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RÉSUMÉ. – Nous étudions la structure des minimiseurs localement optimaux (c-optimaux)
d’une classe de problèmes variationelles du second ordre surR+. Ces problèmes sont liés à
un modèle de thermodinamique introduit dans [4]. Nous montrons que siv est um minimiseur
non-périodiquec-optimal, alors la courbe correspondante dans l’espace des phases ne s’auto-
intersecte pas. En utilisant ce fait, nous étudions le comportement asymptotique à l’infini des
minimiseursc-optimaux, et la structure de leurs ensembles limites.

ABSTRACT. – We study the structure of locally optimal (c-optimal) minimizers of a
class of second order variational problems onR+. The problems are related to a model in
thermodynamics introduced in [4]. We show that ifv is ac-optimal nonperiodic minimizer, then
the corresponding curve in the phase plane does not intersect itself. Using this fact we study the
asymptotic behavior at infinity ofc-optimal minimizers, and the structure of their limiting sets.
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1. Introduction

In this paper we investigate the structure of locally optimal solutions of infinite
horizon variational problems associated with the functional

I f (D;w)=
∫
D

f
(
w(t),w′(t),w′′(t)

)
dt, ∀w ∈W 2,1(D),

whereD is a bounded interval on the real line andf ∈ C(R3) belongs to a space of
functionsM to be described below.

We shall consider the problems

inf
{
I f (D;w): w ∈W 2,1(D), (w,w′)(T1)= x, (w,w′)(T2)= y

}
(P x,y

D )
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for D = (T1, T2) andx, y ∈R2. We shall also consider the following problem on the half
line:

inf
{
J f (w): w ∈W

2,1
loc (0,∞), f (w,w′,w′′) ∈L1(0, T ),∀T > 0

}
, (P∞)

where

J f (w)= lim inf
T→∞ T −1I f

(
(0, T );w)

.

Variational problems of this type were considered in [6,9,12–14]. Similarconstrained
problems (involving a mass constraint), were studied in [4,7,8,10]. The constrained
problems were conceived as models for determining the thermodynamical equilibrium
states of unidimensional bodies involving ‘second order’ materials for which the free
energy density is given byf . A discussion of the physics underlying these models can
be found in Coleman [2,3] and in Coleman, Marcus and Mizel [4] which initiated a
systematic study of the corresponding constrained variational problem onR. Properties
of minimizers of the mass constrained problem on bounded intervals, and their relation
to minimizers of the limiting problem on the full line were studied by Marcus [7,8] and
Marcus and Zaslavski [10].

In the present paper we study the unconstrained problem(P∞) and related problems
on bounded intervals. One of our main goals is to describe thelimiting setof c-optimal
minimizers of(P∞), (see definition below). In the remaining part of this introduction we
discuss various results concerning the unconstrained problem. But first we describe the
space of integrandsM that we are going to consider.

Let a = (a1, a2, a3, a4) ∈ R4, ai > 0, i = 1,2,3,4 and letα,β, γ be real numbers
such that 1� β < α, β � γ andγ > 1. Denote byM = M(α,β, γ, a) the family of
continuous functions{f } such that

(i) f ∈ C2(R3), ∂f/∂x2 ∈ C2(R3), ∂f/∂x3 ∈C3(R3),
(ii) ∂ 2f/∂x2

3 > 0,

(iii) f (x) � a1|x1|α − a2|x2|β + a3|x3|γ − a4,

(iv) (|f | + |∇f |)(x) � Mf (|x1| + |x2|)(1+ |x3|γ )
, ∀x ∈R3,

(1.1)

whereMf : [0,∞) �→ [0,∞) is a continuous function depending onf .
In the sequel we assume thatf ∈ M= M(α,β, γ, a) where(α,β, γ, a) is an arbitrary

but fixed set of parameters satisfying the above conditions. Conditions (1.1)(iii), (iv)
imply that,

w ∈W
2,1
loc (R+) and f (w,w′,w′′) ∈L1(0, T ), ∀T > 0⇔w ∈W

2,γ
loc [0,∞),

where

W
2,γ
loc [0,∞)= {

w ∈W
2,γ
loc (0,∞): w ∈W 2,γ (0, T ),∀T > 0

}
.

For everyf ∈M, the infimum in(P∞) is finite (see [6] or [9, Lemma 2.2]). Put

µ(f ) := inf(P∞).
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Leizarowitz and Mizel [6] showed that, iff satisfies the condition

µ(f ) < inf
(w,s)∈R2

f (w,0, s),

then(P∞) possesses aperiodic minimizer. Later, Zaslavski [12] proved that this conditon
is not needed: the result holds for allf ∈M.

Forw ∈W 2,γ (D), D a bounded interval, put

Ef (D,w) := I f (D,w)−µ(f )|D|. (1.2)

By definition,w ∈W
2,γ
loc [0,∞) is a minimizer of(P∞) iff lim inf T→∞ 1

T
Ef ((0, T ),w)=

0. If, in addition, {Ef ((0, T ),w): T > 0} is bounded we say thatw is an f -good
minimizer. This concept was first introduced by Leizarowitz [5] in a discrete context.
More generally, ifv ∈ W

2,γ
loc (U) for some unbounded intervalU , and if there exists a

constantM = M(U,v) such that|Ef (D,v)| � M for every bounded intervalD ⊂ U ,
we say thatv is anf -good function inU . The family off good functions inU is denoted
byGf (U); the family off -good minimizers (i.e.Gf (R+)) will be denoted briefly byGf .

The following result was obtained in [12, Theorem 3.1]; a discrete version was
previously established in [5].

For everyw ∈W
2,γ
loc [0,∞), either{|Ef ((0, T ),w)|: T > 0} is bounded, i.e.,w ∈ Gf ,

or limT→∞ Ef ((0, T ),w)=∞. If w ∈ Gf thenw ∈W 1,∞(R+).

If w ∈ W
2,γ
loc (U) ∩ W 1,∞(U), whereU is an unbounded interval, we say thatv is c-

optimal on U , if, for every bounded intervalD = (T1, T2) ⊂ U , the restrictionw|D is
a minimizer of (P x,y

D ) with x = (w,w′)(T1), y = (w,w′)(T2). The family ofc-optimal
functions onU is denoted byT f (U); the family ofc-optimal functions onR+ is denoted
briefly byT f .

Note that the definition of ac-optimal function does not assume that it is a minimizer
of (P∞). However, by [9, Proposition 2.3]:

If w is c-optimal onR+ then it is an(f )-good minimizer.

Clearly, if u ∈ T f , thenu satisfies the Euler–Lagrange equation associated with the
functionalI f , namely,

∂f

∂x1
(u,u′, u′′)− d

dt

(
∂f

∂x2
(u,u′, u′′)

)
+ d2

dt2

(
∂f

∂x3
(u,u′, u′′)

)
= 0. (EL)

This is a fourth order, autonomous, quasi linear equation inu whose main coefficient
is ∂2f

∂x2
3
(u,u′, u′′). By assumption (1.1)(ii), this coefficient is positive everywhere.

Consequently, ifu1, u2 are c-optimal minimizers onR+ such that, at some pointt0,
u

(j)
1 (t0)= u

(j)
2 (t0) for j = 0,1,2,3 then u1 ≡ u2.

The class ofc-optimal minimizersT f is, in a sense, a ‘small’ subset ofGf . Obviously,
a c-optimal minimizer cannot be modified on compact sets without losing the property
of c-optimality. On the other hand the property off -goodness is stable with respect to
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such modifications. Indeed, ifw0 ∈ Gf and if w1 is a function inW 2,γ
loc [0,∞) such that

{x ∈R+: w0(x) �=w1(x)} is bounded, thenw1 ∈ Gf .
Nevertheless the class ofc-optimal minimizers onR+ is a ‘large’ class in the following

sense:

PROPOSITION 1.1. –For every pointx = (x1, x2) ∈ R2 there exists ac-optimal
minimizerw onR+ such that(w(0),w′(0))= x.

Such a minimizer can be constructed as follows. LetwT be a minimizer of the problem

inf
{
I f (D;w): w ∈W 2,1(D), (w,w′)(0)= x

}
, (P x,·

D )

for D = (0, T ). By [10, Corollary 3.3] and [9, Lemma 2.2], there exists a positive
constantM such that

‖wT ‖W2,γ (s,s+1) � M, ∀T > 0, ∀s ∈ (0, T − 1).

Therefore, ifTn →∞, then{w
Tn
} possesses a subsequence which converges inC1(D)

and converges weakly inW 2,γ (D), for every bounded intervalD ⊂ R+. By a standard
lower semicontinuity argument (see e.g. the proof of Lemma 2.3 in [9]) the limiting
functionw is c-optimal onR+ and(w(0),w′(0))= x.

It is interesting to note that, in general, ac-optimal function onR+ cannot be extended
to a c-optimal function onR. In this sense, the class ofc-optimal functions onR,
which we denote byT f (R), is much more restricted thanT f . In fact, T f (R) is a
bounded set inW 1,∞(R) (see Lemma 3.7 below) while, by our previous assertion,T f is
unbounded inW 1,∞(R+). In a generic sense the contrast is even more striking:T f (R)

is precisely the set of translates of a single periodic minimizer. Indeed, there exists a
dense subset ofM such that, for eachf in this subset, problem(P∞) possesses a unique
(up to translation) periodic minimizer and satisfies the asymptotic turnpike property or
(ATP) (see [9, Theorems 3.1, 3.2]). Further, by [9, Theorem 2.1], (ATP) implies the
strong turnpike property or (STP) (see [9, Definition 1.2]). Finally, (STP) implies, in a
straightforward manner, that everyc-optimal function onR is a translate of the (unique)
periodic minimizer.

