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ABSTRACT. — We prove some symmetry theorems for positive solutions of elliptic equationsin
some noncompact manifolds, which generalize and extend symmetry results known in the caxs
of the euclidean spad®”. The (variational) technique that we use relies on Sobolev inequalities
available for manifolds together with the well known method of moving planes. In the particular
case of the standarddimensional hyperbolic spad&’ we get the radial symmetry of positive
solutions of the equation Agnu = f(u) in H", which tend to zero at infinity (or belong to the
Sobolev spacé!1(H") in some cases), under different hypotheses on the relationship between
the behavior of the nonlinearity in a neighborhood of zero and the summability properties of
the solution. One of the main features of this work is to single out and study the connection
between the geometric properties of the manifold considered and the growth conditions on th
nonlinearity in order to have our symmetry results.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — Nous démontrons quelques résultats de symétrie pour des solutions positive
de certaines équations différentielles partielles sur des variétés — ce sont des généralisatio
de résultats qui étaient déja connus dans le cas des espaces eufililidra technique
variationnelle est basée sur des inégalités de Sobolev dans le cadre des variétés, combinées a
une adaptation de la méthode traditionnelle de “moving planes” a notre situation. En particulier
dans le cas de I'espace hyperbolique dimensionsH”, nous démontrons la symétrie radiale
des solutions positives deAu = f(u) dangH", qui tendent vers zéro a I'infini (ou, dans certains
cas, appartiennent a I'espace de SobdféyH")).

Un des intéréts majeurs de ce travail réside dans les relations mises en évidence entre certait
caractéristiques de nature géométrique de la variété domaine et les propriétés de nature analytic
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(taux de croissance) des non linéarités admissibles.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

In this paper we prove some symmetry results for positive solutions of elliptic
equations in noncompact manifolds. For the euclidean sfiicehe problem was
first studied by Gidas, Ni and Nirenberg [11] using the method of moving planes of
Alexandrov [1] and Serrin [16] (see also the works of Gidas, Ni and Nirenberg [10] and
Berestycki and Nirenberg [7] concerning the use of this method for symmetry problems
in bounded domains). Among other results, they prove@atolutions of the problem

—Au=f(u), u>0 inR",
{ 1)

u—0 when |x| — oo

are radial providedf e C**[0, o0), f(0) =0, f/(0) < 0. They also obtain certain
symmetry results in the cas€(0) = 0 under appropriate assumptions on the growth
of f near 0 and the decay ofatoco. These results were then extended by Li and Ni [15]
who proved the symmetry of the solutions of (1) under the hypothesis

Js0>0: f'(s) <O Vse(0,s0). 2

Moreover, the work of Li [14] extended the symmetry results to fully nonlinear strictly
elliptic equations — in particular he obtained the symmetry of solutions of (1) when

1
f'(s)=0(s%), s > 0fora > 0; u:O(W), |x| = oo, andma > 2. (3)
x"‘l

Note that in this case € Lz (R").

In fact, as we show in Section 2, it is possible to obtain this symmetry result for
R” under the sole assumption thatbelongs to the spac&®z(R") using Sobolev
inequalities — this will be the technique that we will then extend in order to prove
symmetry results in the case of more general noncompact manifolds.

Serrin and Zou [17] studied the symmetry of positive solutions of general quasilinear
elliptic equations — in particular, for (1) their results yield the symmetry of solutions if
f is locally Lipschitz continuous 80, co) and nonincreasing near zero.

In [8] a symmetry result has been proved for positive solutioasw®? (R") NC1(R")
of the problem analogous to (1), when the laplacian is replaced bypthaplace
operator, 1< p < 2 and f is a locally Lipschitz continuous function K0, co),
nonincreasing near zero. Recently [9] this result was extended to solutions which belon
only to the spac&*(R") assumingf is nonincreasing near zero, and the analogous of
C. Li's result for thep-laplacian has been proved, when the behavior of the solution at
infinity is known, exploiting Poincaré and Hardy inequalities.

Our technique is inspired by the same philosophy, since it relies on different Sobolev
type inequalities available for manifolds.
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After the paper was completed we learned that the technique exploiting Sobole\
inequalities together with the moving plane method was used by Terracini [18,19] in
two elegant papers where singular problem&fnand elliptic problems in half spaces
with nonlinear boundary conditions were studied.

We also remark that a thorough study of symmetry and monotonicity properties of
solutions of elliptic equations in unbounded domains distinct fi®mlike half spaces
of cylinders, has been carried out by Berestycki, Caffarelli and Nirenberg in [3-6].

For the reader’s convenience, we will first prove, using our technique, the (slight
generalization of) some known results for tRé setting, namely

THEOREM 1. — Letu € CY(R"), n > 3, be a(weak solution of the equation

{—Au = fu) inR", @

u>0 in R”,

where f is locally Lipschitz continuous 0, co). Thenu is radially symmetric and
strictly radially decreasing around some poin € R” provided one of the following
holds
(@) u(x) —> 0as|x| — oo and3sg > 0 such thatf is nonincreasing in0, sp);
(b) u(x) - 0as|x| - oo, Isp, ¢ > 0suchthatifd <a < b < so then W <
C(a +b)* andu € L*7 (R");
(c) u € D*?(R") := {u € L¥ (R"): |Du| € LAR")}, where2* = 25, 3o > 0 such
thatif 0 <a < b then [L2=L9| < C(a + b)* andu € L*2(R").

Remarks —1) Note that in the critical case, i.e. whea 2* — 2 = 4 , we have

o= ﬁ = 2*, and thus our hypothesis reduces to supposirgL?". In partlcular if
f satisfies the growth condition in (c), every solutiomf (4) that belongs to the space
DL2(R") is radial.

2) We will see in Theorem 5 that in case (c) it is enough to supposeutkat
DYP(R") = {u € LP"(R"): |Du| € L?(R")}, where p* = L, for somep € [2, n)
This is relevant in particular for supercritical problems |e when 2F — 2= = 2,

@ - 2t = 2* and in general solutions of (4) do not belong to the spREé(R").

When f is as in (b) or (c), a solutiom € L*Z(R") which tends to zero, respectively
belongs taDY?(R"), is symmetric even if it has infinite energy, i.e|bu| ¢ L>(R").

In this paper, using the same type of ideas and taking advantage of a general Sobole
inequality on manifolds (see (13) and (24)), we will prove a series of symmetry results on
general manifolds satisfying appropriate conditions (in particular, convenient curvature
bounds).

In fact, one of the main purposes of this work is to study the very interesting
relationship between the geometric properties of the manifold considered (best constan
in Sobolev inequality (24) which are related to the scalar curvature of the manifold)
and the analytical conditions required on the nonlineafiggrowth conditions near the
origin) in order to obtain our symmetry results.

For example, in the case of the standardimensional hyperbolic spadd”, we
prove the following result, which is the equivalent of Theorem 1. In this case the space
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corresponding to the spa@*?(R") is the Sobolev spacH*(H"), which is the closure
of C(H") with the L2 norm of the gradient, thanks to the Sobolev inequality (13) for
the hyperbolic space.

