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RESUME. — Nous étudions la structure des minimiseurs localement optimaapt{maux)
d'une classe de problémes variationelles du second ordr& su€Ces problémes sont liés a
un modéle de thermodinamique introduit dans [4]. Nous montrons quesi um minimiseur
non-périodique:-optimal, alors la courbe correspondante dans I'espace des phases ne s’autc
intersecte pas. En utilisant ce fait, nous étudions le comportement asymptotique a l'infini de:
minimiseursc-optimaux, et la structure de leurs ensembles limites.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

ABSTRACT. — We study the structure of locally optimat-@ptimal) minimizers of a
class of second order variational problems Bp. The problems are related to a model in
thermodynamics introduced in [4]. We show that is ac-optimal nonperiodic minimizer, then
the corresponding curve in the phase plane does not intersect itself. Using this fact we study th
asymptotic behavior at infinity af-optimal minimizers, and the structure of their limiting sets.
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1. Introduction

In this paper we investigate the structure of locally optimal solutions of infinite
horizon variational problems associated with the functional

If(D;w)=/f(w(t),w/(t),w”(t))dt, Yw e W2Y(D),
D

where D is a bounded interval on the real line arfide C(R®) belongs to a space of
functions91 to be described below.
We shall consider the problems

inf{1/(D; w): w e W2X(D), (w, w')(T1) = x, (w, w)(T2) = y} (Pp™)



344 M. MARCUS, A.J. ZASLAVSKI/ Ann. |. H. Poincaré — AN 19 (2002) 343-370

for D = (Ty, T») andx, y € R?. We shall also consider the following problem on the half
line:

inf{J/ (w): w e W20, 00), f(w, w,w") € L*0,T),¥T >0}, (Ps)
where
J(w) = lim inf T77((0,T); w).

Variational problems of this type were considered in [6,9,12—-14]. Sirodastrained
problems (involving a mass constraint), were studied in [4,7,8,10]. The constrainec
problems were conceived as models for determining the thermodynamical equilibriurr
states of unidimensional bodies involving ‘second order’ materials for which the free
energy density is given by. A discussion of the physics underlying these models can
be found in Coleman [2,3] and in Coleman, Marcus and Mizel [4] which initiated a
systematic study of the corresponding constrained variational probleR Broperties
of minimizers of the mass constrained problem on bounded intervals, and their relatior
to minimizers of the limiting problem on the full line were studied by Marcus [7,8] and
Marcus and Zaslavski [10].

In the present paper we study the unconstrained prolfep) and related problems
on bounded intervals. One of our main goals is to describértiigng setof c-optimal
minimizers of( Py,), (see definition below). In the remaining part of this introduction we
discuss various results concerning the unconstrained problem. But first we describe tt
space of integrand®t that we are going to consider.

Let a = (a1, ap, a3, as) € R*, a; >0, i =1,2,3,4 and leta, 8, y be real numbers
such that I< 8 < «, B < y andy > 1. Denote byt = M(«, B, v, a) the family of
continuous function$f} such that

(i) feC?*(R%.09f/dxoe C*(R®),0f/0x3€ C3(R®),
(i) 82f/3x2>0,
(1.1)
(i) f(x) > arxa]® = azlxal’ + azlxal” — aa,
V) (f1+ VD) < Mp(lxal + 1x2)) (L + |x3]”),  Vx e R®,

whereM : [0, oo) = [0, oo) is a continuous function depending ¢gn

In the sequel we assume thate M = M(«, B, y, a) where(w, B, v, a) is an arbitrary
but fixed set of parameters satisfying the above conditions. Conditions (1.1)(iii), (iv)
imply that,
weWZHR,) and f(w,w,w") e LY0,T), VT >0&we W0, ),

where
W20, 00) = {w € WY (0, 00): w e W27 (0, T),VT > 0}.
For every f € 9, the infimum in(Py) is finite (see [6] or [9, Lemma 2.2]). Put

n(f) :=inf(Py).
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Leizarowitz and Mizel [6] showed that, jf satisfies the condition

u(f) < inf  f(w,0,s),
( €R?

w,s)

then(P,,) possessesgeriodic minimizer. Later, Zaslavski [12] proved that this conditon
is not needed: the result holds for glle 9t.
Forw € W27 (D), D a bounded interval, put

EN(D,w):=17(D,w) — n(f)ID|. (1.2)

By definition,w € Wé’c” [0, 0c0) is a minimizer of( P,,) iff iminf ;_ o %Ef((o, T),w)=
0. If, in addition, {E/((0, T),w): T > 0} is bounded we say that is an f-good
minimizer This concept was first introduced by Leizarowitz [5] in a discrete context.
More generally, ifv € W2 (U) for some unbounded interval, and if there exists a
constantM = M (U, v) such that E/ (D, v)| < M for every bounded intervab c U,
we say thav is an f-good function inUU. The family of f good functions ifJ is denoted
by G/ (U); the family of f-good minimizers (i.eG/ (R..)) will be denoted briefly by; /.

The following result was obtained in [12, Theorem 3.1]; a discrete version was
previously established in [5].

For everyw € Wé’c’”[o, 00), either{|E/((0, T), w)|: T > O} is bounded, i.ew € G/,
orlimy_ .« Ef((0, T), w) = 00. If w e G/ thenw € WL-®(R,,).

If we Wé’CV(U) N W= (U), whereU is an unbounded interval, we say thats c-
optimalon U, if, for every bounded intervab = (71, T>) C U, the restrictionw|p is
a minimizer of p”) with x = (w, w')(T1), y = (w, w')(T2). The family of c-optimal
functions onU is denoted byr / (U); the family ofc-optimal functions orR.. is denoted
briefly by 77,

Note that the definition of a-optimal function does not assume that it is a minimizer
of (P). However, by [9, Proposition 2.3]:

If wis c-optimal onR, then it is an(f)-good minimizer.

Clearly, if u € T/, thenu satisfies the Euler-Lagrange equation associated with the
functional 7/, namely,

af / " d (af / " ) dz < af / " )
N ) ) T 5 ) -5 | — , , = O EL
axl(”” “) dr 8x2(uu “) +dt2 axg(”” “) (EL)
This is a fourth order, autonomous, quasi linear equatiom Wwhose main coefficient
is ‘;—’;(u,u/,u”). By assumption (1.1)(ii), this coefficient is positive everywhere.
X3
Consequently, ifus, u; are c-optimal minimizers onRk,. such that, at some poing,
ul (t0) = uy’ (o) for j =0, 1,2, 3 then u = uy.
The class of--optimal minimizersZ / is, in a sense, a ‘small’ subset@f . Obviously,
a c-optimal minimizer cannot be modified on compact sets without losing the property
of c-optimality. On the other hand the property ffgoodness is stable with respect to
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such modifications. Indeed, ifo € G/ and if w; is a function inW,2/ [0, co) such that
{x € Ry: wo(x) # wi(x)} is bounded, themw, € G/

Nevertheless the class goptimal minimizers orR_ is a ‘large’ class in the following
sense:

PROPOSITION 1.1. —For every pointx = (x1,x) € R? there exists ac-optimal
minimizerw on R such that(w(0), w’(0)) = x.

Such a minimizer can be constructed as follows.ib.gtbe a minimizer of the problem
inf{1/(D; w): we WD), (w, w)(0) = x}, (P5)

for D = (0, T). By [10, Corollary 3.3] and [9, Lemma 2.2], there exists a positive
constantM such that

lwrllwar s <M, VT >0, Vs€(0,T —1).

Therefore, ifT, — oo, then{w, } possesses a subsequence which converges(in)

and converges weakly i (D), for every bounded intervab c R, . By a standard
lower semicontinuity argument (see e.g. the proof of Lemma 2.3 in [9]) the limiting
functionw is c-optimal onR_ and(w(0), w’'(0)) = x.

Itis interesting to note that, in generak-@ptimal function onk,. cannot be extended
to a c-optimal function onR. In this sense, the class ofoptimal functions onR,
which we denote byZ/(R), is much more restricted tha@/. In fact, 7/ (R) is a
bounded set itV1°(R) (see Lemma 3.7 below) while, by our previous assertiohjs
unbounded iW>>(R,). In a generic sense the contrast is even more strikingR)
is precisely the set of translates of a single periodic minimizer. Indeed, there exists :
dense subset 6t such that, for eaclf in this subset, probler(P,,) possesses a unique
(up to translation) periodic minimizer and satisfies the asymptotic turnpike property or
(ATP) (see [9, Theorems 3.1, 3.2]). Further, by [9, Theorem 2.1], (ATP) implies the
strong turnpike property or (STP) (see [9, Definition 1.2]). Finally, (STP) implies, in a
straightforward manner, that everyoptimal function onR is a translate of the (unique)
periodic minimizer.