Another class of minimizers, which plays an important role in our theory, is the class
of perfectminimizers, which is a subclass ofT f . First we define the concept of a perfect
function on an arbitrary interval. The definition requires some additional notation. For
everyw ∈ Gf , put

Ef
∞(w) := lim inf

T→∞ Ef
(
(0, T ),w

)
.

In a sense,Ef∞(w) measures the distance betweenI f ((0, T ),w) and the target value
T µ(f ) asT →∞. For everyx ∈R2, put

πf (x) := inf
{
Ef

∞(w): w ∈ Gf , (w(0),w′(0))= x
}
. (1.3)

It is known thatπf ∈ C(R2) and πf (x) → ∞ as |x| → ∞, [6]. If v ∈ W 2,γ (D),
D = (T1, T2), put

'f (D,v) := I f (D;v)− |D|µ(f )+ πf
(
Xv(T2)

)− πf
(
Xv(T1)

)
. (1.4)



M. MARCUS, A.J. ZASLAVSKI / Ann. I. H. Poincaré – AN 19 (2002) 343–370 347

If {Dj}kj=1 is a partition ofD into disjoint subintervals, then, by (1.4),

'f (D,v)=
k∑

j=1

'f (Dj , v).

We refer to this property of' asadditivity on intervals.
Given x, y ∈ R2 and T > 0, let Uf

T (x, y) denote the infimum in problem(P x,y
(0,T )).

Then

'f
(
(0, T ), v

)
� U

f
T (x, y)− T µ(f )+ π(y)− π(x)=:*f

T (x, y),

for every v ∈ W 2,γ (0, T ) such that(v(0), v′(0)) = x and (v(T ), v′(T )) = y. The
following result, obtained by Leizarowitz and Mizel [6, Section 4], adapts to the present
problem a general principle concerning cost functions in infinite horizon problems, due
to Leizarowitz [5, Proposition 5.1].

*
f
T is non-negative and, for everyT > 0 and everyx ∈ R2, there existsy ∈ R2 such

that*f
T (x, y)= 0.

If D is a bounded interval andw ∈W 2,γ (D), thenw is f -perfect onD if 'f (D,w)=
0. If U is an unbounded interval, we say thatw is f -perfecton U if w is f - perfect on
D for every bounded intervalD ⊂U . The family off -perfect functions onU is denoted
by Pf (U); the family off -perfect functions onR+ is denoted briefly byPf .

If w is f -perfect onD = (T1, T2) then: (a)w is a minimizer of problem(P x,y
D ) where

x = (w,w′)(T1), y = (w,w′)(T2) and (b)w is perfect on every subinterval ofD. These
assertions follow immediately from the non-negativity of*

f
T and the additivity of'f .

Note also that the result of [6] quoted above, implies the following.

PROPOSITION 1.2. –For everyx ∈ R2 there exists a perfect functionv on R+ such
that (v(0), v′(0))= x.

The functionv can be constructed inductively on the intervals(0, n), n= 1,2, . . ., as
follows. Let y ∈ R2 be a point such that*1(x, y) = 0 and letv|(0,1) be a minimizer of
(P

x,y
(0,1)). Now suppose thatv was defined as a perfect function on the interval(0, n). Put

z = (v, v′)(n). and letζ ∈ R2 be such that*1(z, ζ )= 0. Finally definev on (n, n+ 1)
so that it is a minimizer of(P z,ζ

(n,n+1)). The additivity property of'f guarantees that the
functionv constructed in this way isf -perfect on every interval(0, n), n= 1,2, . . . , and
consequently onR+.

The definition of a perfect function does not require boundedness. However the
following result holds:

PROPOSITION 1.3. – (i)If w is f -perfect onR+, thenw ∈W 1,∞(R+).
(ii) Everyf -perfect function onR+ is a c-optimal minimizer of(P∞).

Indeed, by assumption,Ef ((0, T ),w)= πf ((w,w′)(0))−πf ((w,w′)(T )), for every
T > 0. By [12, Theorem 3.1], infT>0 Ef ((0, T ),w) >−∞. Hence supT>0π

f (Xw(T )) <

∞. Since it is known thatπf (x) →∞ as|x| →∞, this fact implies assertion (i). The
second assertion is an immediate consequence of (i) and the definition of perfect func-
tions.
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Obviously, every periodic minimizer of(P∞) is f -perfect. LetSf denote the class of
periodic minimizers. Then

Sf ⊂ Pf ⊂ T f ⊂ Gf .

We note that, for everyf , Sf is a proper subset ofPf . Indeed, by [9, Proposition 2.3],
Sf is bounded inW 1,∞(R+). On the other hand, by Proposition 1.2,Pf is unbounded in
the norm ofW 1,∞(R+). Obviously,T f is a proper subset ofGf . An interesting question
is wether there existc-optimal minimizers which are not perfect. The answer depends
on the integrandf . If f possesses the periodic uniqueness property, i.e.(P∞) has a
unique (up to translation) periodic minimizer, then, by Theorem 5.1 below,Pf = T f .
However,there exists a family of integrandsf for whichPf is a proper subset ofT f .
A construction of such a family of integrands and other results pertaining to the non-
uniqueness case will be presented in a subsequent paper.

We turn now to a description of the main results of the present paper. The first main
result concerns thenon-intersecting propertyof c-optimal minimizers.

THEOREM 1.1. – (a)Let v be ac-optimal minimizer of(P∞). If there existsT > 0
such that

(v, v′)(0)= (v, v′)(T ) (1.5)

thenv is periodic with periodT .
(b) Let v1, v2 bec-optimal minimizers of(P∞) such that

(v1, v
′
1)(0)= (v2, v

′
2)(0). (1.6)

If there existt1, t2 ∈ [0,∞) such that(t1, t2) �= (0,0) and

(v1, v
′
1)(t1)= (v2, v

′
2)(t2), (1.7)

thenv1 ≡ v2.

Remark. – In the case of perfect minimizers the non-intersecting property is known.
Part (a) is implicitly contained in [6, Proposition 5.3]; for the full result see [9,
Lemma 2.8]. In this case the the non-intersecting property is a simple consequence of
the uniqueness of solutions of the initial value problem for (EL). In the case ofc-optimal
minimizers, the non-intersecting property goes much deeper. One of the ingredients in its
proof is the following interesting property ofc-optimal minimizers (see Proposition 4.2
below):

Letv be ac-optimal minimizer. IfT > 0, x = (v, v′)(0), y = (v, v′)(T ), then

*T (x, y)= inf
S>0

*S(x, y).

The next two results describe the limiting set ofc-optimal minimizers in the phase
plane and their asymptotic behaviour at infinity. The non-intersecting property plays
a crucial role in the derivation of these results. We use the following notation. If
v ∈ W

2,1
loc [0,∞) ∩ W 1,∞(0,∞), then the set of limiting points of(v, v′) as t → ∞ is

denoted by.(v).
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THEOREM 1.2. –Let

µ(f ) < inf
{
f (x,0,0): x ∈R1} (N)

and letv be ac-optimal minimizer of(P∞). Then there exists a periodic minimizerw of
(P∞) such that.(v)=.(w) and the following assertion holds:

LetT > 0 be a period ofw. Then, for everyε > 0 there existsτ(ε) > 0 such that for
everyτ � τ(ε) there existss ∈ [0, T ) such that,

∣∣(v, v′)(t + τ)− (w,w′)(s + t)
∣∣ � ε, t ∈ [0, T ]. (1.8)

Remark. – In the case that problem(P∞) possesses a unique (up to translation)
periodic minimizer, this result was proved in [9].

In the case thatv is a perfect minimizer, it was shown in [6] that the limiting set
.(v) contains.(w) for some periodic minimizerw. Combining this fact with the non-
intersecting property for perfect minimizers, it is not difficult to establish the theorem in
this case.

In the special case of the integrandf (u,u′, u′′) = (u′′)2 − b(u′)2 + (u2 − 1)2 (b a
positive constant), an assertion referring to the limiting behaviour at±∞ of ‘minimal
energy configurations’ (i.e.,c-optimal functions) on thewhole line appears in the
introduction to [11]. The nature of the limiting process was not specified and proof was
not supplied. The techniques used in [11] for the proof of other results depended on the
symmetries associated with this specific integrand.

Our next result describes the structure of the limiting set ofc-optimal minimizers,
in the absence of assumption (N). In this case the structure of the limiting set is
considerably more complicated. This result is new even in the case of perfect functions.

THEOREM 1.3. –Suppose thatµ(f )= inf{f (d,0,0): d ∈ R1} and that the setD =
{d ∈ R1 : f (d,0,0) = µ(f )} is finite. Letv be a c-optimal minimizer of(P∞). Then
.(v) is a compact connected set and the following alternative holds. Either there exists
a periodic minimizerw such that.(v)=.(w) and(1.8)holds, or.(v) is a finite union
of arcs

⋃k
j=1 3̄j such that each arc3j is the phase plane image of a perfect functionuj ,

i.e.,

3j = {
(uj , u

′
j )(t): t ∈R1}, j = 1, . . . , k. (1.9)

Furthermore, each functionuj is monotone in neighborhoods of+∞ and −∞ and
satisfies,

lim
t→∞(uj , u

′
j )(t) ∈D× {0}, lim

t→−∞(uj , u
′
j )(t) ∈D× {0}. (1.10)

2. Preliminaries

For everyT > 0 andx, y ∈ R2 put

U
f
T (x, y) = inf

{
I f (0, T ,w): w ∈W 2,γ (0, T ), (w,w′)(0)= x, (w,w′)(T )= y

}
. (2.1)
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Forx ∈Rn, B ⊂Rn putd(x,B) := inf{|x−y|: y ∈ B} (where| · | is the Euclidean norm)
and denote by dist(A,B) the distance in the Hausdorff metric between two subsetsA,B

of Rn. If v ∈W 2,1(D) put,

Xv(t)= (
v(t), v′(t)

)
, t ∈D.