THEOREM 2. — Supposef is locally Lipschitz continuous ir0, co) and letu €
Cl(H"), n > 3, be a(weak solution of

—Agru = f(u) inH",
{u >0 in H". ®)

Thenu is radially symmetric and strictly radially decreasing around some pajrt H”
provided one of the following holds
(@) u(x) > 0asx — oo and3Isp > 0 such thatf is nonincreasing in0, so);
(b) u(x) > 0asx — oo, Isp, ¢ > 0such that if 0 < a < b < 5o then W <
G + C(a+b)* andu € L2(H") N Lz (H");
(c) u e HY(H"), 3a > Osuch thatifo < a < b then| L2=L9| < G+ C(a +b)* and
ue LY (H").
Here, G = Gy is the constant defined i{14) — it is a positive number which depends
only on the dimension.

Remark— Suppose thaf satisfies the growth condition in (c) withe [2, -£5]. By

Sobolev inequality (13), if: is a solution of (5) belonging to the closure Gf° in L2
norm of the gradient, themis radial. In a previous remark we saw that this result is also
4

valid in theR" setting but only for the value = —.

The paper is organized as follows.

In Section 2 we prove some symmetry results known in the case of the euclidear
space, in order to introduce the technique that will be extensively used in the case of mor
general noncompact manifolds. In Section 3 we state some results in the case our ma
ifold is the standard:-dimensional hyperbolic spadé”. These are particular cases of
theorems which are stated and proved in Section 4, where a class of manifolds with sorr
symmetry and foliation properties is considered. Finally in Section 5 we show how it is
possible to extend this sort of symmetry results to the case of more general manifolds.

For simplicity we assume > 3 throughout the paper, although it is possible to obtain
analogous results when= 2, using the Sobolev embeddings for this case.

2. Someclassical resultsin R”

In this section we will show how our technique can be used to recover (and slightly
improve) some classical symmetry results in euclidean space with a rather simple proc
which can be easily extended to the case of more general manifolds. We first prove
symmetry results for solutions which tend to zero at infinity. ket C1(R") be a (weak)
solution of the problem

(6)

—Au= f(u), u>0 inR",
u—0 when |x| — oo,

where we suppose thdtis locally Lipschitz in the open intervaD, co).
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THEOREM 3. — Suppose there existg > 0 such that

(H1) 1 in nonincreasing in0, sq).

Then,u is radially symmetric around some poing € R”, i.e. u(x) = u(r), where
r:=|x — xg|. Moreoveru'(r) < Ofor all » > 0.

THEOREM 4. — Suppose there exis§, « > 0 such that

(H2) For all a,b such that0 < a < b < so we have/2=L9 < C(a + b)* (which
implies that this quotient is alsg Cb*);

Then, any solution of (6) that belongs ta.®"/?(R") is radially symmetric and strictly
radially decreasing about some point.

The proofs of both of these theorems have an analogous structure and we will d
them in parallel. As usual in radial symmetry result®ih it suffices to fix an arbitrarily
chosen direction and to prove symmetry w.r.t. that direction. We may use a system o
coordinates s.t. the! direction is along the direction we chose. Then, givenR we
set

O ={xeR"xt<t}; U :={xeR:x'=t} and u(x):=ulx),

where x, := I,(x) := (2t — x1,x’) is the image of the point = (x!,x’) under the
reflection through the hyperplarig. We also put

Ql =1,(Q)).
In both theorems the first step of the proof will consist in showing that the set
A={teR:Vu>t, u>u,in Q,},

is nonempty and bounded from below. The second step will then be to show that if
to:=Iinf A, thenu = u,, in Q.

2.1. Proof of step 1: A # @ and isbounded from below

2.1.1. Caseof Theorem 4

First, we see thaA is bounded from below, sinae— 0 when |4 — oc.

We write v = u, and suppose; > 1 (to be chosen below). Far > 0, we let
w, = we 4 (x) :=[(v —u — &)T]%, where™ denotes the positive part of a function.
Using w, as test function (it has compact support@ sinceu — 0 when x— oo
andv = u on U,) we obtain, once we subtract the equation #ofrom the equation
for v = u,,

a [lo—u=—e " plw-u-o"= [[f0) - f@]lw-u-p"" @
o O

Denotez, :=[(v —u — &)*]+V/2, Since we integrate in a set whare- u +& > u > 0,
if ¢ is sufficiently bigv = u; < sg, and (H2) yields that,
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4q / 2 / f) — fu) q

Dz, |"= | —————(v— — oy — )T

(4]+1)2Q D] 5 v—u W —w[w—u—e)]

<c/v“(v —u)[(v—u—e)]".
o

Taking advantage of the fact thate L>(R") N L*"/?(R"), we fix a sufficiently largey
(sayg such thatr + g + 1> «3) so that

/v“(v —w)[w—u—eTt]?< /v“+q+1 < /u"‘+q+1 < +o00. (8)
O O R”

Passing to the limit as — 0, and denoting := zo = [(v — 1) T]“*Y/2, we obtain (using
the dominated convergence theorem)

/|Dz|2<c/u"‘z2.
[on o

Using Holder and Sobolev inequalities it follows that

([ ([:4)"

t t t

o | () () oo

Q'=I(Q:) O

Sinceu®/? e LY(R"), we have that

Q

lim [ uz =0,

—0o0

Qt

and thus, for sufficiently large

Together with (9), this yields thant |Dz|?> =0, and thus|Dz| =0 in Q, andz is
constant inQ,. Sincez = 0 on U, this implies that =0 in Q,, which proves step 1, for
Theorem 4.

2.1.2. Caseof Theorem 3
In this case, we can simply talke= 1 and, sincef is decreasing close to zero, for
sufficiently bigz the r.h.s. in (7) is nonpositive, and therefore is zero. Passing to the limit
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ase — 0, once more we obtain

/|D(v - u)+|2:O,
O

for sufficiently bigs. We conclude as above.
2.2. Step 2: u = uy,

Sincer is the infimum, by continuity we see that> u,, in Q,,. Thus, if we suppose
u # ug in Qy, the strong maximum principle (strong comparison principle for general
operators) will yield thatt > u,, in Q,,. In fact, writingv = u,,, sinceu — v =u — u,,
satisfies inQ,, the linear equation

Sw@) = &) o

u(x) — v(x) loc

—A(u —v) =c¢y(x)(u —v), Wwherec,(x) = (R"),

we may apply the strong maximum principle and obtais u,, in Q,,, as desired.
Sinceu € L*/2(R"), we can choose a compakt C 0., and a numbes > 0 such
thatVr e (1 — 8, 1g) we havek C Q, and

C1 / uz | <=, (20)
1 (Q:\K)

whereC; is asin (9).
On the other hand, sinee— u,, is positive inQ,,, there exists & §; < §, such that

u>u, INKVte((tg—35,1o). (1D

Using (10) and proceeding as in step 1, since the integrals arepwek, we see that
(u;,—u)t=0in Q,\ K. By (11) we getr > u, in Q, for all r € (19— 81, tp), contradicting
the definition off.

