation of energy around the solutiorw (r, s) € S,, with
respect to variation¥ = (u,, v,, @) in the subspacé :

1

Q. (s+w(,s)+1¥)
0

t=

N L
1 ., 1
=r> /{p(ﬂn)z-i-ﬁ(vn—ax)2u§+(3fn2—1)p¢§
L

1
(U,g _ax)fnﬂn (V;; _O[x(xv Zn)) + ﬁfnz(v;g —O[X(X,Zn))z} dx

N

L Zn
+ %p Z / {(fnﬂn—l + fn—lﬂn) Sinq)n,n—l |j41 — Vp—1— / o dZ‘|

n=l_L 1

Zn 2

Vp — Vp1 — / o, dz]

in—-1

+ fn fn—l COSCDn,n—l

1 _
Sl o S Ty Ty T cos@n,n_l} dr + = / / (curla)®dx dz.
B
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As long as the linearizatio®, remains non-singular (as an operatorigy, we may
invoke the Implicit Function Theorem to ensure that the solutions to Eq. (20) in the form
s + w(r, s) determined by Lemma 3.1 remain valid. Hence, the critical vajughich
determines the radius of convergence of the expansion is bounded below by the smalle
value ofr for which Q, admits zero as an eigenvalue gf degenerates af, then there
exists a test vectod € W, |¥| = 1, such thatQ,, (¥, ¥) = 0. Using the lower bound
on Qg, we have:

A< Qo(W, W) =0, (W, V) 4+ (Qo— Qr)(W, V) = (Qo— 0r) (W, ¥). (56)

An estimate of the difference between the linearization-at-, and at- = 0 in terms of
r. (and the norm ofl) will then yield a lower bound on the critical valug > r,. This
estimate follows from the sup-norm bounds on eagh(v, — a. (-, z,)) obtained in (50)
and (49):

|0, (¥, W) — Qo(¥, W)

N L
1
<p§;/ty¢—@fﬁ+aﬁ—nﬁ
n=0_"p

4 1
10— @l v, e (e, )]+ 102 = (0, — e (x,2)°
K K

L

N
+ %PZ/ {(Iun_ll + [ al)

n=1"

n

Vp — Vp1 — / o, dz

in—1

Zn 2
+ /’L;% + /’Li_l - 2|Mnﬂn—l| + |f#1 —VUn-1— / o dZ‘| } dx

in—-1
<er (14 K (14 rac?K)] 1913,

wherek := Hip(l +r.L%?)(1+ r.L). Inserting the above estimate and (55) into (56)
produces a lower bound on the first point of degeneracy

-3
re[14 K(l—l—l’*KzK)} Z Az %min{l, (1—|— %L2> } (57)
We observe that the left-hand term is monotone increasing, iand therefore implies

a lower bound of the formgy > r, > R(L, «, H), where the constank can be chosen
uniformly in N, but decreases with increasifigand« and increases with increasiri.

Step 5.Conclusion. The above estimates have all been based on the (unsatisfactory
initial hypothesigr| < ri(N, L, k, H) chosen small enough to ensure (43). However, we
observe that the only role of this hypothesis is to obtain (43), and the estimates obtaine
thereafter are valid whenever (43) holds. Sifigg||, is a continuous function of, the
estimates obtained far,, v,, a andr, above persist as we increasgeither until (43)
is first violated or until we reach = r,. From (50), if condition (43) is violated then
satisfiesC,r[1 + r«k2K?] > 3, a condition on- which also defines a lower bound which
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is independent ofV, decreasing with increasingj, «, and increasing a#/ increases
(just as forR(L, x, H) above). In either case, the perturbation argument remains valid
for an intervalr € [0, o) with ro bounded below by a constant which is independent of
N, with the dependences dn «, H claimed in the statement of (iv). This concludes the
proof of Theorem 3.1.

Remark5.3. — We note that the lower bound enobtained above improves with
smallerL, « and largerH. Of course this is only a one-sided bound, and we cannot be
sure that the solutions obtained by the degenerate perturbation method really do cea
to exist if L or k are too large. Indeed, solutions with a similar form may persist beyond
the range of validity of Lemma 3.1, and the estimates which gave the lower bound (57
are certainly not sharp. However, we can show that the smallest eigev@ud., «)
of the linearization at = 0 does tend to zero as eithet k — oo. From the Implicit
Function Theorem we may then infer thatr, s) grows rapidly near = 0, which in
turn suggests that the interval of validity is diminished.ag increase.

LEMMA 5.4. — For any fixedN,
9
)\.(N,L,K')gm—)o
asL,kx — oo.

Proof. —As before, seM = Np. Leté € H2N H}(D) be the solution to the Dirichlet
problem
A§ =1, &lap =0,
and definex = (9,&, — xg) Note thatt is even inx, and 3 [f,,(curla)?dx dz = 2L

We next choose, with -2 TV () = (x, z), - Lvn(x)dx 0. Sinceu, (x, z) iseven
in x we havev, (x) = fo ax(x z,) dx’, andv, is odd. Applying Stokes’ Theorem to the
rectanglel—L, L] X [z,-1, Zal,

in X
2px://curl&dxdz

In—1—X

=/(ax<x,zn> oy (x, za_)) dx + / (0e(—x,2) —a;(x.2)) o

in—-1

— 2<vn(x> V1) — / &, (x, 2) dz>.

in—1
In particular,

L 2

a 2 - 2 2 2Np 3 J
25 2= S [vnl3+ Ive-1l2) > 2L Z/ /az<x,z>dz dx
n=0 n=1

—L
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2Np?
9

> L3—p/D/[ozz(x,z)]2dzdx.

Takingu, =0, ¥ = (u,, v, @), we have
N 2
- Mp
Iz = p > lIvallz+ a3 > TL3’
n=0

assuming (as usual) thatOp < 1. We may then conclude that:

Qo(¥. V) _ L [J, (curla)?dx dz __ 9

)\.(N,L,K) < S X .
T Ty 22712

a
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