Another class of minimizers, which plays an important role in our theory, is the class
of perfectminimizers, which is a subclass @t . First we define the concept of a perfect
function on an arbitrary interval. The definition requires some additional notation. For
everyw e G/, put

El(w):= lim inf ET((O,T),w).

In a senseE/ (w) measures the distance betwee((0, T), w) and the target value
Tu(f) asT — oo. For everyx € R?, put

7! (x) :=inf{ EL (w): we G, (w(0), w'(0)) =x}. (1.3)

It is known thatr/ € C(R?) and 7/ (x) — oo as |x| — oo, [6]. If v e W27 (D),
D = (Ty, T), put

LD, v):=17(D;v) = [Dlu(f) + 77 (X,(T)) — 7/ (X, (Tn).  (L.4)
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If {Dj}’]‘.:1 is a partition ofD into disjoint subintervals, then, by (1.4),

k
r/(D,v)=> _T/(D;,v).
j=1

We refer to this property df' asadditivity on intervals.
Givenx,y € R? andT > 0, let U{(x, y) denote the infimum in probleraP7).
Then

I7((0,T),v) > Ul (x,y) = Tu(f) +7(y) — 7 (x) =: O (x, y),

for every v e W27(0, T) such that(v(0),v'(0)) = x and (v(T),v'(T)) = y. The
following result, obtained by Leizarowitz and Mizel [6, Section 4], adapts to the present
problem a general principle concerning cost functions in infinite horizon problems, due
to Leizarowitz [5, Proposition 5.1].

®§ is non-negative and, for evefly > 0 and everyx € R?, there existyy € R? such
that ® (x, y) = 0.

If D isabounded interval and € W2" (D), thenw is f-perfect onD if I'/ (D, w) =
0. If U is an unbounded interval, we say thais f-perfecton U if w is f- perfect on
D for every bounded intervdb c U. The family of f-perfect functions oV is denoted
by P/ (U); the family of f-perfect functions orR_. is denoted briefly byP/.

If wis f-perfect onD = (Ty, T») then: (@)w is a minimizer of problen{P,”) where
x = (w, w)(T), y = (w, w)(Tp) and (b)w is perfect on every subinterval @. These
assertions follow immediately from the non-negativity@f and the additivity of"/.
Note also that the result of [6] quoted above, implies the following.

PROPOSITION 1.2. —For everyx € R? there exists a perfect functianon R, such
that (v(0), v'(0)) = x.

The functionv can be constructed inductively on the intervsn), n=1,2, ..., as
follows. Let y € R? be a point such tha®,(x, y) = 0 and letv],1) be a minimizer of
(P()(‘)”yl)). Now suppose that was defined as a perfect function on the intef@ah). Put
z=(v,v)(n). and letz € R? be such tha®(z, ¢) = 0. Finally definev on (n, n + 1)
so that it is a minimizer ofP(Zn’FH +1))- The additivity property of*/ guarantees that the
functionv constructed in this way ig-perfect on every intervald, n),n =1,2, ..., and
consequently ok, .

The definition of a perfect function does not require boundedness. However the
following result holds:

PROPOSITION 1.3. — (i) If w is f-perfect onR,, thenw € WE®(R,).
(i) Every f-perfect function orR, is ac-optimal minimizer of P.,).

Indeed, by assumptio;/ ((0, T), w) = 7/ (w, w")(0)) — / ((w, w')(T)), for every
T > 0.By[12, Theorem 3.1],inf.o E/((0, T), w) > —oo. Hence sup_, 7/ (X,,(T)) <
oo. Since it is known thatr / (x) — oo as|x| — oo, this fact implies assertion (i). The
second assertion is an immediate consequence of (i) and the definition of perfect func
tions.
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Obviously, every periodic minimizer @fP,,) is f-perfect. LetS/ denote the class of

periodic minimizers. Then
ScpPlcT/ cg’.

We note that, for every, S/ is a proper subset ¢/ . Indeed, by [9, Proposition 2.3],
S/ is bounded ifW>°(R_.). On the other hand, by Proposition 172/ is unbounded in
the norm of W1°°(R..). Obviously,7/ is a proper subset ¢f/. An interesting question
is wether there exist-optimal minimizers which are not perfect. The answer depends
on the integrandf. If f possesses the periodic uniqueness property(Pg) has a
unique (up to translation) periodic minimizer, then, by Theorem 5.1 beffwe= 7.
However,there exists a family of integrands for which P/ is a proper subset of /.
A construction of such a family of integrands and other results pertaining to the non-
uniqueness case will be presented in a subsequent paper.

We turn now to a description of the main results of the present paper. The first mair
result concerns theon-intersecting propertgf c-optimal minimizers.

THEOREM 1.1. — (a)Let v be ac-optimal minimizer of( Py,). If there existsT > 0
such that

(v, v)(0) = (v, V')(T) (1.5)

thenv is periodic with periodr .
(b) Let vy, v, be c-optimal minimizers of P,,) such that

(v1, v7)(0) = (v2, v5)(0). (1.6)

If there existt, 1, € [0, co) such that(, t,) # (0, 0) and

(v1, V) (1) = (v2, V5)(12), (1.7)

thenv, = vo.

Remark— In the case of perfect minimizers the non-intersecting property is known.
Part (a) is implicitly contained in [6, Proposition 5.3]; for the full result see [9,
Lemma 2.8]. In this case the the non-intersecting property is a simple consequence ¢
the uniqueness of solutions of the initial value problem for (EL). In the caseptimal
minimizers, the non-intersecting property goes much deeper. One of the ingredients in it
proof is the following interesting property efoptimal minimizers (see Proposition 4.2
below):

Letv be ac-optimal minimizer. IfT’ > 0, x = (v, v")(0), y = (v, v")(T), then
Or(x,y) = LQEG)s(x, y).

The next two results describe the limiting setcebptimal minimizers in the phase
plane and their asymptotic behaviour at infinity. The non-intersecting property plays
a crucial role in the derivation of these results. We use the following notation. If
v e W20, 00) N W(0, 00), then the set of limiting points ofv, v') ass — oo is

denoted by (v).
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THEOREM 1.2. —Let

wn(f) <inf{f(x,0,0): x € R*} (N)

and letv be ac-optimal minimizer of P,,). Then there exists a periodic minimizerof
(Ps,) such that2 (v) = 2 (w) and the following assertion holds

LetT > 0 be a period ofw. Then, for every > 0 there existx (¢) > 0 such that for
everyt > t(¢) there exists € [0, T') such that,

(v, V)t +7)— (w,w)(s+1)|<e, 1€[0,T] (1.8)

Remark— In the case that probleriP,,) possesses a unique (up to translation)
periodic minimizer, this result was proved in [9].

In the case that is a perfect minimizer, it was shown in [6] that the limiting set
Q (v) containsQ (w) for some periodic minimizew. Combining this fact with the non-
intersecting property for perfect minimizers, it is not difficult to establish the theorem in
this case.

In the special case of the integrarfdu, u’, u”) = u”)?> — bu')?> + (u? — 1) (b a
positive constant), an assertion referring to the limiting behaviodtcat of ‘minimal
energy configurations’ (i.e.¢-optimal functions) on thewhole line appears in the
introduction to [11]. The nature of the limiting process was not specified and proof was
not supplied. The techniques used in [11] for the proof of other results depended on th
symmetries associated with this specific integrand.