Since in the present paper we consider an arbitrary but fixed functionf ∈ M the
superscriptf will be ommitted in notation such asI f , 'f etc.

The following result, derived in [6, Section 4], is based on a general principle con-
cerning cost functions in infinite horizon problems, established in [5, Proposition 5.1].

PROPOSITION 2.1. –Let πf be defined as in(1.3) and U
f
T as in (2.1). Thenπf ∈

C(R2) and (T , x, y) → U
f
T (x, y) is continuous in(0,∞)×R2 ×R2. Furthermore, for

everyT , x, y as above,

*
f
T (x, y)=U

f
T (x, y)− T µ(f )− (

πf (x)− πf (y)
)
� 0, (2.2)

and, for everyT > 0 and everyx ∈R2, there existsy ∈R2 such that*f
T (x, y) = 0.

The following simple but useful result was established in [9]. The brief proof is
repeated below.

PROPOSITION 2.2. –LetD = (T1, T2) be a bounded interval and suppose thatw1,w2

are perfect functions inD. If there existsτ ∈D such that(w1,w
′
1)(τ )= (w2,w

′
2)(τ ) then

w1 =w2 everywhere inD.

Proof. –We define a functionu in D as follows:

u(t)=w1(t), t ∈ [T1, τ ], u(t)=w2(t), t ∈ (τ, T2].
Evidentlyu ∈W 2,1(D) and'(D;u)= '((T1, τ ), u)+ '((τ, T2), u)= 0. Consequently
u is a minimizer of problem(P

x,y
D ) with x = (u,u′)(T1) andy = (u,u′)(T2). Sinceu,

w1, w2 satisfy the Euler–Lagrange equation (EL) andu coincides withw1 on (T1, τ ) and
with w2 on (τ, T2), we conclude thatu=w1 =w2 everywhere inD. ✷

The next result is of a more technical nature but it plays a central role in our arguments.

PROPOSITION 2.3. –Let v ∈W
2,1
loc [0,∞) be a good function. Let{ξk} be a sequence

in (0,∞) such thatξk →∞ and letuk, k = 1,2, . . . be the function given by

uk(t)= v(t + ξk) (−ξk � t <∞).

Then there exists a subsequence{ukj } and a functionu ∈W
2,γ
loc (R1) such that

(a) ukj → u weakly inW 2,γ (−T ,T ), ∀T > 0,

(b)
{
(u,u′)(t): t ∈R1} ⊂.(v),

(c) '
(
(T1, T2);u) = 0, ∀T1, T2 ∈R1.

(2.3)
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Thusu is a perfect function onR1. If, in addition, there existsτ ∈ R1 such that the
sequence{Xv(τ + ξk)} converges, then

uk → u weakly inW 2,γ (−T ,T ), ∀T > 0. (2.4)

Proof. –For everyT > 0 choose an integerkT such thatT < ξk for all k � kT . Since
v is a good minimizerv ∈W 1,∞(0,∞). By [9, Lemma 2.1], for every fixedT > 0 there
exists a constantM1(T ) such that

I
(
(−T ,T );uk

)= I
(
(−T + ξk, T + ξk);v)

�U2T
(
Xv(−T + ξk),Xv(T + ξk)

)+M1(T ),

for all k � kT . SinceXv is bounded andU2T is continuous, it follows that the sequence
{I ((−T ,T );uk): k � kT } is bounded. Consequently, by [9, Lemma 2.2],{uk: k � kT }
is bounded inW 2,γ (−T ,T ). Hence there exists a subsequence{ukj } and a function

u ∈ W
2,γ
loc (R1) such that (2.3)(a) holds. Therefore{(ukj , u

′
kj
)} converges uniformly to

(u,u′) in [−T ,T ], for everyT > 0. This implies (2.3)(b).
By [9, Lemma 2.4], for everyT > 0,

lim
k→∞'

(
(−T ,T );uk

) = lim
k→∞'

(
(−T + ξk, T + ξk);v) = 0.

By Berkovitz [1],I ((−T ,T ); ·) is weakly lower semicontinuous inW 2,γ (−T ,T ). These
facts and the continuity ofπ(·) imply that '((−T ,T );u) = 0, for everyT > 0. Thus
(2.3)(c) holds.

Finally, if {Xv(τ + ξk)} converges, say toz, thenXu(τ) = z. Suppose that there are
two subsequences of{uk} which converge tou andũ locally as in (2.3)(a). Thenu and
ũ are perfect functions andXu(τ)=Xũ(τ)= z. By Proposition 2.2u≡ ũ. ✷

COROLLARY 2.1. –Letv ∈W
2,1
loc [0,∞) be a good function. Then, for everyz ∈.(v),

there existsu ∈W
2,1
loc (R1) such that,

(a)
{
(u,u′)(t): t ∈R1} ⊂.(v), (u,u′)(0)= z,

(b) '((T1, T2);u)= 0, ∀T1, T2 ∈R1.
(2.5)

Proof. –Given z ∈ .(v) let {sk} be a sequence of positive numbers tending to∞
such that(v, v′)(sk) → z. We apply Proposition 2.3 withξk = sk . Then(uk, u

′
k)(0) =

(v, v′)(sk) → z. Consequently the functionu mentioned in Proposition 2.3 satisfies
(2.5). ✷

PROPOSITION 2.4. –Let v ∈ W
2,1
loc [0,∞) be a good function. Suppose thatw is a

periodic minimizer of(P∞) such that.(v) ⊂ .(w). Then.(v) = .(w) and the
following assertion holds:

LetT > 0 be a period ofw. Then, for everyε > 0 there existsτ(ε) > 0 such that for
everyτ � τ(ε) there existss ∈ [0, T ) such that,

∣∣(v, v′)(t + τ)− (w,w′)(s + t)
∣∣ � ε, t ∈ [0, T ]. (2.6)
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Proof. –Let z ∈.(v) and letu ∈W
2,1
loc (R1) be as in Corollary 2.1. SinceXu(0)= z ∈

.(w), there existss0 ∈R1 such thatXu(0)=Xw(s0). Hence, by (2.5)(b) and Proposition
2.2,u(t) = w(t + s0) for all t ∈ R1. Thus.(u) =.(w) and consequently, by (2.5)(a),
.(w)⊂.(v). Since by assumption,.(v)⊂.(w) we conclude that,

.(v)=.(w).

We turn now to the proof of the second assertion of the proposition. Suppose that it is
not valid. Then there existsε > 0 and a strictly increasing sequence of numbers{Tk}∞k=1
tending to infinity such that, for every integerk � 1 and everys ∈ [0, T ),

sup
{|Xv(Tk + t)−Xw(s + t)|: t ∈ [0, T ]} > ε. (2.7)

Apply Proposition 2.3 withξk = Tk . Let {ukj } and u be as in that proposition. Then
ukj → u in C1[0, T ]. Therefore, by (2.7),

sup
{|Xu(t)−Xw(s + t)|: t ∈ [0, T ]} � ε (2.8)

for everys ∈ [0, T ).
By (2.3)(b), (u,u′)(0) ∈ .(v) = .(w). Therefore there existss0 ∈ R1 such that

(u,u′)(0)= (w,w′)(s0). Hence, by (2.3)(c) and Proposition 2.2,

u(t)=w(s0 + t), ∀t ∈R1.

Since this contradicts (2.8), the second assertion is established.✷
3. Some properties of c-optimal minimizers

LEMMA 3.1. –Letv ∈W
1,2
loc [0,∞) be a good function. Ifv has a limit at infinity, say

lim t→∞ v(t)= d0, then

lim
t→∞Xv(t)= (d0,0) and f (d0,0,0)= µ(f ). (3.1)

Proof. –Every good function is bounded. Therefored0 < ∞. If z = (d0, z2) ∈ .(v),
then by Corollary 2.1, there existsu ∈ W

2,1
loc (R1) such that (2.5)(a) holds. Evidently

u ≡ d0, i.e.,u is the constant function with valued0. Thusz = (d0,0) and, sincez was
an arbitrary element of.(v), we conclude that.(v)= {(d0,0)}. Finally, sinceu ≡ d0,
(2.5)(b) implies thatµ(f )= f (d0,0,0). ✷

Let h be a real function defined in a domainD ⊂ R1. We say thath changes signin
D if there are pointss1, s2 ∈ D such thath(s1) > 0 and h(s2) < 0. If s0 ∈ D, h(s0) = 0
and there exists a neighborhoodU of s0 such thath(s1)h(s2) < 0 whenevers1, s2 ∈ U

ands1 < s0 < s2, we say thats0 is aturning pointof h.

LEMMA 3.2. –Suppose thatv is a c-optimal minimizer of(P∞) such thatv′ changes
sign in every neighborhood of∞. Then there exists a strictly increasing sequence of
positive numbers{tk}∞k=1 such thattk →∞ and, for every integerk � 1,
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(a) v′ does not change sign in[tk, tk+1];
(b) tk is a turning point ofv′.

Proof. –Put

Ej = {
τ ∈ (0,∞): v(j)(τ )= 0

}
, j = 1, . . . ,4.