Remarks. — (1) In the classical theorems the hypothesis is

1
u= O(—) wheream > 2.

|x|™

In that case, it follows that e L*"/? (our hypothesis) since

1
u?=0 whereman/2 > n.
|x|mom/2

(2) In the case of critical problems, i.e. when=4/(n — 2) = 2* — 2, it follows that
an/2=2n/(n — 2) = 2*, and we obtain radial symmetry for solutionsliA .

(3) Note that there could be solutions with infinite energy, i.e. whose gradient does
not belong tal.2 (and this happens e.g. in the supercritical case). That is why we have to
takeq > 1 in the proof of Theorem 4.
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If the nonlinearity f satisfies the growth condition in (H2) both at zero and at infinity,
then the radial symmetry of the solutianfollows without supposinga priori that
it converges to zero at infinity, provided there exigiswith 2 < p < n, such that
u e DYP(R") :={u € L”" (R"): |Du| € LP(R")}, p* = .

More precisely we can prove the following

THEOREM 5. — Letu € C1(R") be a(weal solution of

—Au= f(u) inR",
{u>0 inR”, (12)

where f is locally Lipschitz continuous itD, oco) and satisfies

‘w‘gC(a—l—b)“ fO<a<b

for somex > 0. If u € DLP(R") for somep € [2, n), andu € Lz (R") thenu is radially
symmetric and strictly radially decreasing around some pojrg R”.

Proof. —Let us puty = “2=2=2, so thatp = 24 and p* = (¢ + 1);%5.

By the summability assumptions on the ggfutlion it is possible to take directly the
function[(v —u)*)9, v = u,, as a test function in the equations foandu;, in Q;. More
precisely since:, v belong toD?(R") and they coincide on the hyperplabg there
exists a sequenag; of functions inC°(Q,) such thatp; — [(v —u)*]in LP(Q,) and
Dg; — D(v—u)* in L?(Q,). Moreover, passing to a subsequence and substituting if
necessary; with <p;F, we can suppose thatQ¢; — [(v—u)*], Dg; - D(v—u)* a.e.
in Q,, and that there exist functiong € L?", ¥, € L?, such thaty;| < Yo, |De;| < Y1
a.e.ingQ,.

Taking the functionso]q- as test functions in the equations foe= u, andu in Q, and
subtracting the equations we get

a [ Dw—w-Dy;= [[r@) = falef.
o) o)
If we can pass to the limit fof — oo, and obtain
q / [(w=w*" D[ —w] = / [f) = f@][w—wT]" < oo,
O O

then the proof is entirely analogous to that of Theorem 4.
So it suffices to justify the passage to the limit, which follows easily from the
dominated convergence theorem. In fact we have that

[[f () = fF@)]e?| < Clu+v)*v —ullp;1? < C(u+v)*|v — ullyol’

and (u + v)%|v — u||o|? belongs toL?, since(u + v)* € L't, [v — u| € L2, |yol? €

* +1 H 1 1 1
L3, wherery =5, ro=p*=(q + D5, rs=L- == with 2 + -+ > =1.
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Analogously we have that
|</)?_1D(v —u) - Do;| < [Yol! D (v — w)| [y

and |0l Y|D(v — u)|[y1| belongs toLl, sincey§ " € L', [D(w — u)|, |y1] € L,

—_r _gtln o _,_ ng+D) 1 1 _
wheres; = 5 =455 o =p="1"5 and>- +2.=1. O

3. Someresultsin the hyperbolic space H"

In this section we will state the main results for hyperbolic space with the standard
metric. Their proofs will be an easy consequence of the results that will be stated an
proved in the next section which concern manifolds on which we have a nice group
action which is the case @i".

3.1. Relevant Sobolev inequality and main theorems

For theH" results we take advantage of the following Sobolev inequality (which is a
special case of a more general inequality (24) we will use in the following sections). Let
u belong to the Sobolev spa¢g' (H"). Then

n—2
</|u|,%dvo|) < (K(n,2))2/|Du|2dv0I+B/u2dv0I, (13)
Hi» H~

]H[n

where the constark (n, 2) is a universal constant that depends only on the dimension,

whose exact value iq/4/(n(n —2)w@™), and B = By = —1/w?" (as usual,w,

denotes the volume of the standarglimensional unit spherest c R"*1)). We will
also denote by; = Gy the ratio

_ . | By | . nn—2)
G =Cm = (K(n,2)2 4

(14)

which plays an important role in the following results.
In the following Theorems 6-8 we assume thas aC* weak solution of the problem

—Agnu=f(u), u>0 inH", (15)
u— 0 whenx — oo, (16)

where f € C1([0, +o0]).

THEOREM 6. — Under the above assumptions, if there exisés-a0 s.t.
f'(s) <0, Vse(0,9), (17)

then,u is radially symmetric and strictly radially decreasing around some pajrat H”.
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THEOREM 7. — Under the above assumptions, if
f'0) <u<G,

whereG is defined in(14), and either
(@) u € L" for somer < h() whereh(u) > 2 is given by

2G G\*> G
hwy:7:+2 <E>—"ﬁ (18)
(b) u € L?(w?dvol), with a weightw € C1(H") s.t.

|Dol?

w2

<G - (19)

then,u is radially symmetric and strictly radially decreasing around some pajrat H”.

Remark— In (b) we may take» (x) = exp(—+/a d(x, yo)), where O<a < G — n and
Yo is any fixed point inH".

THEOREM 8. — Under the above assumptions, if
3§>0, C>0: f'(s) <G+ Cs*, Vsel0,4], (20)

andu € L?N L*"/?, thenu is radially symmetric and strictly radially decreasing around
some pointc € H".

Remark— We can takef locally Lipschitz in(0, 4+o0) instead ofC* as we did in the
statements of the theorems above. In that case, for Theorems 7 and 8 we should add t
following asymptotic behavior at O condition

3§>0, C>0s.t.ifO<u<v <3, WgC(u—l—v)“ﬁ—u, (22)
where

— C=u=0inTheorem 6,

— < GinTheorem 7,

— < GinTheorem 8.

Moreover, as in the case &, if the behavior off is known both at zero and at
infinity, we can omit the condition that — 0 atoo in the hypotheses. In this spirit, we
can state the following

THEOREM 9. — Letu € CY(H") N H*(H") be a solution 0{15), where f is locally
Lipschitz continuous 160, +o00) and satisfies for alb > u > 0,

’ S ) = fu)

vV—u

<G+ Cv*, (22)

for someC, « > 0. If u € L¥/?(H"), thenu is radially symmetric and strictly radially
decreasing around some poirg € H".
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Remark— Of course ifu € HY(H") thenu € L'(H") for eachr € [2,2*], and if
a € [2, -25] the conditionu € L*"/? is superfluous.

As we mentioned above, we will give the proofs of these theorems in a more genera
setting in the following section. We close this section by an example where we can apph
the previous results.