Our next result describes the structure of the limiting set-optimal minimizers,
in the absence of assumption (N). In this case the structure of the limiting set is
considerably more complicated. This result is new even in the case of perfect functions

THEOREM 1.3. —Suppose that(f) =inf{f(d, 0,0): d € R} and that the seD =
{d e R': f(d,0,0) = u(f)} is finite. Letv be ac-optimal minimizer of(P,,). Then
Q(v) is a compact connected set and the following alternative holds. Either there exists
a periodic minimizetw such that2 (v) = Q (w) and(1.8)holds, or2(v) is a finite union
of arch’]‘.:l Ej such that each ar&; is the phase plane image of a perfect functign
ie.,

Ej={(u;u))():1eRY, j=1. .k (1.9)

Furthermore, each functiom; is monotone in neighborhoods afoc and —oco and
satisfies,

;”—[go(uj’ u/j)(t) €D x {0}, lﬂrpoo(uj, u/j)(t) e® x {0}. (1.10)

2. Preliminaries

For everyT > 0 andx, y € R? put

U} (x,y) =inf{17 (0, T, w): we W27 (0, T), (w, w)(0) = x, (w, w)(T)=y}. (2.1)
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Forx € R", B C R" putd(x, B) :=inf{|x —y|: y € B} (where|-| is the Euclidean norm)
and denote by dig#, B) the distance in the Hausdorff metric between two subdei®
of R". If ve W21(D) put,

X,() = (v(1),v' (1)), teD.

Since in the present paper we consider an arbitrary but fixed fungtien9t the
superscriptf will be ommitted in notation such as’, '/ etc.

The following result, derived in [6, Section 4], is based on a general principle con-
cerning cost functions in infinite horizon problems, established in [5, Proposition 5.1].

PROPOSITION 2.1. —Let 7/ be defined as if1.3) and U as in (2.1). Thenz/ ¢
C(R?) and (T, x, y) — U} (x, y) is continuous in0, co) x R2 x R2. Furthermore, for
everyT, x, y as above,

OF(x,y) =Uf(x,y) = Tu(f) — (7' (x) = 2/ (y)) >0, (2.2)

and, for everyI’ > 0 and everyr € R?, there existy € R? such that®/ (x, y) = 0.

The following simple but useful result was established in [9]. The brief proof is
repeated below.

PROPOSITION 2.2. —Let D = (T3, T>) be a bounded interval and suppose that w;
are perfect functions i. If there exists € D such thatwi, wy)(t) = (w2, ws) () then
w1 = wy everywhere inD.

Proof. —We define a functiom in D as follows:
u(t) =wi(), tell, ], u(t) =wy(t), tel(r,Tr].

Evidentlyu € W21(D) andI"(D; u) = T'((Ty, 1), u) + I'((z, T»), u) = 0. Consequently
u is a minimizer of problem(Py”) with x = (u, u')(T1) andy = (u, u’)(T»). Sinceu,
w1, wy satisfy the Euler—Lagrange equation (EL) ancbincides withw, on (71, t) and
with w, on (z, Tz), we conclude that = w; = w, everywhere inD. 0O

The next resultis of a more technical nature but it plays a central role in our arguments

PROPOSITION 2.3. —Letv € W3[0, oo) be a good function. Lef;} be a sequence
in (0, o0) such thatt, — oo and letu,, k=1, 2, ... be the function given by

up(t) =v(t +8&) (=& <1 <00).

Then there exists a subsequerfeg } and a functioru € Wé’c’”(Rl) such that

(@) wuy, > u weakly inW?"(—=T,T), VT >0,
() {(u,u)(): t e R} CQ), (2.3)
() I'((T1, T2);u)=0, VT, T»eR.
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Thusu is a perfect function orR™. If, in addition, there exists € R* such that the
sequencégX,(t + &)} converges, then

uy — u weakly inw2” (=T, T), VT > 0. (2.4)

Proof. —For everyT > 0 choose an integéds such thatl’ < &, for all k > k7. Since
v is a good minimizew € W1>°(0, o). By [9, Lemma 2.1], for every fixed > 0 there
exists a constan¥,(7T') such that

I((=T,T);ux) =1((-T + &, T +&);v)
S Upr (Xo(—=T + &0, Xo(T + &) + M1(T),

for all k > k. SinceX, is bounded and/,; is continuous, it follows that the sequence
{I((—T,T);uy): k> ky}is bounded. Consequently, by [9, Lemma 2{2],: k > ky}
is bounded inW??(—T, T). Hence there exists a subsequerpeg } and a function
ue Wﬁ’g’(Rl) such that (2.3)(a) holds. Therefoféy,, u;Ci)} converges uniformly to
(u,u) in [—T, T], for everyT > 0. This implies (2.3)(b).

By [9, Lemma 2.4], for every” > 0,

kIergoF((—T, T);u) = Jlim C((=T +&.,T+&);v)=0.

By Berkovitz [1],1((—T, T); -) is weakly lower semicontinuous #?? (=T, T). These
facts and the continuity ot (-) imply thatT"((—T, T); u) = 0, for everyT > 0. Thus
(2.3)(c) holds.

Finally, if {X,(t + &)} converges, say to, thenX,(t) = z. Suppose that there are
two subsequences i} which converge tax anda locally as in (2.3)(a). Then and
u are perfect functions antl, (t) = X;(r) = z. By Proposition 2.2t =u. 0O

COROLLARY 2.1.—Letv € W20, c0) be a good function. Then, for everg Q (v),
there exists: € W (RY) such that,

@ {wu)t)teR}CQW), @ u)0) =z, 05
2.5
(b) T'((Ty.T);u)=0, VT, T,€R"

Proof. —Given z € Q(v) let {s;} be a sequence of positive numbers tendingxio
such that(v, v')(sy) — z. We apply Proposition 2.3 with = s;. Then (u,, u;)(0) =
(v, v")(sy) — z. Consequently the function mentioned in Proposition 2.3 satisfies
(2.5). O

PROPOSITION 2.4. —Let v € W3[0, 00) be a good function. Suppose thatis a
periodic minimizer of(P,,) such thatQ(v) C Q(w). ThenQ(v) = Q(w) and the
following assertion holds

LetT > 0 be a period ofw. Then, for every > 0 there exists (¢) > 0 such that for
everyt > t(¢) there exists € [0, T') such that,

|(v, V)t + 1) — (w,w)(s+1)|<e, t€[0,T]. (2.6)
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Proof. —Let z € 2(v) and letu € W22(R?) be as in Corollary 2.1. Sinck, (0) =z €
Q(w), there existsg € R* such thatX, (0) = X,,(so). Hence, by (2.5)(b) and Proposition
2.2,u(t) =w(t + so) for all t € R. ThusQ (1) = Q(w) and consequently, by (2.5)(a),
Q(w) C 2(v). Since by assumptionf2 (v) C 2(w) we conclude that,

Q) =Q(w).

We turn now to the proof of the second assertion of the proposition. Suppose that it i
not valid. Then there exists> 0 and a strictly increasing sequence of numié&g$;
tending to infinity such that, for every intege> 1 and every € [0, T),

sup{|X,(Tx + 1) — Xy (s +1)|: t €[0, T]} > &. 2.7)

Apply Proposition 2.3 withé, = 7;. Let {u;,;} andu be as in that proposition. Then
ug, — u in C1[0, T]. Therefore, by (2.7),

sup{|X,(t) — X, (s+1): 1 €[0,T]} >¢ (2.8)

for everys € [0, T).
By (2.3)(b), (u,u)(0) € Q(v) = Q(w). Therefore there existsy € R such that
(u, u")(0) = (w, w')(so). Hence, by (2.3)(c) and Proposition 2.2,

u(t) =w(so+1), VreR.

Since this contradicts (2.8), the second assertion is establisimed.

3. Some properties of c-optimal minimizers

LEMMA 3.1.—Letv € W5?[0, 0o) be a good function. 16 has a limit at infinity, say
lim,_, o v(¢) = dp, then

lim X, (t) = (do,0) and  f(do,0,0) = u(f). (3.1)

Proof. —Every good function is bounded. Therefaig< oco. If z = (dp, z2) € Q(v),
then by Corollary 2.1, there existse W22(R?) such that (2.5)(a) holds. Evidently
u = do, i.€.,u is the constant function with valug. Thusz = (dy, 0) and, sincez was
an arbitrary element a2 (v), we conclude thaf2 (v) = {(dop, 0)}. Finally, sinceu = do,
(2.5)(b) implies thae(f) = f(do, 0,0). O

Let i be a real function defined in a domaihc R'. We say that: changes sigin
D if there are points1, s € D such thati(s;) > 0 and h(s) < 0. If s € D, h(sg) =0
and there exists a neighborhoét of sq such thati(s1)h(s2) < 0 wheneversy, s, € U
ands; < so < 52, we say thakg is aturning pointof 4.