Our assumption implies thatE1 is unbounded. We claim thatE1 has no limit points
in (0,∞). Indeed if t∗ ∈ (0,∞) is a limit point of E1, then it is also a limit point of
Ej, j = 1, . . . ,4. Consequentlyv(j)(t∗) = 0, j = 1, . . . ,4. Sincev satisfies the Euler–
Lagrange equation (EL) it follows that∂f

∂x1
(v(t∗),0,0)= 0. Hence the constant function

with valuev(t∗) is a solution of (EL). This implies thatv ≡ v(t∗), which contradicts our
assumption.

Put

E = {T > 1: v′ changes sign in every neighborhood ofT }.
SinceE1 has no limit points in(0,∞) it follows that every point inE is a turning point
for v′. We observe that ifv′ changes sign in an intervalD ⊂ (0,∞), thenD ∩E �= ∅.

To verify this assertion, picks1, s2 ∈ D such thatv′(s1)v
′(s2) < 0. To fix notation

assume thats1 < s2 and v′(s1) > 0. If τ ∈ (s1, s2) is a point wherev achieves its
maximum over[s1, s2], thenτ ∈ E.

The above assertion and our assumptions imply thatE is unbounded. In additon,E
has no limit points inR+. ThereforeE can be ordered so thatE = {tk}∞k=1 is a strictly
increasing sequence tending to∞. We have already shown that this sequence satisfies
(b). Since the intervals(tk, tk+1) do not intersectE it follows thatv′ does not change sign
in any of these intervals. ✷

LEMMA 3.3. –Suppose thatv is a c-optimal minimizer of(P∞) such thatv′ changes
sign in every neighborhood of∞. Let{tk}∞k=1 be a sequence as in Lemma3.2and suppose
that

sup{tk+1 − tk: k = 1,2, . . .} =∞. (3.2)

Then there existsd0 ∈R1 such thatµ(f )= f (d0,0,0) and(d0,0) ∈.(v).

Proof. –Let {tk′ }∞k=1 be a subsequence such thattk′+1 − tk′ → ∞. Without loss of
generality we may assume that signv′ is constant in the set

⋃∞
k=1(tk′, tk′+1). Now apply

Proposition 2.3 tov with ξk = (tk′+1 + tk′)/2. It follows that the functionu mentioned
in that proposition is monotone on the whole line and, by (2.3),u is a perfect function.
Consequentlyu has a limit at∞ and, by Lemma 3.1, it satisfies (3.1). Since.(u) ⊂
.(v), the conclusion of the lemma follows.✷

LEMMA 3.4. –Suppose thatv is a c-optimal minimizer of(P∞) such thatv′ changes
sign in every neighborhood of∞. In addition suppose that

Xv(s1) �=Xv(s2), ∀s1, s2 ∈ [0,∞), s1 �= s2. (3.3)

If {tj }∞j=1 is a sequence as in Lemma3.2, then:
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(a) If j �= k thenv(tj ) �= v(tk).
(b) The sequences{v(t2j )} and {v(t2j+1)} are eventually monotone. Moreover, if one

of them is eventually increasing the other one is eventually decreasing.
Let

lim
j→∞v(t2j )= d0, lim

j→∞v(t2j+1)= d1. (3.4)

Then, either
(i) d0 = d1 and(3.1)holds,

or
(ii) d0 �= d1 and

inf{tk+1 − tk: k = 1,2, . . .}> 0. (3.5)

Proof. –PutSj = [tj , tj+1], j = 1,2, . . .. Without loss of generality we may assume
that v′ � 0 in S1. Then, by Lemma 3.2,(−1)jv′ � 0 in Sj , for every integerj � 1.
Furthermore, in each of these intervals,v′ vanishes at most at a finite number of points.
(Recall thatE1, the set of zeros ofv′, has no limit points in(0,∞).) Thereforev is
strictly monotone in every intervalSj . Sincev is continuous it follows thatvj := v|Sj

has
an inversev−1

j ∈ C(S∗
j ), whereS∗

j = [v(tj ), v(tj+1)] if j is odd andS∗
j = [v(tj+1), v(tj )]

if j is even. Assumption (3.3) implies thatv(tj ) �= v(ti) wheneveri �= j . Therefore, for
every integerj � 1, eitherS∗

j � S∗
j+1, or S∗

j � S∗
j+1.

Next we prove the following assertion.

Suppose that, for some integerj ′ � 1, S∗
j ′ ⊃ S∗

j ′+1. Then

S∗
j ′+i ⊃ S∗

j ′+i+1, i = 0,1,2, . . . . (3.6)

To fix ideas, assume thatj ′ is odd. (The proof is similar ifj ′ is even.) Suppose that (3.6)
is not valid fori = 1. Then

v(tj ′) < v(tj ′+2) < v(tj ′+1) < v(tj ′+3). (3.7)

Puthj = v′j ◦ v−1
j . Thenhj ∈ C(S∗

j ) andv′(t)= hj(v(t)) for everyt ∈ Sj . Furthermore,
hk vanishes at the end points ofS∗

k and (−1)k+1hk � 0, for every integerk � 1.
Therefore (3.7) implies thathj ′ andhj ′+2 must intersect at some point inS∗

j ′ ∩ S∗
j ′+2 =[v(tj ′+2), v(tj ′+1)]. Hence there exist pointss1 ∈ Sj ′ ands2 ∈ Sj ′+2 such that(v, v′)(s1)=

(v, v′)(s2), which contradicts (3.3). Thus

S∗
j ′ ⊃ S∗

j ′+1 ⇒ S∗
j ′+1 ⊃ S∗

j ′+2,

and (3.6) follows.
In view of the above assertion we conclude that, either there existsj ′ � 1 such that

(3.6) holds, or

S∗
j ⊂ S∗

j+1, j = 1,2, . . . . (3.8)

If (3.6) holds, then{v(t2j+1)} is increasing forj � (j ′ − 1)/2 and {v(t2j )} is decreasing
for j � (j ′ + 1)/2. If (3.8) holds, then{v(t2j+1)}∞j=0 is decreasing and{v(t2j )}∞j=1 is
increasing.
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Sincev is bounded it follows that the limits in (3.4) exist. Clearly, ifd0 = d1 then
lim t→∞ v(t)= d0. Therefore, by Lemma 3.1, statement (3.1) holds. Ifd0 �= d1, (3.5) is a
consequence of the boundedness ofv′. ✷

LEMMA 3.5. –Assume thatv is a c-optimal minimizer which satisfies(3.3).
(a) If µ(f ) < infR1 f (d,0,0), then there exists a periodic minimizerw of (P∞) such

that.(w)=.(v). Therefore the conclusion of Proposition2.4applies tov.
(b) If µ(f ) = infR1 f (d,0,0), then either there exists a periodic minimizerw as in

(a), or there existsd0 ∈R1 such thatµ(f )= f (d0,0,0) and(d0,0) ∈.(v).

Proof. –If v has a limit at infinity, then, by Lemma 3.1,µ(f ) = infR1 f (d,0,0) and
(3.1) holds. Therefore, in this case, assertion (b) holds. We turn now to the case where
v does not have a limit at infinity, making no assumption on the relation betweenµ(f )

and infR1 f (d,0,0). In this casev′ changes sign in every neighborhood of infinity. Let
{tk}∞k=1 be as in Lemma 3.2. If

sup{tk+1 − tk: k = 1,2, . . .} =∞, (3.9)

then Lemma 3.3 implies that there existsd0 as in (b). Therefore, in order to complete the
proof of the lemma it is sufficient to establish the following:

ASSERTION3.5.1. –If v has no limit at infinity and

sup{tk+1 − tk: k = 1,2, . . .}<∞, (3.10)

then there exists a periodic minimizerw such that.(w)=.(v).

Sincev has no limit at infinity, it follows that statement (ii) of Lemma 3.4 holds.
Without loss of generality, we may assume thatv′ � 0 in (t1, t2) and consequently
d0 > d1.

Now apply Proposition 2.3 withξk = tk . Let uk be defined as in that proposition and
let {ukj } be a subsequence of{u2k} such that{tkj+2− tkj }∞j=1 and{tkj+1− tkj }∞j=1 converge
and such that (2.3) holds. Clearlyv′ � 0 in

⋃∞
j=1(t2k, t2k+1) and

Xu2k (0)→ (d0,0), Xu2k (t2k+1 − t2k)→ (d1,0). (3.11)

Putu= limj→∞ ukj , τ = limj→∞(tkj+2− tkj ) andτ ′ = limj→∞(tkj+1− tkj ). Note that,
by (3.5),τ ′ > 0 and, by (3.4) and (3.11),

Xu(0)=Xu(τ)= (d0,0), Xu(τ
′)= (d1,0). (3.12)

By (2.3) u is perfect and therefore, by Proposition 2.2 and (3.12),u is periodic with
periodτ . In view of (3.11), the last assertion of Proposition 2.3 implies that the whole
sequence{u2k} converges tou locally as in (2.3)(a). In particular it follows thatu2k → u

in C1[−T ,T ] for everyT > 0.
The definition ofu and the fact that it is periodic imply that.(u) ⊂ .(v). Suppose

that ζ ∈ .(v) and let {τj } be a sequence tending to infinity such thatXv(τj ) → ζ .
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Then for everyj there existskj such thatτj ∈ [t2kj , t2kj+2]. Put ξj = τj − t2kj . Taking
a subsequence if necessary, we may assume that{ξj } converges, say toξ . Hence
Xv(τj ) = Xu2kj

(ξj ) → Xu(ξ) and consequentlyζ ∈ .(u). Thus.(u) = .(v) and the
assertion is proved. ✷

The following is a consequence of Lemma 3.5 and Corollary 2.1.

LEMMA 3.6. –Assume thatv is a c-optimal minimizer of(P∞). Then there exists a
periodic minimizerw such that.(w)⊂.(v).