3.2. Example

We consider hyperbolic spadié” More precisely, using stereographic coordinates,
we write (M, g) := (B(0, 1), 3 ——=Id), whereB(0, 1) C R" denotes the standard unit
ball andld the identity matrlx In thls case, the Laplace—Beltrami operator can be written
as

"1 a0 2-n 0
—A,=— ~(1—|x)? ((1—|x)? —)
8 24( %] ) ox! <( &l ) ox!

i=1

Setu, (x) := (i;ljli)“, wherea > 0. A direct computation yields

"1 n 0 oo (1= x2\*Y daxi
A=Y (1—xP)"—((@-1|x? ( ) )
o= 301l 5 (000 (T5E) @

R
~ xi 1+ |x|2)a+1
1—|xf? )"‘” : ((1— |x|2>1—"+“>
_“”<1+|x|2 +Z‘” ) e g e
(1—|x[»*

= Agppyer e (L= xl’) =20 —n e (s +1x1")

— 20(a + 1) (|x ]2 = [x|%)]

-1 )(1_'x'2)a+ ( +1>(1_'x'2)a+2
=oun — — _— oo _—
1+ |x|? 1+ |x|?

=an—1-— Ol)l/la+05(05+1)uo¢ = fo(tte).

We remark that for allx > 0 u, — 0 when|x| = |x|g» — 1, i.e. at the boundary of
the ball (which corresponds te of H").
We consider general solutions of this equation, i.e. solutignsf

a+2
{—Agva:fa(va):a(n—l—oz)va—l—oz(a—l—l)vaT, (23)
vy — 0whenx — 9B(0,1), v, >0inB(0,1).
We discuss the following interesting cases
(1) fa >n—1,thenf,(0) <O. It follows from Theorem 6 that any positive solution
v, Of (23) is radially symmetric.
(2) f n/2<a<n—1,thenf(0) <G. In this case, the radial symmetry of any
e L?(H") follows from Theorem 7.
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(3) If « =n/2, we have the limit case. We notice that > u > 0

4
G+ (1+—>v3.
n

Moreover 5 x ‘;‘ = 2, so by Theorem 9 ib,,» HMH") then it is radially
symmetric.

’ f—fw|

vV—u

4. Manifoldswith “group symmetries’

We will start by studying a special class of manifolds having nice symmetry properties
and where the less geometry-oriented reader should still feel quite comfortable — th
group action properties we assume in this case make things very similar to what happer
in the familiar cas&®” (andH", which is a particular element of this class of manifolds).

In Section 5 we will work under more general conditions.

4.1. Assumptionson the manifold and Sobolev inequality

In this section and the following one we will consider complete Riemannian n-
manifolds (M, g) satisfying certain foliation conditions and appropriate bounds on
the Riemann curvature tensor. We first indicate the general conditions needed on th
manifold to have the Sobolev inequality we will use in both Sections 4 and 5 (a
generalized version of (13)).

Both here and in Section 5, we assume the following bounds othe Riemann
curvature tensor ofM, g),

A1, A2 > 0: IR|<A; and |VR| <Ay,

where V denotes the covariant derivative. Moreover, we suppose that the injectivity
radius is strictly positive, i.e.
inj(M, g)=p > 0.

Then, by Theorem 4.12 of Hebey [13], we have the following Sobolev inequality for
functions in the Sobolev spadé'(H"):

n—2

</|v|,% dvol) "< (K(n,2))2/|Dv|2dvoI+B/vzdvol, (24)
M M M

whereK (n, 2) is a universal constant depending only on the dimensiand B = B
is a constant depending on the manifold. The exact valué isf

1 [a T(n+1) 1/”_ / 4
Kn,2)= nV n—Z(F(%)F(%+l)wn—1> nn —2w" (@3)
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(see [13], pp. 61, 69) whete, ; denotes the volume of the stand&nd- 1)-dimensional
unit sphere §"~! ¢ R"). As in the case ofl", the constant

| Bl
G=GMm'=—"7F= 26
M (K, 2)2 (20)
plays a crucial role in the analysis.
In this section we will make one further important assumption about our manifold: we
suppose that

By <O.

This hypothesis is in particular satisfied wh&i = H", the standard hyperbolic space,
in which caseB = By := —1/w?/" (see [13], p. 81).

n

4.2. The“group symmetry” foliation properties

We will indicate the nice symmetry and foliation propertieg 8, g) which we will
assume in this section. They are of the same type as those in [2] — they may seem rath
technical at first sight, but they are just the natural generalization of the well-known
reflection with respect to hyperplanes and foliation by hyperplaneR’for

We assume that there is a family of isometrigs(which generalize translations, or
rotations, in theR” case) and a reflection (i.e. an isometry such thd? = Id, and 1
fixes a hypersurfac& c M) s.t. we have the following invariance condition

VtER, AtIAt:I. (27)

We suppose!, is a one-parameter group of transformations whiadii€R x M, M),
and define the vector field

X(y)=—— for y e M. (28)

Then, A, = exp(t X).
We can “translate” the reflectioh using A; to define a one-parameter family of
reflections

I, =ATA_,.

Let U, be the hypersurface d¥1 which is fixed byZ,. We assume that1 can be foliated
by theU;: the U; should be pairwise disjoin¥t;,; € R, U, -,,, U; should be an open
subset ofM, and M =, g U,.

We notice the following very useful relation between the group of transformatens
and the family of isometries, which motivated calling (27) an invariance condition,

Vt,teR, Vxe U, I,(x)=A_n(x). (29)
This implies, in particular, that iE (x) = {A,(x): t € R}, is the trajectory of any € M

under the action of the transformation grodp (which is the same as the integral
trajectory ofx under the flow ofX), thenvz e R, I,(Z(x)) = X (x).
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The proof of (29) is very simple. In fact, sineec U;, I,(x) = x, and thus
LL(x)=AJA_[;(x)=A TA_ A JA_,(x) =A TA;,_TA_;(x)
= AT A TA; Ar 5 (X) = A TP A (x) = Agr ().
Fort € R we define

0,= |J U and Q"= |J U.

—oo<t<ty n<t<+400o

We should havd;(Q;) c Q' and,(Q") C Q;, forall t e R. Fort € R andx € Q, we
definex; = I,(x) andu, (x) = u(x;). The functiory (x) assigns to each € M the unique
t eRs.t.x € U,. Itis a continuous function oM.

We will start by showing that our assumptions imply that the action of the group is
orthogonal to the invariant hypersurfaces and that along the integral trajectoNes®f
exit any compact subset @# in finite time.

LEMMA 1. — Letx € M be an arbitrary point and =7 (x) (so thatx € U;). Then,
240)|, o+ 0, and is orthogonal td U, . Thus

.U, &

94 () =T, M.

at t=0

Proof. —SinceA; is a group and, = A, T A_,, to prove the lemma it suffices to show
that for allx € U, %h:o # 0 and is orthogonal t&/ (we can then translate this result
usingA,).

Forx € U, using the invariance condition we have

ATA ) =IxX)=x< A,(x)=TA_1(x)=1A_,(x).
Differentiating this relationship at € U, we obtain

=d1<8A_z(X) )=d1<_8Az(x) )
=0 t=0 ot =0

ot
Since/ is an isometry and( (x) = 24|, _, satisfies, according to the relation above,
X(x) =dI (—X(x)), it follows thatX |s orthogonal to the hypersurface fixed byi.e.
X1U.
If we hadX (x) = 0, then we would havd, (x) = exp(t X (x)) = x, V¢t € R. However,
sinceA, (x) € U, this would imply thatt € U, V¢ € R, contradicting our assumption that
the U; are pairwise disjoint. O

0A;(x)
ot

LEMMA 2. — Given any pointt € M, and any compact subsé& c M containing
x, then there exists = t(x, K) < +o00 s.t. integral trajectoryA, (x) = exp(t X) (x) does
not belong toK for |¢| > t (i.e. the trajectory permanently exifs in finite positive and
negativer).