LEMMA 3.2. —Suppose that is ac-optimal minimizer of P..) such that’ changes
sign in every neighborhood @b. Then there exists a strictly increasing sequence of
positive numbersz }22; such that, — oo and, for every integek > 1,
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(a) v’ does not change sign i, t,11];
(b) # is a turning point ofv’.

Proof. —Put
E;={te(0,00): v (1) =0}, j=1,...,4

Our assumption implies that; is unbounded. We claim thaf; has no limit points
in (0, 00). Indeed ifr* € (0, co) is a limit point of Eq, then it is also a limit point of
E;, j=1,...,4. Consequently”(t*) =0, j = 1,..., 4. Sincev satisfies the Euler—
Lagrange equation (EL) it follows th%(v(r*), 0, 0) = 0. Hence the constant function
with valuev(¢*) is a solution of (EL). This implies that= v(¢*), which contradicts our
assumption.

Put

E ={T > 1: v changes sign in every neighborhood7gf

SinceE; has no limit points in(0, oo) it follows that every point inE is a turning point
for v'. We observe that it changes sign in an intervé c (0, co), thenD N E # @.

To verify this assertion, picky, s, € D such thatv'(s1)v'(s2) < 0. To fix notation
assume thak; < so and v'(s1) > 0. If t € (s1,52) IS a point wherev achieves its
maximum oveflsy, s»], thent € E.

The above assertion and our assumptions imply thé unbounded. In additorf
has no limit points ink... ThereforeE can be ordered so thdt = {#.};2, is a strictly
increasing sequence tendingdo. We have already shown that this sequence satisfies
(b). Since the interval&y, t,.1) do not interseck it follows thatv” does not change sign
in any of these intervals. O

LEMMA 3.3. —Suppose that is ac-optimal minimizer of P..) such that’ changes
sign in every neighborhood ob. Let{#};2, be a sequence as in Lem@i2and suppose
that

SUptyi1 — ke k=1,2,...} =o0. (3.2)
Then there existgy € R* such thatu( ) = f(dp, 0, 0) and (do, 0) € 2 (v).

Proof. —Let {#/}72, be a subsequence such that, — # — oo. Without loss of
generality we may assume that sigis constant in the sét);”, (t, fi-+1). Now apply
Proposition 2.3 ta with & = (41 + #)/2. It follows that the function: mentioned
in that proposition is monotone on the whole line and, by (2:3% a perfect function.
Consequentlys has a limit atoo and, by Lemma 3.1, it satisfies (3.1). SinRéu) C
Q(v), the conclusion of the lemma follows.o

LEMMA 3.4. —Suppose that is ac-optimal minimizer of P,) such that’ changes
sign in every neighborhood eb. In addition suppose that

Xo(s1) # Xy(s2), Vs1,82€ [0, 00), 51 # §2. (33)

If {z;}52, is a sequence as in LemrB&, then
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(@) If j #k thenv(z;) # v(t).

(b) The sequence(r2;)} and {v(t2; 1)} are eventually monotone. Moreover, if one
of them is eventually increasing the other one is eventually decreasing.

Let

lim v(ty;) =do, liMm v(t2j11) = ds. (3.4)
j—o00 j—o0
Then, either
() do = dy and(3.1) holds,
or
(i) do #dy and
inf{ty,1 —n: k=1,2,...} >0. (3.5)

Proof. —PutS; = [t;,1;41], j = 1,2,.... Without loss of generality we may assume
thatv’ > 0 in $;. Then, by Lemma 3.2(—-1)/v" < 0 in S;, for every integerj > 1.
Furthermore, in each of these intervalSyanishes at most at a finite number of points.
(Recall thatE;, the set of zeros of’, has no limit points in(0, co).) Thereforev is
strictly monotone in every interval;. Sincev is continuous it follows that; := v|s, has
an inversa)j‘l € C(S)), whereS;‘ = [v(t;), v(tj;0)] if jis odd andS}“ =[v(tj+1), v(z))]
if j is even. Assumption (3.3) implies thatz;) # v(z;) wheneveri # j. Therefore, for
every integerj > 1, eitherS* G S, or §7 2 S%,,.

Next we prove the following assertion.

Suppose that, for some integgr> 1, S;‘, ) S;‘,H. Then

S;‘(’-i-i D) S;‘(,+i+1’ l :O, 1, 2, (36)

To fix ideas, assume that is odd. (The proof is similar i is even.) Suppose that (3.6)
is not valid fori = 1. Then

v(tj) < (tye2) <v(tjen) < v(tjea). (3.7)

Puth; = v} o vj_l. Thenh; € C(S7) andv'(t) = h;(v(1)) for everyt € S;. Furthermore,
hy vanishes at the end points ¢f and (=D*1h, > 0, for every integerk > 1.
Therefore (3.7) implies that;; andh ., must intersect at some point §, N %, =
[v(tjr42), v(tj4+1)]. Hence there exist points € S;» ands; € S;4» such thatv, v')(s1) =
(v, v")(s2), which contradicts (3.3). Thus

* * * *
S5 85,12 851D Shio

and (3.6) follows.
In view of the above assertion we conclude that, either there existsl such that
(3.6) holds, or

SECShLy, j=12.... (3.8)

If (3.6) holds, then{v(1,;41)} is increasing forj > (j' — 1)/2 and p(12;)} is decreasing
for j = (' + 1)/2. If (3.8) holds, then{v(zz;11)}72, is decreasing anf(r2;)}72; is
increasing.
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Sincev is bounded it follows that the limits in (3.4) exist. Clearly,df = d; then
lim,_ », v(¢) = dy. Therefore, by Lemma 3.1, statement (3.1) holdgg ¥ d;, (3.5) is a
consequence of the boundedness’of O

LEMMA 3.5. —Assume that is a c-optimal minimizer which satisfig€8.3).

@) If u(f) <infz1 £(d, 0, 0), then there exists a periodic minimizerof (P,,) such
that Q (w) = Q2 (v). Therefore the conclusion of Propositi@ applies tov.

(b) If w(f) =infg f(d, 0, 0), then either there exists a periodic minimizeras in
(a), or there existgy € R* such thatw(f) = f(do, 0, 0) and (do, 0) € Q (v).

Proof. —If v has a limit at infinity, then, by Lemma 3.4,(f) = infz: f(d, 0,0) and
(3.1) holds. Therefore, in this case, assertion (b) holds. We turn now to the case wher
v does not have a limit at infinity, making no assumption on the relation betweégh
and infy1 f(d, 0, 0). In this casev’ changes sign in every neighborhood of infinity. Let
{tr}72, be asin Lemma 3.2. If

SUp{tysr — 4 k=1,2,...} =00, (3.9

then Lemma 3.3 implies that there exiggsas in (b). Therefore, in order to complete the
proof of the lemma it is sufficient to establish the following:

ASSERTION3.5.1. —If v has no limit at infinity and
SUpltri1 — s k=1,2,...} <00, (3.10)

then there exists a periodic minimizersuch that (w) = 2 (v).

Sincev has no limit at infinity, it follows that statement (ii) of Lemma 3.4 holds.
Without loss of generality, we may assume that> 0 in (1, %) and consequently
do > dl.

Now apply Proposition 2.3 with, = #,. Letu; be defined as in that proposition and
let {u;,} be a subsequence pfy } such thafs, 2 — 4, 1521 and{t; 1 —t; }32, converge
and such that (2.3) holds. Cleany< 0 in U (ks t2k+1) and

Xy (0) = (do, 0), X (tor1 — tx) — (dy, 0). (3.11)

Putu = Ilmj_m up;, T =lim;_, (&1 2—1;) andt’ = lim; , (41— 1,). Note that,
by (3.5),7' > 0 and, by (3.4) and (3. 11)

X, (0) = X, (t) = (do,0), X,(r') = (d1,0). (3.12)

By (2.3) u is perfect and therefore, by Proposition 2.2 and (3.2 periodic with
periodz. In view of (3.11), the last assertion of Proposition 2.3 implies that the whole
sequencéguo, } converges ta locally as in (2.3)(a). In particular it follows thab;, — u
in CY[—T, T] for everyT > 0.

The definition ofu and the fact that it is periodic imply th& («) c Q2 (v). Suppose
that ¢ € Q(v) and let{r;} be a sequence tending to infinity such tai(z;) — ¢.
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Then for every;j there existst; such thatr; € [tx;, ta;12]- Puté; = t; — ;. Taking
a subsequence if necessary, we may assume{#hptconverges, say tg. Hence
X,(tj) = X”%/ (¢;) — X, (&) and consequently € Q(u). ThusQ(x) = Q(v) and the
assertion is proved. O

The following is a consequence of Lemma 3.5 and Corollary 2.1.