Proof. –By Corollary 2.1 there exists a perfect functionu such that.(u) ⊂ .(v).
If u is periodic, the proof is finished. Ifu is not periodic, then, by Proposition 2.2,
u satisfies (3.3). Therefore, by Lemma 3.5, there exists a periodic minimizerw such
that.(w) ⊂ .(u). In this connection we observe that, ifµ(f ) = f (d0,0,0), then the
constant function with valued0 is a minimizer and it is trivially periodic. ✷

Finally we obtain the following uniform boundedness result.

LEMMA 3.7. –The set ofc-optimal functions onR is bounded inW 1,∞(R).

Proof. –By [9, Proposition 2.3] the family of periodic minimizersPf is bounded in
W 1,∞(R). LetMf be such a bound.

If u is a function defined onR let ũ be the function given bỹu(t) = u(−t). If g is a
function defined onR3 let g̃ be the function given bỹg(x1, x2, x3)= g(x1,−x2, x3). Note
that if f ∈M thenf̃ ∈ M. It is easy to see that ifu is c-optimal onR, relative tof , then
ũ is c-optimal onR, relative tof̃ . Similarly, if h is a periodic minimizer relative tof ,
thenh̃ is a periodic minimizer relative tõf . In particularµ(f )= µ(f̃ ). Consequently, if
u ∈ T f (R), then, by Lemma 3.6, there exist periodic minimizersh1, h2 ∈Pf such that

.(h1)⊂.(u), .(h̃2)⊂.(ũ). (3.26)

(If µ(f ) = infR f (t,0,0), then hi , i = 1,2 may be a constant.) Recall that.(u)

denotes the set of limit points of(u,u′) at +∞. Let .′(u) denote the set of limit
points of (u,u′) at −∞. Clearly, the fact that.(h̃2) ⊂ .(ũ) implies that.′(h2) ⊂
.′(u). Therefore, by (3.26), there exists sequences{tn} and {sn} tending to+∞ such
that lim supn→∞ |Xu|(tn) < 2Mf and lim supn→∞ |Xu|(−sn) < 2Mf . Now a standard
argument as in [10, Lemma 3.1] implies that that there exists a constantM ′

f , depending
only onf , such that,‖u‖W1,∞(R) � M ′

f . ✷
4. Proof of Theorems 1.1, 1.2

One of the main ingredients in our proof is provided by the following result established
in [9, Lemma B.5], which is an extension of [14, Lemma 3.7].

PROPOSITION 4.1. –Letw be a periodic minimizer of(P∞) and letε > 0. Then there
exist numbersδ, q > 0 such that the following assertion holds.
If

x, y ∈R2, d
(
x,.(w)

)
� δ, d

(
y,.(w)

)
� δ,
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then, for everyτ � q, there existsv ∈W 2,1(0, τ ) such that

Xv(0)= x, Xv(τ)= y, '
(
(0, τ );v)

� ε.

The next proposition describes an interesting property ofc-optimal minimizers. This
is another key ingredient in our proof of the main results.

PROPOSITION 4.2. –Assume thatv is ac-optimal minimizer of(P∞). Then, for every
T ,S > 0,

UT

(
Xv(0),Xv(T )

)− T µ(f ) � US

(
Xv(0),Xv(T )

)− Sµ(f ). (4.1)

Proof. –We prove the result by negation. Suppose that (4.1) does not hold. Then there
exist positive numbersT0, S0 such that

(
UT0

(
Xv(0),Xv(T0)

)− T0µ(f )
)− (

US0

(
Xv(0),Xv(T0)

)− S0µ(f )
) := λ > 0. (4.2)

Using (4.2) we show that, for someT > 0, there exists a function̄v ∈ W 2,γ (0, T ) such
that

Xv̄(0)=Xv(0), Xv̄(T )=Xv(T ), I
(
(0, T ); v̄)

< I
(
(0, T );v)

. (4.3)

Obviously this contradicts the assumption thatv is c-optimal .
By Lemma 3.6 there exists a periodic minimizerw such that.(w)⊂.(v). Let δ, q

be as in Proposition 4.1 withε = λ/4. Clearly there exist numbersτ1, τ2 such that

τ1 > T0, τ2 > τ1 + S0 + q, d
(
Xv(τi),.(w)

)
� δ, i = 1,2. (4.4)

Putτ ′
1 = τ1−T0+S0 so thatτ2−τ ′

1 > q. By Proposition 4.1 there existsh ∈W 2,γ (τ ′
1, τ2)

such that

Xh(τ
′
1)=Xv(τ1), Xh(τ2)=Xv(τ2), '

(
(τ ′

1, τ2);h)
� λ/4. (4.5)

Put

x =Xv(0), y =Xv(T0), D = (0, S0), (4.6)

and letu be a minimizer of
(
P

x,y
D

)
. Thus

Xu(0)=Xv(0), Xu(S0)=Xv(T0), US0(x, y)= I (D,u). (4.7)

Finally define the function̄v in [0, τ2] as follows

v̄(t)=



u(t) t ∈ [0, S0],
v(t − S0 + T0) t ∈ (S0, τ

′
1],

h(t) t ∈ (τ ′
1, τ2].

(4.8)

From (4.5) and (4.7) it follows that̄v ∈W 2,γ (0, τ2) and

Xv̄(0)=Xv(0), Xv̄(τ2)=Xv(τ2). (4.9)
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Recall that the functionD �→ '(D,v) is nonnegative and finitely additive on partitions
of bounded intervals (see (1.4)). Therefore, by (4.8), (4.9),

I
(
(0, τ2); v̄)− I

(
(0, τ2);v)

= '
(
(0, τ2); v̄)−'

(
(0, τ2);v)

= '
(
(0, S0);u)+ '

(
(T0, τ1);v)+ '

(
(τ ′

1, τ2);h)−'
(
(0, τ2);v)

� '
(
(0, S0);u)− '

(
(0, T0);v)− '

(
(τ1, τ2);v)+ '

(
(τ ′

1, τ2);h)
.

Hence, by (4.5) and (4.7),

I
(
(0, τ2); v̄)− I ((0, τ2);v)
� '

(
(0, S0);u)−'

(
(0, T0);v)+ λ/4

= I
(
(0, S0);u)− S0µ(f )− I

(
(0, T0);v)+ T0µ(f )+ λ/4. (4.10)

Sincev is c-optimal, I ((0, T0);v) = UT0(x, y) (see (4.6)). Hence, by (4.2), (4.7) and
(4.10),

I
(
(0, τ2); v̄)− I

(
(0, τ2);v)

�
(
US0(x, y)− S0µ(f )

)− (
UT0(x, y)− T0µ(f )

)+ λ/4=−3

4
λ < 0. (4.11)

Finally this inequality and (4.9) yield (4.3) withT = τ2. ✷
Proof of Theorem 1.1. –Statement (a) is a simple consequence of (b). However we

prove it separately and use it as a step in the proof of (b). First we show that ifv is a
c-optimal minimizer satisfying (1.5), then

'
(
(0, T );v) = 0. (4.12)

By Proposition 4.2,

M :=UT+1
(
Xv(0),Xv(T + 1)

)− T µ(f )−U1
(
Xv(0),Xv(T + 1)

)
� 0. (4.13)

On the other hand, sincev is ac-optimal minimizer,

UT+1
(
Xv(0),Xv(T + 1)

) = I
(
(0, T + 1);v)

.

Hence, using (1.5) we obtain (withM as in (4.13))

M = I
(
(0, T + 1);v)− T µ(f )−U1

(
Xv(T ),Xv(T + 1)

)
= I

(
(0, T + 1);v)− T µ(f )− I

(
(T , T + 1);v)

= I
(
(0, T );v)− T µ(f )= '

(
(0, T );v)

. (4.14)

Since'((0, T );v) � 0, (4.13) and (4.14) imply (4.12).
Now let u be the periodic function with periodT which coincides withv on [0, T ].

In view of (1.5),u ∈ W
2,γ
loc (R) and (4.12) implies thatu is a periodic minimizer. Two

c-optimal minimizers which coincide on an interval are identical because they satisfy
the Euler–Lagrange equation (EL). Consequentlyv ≡ u.
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We turn to the proof of (b). Letv1, v2 bec-optimal minimizers satisfying (1.6), (1.7)
for somet1, t2 ∈ [0,∞) such that(t1, t2) �= (0,0). Without loss of generality we assume
that t1 � t2. First consider the case whent1 = 0. Thent2 > 0 and

Xv1(0)=Xv2(0)=Xv2(t2). (4.15)

Consequently, by (a),v2 is a periodic minimizer with periodt2.
Let u be the function given by,

u(t)=
{

v2(t) t ∈ [0, t2],
v1(t − t2) t ∈ (t2,∞).

(4.16)

In view of (4.15) it follows thatu ∈ W 2,γ (0, T ) for everyT > 0. We claim thatu is
c-optimal.

Suppose that the claim is false so that there exist arbitrarily largeT satisfying the
inequality

I
(
(0, T );u)

> UT

(
Xu(0),Xu(T )

)
. (4.17)

ChooseT > t2 + 1 such that (4.17) holds. By (4.16) and the fact thatv2 is a periodic
minimizer,

I
(
(0, T );u) = I

(
(0, t2);v2

)+ I
(
(t2, T );u) = t2µ(f )+ I

(
(t2, T );u)

. (4.18)

Sincev1 is c-optimal,

I
(
(t2, T );u) = I

(
(0, T − t2);v1

) =UT−t2

(
Xv1(0),Xv1(T − t2)

)
. (4.19)

By (4.15)–(4.19),

UT

(
Xv1(0),Xv1(T − t2)

)− T µ(f )

=UT

(
Xu(0),Xu(T )

)− T µ(f )

< I
(
(t2, T );u)− (T − t2)µ(f )

=UT−t2

(
Xv1(0),Xv1(T − t2)

)− (T − t2)µ(f ). (4.20)

Since this inequality contradicts Proposition 4.2 with respect tov1 it follows that u is
c-optimal.