Proof. —This lemma is just an immediate consequence of the continuity laffact,
sincet is continuous and is compact,(K) is a compact subset &, call it K;.
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Since, from the group property of, and the definition of the functiom, we have
t(Az(x)) =s +t(x), our conclusion follows from the fact th&t; is bounded. O

As anexamplewe can consider foliations diyperbolic spacél” (see [2]).

Let R = (R"*1, ¢) be the Minkowski space, wherg is the metric with signa-
ture (—, 4+, ..., +). Hyperbolic space of dimension, H", is the submanifold{x
R™1: g(x,x) =—1, andx® > 0}.

A particular directional foliation can be obtained by choosing any direction in the
xt, ..., x" plane. For simplicity let us suppose that the direction considered is'the
direction. We may then writ&"! = R:! x R*1, and defined, = A, ® Idg.-1, where
A, is the hyperbolic rotation of angkein R, i.e.

T coshr) sinh(?) \ . 11 1.1
1= (sinh(t) cosk(t)) PR =R

The reflection/ is defined to b&x®, x1, x2, ..., x") > (9, —x1, x2, ..., x").

Then,U =H" N {x! =0} andU, = A,(U) for all r e R. Moreover,H" is foliated by
U,.

We will state and prove the equivalents of Theorems 6-9 in the general setting of
this section, and we will give their proofs. As we will show in Section 4.7, the original
radial symmetry results iH" of Theorems 6-9 are then easy corollaries of their general
versions. In the following Theorems 10-12 we suppose Bhat< 0 and that: is aC*
weak solution of

—Apu=fw), u>0 inM, (30)

u— 0 whenx — oo, (32)

where f € CY([0, +o0]). In (31) we mean that if we fix any point; € M, then
u(x) — 0 when the distance fromto x; tends to+oo.

Fixing a group actiom; and a reflectiord (and the associated foliatid4) means that
we choose some direction to move and reflect things. Our theorems will state sufficien
conditions for solutiona of (30) and (31) to be symmetric along this direction: existence
of ai e R such that«(x) coincides with its reflection (by;) with respect taJ;, which
we calledu; (x) = u(l;(x)).

4.3. Statements of the main theorems
THEOREM 10. — Under the above assumptions, if there exisés=a0 s.t.
f($) <0, Vse(0,6), (32)

then,u is symmetric along our direction, i.8X s.t.u(x) = uz (x).

We choose to give the proof of this result in the more general setting of Section 5
in order to illustrate how to work in that setting. Theorem 10 is an easy corollary of
Theorem 14 which we will prove in Section 5.
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THEOREM 11. — Under the above assumptions, if
[0 <u<G, (33)

whereG is defined in(26), and either
(@) ue L for

2
r:h(u):zZ—G—l-Z (9> _¢ (>2); (34)
% % %

(b) u € L?(w?dvol), with a weightw € C1(M) s.t.

|Dw|?
2

<G - (35)
w

then,u is symmetric along our direction, i.8X s.t.u(x) = u; (x).

Remark— Sinceu € L*(R") by hypothesis, ifu € L" thenu € L* for all s > r.
Therefore by (au is symmetric provided: € L"(R") for somer < rg, Whererg =

h(f'(0)).
THEOREM 12. — Under the above assumptions, if

35§>0, C>0: f'(s) <G +Cs% Vsel0,38], (36)

andu € L? N L*/2, thenu is symmetric along our direction.

In the case when the behavior ¢fis known at zero and at infinity, we have the
following result, where condition (31) is natpriori supposed.

THEOREM 13. — Letu € CY(M) N HY(M) be a solution of(30), with f locally
Lipschitz continuous 40, +00) and satisfying for alb > u > 0

S ) — fu)

vV—u

<G +Cv°, (37)

for someC, « > 0. If u € L*"/?, thenu is symmetric along the direction considered.

Remark— (1) It follows from the Sobolev inequality that if € H(M), thenv e
LA(M), YBe[2, 2.

(2) In Theorem 10B, < 0 is unnecessary.
4.4. Proof of Theorem 11

4.4.1. Statement (a)
From (33) and the fact that we supposgd C([0, co)) it follows that there exists a
8§ > 0s.t. for allu, v € (0, 8],

few-ro _

u—v

<G. (38)
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As a matter of fact, this is the good condition @rfor this proof.
SetA={teR: Vt>1t, u>u,in Q.}. The proof consists of 3 steps.
Stepl: A is nonempty
First, we remark that, fok € R,

—Apm(up —u) = fu) — fu). (39)
Let

2G G\? G
g=h(n—1="2 42 (—) ]
I 0 I

and fixe > 0. We see thai(u, —u — £)*]7 has compact support since lim., u(x) =0
andu = u; onU,. Taking[(u; —u — &)*]7 as test function, we obtain

/ — A (uy —u) [(uy —u—e)t]" dvol = /(f(uk) — fw)[(uy —u—e)"]? dvol. (40)
0x 0x
Since lim._, o, u(x) = 0, there exiskg € M andR > 0 s.t.
Vye M\ B(xg, R), O<u(y) <.
Moreover, sinceB (xg, R) is compact, there exisis s.t.
B(xg, R) C Oy, (42)

Choosingi > Ao, it follows thatu, < § in Q,. But, since the integrand in the r.h.s. of
(40) is nonzero only ift < u; — &, we have both, u;, < § in the significant integration
domain and thus, using (33), it follows that

[ (@ = 7@) [0 —u =] dvol < e [ = [ —u = )] chol. (42)
Ox Ox

On the other hand,

/—AM(u,\ —u)[(uy —u — a)ﬂq dvol
Ox

=/<D<uk — ), D[(u;, —u—e)*]") dvol
Ox

=q /[(u,\ —u— 8)+}q_l<D(uA —u), D(u; —u))dvol
Ox

= ﬁ/‘D[(uk —u —s)*]%\zdvol.
078
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Therefore, using (42), we obtain

IR
(q+1)2/|p (w, —u — )% [Pdvol
gpc/(uk—u)[(uk—u —8)+]qu0|<M/[(uk—u)ﬂqﬂdvol.
(0% O

Noticing that[(x; —u)*1?"! € L1(Q;) and lettings — 0, it follows from the monotone
convergence theorem that

/| [, — )] | dvol<u/([(ux—u) 1% )2 avol.
Ox

(g + 1)2

Thus[(u; — u)+]q_§l e H'(Q;). Using the Sobolev inequality (24) we see that

(qj—q;l)z ‘/|D[(l/t)L - l/l)-ﬂ % |2dV0|
0>

( /‘D(M—u) = __—13(/([%—@ Iy dv0|>2>

Ox
q+
D[(u; — - 52 dvol)»
= /| [, — )] T 2= |B|</([(MA 0T’ ),>
A
wherep = 2. Here, and in the conclusion of this step, it is crucial to use the fact that
B <0so that— =|B| > 0. On the other hand, it is easy to check that
49  pK®
— >0,

(@+1? Bl G
and thus it follows that
/([(uk —u) ]qT) dvol < 0.