LEMMA 3.6. —Assume that is a c-optimal minimizer of P,). Then there exists a
periodic minimizerw such that (w) C Q(v).

Proof. —By Corollary 2.1 there exists a perfect functiansuch thatQ (u) C Q(v).
If u is periodic, the proof is finished. ki is not periodic, then, by Proposition 2.2,
u satisfies (3.3). Therefore, by Lemma 3.5, there exists a periodic minirizgich
that Q (w) C Q(u). In this connection we observe that,uf /) = f(do, 0, 0), then the
constant function with valuéy is a minimizer and it is trivially periodic. O

Finally we obtain the following uniform boundedness result.
LEMMA 3.7.—The set ot:-optimal functions orR is bounded itV (R).

Proof. —By [9, Proposition 2.3] the family of periodic minimize®’ is bounded in
WL>(R). Let M, be such a bound.

If u is a function defined oR let z be the function given byi(z) = u(—1). If gisa
function defined orR® let g be the function given by (x1, x2, x3) = g(x1, —xo, x3). Note
that if f € M then f € M. Itis easy to see that if is c-optimal onR, relative to f, then
it is c-optimal onR, relative to f. Similarly, if 4 is a periodic minimizer relative tg,
then/ is a periodic minimizer relative t@. In particularx( /) = n( f). Consequently, if
u € T/(R), then, by Lemma 3.6, there exist periodic minimizersh, € P/ such that

Qh) CQw), Qh) CQ®@). (3.26)

(If w(f) =infg f(z,0,0), thenh;, i = 1,2 may be a constant.) Recall th&(u)
denotes the set of limit points af:, ') at +o0o0. Let Q'(u) denote the set of limit
points of (u,u’) at —oco. Clearly, the fact that2 (hy) C Qi) implies thatQ'(h,) C
Q'(u). Therefore, by (3.26), there exists sequenggsand {s,} tending to+oo such
that limsup_, . 1X,[(t,) < 2M; and limsup_, . 1X,[(—s,) < 2M;. Now a standard
argument as in [10, Lemma 3.1] implies that that there exists a conetandepending
only on f, such that|lu|| w1y < My O

4. Proof of Theorems 1.1, 1.2

One of the main ingredients in our proof is provided by the following result established
in [9, Lemma B.5], which is an extension of [14, Lemma 3.7].

PROPOSITION 4.1. —Letw be a periodic minimizer afP.,) and lete > 0. Then there
exist numbers, ¢ > 0 such that the following assertion holds.
If

x,y€eR? d(x,Qw)) <8, d(y, Qw)) <8,
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then, for everyr > ¢, there existe € W%1(0, r) such that
X,(0=x, X,()=y, T(01);v)<e.

The next proposition describes an interesting property-@btimal minimizers. This
is another key ingredient in our proof of the main results.

PROPOSITION 4.2. —Assume that is ac-optimal minimizer of P..). Then, for every
T,S >0,

Ur(X,(0), Xo(T)) — Tu(f) < Us(Xy(0), Xo(T)) — Sp(f). (4.1)

Proof. —We prove the result by negation. Suppose that (4.1) does not hold. Then thert
exist positive number%p, So such that

(U, (X0(0), Xy (To)) — Top(f)) — (Uso(X0(0), Xy (T0)) — Sou([f)) :=4>0. (4.2)

Using (4.2) we show that, for sonie > 0, there exists a function € W27 (0, T') such
that

X50)=X,(0, Xi(T)=X,(T), I1((0,T);0)<I(0,T);v). 4.3)

Obviously this contradicts the assumption thas c-optimal .
By Lemma 3.6 there exists a periodic minimizersuch that2 (w) C Q(v). Leté, g
be as in Proposition 4.1 with= 1 /4. Clearly there exist numbets, t, such that

1n>Ty, T>tu+S+q, dX,(1),Qw))<s, i=12 (4.4)

Putt] = 71 — To+ So SO thatr, — 7] > ¢. By Proposition 4.1 there existse W27 (], 17)
such that

Xn(t) =Xy(1),  Xu(r2) =Xyo(12), T ((17,12);h) <A/4 (4.5)

Put
x=X,(0), y=Xy(To), D=0, ), (4.6)
and letu be a minimizer of( P;,”). Thus

X, (0 =X,0), X,(S0)=X,(To), Usy(x,y)=I1(D,u). (4.7)
Finally define the functiomw in [0, ;] as follows
u(t) t € [0, So,
v(t) =4 vt —So+To) te€(So, 1l (4.8)
h(t) t € (11, 12
From (4.5) and (4.7) it follows that e W27 (0, 7o) and

X5(0) = X,(0), X5(12) = Xy (12). (4.9)
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Recall that the functiorD — I'(D, v) is nonnegative and finitely additive on partitions
of bounded intervals (see (1.4)). Therefore, by (4.8), (4.9),

1((0,12); 0) — I((0, 72); v)

=T((0,12); v) = T'((0, 2); v)

=T((0, So); u) + T'((To, 11); v) + T'((r1, 12); h) — T'((0, 12); v)

<T((0, So); u) —T'((0, To); v) — I'((11, 12); v) + I ((11, 12); h).

Hence, by (4.5) and (4.7),

1((0, 72); v) = I((0, 72); v)
<T((0, So); u) —T((0, To); v) + A/4
=1((0, So); u) — Sop(f) — I((0, To); v) 4 Top(f) + /4. (4.10)

Sincew is c-optimal, 7((0, Tp); v) = U, (x, y) (see (4.6)). Hence, by (4.2), (4.7) and
(4.10),

1((0, 72); ) — I((0, 72); v)

3
< (Usy(x, y) = Sop(f)) — (Ury(x, y) — Tou(f)) +A/4= —Zk <0. (4.11)
Finally this inequality and (4.9) yield (4.3) with =1,. O

Proof of Theorem 1.1. Statement (a) is a simple consequence of (b). However we
prove it separately and use it as a step in the proof of (b). First we show thas &
c-optimal minimizer satisfying (1.5), then

I'((0,T);v)=0. (4.12)
By Proposition 4.2,
M :=Ur1(Xy(0), Xo (T + 1)) = Tie(f) = Ur(X,(0), X, (T +1)) 0. (4.13)
On the other hand, sinaeis ac-optimal minimizer,
Uri1(X,(0), X,(T + 1)) =1((0, T + 1); v).

Hence, using (1.5) we obtain (witlf as in (4.13))
M=1(0,T+1):v)—Tu(f) — Ur(Xo(T), Xo(T + 1))
=1(0,T+1);v) —Tu(f) —I(T,T +1);v)
=1((0,T); v) — Tu(f) =T((0, T); v). (4.14)

Sincel' ((0, T); v) > 0, (4.13) and (4.14) imply (4.12).

Now let u be the periodic function with period which coincides withw on [0, T'].
In view of (1.5),u € Vsz)’CV(R) and (4.12) implies that is a periodic minimizer. Two
c-optimal minimizers which coincide on an interval are identical because they satisfy
the Euler-Lagrange equation (EL). Consequentiy u.
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We turn to the proof of (b). Lei1, v, be c-optimal minimizers satisfying (1.6), (1.7)
for somery, t, € [0, co) such that(z, ) # (0, 0). Without loss of generality we assume
thatz; < 1. First consider the case when=0. Thenr, > 0 and

le(o) = sz(o) = sz(tZ)- (415)

Consequently, by (a);, is a periodic minimizer with periog.
Let u be the function given by,

_ Jv2(0) t €0, 12],
nn = { Vi(t — 1) t € (tr,00). (4.16)

In view of (4.15) it follows thatu € W27 (0, T) for every T > 0. We claim thatu is
c-optimal.