By (4.16)u coincides withv2 in [0, t2] and withv1(· − t2) in [t2,∞). Since bothv1

andv2 arec-optimal we conclude thatu(·) ≡ v2(·) andv1(·)≡ v2(· + t2). Finally, since
v2 is periodic with periodt2 we conclude thatv1 ≡ v2. This proves statement (b) in the
caset1 = 0.

Next we consider the case when 0< t1 � t2. Put

x :=Xv1(0)=Xv2(0), y :=Xv1(t1)=Xv2(t2). (4.21)

By Proposition 4.2 applied tovj , with T = tj ,

Utj (x, y)− tjµ(f )= inf{US(x, y)− Sµ(f ): 0< S <∞}, j = 1,2.
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Sincevj is c-optimal,Utj (x, y)= I ((0, tj );vj ), j = 1,2. Consequently,

I
(
(0, t1);v1

)− t1µ(f )= I
(
(0, t2);v2

)− t2µ(f ). (4.22)

Let u be the function given by,

u(t)=
{

v2(t) t ∈ [0, t2],
v1(t − t2 + t1) t ∈ (t2,∞).

(4.23)

In view of (4.21) it follows thatu ∈ W 2,γ (0, T ) for everyT > 0. We claim thatu is c-
optimal. Again the proof is by negation. If the claim is false there existsT > t1 + t2 + 1
such that (4.17) holds. PutT ∗ = T − t2 + t1. Then, using (4.21)–(4.23) and (4.17) we
obtain

UT ∗
(
Xv1(0),Xv1(T

∗)
)− T ∗µ(f )

= I
(
(0, T ∗);v1

)− T ∗µ(f )

= I
(
(0, t1);v1

)− t1µ(f )+ I
(
(t1, T

∗);v1
)− (T − t2)µ(f )

= I
(
(0, t2);v2

)− t2µ(f )+ I
(
(t1, T

∗);v1
)− (T − t2)µ(f )

= I
(
(0, T );u)− T µ(f ) > UT

(
Xu(0),Xu(T )

)− T µ(f )

=UT

(
Xv1(0),Xv1(T

∗)
)− T µ(f ). (4.24)

Since this inequality contradicts Proposition 4.2 with respect tov1 it follows that u is
c-optimal. As before, the fact thatu, v1, v2 arec-optimal and (4.23) imply that

u(·)≡ v2(·) and v1(·)≡ v2(· + t2 − t1). (4.25)

If t1 = t2 we havev1 ≡ v2. If t1 �= t2, then by (4.21) and (4.25),Xv2(0) = Xv1(0) =
Xv2(t2 − t1) and consequently, by part (a),v2 is periodic with periodt2 − t1. Hence, by
(4.25),v2 ≡ v1. ✷

Proof of Theorem 1.2. –Suppose thatv is ac-optimal minimizer. By Theorem 1.1(a),
if there exists1, s2 ∈ [0,∞), s1 �= s2 such thatXv(s1) = Xv(s2), then v is periodic.
Therefore it remains to deal with the case where (3.3) holds, namely

Xv(s1) �=Xv(s2), ∀s1, s2 ∈ [0,∞), s1 �= s2.

In this case the conclusion of the theorem follows from Lemma 3.5(i).✷
5. Perfect minimizers

An integrandf ∈ M possesses theperiodic uniquenessproperty if problem(P∞)

has a unique (up to translation) periodic minimizer. It is known that this property holds
generically inM, [9, Theorem 3.1]. When this property holds we can obtain more precise
information on the structure ofc-optimal minimizers.
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THEOREM 5.1. –Suppose thatf ∈ M has the periodic uniqueness property. Then
everyc-optimal minimizer of(P∞) is perfect.

Proof. –Recall that, by Proposition 1.2, for everyx ∈ R2 there exists anf -perfect
function u ∈ W 2,γ (0,∞) such thatXu(0) = x. Furthermore, by Proposition 1.3, every
f -perfect function onR+ is ac-optimal minimizer.

Let v be ac-optimal minimizer of(P∞) and letu be a perfect minimizer such that
Xu(0)=Xv(0). By Lemma 3.6, ifw is the unique periodic minimizer of(P∞), then

.(w)⊂.(u)∩.(v). (5.1)

Suppose thatv is not perfect. Then there existsτ0 > 0 such that

'
(
(0, τ0);v) := ρ > 0. (5.2)

Let δ andq be as in Proposition 4.1 withε = ρ/2. By (5.1) there exist arbitrarily large
s1, s2 such that

d
(
Xu(s1),.(w)

)
� δ, d

(
Xv(s2),.(w)

)
� δ. (5.3)

Chooses1, s2 satisfying (5.3) such thats1 > τ0, s2 > s1 + q. Then, by Proposition 4.1,
there existsh ∈W 2,1(s1, s2) such that

Xh(s1)=Xu(s1), Xh(s2)=Xv(s2), '
(
(s1, s2);h)

� ρ/2. (5.4)

Let ξ be the function given by

ξ(t)=



u(t) t ∈ [0, s1),
h(t) t ∈ [s1, s2),
v(t) t ∈ [s2,∞).

(5.5)

Thenξ ∈W 2,γ (0, T ) for everyT > 0. Recall that' is a non-negative, additive function
on intervals. Consequently, by (5.5), (5.2) and (5.4),

I
(
(0, s2); ξ)− I

(
(0, s2);v) = '

(
(0, s1);u)+'

(
(s1, s2);h)−'

(
(0, s2);v)

� −ρ/2.

SinceXξ(0) = Xu(0) = Xv(0) andXξ(s2) = Xv(s2) this inequality contradicts the fact
thatv is c-optimal . ✷

6. Proof of Theorem 1.3

By assumption,

µ(f )= inf
{
f (x,0,0): x ∈R1}. (6.1)

Let v ∈ W
2,1
loc [0,∞) ∩W 1,∞(0,∞) be ac-optimal minimizer of(P∞) and suppose that

v is not periodic. (Otherwise there is nothing to prove.) Then, by Theorem 1.1,

Xv(s1) �=Xv(s2) for eachs1, s2 satisfying 0� s1 < s2. (6.2)
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If there existsd ∈R1 such that limt→∞Xv(t)= (d,0), then by Corollary 2.1µ(f )=
f (d,0,0) and Theorem 1.3 holds. Therefore, in the sequel we assume that

.(v) is not a singleton. (A1)

Consequently Lemmas 3.1 and 3.2 imply that there exists a strictly increasing sequence
of positive numbers{tk}∞k=1 such thattk →∞ ask →∞ and, for every integerk � 1,

(i) v′ does not change sign in[tk, tk+1];

(ii) tk is a turning point ofv′.
Without loss of generality we assume that

(−1)jv′(t) � 0 ∀t ∈ [tj , tj+1], j = 1,2, . . . . (A2)

By (6.2)v is strictly monotone in each such interval. By Lemma 3.4 there existsi0 � 1
such that either

v(t2i+2) > v(t2i) and v(t2i+3) < v(t2i+1) ∀i � i0, (6.3)

or

v(t2i+2) < v(t2i) and v(t2i+3) > v(t2i+1) ∀i � i0. (6.4)

In either case the following limits exist

z2 = lim
i→∞ v(t2i), z1 = lim

i→∞ v(t2i+1). (6.5)

By (A2), v(t2i−1) < v(t2i), for all i � 1. Hence,z1 � z2. By Lemma 3.4, ifz2 = z1, then
(3.1) holds withd0 = z1, which contradicts (A1). Therefore

z1 < z2. (6.6)

Consequently, by (6.2) and Lemma 3.4,

inf{ti+1 − ti : i � 1}> 0. (6.7)

For every reals, let Ts denote the translation by amounts. Accordingly, sincev is
defined on[0,∞), Tsv is defined on[−s,∞) by

Tsv(t)= v(s + t), t � −s. (6.8)

Put vj := Ttj v. By Proposition 2.3, it follows from (6.5) that the sequences{v2j } and

{v2j+1} converge. More precisely, there existul, ur ∈W
2,γ
loc (R1) such that

v2j+1 → ul, v2j → ur asj →∞ weakly inW 2,γ (−A,A) ∀A > 0 (6.9)

andul, ur are perfect onR1.
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Put

τj = tj+1 − tj , j = 1,2, . . . . (6.10)

By assumption (A1),v does not posses a limit at infinity. Therefore, if{τj }∞j=1 is
bounded, Assertion 3.5.1 (see proof of Lemma 3.5), implies that there exists a periodic
minimizer w such that.(v) = .(w). Consequently, by Proposition 2.4, (1.8) holds.
Therefore, in the sequel we may assume that,

sup{τj }∞j=1 =∞. (A3)

In the remaining part of this section we complete the proof of the theorem, under
assumptions (A1)–(A3). This part of the proof will be based on several lemmas.

LEMMA 6.1. –If {τ2j−1}∞j=1 is bounded, then it converges to a positive number; if it is
unbounded, then it tends to infinity. The statement remains valid if{τ2j−1}∞j=1 is replaced
by {τ2j }∞j=1.