O

Thus(u; — u)* =0in Q,, which means that, < u in Q, and, consequently, € A.
Step2: A is bounded below.
By assumption (31)

lim supu =0,

A—>— C)(JQ)L

and thus, we may choose somge s.t. sup, u < (sup,,u)/2. This implies that all
A € (—o00, 01) do not belong taA. Therefore,A is bounded from below, and we let

L:=infA.
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Step3: U=uj in 0Os.

In fact, it is clear that by continuity of the foliation and ©f we haveu > u; in Qj.

Using our equation and the assumption thfais locally Lipschitz, we have that
Vxe Q;,3M,r>0s.t forally € B(x,r) N Q3, we have

—Anmu—uz) = fu) = fu;) =2 =M@ —uz).

Thus, the strong maximum principle and connectedneg3;amply that either: = u;
in Q5 (in which case the proof of Theorem 11 is complete), or glseu; in Q;.

Suppose the latter case were true. Choese U; and R' > 0 s.t. B(xo, R) C
B(x1, R). By the continuity of the foliation, there would exigh > 0 s.t. for O<
n <mno, I;_,(B(x1,R")) C B(x1,2R’). Moreover, by the definition oh we could
construct an increasing sequence /' A such thati, > A — o and3y, € Q,, s.t.
M(yn) < M(I)»n (yn)) = U, (yn)

We claim thaty, € B(x1,2R’). If this were not so, takingu,, — u — ¢)* as
test function (as in the previous steps), and using the fact thatuO< u;, < 8
in suppu;, —u — ¢)7, we would conclude that;;, < u in Q,,. This proves our
claim.

Modulo a subsequence, there would exist Q;, such thaty, — y. By continuity,
we should have

u(y)= lim u(y,) < lim u;, (v,) =uz(y).
n—+00 n—-+00

This would imply thaty € U;. On the other hand, there would exist poigjsin the
line segment betweem, and I;,(y,) s.t. X(u)(¢,) < 0, whereX is, as before, the
Killing vector field associated to the transformation grodip Passing to the limit we
should haveX (u)(y) < 0. However, this is impossible since by the strong maximum
principle X (u)(x) > 0 for all x € U;. This contradiction implies that, as desireds u;

in Q5. O

4.4.2. Statement (b)

As before, se\ ={r e R: V1 > 1, u > u, in Q.}. The proof consists of 3 steps, but
we only need to give the proof of step 1 since the other two are analogous to those give
in case (a).

Stepl: A is nonempty.

As above, we defingg (see (41)) and take > Ag. For anye > 0 we take(u; —u —
£)*w? as test function. A direct computation yields

/—AM(MA —u)(uy, —u — &) w?dvol
0.
= [(Fw) = @) —u =2 e?dvol
0.

< /JL/(MA —u)(u, —u — &) Tw?dvol < ;L/[(u,\ - u)ﬂza)zdvol. (43)
O Ox
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On the other hand,

/—AM(MA —u)(u;, —u — &) w?dvol
Oy

= /<D(uk —u),D(u; —u — 8)+w2> dvol
178

= / <D(u,\—u—£)+,D(uk—u—s)+w2>dvol

Q,.N{uy >u+e}
—/< ( ) D(Z. a))>dvol,

whereZ, := w(u; —u — ¢)*. Continuing the computation, we see that the last integral
is

[{p(Z) omit) (%) 7000

)+ (o(%) 7000

) (27t 1(5(3).
_ Q[|ng|2+z3<0w,p(g)>dvo|.

Hence, using (43), and our assumption tl%@f < G — u, we deduce

_/|DZ| —< Dw, D(Z,)

_/|DZ| —< Dw, D(Z,)

ZZ
/|DZ8|2dv0I</—52|Dw|2dvol+pc/[(m —u)+]2w2dvol
w

078 (078 078
< (G - M)/Zfdvol+ [,L/[(M)L - u)ﬂzwzdvol
0). 18
< (G — ) / Z2dvol + ;L/[(uk — u)*]’w?dvol
0). 18
< (G - ;L)/[(MA — u)ﬂza)2 dvol + ;L/[(M;L — u)ﬂza)2 dvol
(078 (078

= G/[(uk - u)+]2w2 dvol.
(0
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Letting e — O we see that

/|D[(MA —u)* o] |2dV0| < G/[(ux — u)+]2a)2 dvol.
Ox Ox

Using the Sobolev inequality as before, we conclude that— u)™ =0, i.e.u; <u

in 0,.
Steps 2 and 3 are proved just as in case (&).

4.5. Proof of Theorem 12

Oncemore,weseA ={reR: V1 >1t, u>u,in Q.}, the proof consists of the same
3 steps and we only need to give the proof of step 1 since the other two are analogous
those given in the proof of Theorem 11.

Stepl: A is nonempty.

As above, we defing, (see (41)) and take > Aq. For anys > 0 we take(u, —u —¢&)*
as test function. A direct computation, using condition (36), yields

/‘D(uk—u —8)+‘2dV0|=/(f(uA) — f))u; —u —¢)* dvol

(0% O
< /(G + C(u;)*) (uy, — u)(u; —u — &)™ dvol
Oy
< /(G + C(u)®) [(u, — u)*]* avol.
Ox

We remark that there exists a constans.t.
(G + Cu)®) [, — w)*]* < C' [, —w)*]* € LA M.
Passing to the limit — 0 we obtain

/|D(uA —uwy*[avol < /(G + C(u)®) [y, — uy*]?avol,
18 05

and thus
/\D(uA — uy*[? dvol — G/[(uA —uw)*dvol< C /(uk)“ [, — u)*]% dvol.
05 05 0.

Using the Holder and Sobolev inequalities, we deduce
/|D(uA —u)*|*dvol — G/[(uA — u)*]?avol
(078 (078

n=2

<C (/(u,\)% dvol)% (/[(uA )t dvol) '

A A
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<C” (/(m)“—z" dvol) ’ (/|D(ux — M)+|2 — G[(u; — u)ﬂzdvoI)

2
- C(/u7 dvol) (/\D(uA — = G [(uy — u)+]2dvol).
o* 0.
Sinceu € L*"/?(M),

/u“"/z dvol— 0, wheni — +oo,
Q)‘

and thus we can choogg such that

2/n
C”(/ u“"/zdvol) <1, Vi>iy
Q)‘
Thus, assuming > X,, we would have
/|D(uA —uw)** = G[(u; — u)*])* dvol < /|D(ux —uw)* > = G, — u)*])* dvol
0. 0.
and therefore,
/|D(ux — u)*|*dvol — G/[(ux —u)*]?dvol =0, (44)
0. 0.
since

/|Dv|2dvo|> G/vzdvol, Yve HF(Q0)).
(0% O
Using the Sobolev inequality (24), it follows from (44) that

n—2

1 2 T
=2 (/ [(uy, —u)*]™2 dVOI)

Ox
< /|D(ux — uy*|Pdvol - G/[(uk —w*%dvol = 0,
(0% O

which yields that(u;, — u)* =0in Q,, i.e. that, as desired, <uin Q;.
Steps 2 and 3 are proved just as in Theorem 1d.