Suppose that the claim is false so that there exist arbitrarily |&rgatisfying the
inequality

1((0,T);u) > Ur(X,(0), X, (T)). (4.17)

ChooseT > 1, + 1 such that (4.17) holds. By (4.16) and the fact thats a periodic
minimizer,

I1((0, T);u) =1((0, 12); v2) + I ((t2, T); u) = topu(f) + I ((t2, T); u). (4.18)

Sincew; is c-optimal,
I((t2, T);u) =1((0, T —12); v1) = Ur—4, (X1, (0), X, (T — 12)). (4.19)

By (4.15)—(4.19),

Ur (X, (0), Xy (T — 12)) = T ()
=Ur(X,(0), X,(T)) — Tu(f)
<I((t2, T);u) — (T — t2)pu(f)
=Ur_,(X0,(0), Xy (T —12)) = (T — t2)pu(f). (4.20)

Since this inequality contradicts Proposition 4.2 with respeat; tit follows that u is
c-optimal.

By (4.16) u coincides withv, in [0, ;] and withv,(- — #,) in [z, 00). Since bothv,
andv, arec-optimal we conclude that(-) = v,(-) andvi(-) = va(- + £2). Finally, since
v, is periodic with period, we conclude thabt; = v,. This proves statement (b) in the
caset; =0.

Next we consider the case wherkG; < 5. Put

x = X,,(0) = X,,(0), v =Xy, (1) = X,,(12). (4.21)
By Proposition 4.2 applied to;, with T =¢;,

Uy (x,y) —t;u(f) =inf{Us(x, y) = Su(f): 0<S<oo}, j=12
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Sincev; is c-optimal,U;, (x, y) = 1((0,t;); v;), j = 1, 2. Consequently,

1((0,11); v1) — rap(f) = 1((0, £2); v2) — topa(f). (4.22)

Let u be the function given by,

_ J () t €10, 1],
u(t) = { vi(t —tr+1) tE(tp, 00). (423)

In view of (4.21) it follows that: € W27 (0, T) for everyT > 0. We claim thatu is c-
optimal. Again the proof is by negation. If the claim is false there eXistss; + 1, + 1
such that (4.17) holds. Pat* =T — t, + 1,. Then, using (4.21)—(4.23) and (4.17) we
obtain
UT* (Xv1(0)9 le(T*)) - T*I’L(f)

=1((0,T*);v1) —T*n(f)

=1((0,11); v1) — tapt(f) + I ((t1, T*); v1) — (T — 12 pu(f)

=1((0,12); v2) — t2u(f) + I ((t1, T*); v1) — (T — 12) pu(f)

=1(00,T);u) = Tu(f) > Ur(X.(0), X, (T)) — Tu(f)

Since this inequality contradicts Proposition 4.2 with respeat;tit follows thatu is
c-optimal. As before, the fact that vy, v, arec-optimal and (4.23) imply that

u(-)=vx() and vi(-) =va(- +1 —t). (425)
If 11 =1 we havev, = v,. If 11 # 1, then by (4.21) and (4.25),,(0) = X,,(0) =
X,,(t2 — t1) and consequently, by part (a) is periodic with period, — #;. Hence, by
(4.25),1)2 =v;. O
Proof of Theorem 1.2. Suppose that is ac-optimal minimizer. By Theorem 1.1(a),

if there existsy, s» € [0, 00), s1 # s2 such thatX,(s;) = X,(s2), thenv is periodic.
Therefore it remains to deal with the case where (3.3) holds, namely

X,(s51) # Xy(s2), Vs1,52€[0,00), 517 52.

In this case the conclusion of the theorem follows from Lemma 3.5().

5. Perfect minimizers

An integrand f € 9t possesses thgeriodic uniquenesgroperty if problem(Py,)
has a unique (up to translation) periodic minimizer. It is known that this property holds
generically irdJt, [9, Theorem 3.1]. When this property holds we can obtain more precise
information on the structure e@foptimal minimizers.
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THEOREM 5.1. —Suppose thalf € 9t has the periodic uniqueness property. Then
everyc-optimal minimizer of Py) is perfect.

Proof. —Recall that, by Proposition 1.2, for evexye R? there exists ary-perfect
functionu € W27 (0, co) such thatX, (0) = x. Furthermore, by Proposition 1.3, every
f-perfect function omR,. is ac-optimal minimizer.

Let v be ac-optimal minimizer of(P,) and letu be a perfect minimizer such that
X,(0)=X,(0). By Lemma 3.6, ifw is the unique periodic minimizer @fP,,), then

Q(w) C 2u) NQ2(W). (5.1)
Suppose that is not perfect. Then there existg > 0 such that
I'((0,7); v) :=p > 0. (5.2)

Let 5§ andg be as in Proposition 4.1 with= p/2. By (5.1) there exist arbitrarily large
s1, §2 such that

d(X,(s1), Q(w)) <8,  d(X,(s2), Q(w)) < 8. (5.3)

Chooses,, 5o satisfying (5.3) such that; > 19, s» > s1 + ¢g. Then, by Proposition 4.1,
there existsr € W?1(sq, s0) such that

Xp(s1) = Xu(s1),  Xn(s2) = Xo(s2), T((s1,52);h) < p/2. (5.4)
Let & be the function given by
u@) tel0,sq),
§(1) = {h(t) 1 € [s1, 52), (5.5)
v(t) t€E[sp, 00).

Theng € W27 (0, T) for everyT > 0. Recall thaf is a non-negative, additive function
on intervals. Consequently, by (5.5), (5.2) and (5.4),

1((0,52); &) — 1((0, s2); v) =T ((0, s1); u) + T'((s1,52); h) — T ((0, 52); v) < —p/2.
Since X; (0) = X, (0) = X, (0) and X (s2) = X, (s2) this inequality contradicts the fact
thatv is c-optimal . O

6. Proof of Theorem 1.3

By assumption,
n(f) =inf{f(x,0,0): x € R'}. (6.1)

Let v € W20, 0c0) N WL>(0, 00) be ac-optimal minimizer of(P.,) and suppose that
v is not periodic. (Otherwise there is nothing to prove.) Then, by Theorem 1.1,

X, (s1) # X,(s2) for eachsy, s, satisfying 0< s1 < s5. (6.2)
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If there existsd € R* such that lim_, ., X, (t) = (d, 0), then by Corollary 2.Ju(f) =
f(d,0,0) and Theorem 1.3 holds. Therefore, in the sequel we assume that

Q(v) is not a singleton (A1)
Consequently Lemmas 3.1 and 3.2 imply that there exists a strictly increasing sequenc
of positive numbersz}7° ; such that; — oo ask — oo and, for every integet > 1,

(i) v’ does not change sign [i, t1];

(i) # is aturning point ob’.
Without loss of generality we assume that

(=1 (@#) <0 Vrelt,tjl, j=12,.... (A2)

By (6.2) v is strictly monotone in each such interval. By Lemma 3.4 there eijstsl
such that either

U(toiz2) > v(ty) and v(fzy3) < v(fzi41) Vi >, (6.3)
or

v(tyit2) < v(tz) and v(tzy3) > v(ty1) Vi > io. (6.4)

In either case the following limits exist
z2 = lim v(1y), z1= lim v(t2i41). (6.5)
1—>0Q 1—>00

By (A2), v(tz_1) < v(ty), foralli > 1. Hencezi < z2. By Lemma 3.4, ifzo = z3, then
(3.1) holds withdy = z1, which contradicts (Al). Therefore

21 < 22. (6.6)
Consequently, by (6.2) and Lemma 3.4,
inf{t; ;1 —#;:i>1}>0. (6.7)

For every real, let T, denote the translation by amountAccordingly, sincev is
defined o0, c0), T,v is defined orf—s, co) by

Tov(@)=v(s+1), t>—s. (6.8)

Putv; := T,,v. By Proposition 2.3, it follows from (6.5) that the sequen¢es} and
{v2j11} converge. More precisely, there exigtu, € Wé’c’”(Rl) such that

Vaj41—> U, V2, — U, asj — oo weakly inW??(—A, A)VA >0 (6.9)

andu,, u, are perfect orR?.
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Put
Tj:tj+1—tj, ]:1,2, (610)

By assumption (Al)y does not posses a limit at infinity. Therefore,{if;}52; is
bounded, Assertion 3.5.1 (see proof of Lemma 3.5), implies that there exists a periodi
minimizer w such thatQ (v) = Q(w). Consequently, by Proposition 2.4, (1.8) holds.
Therefore, in the sequel we may assume that,

SUHTj}?il = 0Q. (A3)

In the remaining part of this section we complete the proof of the theorem, under
assumptions (A1)—(A3). This part of the proof will be based on several lemmas.