Proof. –We prove the assertion for{τ2j−1}∞j=1. The proof is similar for{τ2j }∞j=1.
Suppose that{τ2j−1}∞j=1 is unbounded but it has a finite limit pointτ . By (6.7)

τ > 0. Note that, for every integerj � 1, v2j−1 is monotone increasing in[0, τ2j−1) and
monotone decreasing in[τ2j−1, τ2j−1+τ2j ]. Therefore, since{τ2j−1}∞j=1 is unbounded, it
follows thatu′

l � 0 in R+ (see (6.9)). Similarly, since{τ2j−1}∞j=1 possesses a subsequence
which converges toτ , it follows thatu′

l � 0 in (τ, τ + c), wherec = lim inf τ2j . Note that
by (6.7)c > 0. These facts imply thatu′

l ≡ 0 in (τ, τ+ c) so thatul has a constant value,
sayb, in this interval. This implies that the constant function with valueb is a solution
of (EL). Sinceul is perfect inR, it is also a solution of (EL). Henceul ≡ b. On the
other hand, by (6.5),Xul

(0)= (z1,0) andXul
(τ )= (z2,0). Since, by (6.6),z1 < z2, we

reached a contradiction.
Next suppose that{τ2j−1}∞j=1 is bounded but does not converge. Letτ and τ ′ be

two limit points of the sequence,τ < τ ′. By (6.7) τ > 0. By the previous argument,
u′

l � 0 in (τ, τ + c) and u′
l � 0 in (0, τ ′). Thereforeu is constant in(τ, c′), where

c′ = min(τ ′, τ + c). As before this leads to a contradiction.✷
Put

τl = lim
j→∞ τ2j−1, τr = lim

j→∞ τ2j . (6.11)

In view of (A3) it remains to deal with the following three cases:
(a) τl =∞, τr <∞;
(b) τr =∞, τl <∞;
(c) τl =∞, τr =∞.

The next lemma describes the behaviour of the limit functionsul andur (see (6.9)) in
each of these cases. We use the following notation. Ifu is defined in a neighborhood of
+∞ or −∞ and possesses a limit there, then

σ+(u) := lim
t→∞u(t), σ−(u) := lim

t→−∞u(t). (6.12)

LEMMA 6.2. – (i)If (a) holds, then
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u′
l (t) � 0 ∀t ∈ (−∞,−τr), u′

l(t) � 0 ∀t ∈ (−τr ,0),

u′
l (t) � 0 ∀t ∈ (0,∞),

ul = Tτr ur , σ+(ul) � σ−(ur).

(ii) If (b) holds, then

u′
r (t) � 0 ∀t ∈ (−∞,−τl), u′

r (t) � 0 ∀t ∈ (−τl,0),

u′
r (t) � 0 ∀t ∈ (0,∞),

ur = Tτlul, σ−(ul) � σ+(ur).

(iii) If (c) holds, then

u′
l(t) � 0, ∀t � 0, u′

l(t) � 0, ∀t � 0,

u′
r (t) � 0, ∀t � 0, u′

r (t) � 0, ∀t � 0,

σ+(ul) � σ−(ur), σ−(ul) � σ+(ur).

Proof. –The first part of (i) is a simple consequence of (a) and assumption (A2). Note
thatv2j+1(t)= v2j (t + τ2j ), ∀t ∈ R1. Sinceτ2j → τr <∞ it follows thatul = Tτr ur .

GivenT > 0, choosej sufficiently large so that 2T < τ2j−1. Thent2j−1 < T + t2j−1 �
−T + t2j < t2j and consequentlyv2j−1(T ) � v2j (−T ). Letting j → ∞ we obtain
ul(T ) � ur(−T ). Taking the limit asT →∞ yields σ+(ul) � σ−(ur). This completes
the proof of (i).

Part (ii) is proved exactly in the same way as (i) and part (iii) follows by similar
arguments. ✷

Let Sj = [tj , tj+1], j = 1,2, . . . . By (A2) and (6.2),v is strictly increasing inSj if j is
odd and strictly decreasing ifj is even. Hence, the functiont → v(t), t ∈ Sj is invertible,
for every integerj � 1. Its inversehj is defined onS∗

j whereS∗
j = [v(tj ), v(tj+1)] for

oddj andS∗
j = [v(tj+1), v(tj )] for evenj .

LEMMA 6.3. – (i)If (6.3)holds, then for every integeri � 1,

v′
(
h2i−1(s)

)
< v′

(
h2i+1(s)

) ∀s ∈ S∗
2i−1, (6.13)

v′
(
h2i(s)

)
> v′

(
h2i+2(s)

) ∀s ∈ S∗
2i . (6.14)

(ii) If (6.4)holds, then for every integeri � 1,

v′
(
h2i+1(s)

)
< v′

(
h2i−1(s)

) ∀s ∈ S∗
2i+1, (6.13′)

v′
(
h2i(s)

)
< v′

(
h2i+2(s)

) ∀s ∈ S∗
2i+2. (6.14′)

Proof. –We shall prove (6.13′); the other assertions are proved in the same way. Let
i � 1 be an integer. We claim that the inequality in (6.13′) holds for s = v(t2i−1) and
s = v(t2i). Indeedh2i−1(v(t2i−1)) = t2i−1 and, by (6.3),h2i+1(v(t2i−1)) ∈ (t2i+1, t2i+2).
Similarly h2i−1(v(t2i)) = t2i andh2i+1(v(t2i)) ∈ (t2i+1, t2i+2). Therefore, ifs = v(t2i−1)

or s = v(t2i), thenv′(h2i−1(s))= 0 and (by (A2) and (6.2))v′(h2i+1(s)) > 0.
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If (6.13′) does not hold for somes ∈ (v(t2i−1), v(t2i)), then, by the mean value theo-
rem, there exists̄s ∈ (v(t2i−1), v(t2i)) such thatv′(h2i−1(s̄))= v′(h2i+1(s̄)). This implies
thatXv(h2i−1(s̄))=Xv(h2i+1(s̄)), which contradicts (6.2). Thus (6.13′) holds. ✷

At this point it is convenient to introduce the following definition.

DEFINITION 6.1. –Let V be a good function and let{ξk} be a sequence of positive
numbers tending to infinity. Suppose that there existst0 ∈ R1 such that the sequence
{Xv(t0+ ξk)} converges. By Proposition2.3 the sequence of translationsTξkV converges
to a functionu ∈W

2,γ
loc (R1) in the following sense:

TξkV → u weakly inW 2,γ (−T ,T ), ∀T > 0.

The functionu will be called a limiting function ofV and the sequence{ξk} will be called
a determining sequence foru.

LEMMA 6.4. –Suppose thatV is a good function. Ifu is a limiting function ofV then
u is perfect and

3(u) := {(
u(t), u′(t)

)
: t ∈R1} ⊂.(V ). (6.15)

If, in addition, u is monotone in a neighborhood of+∞ (resp.−∞) thenσ+(u) ∈ D

(resp.σ−(u) ∈D) and lim t→∞ u′(t)= 0 (resp.(lim t→−∞ u′(t)= 0).

Proof. –The first statement follows from the proof of Proposition 2.3. Ifu is monotone
near infinity, Lemma 3.1 implies thatσ+(u) ∈D and that limt→∞ u′(t)= 0.

By [9, Lemma 2.2], {u(· + A): A ∈ R1} is bounded inW 2,γ (0,1). Therefore,
there exists a sequence{Tn} tending to∞ such that{u(· − Tn)} converges weakly
in W 2,γ (0,A) for every A > 0. Put wn = u(· − Tn). If u has a limit at−∞, then
wn(t)→ σ−(u) for every realt . Therefore the limit of the weak convergence mentioned
above is the constant functionw ≡ σ−(u). By the lower semicontinuity of the functional
I f , I (0,A,w) � lim inf I (0,A,wn), for everyA > 0. Sinceu is perfect this implies

1

A
I (0,A,w)= f

(
σ−(u),0,0

)
� µ(f )+ c

A
,

wherec is a constant independent ofA. Letting A → ∞ we conclude thatσ−(u) ∈
D. ✷

The next lemma provides the basic block in the construction of.(v). Herev denotes
a c-optimal minimizer satisfying the assumptions mentioned previously in this section.

LEMMA 6.5. –LetU1, U2 be limiting functions ofv.
(i) Suppose thatτl = lim τ2j−1 =∞. Assume that there exist determining sequences

{si} and{ξi} for U1 andU2 respectively, such that

t2i−1 � si < ξi � t2i ∀i � 2, lim
i→∞(ξi − si)=∞. (6.16)

ThenU1 is monotone increasing in(0,∞), U2 is monotone increasing in(−∞,0) and

σ+(U1) � σ−(U2). (6.17)
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If, in addition,

σ+(U1) < σ−(U2), (6.18)

then there exists a limiting function ofv, sayw, such thatw is monotone increasing on
the whole line and

σ+(U1) � σ−(w) � σ+(w) � σ−(U2). (6.19)

Furthermorew has a determining sequence{θi}∞i=1 such that

si < θi < ξi ∀i � 1, lim(θi − si)= lim(ξi − θi)=∞. (6.20)

(ii) Suppose thatτr = lim τ2j = ∞. Assume that there exist determining sequences
{si} and{ξi} for U1 andU2 respectively, such that

t2i � si < ξi � t2i+1 ∀i � 1, lim
i→∞(ξi − si)=∞. (6.16′)

ThenU1 is monotone decreasing in(0,∞), U2 is monotone decreasing in(−∞,0) and

σ+(U1) � σ−(U2). (6.17′)

If, in addition,

σ+(U1) > σ−(U2), (6.18′)

then there exists a limiting function ofv, sayw∗, such thatw∗ is monotone decreasing
on the whole line and

σ+(U1) � σ−(w) � σ+(w) � σ−(U2). (6.19′)

Furthermorew∗ has a determining sequence{θi}∞i=1 such that(6.20)holds.