4.6. Proof of Theorem 13

DefineA ={reR: VYVt >, u>u,in Q.}, as above. As before, the proof consists of
the same 3 steps and we only need to give the proof of step 1.
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Stepl: A is nonempty.
We start by remarking that, since we assume H*(M), we can take(u, — u)"
directly as test function (as in Theorem 5). Hence, using condition (37), we obtain

/|D(uA — u)*|* dvol = /(—AM(uA —u)) @y, — )t
0. 0.
= [ (£@) = F@)w, — u)* dvol
[0

< [ 6+ ) [, —w*] dvl
Ox

< G/[(uA —u)*]?dvol+ C /(um [(u;, — u)*]? dvol.
Ox Ox
Using the Holder and Sobolev inequalities, it follows that

/‘D(u,\ - u)+|2dV0|
Ox

n—2

< G/[(ux — )% dvol + C(/(uk)“—; dVO|>E (/[(ux — ] 2 dVoI) :
Ox

Ox Ox

<G (1w~ dvol+ ¢ [ avol)”
/ /

Ox
x </|D(uA — )t = G, — u)+]2dvol>.
Ox

Thus,

(1— C(/(uk)% dvol) 5) (/|D(uA — )t = G, — u)ﬂzdvol) <O0.

0] (0%

As above, we can choose € R s.t.

2
C(/(ux)% dvol) <1VA> Ao
[

Then, for anyx > A,
/|D(uA —u)*|*dvol — G/[(uA —uy*]?dvol < 0.
18 18

Together with the Sobolev inequality, this implies that



336 L. ALMEIDA ET AL./ Ann. I. H. Poincaré — AN 19 (2002) 313-342

n—2

1 2 n
ye (/[(uk —u)*]n2 dvol)

178
< /\D(uA —u)*|*dvol — G/[(uA —u)*)?dvol < 0.
178 178

Therefore(u, —u)* =0in Q, and thus(A,, +00) C A.
As for steps 2 and 3, they are proved just as in Theorem 1.

4.7. Passing from directional to radial symmetry

If our manifold has an appropriate structure it is possible to pass from directional
symmetry results like those obtained in Theorems 10-13, to the corresponding ful
radial symmetry results like Theorems 6-9. We will show here the procedure to obtair
the full radial symmetry results iHl" using the directional symmetry results given by
Theorems 10-13 (it is analogous to the standard method ugy.in

We start by considering: orthogonal directions iH" and obtain the symmetry
along these directions using the appropriate result (Theorem 10 to prove Theorem ¢
Theorem 11 to prove Theorem.7.). Then symmetry hypersurfaces obtained in this
way (corresponding to the directions considered), which we denote Wy, ..., W,,
are orthogonal to each other and their intersection is a unique pp&iV.

Let P, be the orthogonal projection ont@; (projection along the transformation
group associated with thi¢h direction considered). Thefw e M andvi=1,...,n,

u(x) <u(Pi(x)), with equality iff x = Pi (x), (45)

since our directional symmetry results imply that the functiois strictly increasing
along group action trajectories, up to the central positi#h)(unlessu is constant, in
which case the radial symmetry is trivial. Henceforth we exclude this trivial case. Indeed,
in step 1 of the proofs of our directional symmetry results above, the strong maximum
principle implies tha¥ A € A, X(u)(x) <0, Yx € U,.

Consequently, sincey = P1P». .. P,(x),

u(x) <u(PrP;... Py(x)) = u(xo). (46)

Thus,xg is the unique maximum point far.

Now, consider any other arbitrarily chosen directiontif. Our theorems yield the
directional symmetry along this direction (relative to some hypersufageNe claim
that W passes throughky. In fact, let P denote the projection, along this direction, onto
W. Then, by (45) forP, if xo ¢ W, it follows thatu (P (xg)) > u(xg), contradicting (46).

Working with stereographic coordinateslift, just to fix ideas, and taking advantage
of the fact thafH” is a homogeneous manifold, w.l.0.g. we may suppeds the origin.
Then, what our argument above tells us is thas symmetric with respect to every
hyperplane passing through the origin, and thuss radially symmetric in the usual
sense.

The fact that the solutions are also strictly radially decreasing is obtained just as in the
R" case.
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Remark — For product spaces liK&" x §™, with n > m, or H" x R*, we haveB < 0
in (24) and thus our theorems apply and yield that a positive solutiznnecessarily
radially symmetric along th#l" factor (like in Example 4.5 of [2]). The same is true for
product spaceBl” x M, where M is a compact manifold, as long asis sufficiently
large (so thatB becomes negative) and the product manifold is simply connected and
uniformly flat.

When B = 0, which is the case dfl” x $", we should have the same type of results
as inR".

5. More general manifolds

In this section we will work in a more general setting than in Section 4. The
assumptions on the Riemann curvature tensor will be the same, in order to have th
Sobolev inequality (24), but we no longer assume the nice group structure associate
with the foliation that we had in the previous section. The setting is somewhat similar to
the one considered in the general case of [2] and, in this spirit, although here we suppo:s
M to be a noncompact manifold without boundary, our results should also be valid in
the caséd) M # ¢ as long as we ask= 0 ona.M.

Our purpose here is to show that, although it is technically more complicated, it is still
possible to obtain the same type of result as the ones obtained above. As an illustratiol
we will state and prove the equivalent of Theorem 10 in this setting.

5.1. Foliation conditions

The foliation conditions we will assume here are the following: there exists a family
of isometries/, : M — M, t € R, which is C* in ¢, and such that there is a family
of pairwise disjoint hypersurface, ¢ M such thatl,(x) = x < x € U,, i.e. U; is
the invariant hypersurface under the action/ofThe manifold M is foliated by these
surfaces, i.eM = {J,g U;.

Let Qtl = U—oo<l<t1 U, and Qtl = Uzl<z<+oo U:. Thenalz(Qz) C Qt and[z(Qt) C 0,
for all ¢ € R. Furthermore, we suppose that tfe are connected for all € R (so that
we can apply the strong maximum principle as in the previous settings}. &&rand
x € Q, we definex; = I,(x) andu, (x) = u(x,). The functiorr (x) assigns to each e M,
the uniquer e R s.t.x € U;. Itis assumed to be a continuous function.

5.2. Main theorem

In the following theorem, which is a generalization of Theorem 10 to this setting, we
suppose that is aC* weak solution of (30) and (31), whepeis assumed to be locally
Lipschitz in (0, +00).

THEOREM 14.— Under the above assumptions, if there exists- 0 s.t. f is
decreasing in0, §), thenu is symmetric relative to some hypersurfdgg i.e.31 e R
S.tu; (x) =u(x), Vx € 03.
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Proof. —The proof will be done using a generalized moving planes method (in the
spirit of [2]). We will structure it into the same three steps as in the proofs of the previous
theorems. We start by definilg={t € R: V1 >, u > u,in Q.}.