LEMMA 6.1. —If {rzj_l};?‘;l is bounded, then it converges to a positive numibéris
unbounded, then it tends to infinity. The statement remains valigh if; }92 ; is replaced
by{f2j}?il-

Proof. —We prove the assertion f(@tzj_l};?‘;l. The proof is similar for{rzj}j?ozl.

Suppose tha{r;-1}72; is unbounded but it has a finite limit point. By (6.7)
t > 0. Note that, for every integer > 1, v;_1 is monotone increasing i, o;_1) and
monotone decreasing imy;_1, 12j_1 + 12;]. Therefore, sincerzj_l};?‘;l is unbounded, it
follows thatu; > 0in R, (see (6.9)). Similarly, sincrz;-1}72, possesses a subsequence
which converges ta, it follows thatu; < 0in (r, T 4 ¢), wherec = liminf 7,;. Note that
by (6.7)c > 0. These facts imply that, =0 in (z, T+ ¢) so thatu; has a constant value,
sayb, in this interval. This implies that the constant function with vabuie a solution
of (EL). Sinceu, is perfect inR, it is also a solution of (EL). Hence, = b. On the
other hand, by (6.5)X,,(0) = (z1, 0) and X,, () = (z2, 0). Since, by (6.6)z1 < z2, we
reached a contradiction.

Next suppose thatr;;_1}32, is bounded but does not converge. lretand v’ be
two limit points of the sequence, < t’. By (6.7) t > 0. By the previous argument,
u; <0in(r,7r +¢) andu; > 0 in (0, v’). Thereforeu is constant in(z, c¢’), where
¢ =min(z’, T 4+ ¢). As before this leads to a contradictiont

Put
n=lim 1;_1, T, = lim 1;. (6.11)
Jj—o0 j—o0

In view of (A3) it remains to deal with the following three cases:

@ 71=00,1 < 0;

(b) ., =00, 7; < 00;

() 1 =00,17, =00.

The next lemma describes the behaviour of the limit functigrendu, (see (6.9)) in
each of these cases. We use the following notation.isfdefined in a neighborhood of
400 or —oo and possesses a limit there, then

o (u) ::tlLrTgou(t), o_(u) ::lﬂrpoou(t). (6.12)

LEMMA 6.2. — (i)If (a) holds, then
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W) =0 Vie(—oco,—1,),  ul(t)<0 Vie(-1,0),
(1) =0 Vre(0,00),
u =Tgu,, o (u) <o_(u,).
(ii) If (b) holds, then
W(t) <0 Yre(—o00,—1), u.(t)=0 Vie(-1,0),
u (1) <0 Vte(0,00),
u, = Tyu, o_(u) <oy (uy).
(iii) If () holds, then
W) =0, Ve=0, ul(n<0, V<O,
u. (1) >0, V<O, u. (1) <0, Vr>=0,
o (u) <o_(uy), o_(u) <oy(uy).

Proof. —The first part of (i) is a simple consequence of (a) and assumption (A2). Note
thatvy;1(r) = vo;(t + 12;), V1 € RY. Sincery; — 1, < oo it follows thatu; = T, u, .

GivenT > 0, choosegj sufficiently large so that?2 < tp;_1. Thentzj_1 < T +15j_1 <
—T + t2; < t; and consequently,;_1(T) < vo;(—=T). Letting j — oo we obtain
u;(T) < u,.(—T). Taking the limit asT — oo yields o, (1;) < o_(u,). This completes
the proof of (i).

Part (ii) is proved exactly in the same way as (i) and part (iii) follows by similar
arguments. O

LetS; =[t;,tj+1], j =1,2,.... By (A2) and (6.2)v is strictly increasing ir§; if j is
odd and strictly decreasing jfis even. Hence, the function— v(z), t € S; is invertible,
for every integerj > 1. Its inverseh; is defined ons; whereS}‘ = [v(t)), v(t;4+1)] for
oddj andS7 = [v(7;+1), v(z;)] for even;.

LEMMA 6.3. — (i)If (6.3) holds, then for every integer> 1,

V' (hai—1(s)) < V' (hoiva(s)) Vs €Sy 4, (6.13)

v/ (hz,' (S)) > v’(h2i+2(s)) Vs € S;l (614)
(i) If (6.4) holds, then for every integér> 1,

v/(h2i+1(s)) < v/(hZi_l(s)) Vs € S>2ki+1? (613)

V' (h2i(s)) < V' (h2ig2(s)) Vs € Sy, (6.14)

Proof. —We shall prove (6.13; the other assertions are proved in the same way. Let
i > 1 be an integer. We claim that the inequality in (6)1®lds fors = v(z;;_1) and
s = v(ty). Indeedhyi_1(v(t2i—1)) = t2;—1 and, by (6.3)12i11(v(t2i-1)) € (t2i41, t2i12).
Similarly g _1(v(t2)) = to; andhg;11(v(t2)) € (241, toiv2). Therefore, ifs = v(tz_1)
ors = v(ty), thenv'(hy_1(s)) =0 and (by (A2) and (6.2)y'(hz;11(s)) > 0.
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If (6.13) does not hold for some e (v(ty_1), v(t2)), then, by the mean value theo-
rem, there exists € (v(fz_1), v(tz;)) such thaw’(hy;_1(5)) = v'(hy41(5)). This implies
that X, (ho;_1(5)) = X, (h2i11(5)), which contradicts (6.2). Thus (6.23w0lds. O

At this point it is convenient to introduce the following definition.

DEFINITION 6.1.—-LetV be a good function and Ig€,} be a sequence of positive
numbers tending to infinity. Suppose that there exists R such that the sequence
{X,(to+ &)} converges. By Propositich 3the sequence of translatioffs V converges

to a functionu Wﬁ’cy(Rl) in the following sense
T,V —u weakly inW??(~T,T), VT > 0.

The functioru will be called a limiting function o¥/ and the sequendé; } will be called
a determining sequence far

LEMMA 6.4. —Suppose thaV is a good function. Ifz is a limiting function ofV then
u is perfect and

E) = {(u(0), ' (®)): 1 € RY} C Q(V). (6.15)

If, in addition, u is monotone in a neighborhood efoo (resp. —oo) theno, (1) € ®
(resp.o_(u) e ®) andlim,_, o, u'(t) =0 (resp.(lim,_, _o, u'(z) = 0).

Proof. —The first statement follows from the proof of Proposition 2.3. i monotone
near infinity, Lemma 3.1 implies that, (1) € ® and that lim_, ., u’(z) = 0.

By [9, Lemma 2.2],{u(- + A): A € RY} is bounded inW?7(0,1). Therefore,
there exists a sequendd),} tending tooco such that{u(- — T,)} converges weakly
in W27 (0, A) for every A > 0. Putw, = u(- — T,). If u has a limit at—oo, then
w, (t) — o_(u) for every reak. Therefore the limit of the weak convergence mentioned
above is the constant function= o_ (). By the lower semicontinuity of the functional
17,10, A, w) <liminf1(0, A, w,), for everyA > 0. Sinceu is perfect this implies

1 c
Z1(0, A,w) = f(o_(u),0,0) < u(f) + T
wherec is a constant independent d@f. Letting A — oo we conclude that_(u) €

9. 0O

The next lemma provides the basic block in the construction @f). Herev denotes
a c-optimal minimizer satisfying the assumptions mentioned previously in this section.

LEMMA 6.5. —LetU,, U, be limiting functions ob.
() Suppose that; = lim 7;_1 = co. Assume that there exist determining sequences
{s;} and {&;} for U; and U, respectively, such that

b1 <s; <& <ty Vi=2, lim (& —s;) = o0. (6.16)

ThenU; is monotone increasing i0, co), U, is monotone increasing i+—oo, 0) and

o (Up) < o_(Uy). (6.17)
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If, in addition,
0. (U1) <0o_(U>), (6.18)

then there exists a limiting function of sayw, such thatw is monotone increasing on
the whole line and

o4 (U1) So_(w) <op(w) <o_(Uz). (6.19)
Furthermorew has a determining sequené }°>°; such that

S < 9[ < éi Vi > 1, |Im(¢9, — Si) = |Im(§, — 0,) = 0OQ. (620)

(i) Suppose that, = lim 7; = co. Assume that there exist determining sequences
{s;} and{§;} for U; and U, respectively, such that

t <8 <& <ty Yiz 1, lim (& —s;) =o00. (6.18)
ThenU; is monotone decreasing {0, co), U, is monotone decreasing i#-oo, 0) and
o (U =2 0o_(Uy). (6.17)

If, in addition,

04 (U1) > 0_(U>), (6.18)
then there exists a limiting function of sayw*, such thatw* is monotone decreasing
on the whole line and

o4 (Up) = o_(w) > 04 (w) = o_(U2). (6.19)

Furthermorew* has a determining sequen¢ }>°, such that(6.20)holds.