Proof. –We shall prove part (i). Part (ii) is proved exactly in the same way.
The assertion concerning the monotonicity ofU1 and U2 in (0,∞) and (−∞,0)

respectively follows from (6.16) and (A2). Inequality (6.17) can be verified by the same
argument as in the proof of the corresponding inequality in Lemma 6.2(i).

Assume that (6.18) holds and putρ = (σ−(U2) − σ+(U1))/4. Since U1(0) �
σ+(U1), U2(0) � σ−(U2), it follows that, for all sufficiently largei,

v(si) < σ+(U1)+ ρ, v(ξi) > σ−(U2)− ρ. (6.21)

Note thatσ+(U1)+ ρ < (σ+(U1)+ σ−(U2))/2< σ−(U2)− ρ. Therefore, by (6.21), for
all sufficiently largei,

∃θi ∈ (si, ξi): v(θi)= (
σ+(U1)+ σ−(U2)

)
/2. (6.22)

Hence, by Lemma 6.3, the sequence{v′(θi)} is monotone. By Proposition 2.3,{Tθiv}
converges to a limiting functionw, which is perfect onR. By (6.22),

w(0)= (
σ+(U1)+ σ−(U2)

)
/2. (6.23)



M. MARCUS, A.J. ZASLAVSKI / Ann. I. H. Poincaré – AN 19 (2002) 343–370 367

In order to verify (6.20), assume that there exists a subsequence{θik} such that
θik − sik → A < ∞. ThenTθik

v → TAU1 so thatw = TAU1. Hencew(0) = U1(A) �
σ+(U1), which contradicts (6.23). Thus lim(θi − si) = ∞. Similarly one shows that
lim(ξi − θi) = ∞. Further, (6.20) and (A2) imply thatw is monotone increasing on
the whole line and that (6.19) holds. This completes the proof.✷

Up to this point we did not make use of the assumption thatD is finite. This
assumption is needed in the remaining part of the proof.

LEMMA 6.6. –Assume thatD is finite.
(i) Suppose thatτl =∞ and thatσ+(ul) < σ−(ur). Then.(v) contains a setE1 of

the form

E1 =
k⋃

i=1

3̄(ui),

wherek < ∞ and ui, i = 1, . . . , k, is a limiting function ofv, which is perfect and
monotone increasing on the whole line, such that

σ+(ul)= σ−(u1), σ+(uk)= σ−(ur),

σ−(ui) � σ+(ui), i = 1, . . . , k, σ+(ui)= σ−(ui+1), i = 1, . . . , k − 1.
(6.24)

Furthermore each limiting functionui , i = 1, . . . , k, has a determining sequence
{θi,j }∞j=1 such that

t2j−1 =: θ0,j < θ1,j < · · ·< θk,j < t2j =: θk+1,j , j = 1,2, . . . ,

lim
j→∞ θi+1,j − θi,j =∞, i = 0, . . . , k.

(6.25)

(ii) Suppose thatτr =∞ and thatσ−(ul) < σ+(ur). Then.(v) contains a setE2 of
the form

E2 =
k′⋃

i=1

3̄(u∗
i ),

wherek′ < ∞ andu∗
i , i = 1, . . . , k′, is a perfect function, monotone decreasing on the

whole line, such that

σ−(ul)= σ+(u∗
1), σ−(u∗

k)= σ+(ur),

σ+(u∗
i ) � σ−(u∗

i ), i = 1, . . . , k′, σ−(u∗
i )= σ+(u∗

i+1), i = 1, . . . , k′ − 1.
(6.24′)
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Furthermore each limiting functionu∗
i , i = 1, . . . , k′, has a determining sequence

{θ∗
i,j }∞j=1 such that

t2j =: θ∗
0,j < θ∗

1,j < · · ·< θ∗
k′,j < t2j+1 =: θ∗

k′+1,j , j = 1,2, . . . ,

lim
j→∞ θ∗

i+1,j − θ∗
i,j =∞, i = 0, . . . , k′.

(6.25′)

Proof. –By Lemma 6.2(i), the assumptions of assertion (i) of the present lemma imply
that the conditions of Lemma 6.5(i) are satisfied with respect toU1 = ul andU2 = ur . By
repeatedly applying Lemma 6.5 we obtain a sequence of limiting functionsw1,w2, . . .

such that each functionwi is monotone increasing and

(
σ−(wi), σ+(wi)

) ⊂ (
σ+(ul), σ−(ur)

) ∀i,
(
σ−(wi), σ+(wi)

)∩ (
σ−(wj), σ+(wj)

) =∅ for i �= j.

(6.26)

By Lemma 6.4,

σ+(ul), σ−(ur), σ−(wi), σ+(wi) ∈D. (6.27)

Since D is finite, (6.26) and (6.27) imply that the sequence of limiting functions
constructed above is finite. This completes the proof of part (i). Part (ii) is proved in
the same way. ✷

Completion of proof of Theorem 1.3. –If τl < ∞ or σ+(ul) = σ−(ur) put E1 = ∅;
otherwise letE1 be as in Lemma 6.6(i). Ifτr < ∞ or σ−(ul) = σ+(ur) put E2 = ∅;
otherwise letE2 be as in Lemma 6.6(ii). To complete the proof we shall show that

.(v)= 3̄(ul)∪ 3̄(ur)∪E1 ∪E2. (6.28)

Denote the set on the right hand side of (6.28) byK . ObviouslyK ⊂.(v). Therefore it
remains to show that

.(v)⊂K. (6.29)

We partition.(v) into two subsets.l(v), .r(v) defined as follows. Let

Tl :=
∞⋃

j=1

[t2j−1, t2j ], Tr :=
∞⋃

j=1

[t2j , t2j+1].

If ξ ∈ .(v) and {sj }∞j=1 is a sequence of positive numbers such thatsj → ∞ and
Xv(sj )→ ξ , we say that{sj } is adetermining sequence forξ .

A point ξ ∈ .(v) belongs to.l(v) if there exists a determining sequence forξ

contained inTl. Put .r(v) := .(v) \ .l(v). Clearly, if ξ ∈ .r(v) there exists a
determining sequence forξ contained inTr . However it is possible that a pointξ ∈.(v)

possesses determining sequences in bothTl andTr .
For anyu ∈ C1(R1) put,

3+(u)= {
(u(t), u′(t)): t � 0

}
, 3−(u)= {

(u(t), u′(t)): t � 0
}
.
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To complete the proof, we shall establish the following assertions.

I. ξ ∈.l(v), τl <∞⇒ ξ ∈ 3̄(ul),

II. ξ ∈.l(v), τl =∞⇒ ξ ∈E1 ∪ 3̄+(ul)∪ 3̄−(ur),

III. ξ ∈.r(v), τr <∞⇒ ξ ∈ 3̄(ur),

IV . ξ ∈.r(v), τr =∞⇒ ξ ∈E2 ∪ 3̄+(ur)∪ 3̄−(ul).

(C)

Proof of (C)I. –Let {sn}∞n=1 be a determining sequence forξ , contained inTl .
Extracting a subsequence if necessary, we may assume thatsn ∈ [t2jn−1, t2jn], n =
1,2, . . . , where{jn} is strictly increasing and{sn − t2jn−1} converges to a numberA.
Thenξ = limn→∞ Xv(sn)=Xul

(A).

Proof of (C)II. –Let {sn}∞n=1 be a determining sequence forξ , contained inTl. Using
the notation of Lemma 6.6(i), we note that there exists a subsequence of{sn} (still
denoted by{sn}) and an integerq, 0� q � k, such thatsn ∈ [θq,jn , θq+1,jn], n= 1,2, . . . ,
with {jn} strictly increasing.

By the same argument as in the first part we obtain,

lim inf
n→∞ (sn − θq,jn) <∞⇒ ξ ∈3+(uq),

lim inf
n→∞ (θq+1,jn − sn) <∞⇒ ξ ∈3−(uq+1).

(6.30)

We claim that,

lim inf
n→∞ (sn − θq,jn)= lim inf

n→∞ (θq+1,jn − sn)=∞
⇒ ξ = (

σ+(uq),0
) = (

σ−(uq+1),0
)
. (6.31)

Let L > 0. Then, for sufficiently largen, sn − θq,jn > L and θq+1,jn − sn > L.
Consequently, using (A2),

v(sn) � v(L+ θq,jn)= Tθq,jn
v(L)→ uq(L),

v(sn) � v(θq+1,jn −L)= Tθq+1,jn
v(−L)→ uq+1(−L).

Hence, letting firstn → ∞ and secondlyL → ∞, we obtainσ+(uq) � lim
n→∞v(sn) �

σ−(uq+1). Sinceσ+(uq)= σ−(uq+1), it follows that

lim
n→∞ v(sn)= σ+(uq). (6.32)

The same argument shows that, for everyδ > 0,

lim
n→∞ v(sn + δ)= σ+(uq). (6.33)

By (A2), v′(sn) � 0 for all n. Suppose that lim supv′(sn) > 0. Extracting a subsequence
if necessary, we may assume that limv′(sn)= ρ > 0. By [9, Lemma 2.2]v′ is uniformly
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continuous on[0,∞). Consequently, ifδ > 0 is sufficiently small,v(sn + δ)− v(sn) >

δρ/2 for all sufficiently largen. As this contradicts (6.33) we conclude that limv′(sn)= 0
and (6.31) is proved. Clearly (6.30) and (6.31) imply the conclusion of (C)II.

Assertions III and IV of (C) are proved exactly in the same way as I and II. Finally
(C) implies (6.28). We note that, by construction,K is compact and connected and that
(1.10) follows from Lemma 6.4. This completes the proof of the theorem.✷
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