Stepl: A is nonempty.

Since, by (31)u — 0 at infinity, given a fixed point; € M, there existsR; > 0 s.t.

u<8 in M\ B(xy, Ry),

where B(x1, R1) denoted the closed geodesic ball of cenigr and radius R;.
Let r: M — R be our foliation parameter, which is a continuous function. Then,
t(B(x1, R1)) is a compact subset @& and thus3o € R s.t.1(B(x1, R1)) N[0, 00) = 2.

We claim thato € A. In fact, given any € [0, 00), and for everg > 0, we can take

We =y —u—e)*

as test function since it belongs k3 (Q;) (because: is C* and tends to zero at infinity).
This yields,

/—A(u—uk)wsdvolz/(f(u)—f(uk))wsdvol, 47)

O O
where, as before, we used the fact thatis also a solution of our problem since the
equation is invariant by the isometfy. On the one hand, for the |.h.s. we have that

/—A(u—ux)wg dvoI:/(D(u —uk),Dw8>dvolz/|Dw8|2dvol.
05 05 18

On the other hand, for the r.h.s.

[ (@ = sanyw. ol <o,
0,

since, whenw,(x) # 0 in Q;, we haves > u; (x) > u(x) + & > 0, andf is decreasing
in (0, 8). Therefore, it follows from (47) that

/|Dw8|2dvol <0,
[0

and hencew, = 0 (since it is a constant and at infinity it is zero), ug.<u + ¢ in Q;.
Passing to the limit whea — O, it follows thatu; < u in Q,, and this for allx > o.
Thus,o € A, as claimed.

Step2: A is bounded from below.

We proceed as in step 2 of the proof of Theorem 11: using the fact that
lim;_, _« supy, u = 0, we can choose somg s.t. SUR,, U < (supy,u)/2. Hence, all
A € (—o0, 01) do not belong taA. Therefore,A is bounded from below, and we let

L:=infA.
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Step3: U=uj in 0Os.
We will proceed by contradiction. By continuity,> u; in Q5. If u # u;, then

Vye Qs u(y) > usz(y). (48)
Indeed, we have that for any —A(u — u;) =a(u — u;) in Q,, where

0, if u(x) =u;(x),
a=a,(x):= { LU ZFu ) =iy (x) £ uy (x).

u(x)—uy(x)

Sinceg; (x) is a locally bounded functionf{is locally Lipschitz and: is positive and
bounded), and); is connected, it follows from (48) and the standard strong maximum
principle (see, for instance, [2] Theorem 3) that

u>uj in 0s. (49)
Let xo € U; and choos&k > 0 s.t.
B(x1, R1) C B(xo, R). (50)

For € R, letV; := Uy, N B(xo, 3R) andV; := U; N B(xo, 2R). V; is compact sinceé/;
is closed andB(xo, 2R) is compact. Therefore, we can covér by a finite number of
balls B; with center inV;,i =1,..., N, such that

radiug B;) < min{p, g} (51)

where p > 0 is the injectivity radius ofM. Since V; is compact and is contained in
B := Uf’zl B;, which is an open set, didt;, dB) > 0. Thus, by the continuity of our
foliation,

Jrr <A ViNB(xg,2R)C B, VA1 <A<A. (52)
On each of the ball®;, we have a Poincaré inequalityv € H(B;) s.t. fgiv =0,

n—2
/v2< \Biﬂsupﬂv)|2/” (/v% dvol) < Ci|B; msupqv)\z/”/u)mz. (53)
i i Bi
Here C; is a constant (see, for instance [12] Theorem 5.11.2).d_et maxcC;, ¢ be
the Lipschitz constant foif in the interval (ming, og) u, MaXz 2z #), and H, :=
U, -, -3 Vi, be the band imB (xo, 3R) betweenV, and V;. We may choose, € (A1, 1)
S.t.
8CUN|H,,|"" < 1. (54)

Let K := Q;, N B(xo, 3R), which is a compact set. By the continuity fand of the
foliation (which includes the family of reflections), singe> u; on K,

Jrze (A, M) St.VAe[rs, Al u>u;onk. (55)
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Fix any X € (A3, ) and, for every > 0, take as test function
We = (u, —u—e)t.

We notice thatve > 0, w, = 0 on K. Moreover, from (50) and (51) it follows that

VAe (A, AlandVx € Q; \ B(xg, 2R) we have distx;, xg) > R and thusu(x) < é and
u, (x) < 6. Therefore,

/—A(u—uk)wsdv0|:/<D(u—uk),Dw8>dV0|:/|Dw5|2dvol
O 05 0x
- / | Dw,[2dvol. (56)
O)\K

On the other hand, from our equation it follows that, si@e\ K C ((Hy, \ H,) N
B(xo0,2R)) U (Q; N (B(xo, R))),

/—A(u —u)w, dvol:/(f(u) — f(u))w, dvol
(o (0

< / ) — £ )| we dvol

(Hpp\H))NB(x0,2R)

S O
03:.N(B(x0,R))¢

< / f) — fa)|wedvol,  (57)

(Hpp\H))NB(x0,2R)

where, in the last inequality, we used the fact that on suppN (B(xo, R))¢ we have
8 >u;, >u>0and f(u)— f(u,) < 0. Moreover,|f(u) — f(uy)| < €|u; — u|, and
we < (uy, — u)* on B(xg, 2R). Therefore, (56) and (57) yield

/ |Dw,|2dvol < ¢ / [(u5, — u)*]% dvol.

() (Hy,\H))NB(x0,2R)

Lettinge — 0, we obtain

/|D(ux —uy**dvol< ¢ / [(u;, — u)*]? dvol

01 (H3,\H;)NB(x0.2R)

gzzN: / (w5, — wy*]2dvol. (58)

=1(H,,\H})NB;
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To apply Poincaré inequality (53) we will consider the following extensions of
(uy, — M)+ to B;

(u)» - M)+’ in Bi N Q}n
V; = {O, in (B,ﬂH;\)UI;(BlﬂH;L),
—(up —u)t (L)), if x € (BN Q).

Using thesey;, (58) and (53) we obtain

N
/|D(uA —u)+\2dvo|<zz/v,?dvol

O i=1p

N
<Y Ci|B; nsuppv) [ / | Dv;|?dvol
i=1 B;

N
<203 C|B; N suppw)| " / | D, | dvol

=1 BiNQ;

N
<20 C2%"|B;N Q5N supr{v,-)|2/" / | Dv; |2 dvol.
=1 BiNQj

Sincen > 1, we have 2" < 4. Furthermore, sugp;) N Q; C H;, \ H. Thus,

N
/|D(uk—u)+|2dV0|<8ZZC,-|B,-OHA2|2/” / | Dv; |2 dvol

0; i=1 B:NO;

<8CCN|H;,|?" /\D(uA —u)*|*dvol.
(o
Hence(1 — 8¢CN|H,,|%") [,, |D(u; —u)*|*dvol <O0.

Consequently, < u in Q; by (54). Sincer was arbitrarily chosen i, 1), this
would contradict the definition of as infA. Therefore, we have =u; in Q;. O
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