Proof. —We shall prove part (i). Part (ii) is proved exactly in the same way.

The assertion concerning the monotonicity @f and U, in (0, co) and (—oo, 0)
respectively follows from (6.16) and (A2). Inequality (6.17) can be verified by the same
argument as in the proof of the corresponding inequality in Lemma 6.2(i).

Assume that (6.18) holds and put = (o_(U,) — o (U1))/4. Since U1(0) <
o, (U, Ux(0) > o_(Uy), it follows that, for all sufficiently large,

v(si) <oy (U1) +p, v(&) > 0_(U2) — p. (6.21)

Note thato, (U1) + p < (0.(Uy) + 0_(U3))/2 < o_(Us) — p. Therefore, by (6.21), for
all sufficiently largei,

3, € (51.6): v(B) = (04 (U) +0_(U2) /2. (6.22)

Hence, by Lemma 6.3, the sequer{e&¥;)} is monotone. By Proposition 2.37,, v}
converges to a limiting functiomw, which is perfect orR. By (6.22),

w(0) = (04 (U1) +0-(U)) /2. (6.23)
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In order to verify (6.20), assume that there exists a subsequghg¢esuch that
0, — si, > A < o0o. Then Ty, v — T4Uy so thatw = T,U;. Hencew(0) = Uy (A) <
o, (Uy), which contradicts (6.23). Thus li® — s;) = co. Similarly one shows that
lim(; — 6;) = oco. Further, (6.20) and (A2) imply thab is monotone increasing on
the whole line and that (6.19) holds. This completes the proof.

Up to this point we did not make use of the assumption thats finite. This
assumption is needed in the remaining part of the proof.

LEMMA 6.6. —Assume thab is finite.
(i) Suppose that; = co and thato, (1)) < o_(u,). ThenQ (v) contains a set£; of
the form

k
E1=J &),
i=1
wherek < oo andu;, i =1,...,k, is a limiting function ofv, which is perfect and
monotone increasing on the whole line, such that

oy (u) =o_(u1), oy (ur) = o_(uy),

o_(u)<or(u;), i=1,...,k, or(u)=o0_W;y1), i=1...,k—1
(6.24)
Furthermore each limiting function:;, i = 1,...,k, has a determining sequence
{61521 such that

t2j—1::00,j <01,j <"'<9k,j < 1Iyj :ZQ]H_]_’]', j:1,2,...,

(6.25)
||m 9i+1,j_9i,j:oo» i=0,...,k.
j—o00

(i) Suppose that, = oo and thato_(u;) < o, (u,). ThenQ (v) contains a sef, of
the form

v
Ex=JEw)),

i=1

wherek’ < oo anduf,i =1,...,k', is a perfect function, monotone decreasing on the
whole line, such that

o) =0, o-(up) =o0.(u,),

o)) <o_(u)), i=1,...,k, o_u)=oy(uly), i=1..k-1

(6:24)
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Furthermore each limiting function:f, i = 1,...,k’, has a determining sequence
{61521 such that

f; ::95‘,]- <0f’j <---<«9,f/’j <t2j+1::0,f,+1’j, j=12,..., 6.25)

1 k ko . /
Jim 67y~ 67, =00, i=0.. K.

Proof. —-By Lemma 6.2(i), the assumptions of assertion (i) of the present lemma imply
that the conditions of Lemma 6.5(i) are satisfied with respethte u; andU, = u,. By
repeatedly applying Lemma 6.5 we obtain a sequence of limiting functignso, ...
such that each functiow; is monotone increasing and

(o—(w), o4 (wy)) C (04 (u), 0-(u,)) Vi,

(o—(w), o (w;)) N (o-(w;), 00 (w;)) =0 fori# j.

(6.26)

By Lemma 6.4,
U+(M[),U_(Mr),a_(Wi),U+(Wi) €D. (627)

Since ® is finite, (6.26) and (6.27) imply that the sequence of limiting functions
constructed above is finite. This completes the proof of part (i). Part (ii) is proved in
the same way. O

Completion of proof of Theorem 1.3If7, < oo or o, (u4;) = o_(u,) put E; = @;
otherwise letE; be as in Lemma 6.6(i). I, < co or o_(u;) = o, (u,) put E; = @;
otherwise letE; be as in Lemma 6.6(ii). To complete the proof we shall show that

Q) = E(u;) UE(u,) UELU Es. (6.28)

Denote the set on the right hand side of (6.28)byObviouslyK c Q2 (v). Therefore it
remains to show that

Q) CK. (6.29)
We partition€2 (v) into two subset$2,(v), @, (v) defined as follows. Let

o0 o0
L= U[th—l» 1], L= U[fzj, f2j41].
j=1

j=t

If & € Q(v) and {s; e is a sequence of positive numbers such that> oo and
X,(s;) — &, we say thats;} is adetermining sequence fér

A point £ € Q(v) belongs to%;(v) if there exists a determining sequence for
contained in%;. Put Q,(v) := Q@) \ ). Clearly, if £ € Q,(v) there exists a
determining sequence fércontained irt,. However it is possible that a poiéte Q2 (v)
possesses determining sequences in 8pnd<, .

For anyu € C1(RY) put,

By ) = {@),u'(®): t =0},  E_(u)={(u@),u'): 1 <0}
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To complete the proof, we shall establish the following assertions.

. £eQ), 1 <o0=&€Ew),

. £ eQ),n=00=E€cELUE,(u)UE_(u,),
©)

. € eQ W), 1, <oco=&€E,),
V. £eQ,(v), 7, =0c0=&e€ E,UE, (1)U E_(u).

Proof of (C)I. —Let {s,};2, be a determining sequence fér contained in%,.
Extracting a subsequence if necessary, we may assume,tials;, 1, 12,1, n =
1,2,..., where{j,} is strictly increasing ands, — t,;,_1} converges to a numbet.
Thené =lim,_ o, X,(s,) = X,, (A).

Proof of (C)Il. —Let {s,}°2; be a determining sequence fprcontained irg;. Using
the notation of Lemma 6.6(i), we note that there exists a subsequenfg} dfstill
denoted bys,}) and an integeg, 0< g <k, suchthas, €[6, j,,0,+1;,1, n=12,...,
with {j,} strictly increasing.

By the same argument as in the first part we obtain,

liminf(s, — 6, ;) <oo=§& € B4 (uy),
e (6.30)
Iimiorgf(eq+17jn - Sn) < 0 ig S E_(Mq+1).
We claim that,
liminf (s, —6;.;,) =lminf (61, — su) =00
=& = (04+(uy), 0) = (0_(uy+1), 0). (6.31)

Let L > 0. Then, for sufficiently largen, s, — 6, ;, > L and 6,11, — s, > L.
Consequently, using (A2),

v(sy) Zv(L+6,;)=T,,,, v(L) = u,(L),
v(—=L) = uyi1(—=L).

Hence, letting firsth — oo and secondlyL — oo, we obtaino (u,) < Ii—>moov(Sn) <
o_(ug41). Sinceoy (u,) = o_(ug41), it follows that

U(sn) S V(0g41,j, — L) =Ty

q+1.jn

II—[QO v(s,) =04 (ugy). (6.32)
The same argument shows that, for evéry O,
|i_r>1’]oo v(s, +6) =04 (uy). (6.33)

By (A2), v/(s,) > 0 for all n. Suppose that lim sug(s,) > 0. Extracting a subsequence
if necessary, we may assume that ifts,) = p > 0. By [9, Lemma 2.2}/ is uniformly
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continuous orf0, co). Consequently, i > 0 is sufficiently smally(s, + 8) — v(s,) >

3p /2 for all sufficiently large:. As this contradicts (6.33) we conclude that lifts,) = 0

and (6.31) is proved. Clearly (6.30) and (6.31) imply the conclusion of (C)II.
Assertions Il and IV of (C) are proved exactly in the same way as | and Il. Finally

(C) implies (6.28). We note that, by constructidf,is compact and connected and that

(2.10) follows from Lemma 6.4. This completes the proof of the theorem.
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